]> git.ipfire.org Git - thirdparty/git.git/blob - refs.c
ref_transaction_delete(): remove "have_old" parameter
[thirdparty/git.git] / refs.c
1 #include "cache.h"
2 #include "lockfile.h"
3 #include "refs.h"
4 #include "object.h"
5 #include "tag.h"
6 #include "dir.h"
7 #include "string-list.h"
8
9 struct ref_lock {
10 char *ref_name;
11 char *orig_ref_name;
12 struct lock_file *lk;
13 unsigned char old_sha1[20];
14 int lock_fd;
15 int force_write;
16 };
17
18 /*
19 * How to handle various characters in refnames:
20 * 0: An acceptable character for refs
21 * 1: End-of-component
22 * 2: ., look for a preceding . to reject .. in refs
23 * 3: {, look for a preceding @ to reject @{ in refs
24 * 4: A bad character: ASCII control characters, "~", "^", ":" or SP
25 */
26 static unsigned char refname_disposition[256] = {
27 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
28 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
29 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 1,
30 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4,
31 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
32 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 4, 0,
33 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
34 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 4, 4
35 };
36
37 /*
38 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken
39 * refs (i.e., because the reference is about to be deleted anyway).
40 */
41 #define REF_DELETING 0x02
42
43 /*
44 * Used as a flag in ref_update::flags when a loose ref is being
45 * pruned.
46 */
47 #define REF_ISPRUNING 0x04
48
49 /*
50 * Used as a flag in ref_update::flags when old_sha1 should be
51 * checked.
52 */
53 #define REF_HAVE_OLD 0x08
54
55 /*
56 * Try to read one refname component from the front of refname.
57 * Return the length of the component found, or -1 if the component is
58 * not legal. It is legal if it is something reasonable to have under
59 * ".git/refs/"; We do not like it if:
60 *
61 * - any path component of it begins with ".", or
62 * - it has double dots "..", or
63 * - it has ASCII control character, "~", "^", ":" or SP, anywhere, or
64 * - it ends with a "/".
65 * - it ends with ".lock"
66 * - it contains a "\" (backslash)
67 */
68 static int check_refname_component(const char *refname, int flags)
69 {
70 const char *cp;
71 char last = '\0';
72
73 for (cp = refname; ; cp++) {
74 int ch = *cp & 255;
75 unsigned char disp = refname_disposition[ch];
76 switch (disp) {
77 case 1:
78 goto out;
79 case 2:
80 if (last == '.')
81 return -1; /* Refname contains "..". */
82 break;
83 case 3:
84 if (last == '@')
85 return -1; /* Refname contains "@{". */
86 break;
87 case 4:
88 return -1;
89 }
90 last = ch;
91 }
92 out:
93 if (cp == refname)
94 return 0; /* Component has zero length. */
95 if (refname[0] == '.')
96 return -1; /* Component starts with '.'. */
97 if (cp - refname >= LOCK_SUFFIX_LEN &&
98 !memcmp(cp - LOCK_SUFFIX_LEN, LOCK_SUFFIX, LOCK_SUFFIX_LEN))
99 return -1; /* Refname ends with ".lock". */
100 return cp - refname;
101 }
102
103 int check_refname_format(const char *refname, int flags)
104 {
105 int component_len, component_count = 0;
106
107 if (!strcmp(refname, "@"))
108 /* Refname is a single character '@'. */
109 return -1;
110
111 while (1) {
112 /* We are at the start of a path component. */
113 component_len = check_refname_component(refname, flags);
114 if (component_len <= 0) {
115 if ((flags & REFNAME_REFSPEC_PATTERN) &&
116 refname[0] == '*' &&
117 (refname[1] == '\0' || refname[1] == '/')) {
118 /* Accept one wildcard as a full refname component. */
119 flags &= ~REFNAME_REFSPEC_PATTERN;
120 component_len = 1;
121 } else {
122 return -1;
123 }
124 }
125 component_count++;
126 if (refname[component_len] == '\0')
127 break;
128 /* Skip to next component. */
129 refname += component_len + 1;
130 }
131
132 if (refname[component_len - 1] == '.')
133 return -1; /* Refname ends with '.'. */
134 if (!(flags & REFNAME_ALLOW_ONELEVEL) && component_count < 2)
135 return -1; /* Refname has only one component. */
136 return 0;
137 }
138
139 struct ref_entry;
140
141 /*
142 * Information used (along with the information in ref_entry) to
143 * describe a single cached reference. This data structure only
144 * occurs embedded in a union in struct ref_entry, and only when
145 * (ref_entry->flag & REF_DIR) is zero.
146 */
147 struct ref_value {
148 /*
149 * The name of the object to which this reference resolves
150 * (which may be a tag object). If REF_ISBROKEN, this is
151 * null. If REF_ISSYMREF, then this is the name of the object
152 * referred to by the last reference in the symlink chain.
153 */
154 unsigned char sha1[20];
155
156 /*
157 * If REF_KNOWS_PEELED, then this field holds the peeled value
158 * of this reference, or null if the reference is known not to
159 * be peelable. See the documentation for peel_ref() for an
160 * exact definition of "peelable".
161 */
162 unsigned char peeled[20];
163 };
164
165 struct ref_cache;
166
167 /*
168 * Information used (along with the information in ref_entry) to
169 * describe a level in the hierarchy of references. This data
170 * structure only occurs embedded in a union in struct ref_entry, and
171 * only when (ref_entry.flag & REF_DIR) is set. In that case,
172 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
173 * in the directory have already been read:
174 *
175 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
176 * or packed references, already read.
177 *
178 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
179 * references that hasn't been read yet (nor has any of its
180 * subdirectories).
181 *
182 * Entries within a directory are stored within a growable array of
183 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
184 * sorted are sorted by their component name in strcmp() order and the
185 * remaining entries are unsorted.
186 *
187 * Loose references are read lazily, one directory at a time. When a
188 * directory of loose references is read, then all of the references
189 * in that directory are stored, and REF_INCOMPLETE stubs are created
190 * for any subdirectories, but the subdirectories themselves are not
191 * read. The reading is triggered by get_ref_dir().
192 */
193 struct ref_dir {
194 int nr, alloc;
195
196 /*
197 * Entries with index 0 <= i < sorted are sorted by name. New
198 * entries are appended to the list unsorted, and are sorted
199 * only when required; thus we avoid the need to sort the list
200 * after the addition of every reference.
201 */
202 int sorted;
203
204 /* A pointer to the ref_cache that contains this ref_dir. */
205 struct ref_cache *ref_cache;
206
207 struct ref_entry **entries;
208 };
209
210 /*
211 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
212 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
213 * public values; see refs.h.
214 */
215
216 /*
217 * The field ref_entry->u.value.peeled of this value entry contains
218 * the correct peeled value for the reference, which might be
219 * null_sha1 if the reference is not a tag or if it is broken.
220 */
221 #define REF_KNOWS_PEELED 0x10
222
223 /* ref_entry represents a directory of references */
224 #define REF_DIR 0x20
225
226 /*
227 * Entry has not yet been read from disk (used only for REF_DIR
228 * entries representing loose references)
229 */
230 #define REF_INCOMPLETE 0x40
231
232 /*
233 * A ref_entry represents either a reference or a "subdirectory" of
234 * references.
235 *
236 * Each directory in the reference namespace is represented by a
237 * ref_entry with (flags & REF_DIR) set and containing a subdir member
238 * that holds the entries in that directory that have been read so
239 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
240 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
241 * used for loose reference directories.
242 *
243 * References are represented by a ref_entry with (flags & REF_DIR)
244 * unset and a value member that describes the reference's value. The
245 * flag member is at the ref_entry level, but it is also needed to
246 * interpret the contents of the value field (in other words, a
247 * ref_value object is not very much use without the enclosing
248 * ref_entry).
249 *
250 * Reference names cannot end with slash and directories' names are
251 * always stored with a trailing slash (except for the top-level
252 * directory, which is always denoted by ""). This has two nice
253 * consequences: (1) when the entries in each subdir are sorted
254 * lexicographically by name (as they usually are), the references in
255 * a whole tree can be generated in lexicographic order by traversing
256 * the tree in left-to-right, depth-first order; (2) the names of
257 * references and subdirectories cannot conflict, and therefore the
258 * presence of an empty subdirectory does not block the creation of a
259 * similarly-named reference. (The fact that reference names with the
260 * same leading components can conflict *with each other* is a
261 * separate issue that is regulated by is_refname_available().)
262 *
263 * Please note that the name field contains the fully-qualified
264 * reference (or subdirectory) name. Space could be saved by only
265 * storing the relative names. But that would require the full names
266 * to be generated on the fly when iterating in do_for_each_ref(), and
267 * would break callback functions, who have always been able to assume
268 * that the name strings that they are passed will not be freed during
269 * the iteration.
270 */
271 struct ref_entry {
272 unsigned char flag; /* ISSYMREF? ISPACKED? */
273 union {
274 struct ref_value value; /* if not (flags&REF_DIR) */
275 struct ref_dir subdir; /* if (flags&REF_DIR) */
276 } u;
277 /*
278 * The full name of the reference (e.g., "refs/heads/master")
279 * or the full name of the directory with a trailing slash
280 * (e.g., "refs/heads/"):
281 */
282 char name[FLEX_ARRAY];
283 };
284
285 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
286
287 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
288 {
289 struct ref_dir *dir;
290 assert(entry->flag & REF_DIR);
291 dir = &entry->u.subdir;
292 if (entry->flag & REF_INCOMPLETE) {
293 read_loose_refs(entry->name, dir);
294 entry->flag &= ~REF_INCOMPLETE;
295 }
296 return dir;
297 }
298
299 /*
300 * Check if a refname is safe.
301 * For refs that start with "refs/" we consider it safe as long they do
302 * not try to resolve to outside of refs/.
303 *
304 * For all other refs we only consider them safe iff they only contain
305 * upper case characters and '_' (like "HEAD" AND "MERGE_HEAD", and not like
306 * "config").
307 */
308 static int refname_is_safe(const char *refname)
309 {
310 if (starts_with(refname, "refs/")) {
311 char *buf;
312 int result;
313
314 buf = xmalloc(strlen(refname) + 1);
315 /*
316 * Does the refname try to escape refs/?
317 * For example: refs/foo/../bar is safe but refs/foo/../../bar
318 * is not.
319 */
320 result = !normalize_path_copy(buf, refname + strlen("refs/"));
321 free(buf);
322 return result;
323 }
324 while (*refname) {
325 if (!isupper(*refname) && *refname != '_')
326 return 0;
327 refname++;
328 }
329 return 1;
330 }
331
332 static struct ref_entry *create_ref_entry(const char *refname,
333 const unsigned char *sha1, int flag,
334 int check_name)
335 {
336 int len;
337 struct ref_entry *ref;
338
339 if (check_name &&
340 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
341 die("Reference has invalid format: '%s'", refname);
342 if (!check_name && !refname_is_safe(refname))
343 die("Reference has invalid name: '%s'", refname);
344 len = strlen(refname) + 1;
345 ref = xmalloc(sizeof(struct ref_entry) + len);
346 hashcpy(ref->u.value.sha1, sha1);
347 hashclr(ref->u.value.peeled);
348 memcpy(ref->name, refname, len);
349 ref->flag = flag;
350 return ref;
351 }
352
353 static void clear_ref_dir(struct ref_dir *dir);
354
355 static void free_ref_entry(struct ref_entry *entry)
356 {
357 if (entry->flag & REF_DIR) {
358 /*
359 * Do not use get_ref_dir() here, as that might
360 * trigger the reading of loose refs.
361 */
362 clear_ref_dir(&entry->u.subdir);
363 }
364 free(entry);
365 }
366
367 /*
368 * Add a ref_entry to the end of dir (unsorted). Entry is always
369 * stored directly in dir; no recursion into subdirectories is
370 * done.
371 */
372 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
373 {
374 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
375 dir->entries[dir->nr++] = entry;
376 /* optimize for the case that entries are added in order */
377 if (dir->nr == 1 ||
378 (dir->nr == dir->sorted + 1 &&
379 strcmp(dir->entries[dir->nr - 2]->name,
380 dir->entries[dir->nr - 1]->name) < 0))
381 dir->sorted = dir->nr;
382 }
383
384 /*
385 * Clear and free all entries in dir, recursively.
386 */
387 static void clear_ref_dir(struct ref_dir *dir)
388 {
389 int i;
390 for (i = 0; i < dir->nr; i++)
391 free_ref_entry(dir->entries[i]);
392 free(dir->entries);
393 dir->sorted = dir->nr = dir->alloc = 0;
394 dir->entries = NULL;
395 }
396
397 /*
398 * Create a struct ref_entry object for the specified dirname.
399 * dirname is the name of the directory with a trailing slash (e.g.,
400 * "refs/heads/") or "" for the top-level directory.
401 */
402 static struct ref_entry *create_dir_entry(struct ref_cache *ref_cache,
403 const char *dirname, size_t len,
404 int incomplete)
405 {
406 struct ref_entry *direntry;
407 direntry = xcalloc(1, sizeof(struct ref_entry) + len + 1);
408 memcpy(direntry->name, dirname, len);
409 direntry->name[len] = '\0';
410 direntry->u.subdir.ref_cache = ref_cache;
411 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
412 return direntry;
413 }
414
415 static int ref_entry_cmp(const void *a, const void *b)
416 {
417 struct ref_entry *one = *(struct ref_entry **)a;
418 struct ref_entry *two = *(struct ref_entry **)b;
419 return strcmp(one->name, two->name);
420 }
421
422 static void sort_ref_dir(struct ref_dir *dir);
423
424 struct string_slice {
425 size_t len;
426 const char *str;
427 };
428
429 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
430 {
431 const struct string_slice *key = key_;
432 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
433 int cmp = strncmp(key->str, ent->name, key->len);
434 if (cmp)
435 return cmp;
436 return '\0' - (unsigned char)ent->name[key->len];
437 }
438
439 /*
440 * Return the index of the entry with the given refname from the
441 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
442 * no such entry is found. dir must already be complete.
443 */
444 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
445 {
446 struct ref_entry **r;
447 struct string_slice key;
448
449 if (refname == NULL || !dir->nr)
450 return -1;
451
452 sort_ref_dir(dir);
453 key.len = len;
454 key.str = refname;
455 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
456 ref_entry_cmp_sslice);
457
458 if (r == NULL)
459 return -1;
460
461 return r - dir->entries;
462 }
463
464 /*
465 * Search for a directory entry directly within dir (without
466 * recursing). Sort dir if necessary. subdirname must be a directory
467 * name (i.e., end in '/'). If mkdir is set, then create the
468 * directory if it is missing; otherwise, return NULL if the desired
469 * directory cannot be found. dir must already be complete.
470 */
471 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
472 const char *subdirname, size_t len,
473 int mkdir)
474 {
475 int entry_index = search_ref_dir(dir, subdirname, len);
476 struct ref_entry *entry;
477 if (entry_index == -1) {
478 if (!mkdir)
479 return NULL;
480 /*
481 * Since dir is complete, the absence of a subdir
482 * means that the subdir really doesn't exist;
483 * therefore, create an empty record for it but mark
484 * the record complete.
485 */
486 entry = create_dir_entry(dir->ref_cache, subdirname, len, 0);
487 add_entry_to_dir(dir, entry);
488 } else {
489 entry = dir->entries[entry_index];
490 }
491 return get_ref_dir(entry);
492 }
493
494 /*
495 * If refname is a reference name, find the ref_dir within the dir
496 * tree that should hold refname. If refname is a directory name
497 * (i.e., ends in '/'), then return that ref_dir itself. dir must
498 * represent the top-level directory and must already be complete.
499 * Sort ref_dirs and recurse into subdirectories as necessary. If
500 * mkdir is set, then create any missing directories; otherwise,
501 * return NULL if the desired directory cannot be found.
502 */
503 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
504 const char *refname, int mkdir)
505 {
506 const char *slash;
507 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
508 size_t dirnamelen = slash - refname + 1;
509 struct ref_dir *subdir;
510 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
511 if (!subdir) {
512 dir = NULL;
513 break;
514 }
515 dir = subdir;
516 }
517
518 return dir;
519 }
520
521 /*
522 * Find the value entry with the given name in dir, sorting ref_dirs
523 * and recursing into subdirectories as necessary. If the name is not
524 * found or it corresponds to a directory entry, return NULL.
525 */
526 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
527 {
528 int entry_index;
529 struct ref_entry *entry;
530 dir = find_containing_dir(dir, refname, 0);
531 if (!dir)
532 return NULL;
533 entry_index = search_ref_dir(dir, refname, strlen(refname));
534 if (entry_index == -1)
535 return NULL;
536 entry = dir->entries[entry_index];
537 return (entry->flag & REF_DIR) ? NULL : entry;
538 }
539
540 /*
541 * Remove the entry with the given name from dir, recursing into
542 * subdirectories as necessary. If refname is the name of a directory
543 * (i.e., ends with '/'), then remove the directory and its contents.
544 * If the removal was successful, return the number of entries
545 * remaining in the directory entry that contained the deleted entry.
546 * If the name was not found, return -1. Please note that this
547 * function only deletes the entry from the cache; it does not delete
548 * it from the filesystem or ensure that other cache entries (which
549 * might be symbolic references to the removed entry) are updated.
550 * Nor does it remove any containing dir entries that might be made
551 * empty by the removal. dir must represent the top-level directory
552 * and must already be complete.
553 */
554 static int remove_entry(struct ref_dir *dir, const char *refname)
555 {
556 int refname_len = strlen(refname);
557 int entry_index;
558 struct ref_entry *entry;
559 int is_dir = refname[refname_len - 1] == '/';
560 if (is_dir) {
561 /*
562 * refname represents a reference directory. Remove
563 * the trailing slash; otherwise we will get the
564 * directory *representing* refname rather than the
565 * one *containing* it.
566 */
567 char *dirname = xmemdupz(refname, refname_len - 1);
568 dir = find_containing_dir(dir, dirname, 0);
569 free(dirname);
570 } else {
571 dir = find_containing_dir(dir, refname, 0);
572 }
573 if (!dir)
574 return -1;
575 entry_index = search_ref_dir(dir, refname, refname_len);
576 if (entry_index == -1)
577 return -1;
578 entry = dir->entries[entry_index];
579
580 memmove(&dir->entries[entry_index],
581 &dir->entries[entry_index + 1],
582 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
583 );
584 dir->nr--;
585 if (dir->sorted > entry_index)
586 dir->sorted--;
587 free_ref_entry(entry);
588 return dir->nr;
589 }
590
591 /*
592 * Add a ref_entry to the ref_dir (unsorted), recursing into
593 * subdirectories as necessary. dir must represent the top-level
594 * directory. Return 0 on success.
595 */
596 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
597 {
598 dir = find_containing_dir(dir, ref->name, 1);
599 if (!dir)
600 return -1;
601 add_entry_to_dir(dir, ref);
602 return 0;
603 }
604
605 /*
606 * Emit a warning and return true iff ref1 and ref2 have the same name
607 * and the same sha1. Die if they have the same name but different
608 * sha1s.
609 */
610 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
611 {
612 if (strcmp(ref1->name, ref2->name))
613 return 0;
614
615 /* Duplicate name; make sure that they don't conflict: */
616
617 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
618 /* This is impossible by construction */
619 die("Reference directory conflict: %s", ref1->name);
620
621 if (hashcmp(ref1->u.value.sha1, ref2->u.value.sha1))
622 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
623
624 warning("Duplicated ref: %s", ref1->name);
625 return 1;
626 }
627
628 /*
629 * Sort the entries in dir non-recursively (if they are not already
630 * sorted) and remove any duplicate entries.
631 */
632 static void sort_ref_dir(struct ref_dir *dir)
633 {
634 int i, j;
635 struct ref_entry *last = NULL;
636
637 /*
638 * This check also prevents passing a zero-length array to qsort(),
639 * which is a problem on some platforms.
640 */
641 if (dir->sorted == dir->nr)
642 return;
643
644 qsort(dir->entries, dir->nr, sizeof(*dir->entries), ref_entry_cmp);
645
646 /* Remove any duplicates: */
647 for (i = 0, j = 0; j < dir->nr; j++) {
648 struct ref_entry *entry = dir->entries[j];
649 if (last && is_dup_ref(last, entry))
650 free_ref_entry(entry);
651 else
652 last = dir->entries[i++] = entry;
653 }
654 dir->sorted = dir->nr = i;
655 }
656
657 /* Include broken references in a do_for_each_ref*() iteration: */
658 #define DO_FOR_EACH_INCLUDE_BROKEN 0x01
659
660 /*
661 * Return true iff the reference described by entry can be resolved to
662 * an object in the database. Emit a warning if the referred-to
663 * object does not exist.
664 */
665 static int ref_resolves_to_object(struct ref_entry *entry)
666 {
667 if (entry->flag & REF_ISBROKEN)
668 return 0;
669 if (!has_sha1_file(entry->u.value.sha1)) {
670 error("%s does not point to a valid object!", entry->name);
671 return 0;
672 }
673 return 1;
674 }
675
676 /*
677 * current_ref is a performance hack: when iterating over references
678 * using the for_each_ref*() functions, current_ref is set to the
679 * current reference's entry before calling the callback function. If
680 * the callback function calls peel_ref(), then peel_ref() first
681 * checks whether the reference to be peeled is the current reference
682 * (it usually is) and if so, returns that reference's peeled version
683 * if it is available. This avoids a refname lookup in a common case.
684 */
685 static struct ref_entry *current_ref;
686
687 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
688
689 struct ref_entry_cb {
690 const char *base;
691 int trim;
692 int flags;
693 each_ref_fn *fn;
694 void *cb_data;
695 };
696
697 /*
698 * Handle one reference in a do_for_each_ref*()-style iteration,
699 * calling an each_ref_fn for each entry.
700 */
701 static int do_one_ref(struct ref_entry *entry, void *cb_data)
702 {
703 struct ref_entry_cb *data = cb_data;
704 struct ref_entry *old_current_ref;
705 int retval;
706
707 if (!starts_with(entry->name, data->base))
708 return 0;
709
710 if (!(data->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
711 !ref_resolves_to_object(entry))
712 return 0;
713
714 /* Store the old value, in case this is a recursive call: */
715 old_current_ref = current_ref;
716 current_ref = entry;
717 retval = data->fn(entry->name + data->trim, entry->u.value.sha1,
718 entry->flag, data->cb_data);
719 current_ref = old_current_ref;
720 return retval;
721 }
722
723 /*
724 * Call fn for each reference in dir that has index in the range
725 * offset <= index < dir->nr. Recurse into subdirectories that are in
726 * that index range, sorting them before iterating. This function
727 * does not sort dir itself; it should be sorted beforehand. fn is
728 * called for all references, including broken ones.
729 */
730 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
731 each_ref_entry_fn fn, void *cb_data)
732 {
733 int i;
734 assert(dir->sorted == dir->nr);
735 for (i = offset; i < dir->nr; i++) {
736 struct ref_entry *entry = dir->entries[i];
737 int retval;
738 if (entry->flag & REF_DIR) {
739 struct ref_dir *subdir = get_ref_dir(entry);
740 sort_ref_dir(subdir);
741 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
742 } else {
743 retval = fn(entry, cb_data);
744 }
745 if (retval)
746 return retval;
747 }
748 return 0;
749 }
750
751 /*
752 * Call fn for each reference in the union of dir1 and dir2, in order
753 * by refname. Recurse into subdirectories. If a value entry appears
754 * in both dir1 and dir2, then only process the version that is in
755 * dir2. The input dirs must already be sorted, but subdirs will be
756 * sorted as needed. fn is called for all references, including
757 * broken ones.
758 */
759 static int do_for_each_entry_in_dirs(struct ref_dir *dir1,
760 struct ref_dir *dir2,
761 each_ref_entry_fn fn, void *cb_data)
762 {
763 int retval;
764 int i1 = 0, i2 = 0;
765
766 assert(dir1->sorted == dir1->nr);
767 assert(dir2->sorted == dir2->nr);
768 while (1) {
769 struct ref_entry *e1, *e2;
770 int cmp;
771 if (i1 == dir1->nr) {
772 return do_for_each_entry_in_dir(dir2, i2, fn, cb_data);
773 }
774 if (i2 == dir2->nr) {
775 return do_for_each_entry_in_dir(dir1, i1, fn, cb_data);
776 }
777 e1 = dir1->entries[i1];
778 e2 = dir2->entries[i2];
779 cmp = strcmp(e1->name, e2->name);
780 if (cmp == 0) {
781 if ((e1->flag & REF_DIR) && (e2->flag & REF_DIR)) {
782 /* Both are directories; descend them in parallel. */
783 struct ref_dir *subdir1 = get_ref_dir(e1);
784 struct ref_dir *subdir2 = get_ref_dir(e2);
785 sort_ref_dir(subdir1);
786 sort_ref_dir(subdir2);
787 retval = do_for_each_entry_in_dirs(
788 subdir1, subdir2, fn, cb_data);
789 i1++;
790 i2++;
791 } else if (!(e1->flag & REF_DIR) && !(e2->flag & REF_DIR)) {
792 /* Both are references; ignore the one from dir1. */
793 retval = fn(e2, cb_data);
794 i1++;
795 i2++;
796 } else {
797 die("conflict between reference and directory: %s",
798 e1->name);
799 }
800 } else {
801 struct ref_entry *e;
802 if (cmp < 0) {
803 e = e1;
804 i1++;
805 } else {
806 e = e2;
807 i2++;
808 }
809 if (e->flag & REF_DIR) {
810 struct ref_dir *subdir = get_ref_dir(e);
811 sort_ref_dir(subdir);
812 retval = do_for_each_entry_in_dir(
813 subdir, 0, fn, cb_data);
814 } else {
815 retval = fn(e, cb_data);
816 }
817 }
818 if (retval)
819 return retval;
820 }
821 }
822
823 /*
824 * Load all of the refs from the dir into our in-memory cache. The hard work
825 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
826 * through all of the sub-directories. We do not even need to care about
827 * sorting, as traversal order does not matter to us.
828 */
829 static void prime_ref_dir(struct ref_dir *dir)
830 {
831 int i;
832 for (i = 0; i < dir->nr; i++) {
833 struct ref_entry *entry = dir->entries[i];
834 if (entry->flag & REF_DIR)
835 prime_ref_dir(get_ref_dir(entry));
836 }
837 }
838
839 static int entry_matches(struct ref_entry *entry, const struct string_list *list)
840 {
841 return list && string_list_has_string(list, entry->name);
842 }
843
844 struct nonmatching_ref_data {
845 const struct string_list *skip;
846 struct ref_entry *found;
847 };
848
849 static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
850 {
851 struct nonmatching_ref_data *data = vdata;
852
853 if (entry_matches(entry, data->skip))
854 return 0;
855
856 data->found = entry;
857 return 1;
858 }
859
860 static void report_refname_conflict(struct ref_entry *entry,
861 const char *refname)
862 {
863 error("'%s' exists; cannot create '%s'", entry->name, refname);
864 }
865
866 /*
867 * Return true iff a reference named refname could be created without
868 * conflicting with the name of an existing reference in dir. If
869 * skip is non-NULL, ignore potential conflicts with refs in skip
870 * (e.g., because they are scheduled for deletion in the same
871 * operation).
872 *
873 * Two reference names conflict if one of them exactly matches the
874 * leading components of the other; e.g., "foo/bar" conflicts with
875 * both "foo" and with "foo/bar/baz" but not with "foo/bar" or
876 * "foo/barbados".
877 *
878 * skip must be sorted.
879 */
880 static int is_refname_available(const char *refname,
881 const struct string_list *skip,
882 struct ref_dir *dir)
883 {
884 const char *slash;
885 size_t len;
886 int pos;
887 char *dirname;
888
889 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
890 /*
891 * We are still at a leading dir of the refname; we are
892 * looking for a conflict with a leaf entry.
893 *
894 * If we find one, we still must make sure it is
895 * not in "skip".
896 */
897 pos = search_ref_dir(dir, refname, slash - refname);
898 if (pos >= 0) {
899 struct ref_entry *entry = dir->entries[pos];
900 if (entry_matches(entry, skip))
901 return 1;
902 report_refname_conflict(entry, refname);
903 return 0;
904 }
905
906
907 /*
908 * Otherwise, we can try to continue our search with
909 * the next component; if we come up empty, we know
910 * there is nothing under this whole prefix.
911 */
912 pos = search_ref_dir(dir, refname, slash + 1 - refname);
913 if (pos < 0)
914 return 1;
915
916 dir = get_ref_dir(dir->entries[pos]);
917 }
918
919 /*
920 * We are at the leaf of our refname; we want to
921 * make sure there are no directories which match it.
922 */
923 len = strlen(refname);
924 dirname = xmallocz(len + 1);
925 sprintf(dirname, "%s/", refname);
926 pos = search_ref_dir(dir, dirname, len + 1);
927 free(dirname);
928
929 if (pos >= 0) {
930 /*
931 * We found a directory named "refname". It is a
932 * problem iff it contains any ref that is not
933 * in "skip".
934 */
935 struct ref_entry *entry = dir->entries[pos];
936 struct ref_dir *dir = get_ref_dir(entry);
937 struct nonmatching_ref_data data;
938
939 data.skip = skip;
940 sort_ref_dir(dir);
941 if (!do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data))
942 return 1;
943
944 report_refname_conflict(data.found, refname);
945 return 0;
946 }
947
948 /*
949 * There is no point in searching for another leaf
950 * node which matches it; such an entry would be the
951 * ref we are looking for, not a conflict.
952 */
953 return 1;
954 }
955
956 struct packed_ref_cache {
957 struct ref_entry *root;
958
959 /*
960 * Count of references to the data structure in this instance,
961 * including the pointer from ref_cache::packed if any. The
962 * data will not be freed as long as the reference count is
963 * nonzero.
964 */
965 unsigned int referrers;
966
967 /*
968 * Iff the packed-refs file associated with this instance is
969 * currently locked for writing, this points at the associated
970 * lock (which is owned by somebody else). The referrer count
971 * is also incremented when the file is locked and decremented
972 * when it is unlocked.
973 */
974 struct lock_file *lock;
975
976 /* The metadata from when this packed-refs cache was read */
977 struct stat_validity validity;
978 };
979
980 /*
981 * Future: need to be in "struct repository"
982 * when doing a full libification.
983 */
984 static struct ref_cache {
985 struct ref_cache *next;
986 struct ref_entry *loose;
987 struct packed_ref_cache *packed;
988 /*
989 * The submodule name, or "" for the main repo. We allocate
990 * length 1 rather than FLEX_ARRAY so that the main ref_cache
991 * is initialized correctly.
992 */
993 char name[1];
994 } ref_cache, *submodule_ref_caches;
995
996 /* Lock used for the main packed-refs file: */
997 static struct lock_file packlock;
998
999 /*
1000 * Increment the reference count of *packed_refs.
1001 */
1002 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
1003 {
1004 packed_refs->referrers++;
1005 }
1006
1007 /*
1008 * Decrease the reference count of *packed_refs. If it goes to zero,
1009 * free *packed_refs and return true; otherwise return false.
1010 */
1011 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
1012 {
1013 if (!--packed_refs->referrers) {
1014 free_ref_entry(packed_refs->root);
1015 stat_validity_clear(&packed_refs->validity);
1016 free(packed_refs);
1017 return 1;
1018 } else {
1019 return 0;
1020 }
1021 }
1022
1023 static void clear_packed_ref_cache(struct ref_cache *refs)
1024 {
1025 if (refs->packed) {
1026 struct packed_ref_cache *packed_refs = refs->packed;
1027
1028 if (packed_refs->lock)
1029 die("internal error: packed-ref cache cleared while locked");
1030 refs->packed = NULL;
1031 release_packed_ref_cache(packed_refs);
1032 }
1033 }
1034
1035 static void clear_loose_ref_cache(struct ref_cache *refs)
1036 {
1037 if (refs->loose) {
1038 free_ref_entry(refs->loose);
1039 refs->loose = NULL;
1040 }
1041 }
1042
1043 static struct ref_cache *create_ref_cache(const char *submodule)
1044 {
1045 int len;
1046 struct ref_cache *refs;
1047 if (!submodule)
1048 submodule = "";
1049 len = strlen(submodule) + 1;
1050 refs = xcalloc(1, sizeof(struct ref_cache) + len);
1051 memcpy(refs->name, submodule, len);
1052 return refs;
1053 }
1054
1055 /*
1056 * Return a pointer to a ref_cache for the specified submodule. For
1057 * the main repository, use submodule==NULL. The returned structure
1058 * will be allocated and initialized but not necessarily populated; it
1059 * should not be freed.
1060 */
1061 static struct ref_cache *get_ref_cache(const char *submodule)
1062 {
1063 struct ref_cache *refs;
1064
1065 if (!submodule || !*submodule)
1066 return &ref_cache;
1067
1068 for (refs = submodule_ref_caches; refs; refs = refs->next)
1069 if (!strcmp(submodule, refs->name))
1070 return refs;
1071
1072 refs = create_ref_cache(submodule);
1073 refs->next = submodule_ref_caches;
1074 submodule_ref_caches = refs;
1075 return refs;
1076 }
1077
1078 /* The length of a peeled reference line in packed-refs, including EOL: */
1079 #define PEELED_LINE_LENGTH 42
1080
1081 /*
1082 * The packed-refs header line that we write out. Perhaps other
1083 * traits will be added later. The trailing space is required.
1084 */
1085 static const char PACKED_REFS_HEADER[] =
1086 "# pack-refs with: peeled fully-peeled \n";
1087
1088 /*
1089 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
1090 * Return a pointer to the refname within the line (null-terminated),
1091 * or NULL if there was a problem.
1092 */
1093 static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1094 {
1095 const char *ref;
1096
1097 /*
1098 * 42: the answer to everything.
1099 *
1100 * In this case, it happens to be the answer to
1101 * 40 (length of sha1 hex representation)
1102 * +1 (space in between hex and name)
1103 * +1 (newline at the end of the line)
1104 */
1105 if (line->len <= 42)
1106 return NULL;
1107
1108 if (get_sha1_hex(line->buf, sha1) < 0)
1109 return NULL;
1110 if (!isspace(line->buf[40]))
1111 return NULL;
1112
1113 ref = line->buf + 41;
1114 if (isspace(*ref))
1115 return NULL;
1116
1117 if (line->buf[line->len - 1] != '\n')
1118 return NULL;
1119 line->buf[--line->len] = 0;
1120
1121 return ref;
1122 }
1123
1124 /*
1125 * Read f, which is a packed-refs file, into dir.
1126 *
1127 * A comment line of the form "# pack-refs with: " may contain zero or
1128 * more traits. We interpret the traits as follows:
1129 *
1130 * No traits:
1131 *
1132 * Probably no references are peeled. But if the file contains a
1133 * peeled value for a reference, we will use it.
1134 *
1135 * peeled:
1136 *
1137 * References under "refs/tags/", if they *can* be peeled, *are*
1138 * peeled in this file. References outside of "refs/tags/" are
1139 * probably not peeled even if they could have been, but if we find
1140 * a peeled value for such a reference we will use it.
1141 *
1142 * fully-peeled:
1143 *
1144 * All references in the file that can be peeled are peeled.
1145 * Inversely (and this is more important), any references in the
1146 * file for which no peeled value is recorded is not peelable. This
1147 * trait should typically be written alongside "peeled" for
1148 * compatibility with older clients, but we do not require it
1149 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
1150 */
1151 static void read_packed_refs(FILE *f, struct ref_dir *dir)
1152 {
1153 struct ref_entry *last = NULL;
1154 struct strbuf line = STRBUF_INIT;
1155 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1156
1157 while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1158 unsigned char sha1[20];
1159 const char *refname;
1160 const char *traits;
1161
1162 if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1163 if (strstr(traits, " fully-peeled "))
1164 peeled = PEELED_FULLY;
1165 else if (strstr(traits, " peeled "))
1166 peeled = PEELED_TAGS;
1167 /* perhaps other traits later as well */
1168 continue;
1169 }
1170
1171 refname = parse_ref_line(&line, sha1);
1172 if (refname) {
1173 int flag = REF_ISPACKED;
1174
1175 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1176 hashclr(sha1);
1177 flag |= REF_BAD_NAME | REF_ISBROKEN;
1178 }
1179 last = create_ref_entry(refname, sha1, flag, 0);
1180 if (peeled == PEELED_FULLY ||
1181 (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1182 last->flag |= REF_KNOWS_PEELED;
1183 add_ref(dir, last);
1184 continue;
1185 }
1186 if (last &&
1187 line.buf[0] == '^' &&
1188 line.len == PEELED_LINE_LENGTH &&
1189 line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1190 !get_sha1_hex(line.buf + 1, sha1)) {
1191 hashcpy(last->u.value.peeled, sha1);
1192 /*
1193 * Regardless of what the file header said,
1194 * we definitely know the value of *this*
1195 * reference:
1196 */
1197 last->flag |= REF_KNOWS_PEELED;
1198 }
1199 }
1200
1201 strbuf_release(&line);
1202 }
1203
1204 /*
1205 * Get the packed_ref_cache for the specified ref_cache, creating it
1206 * if necessary.
1207 */
1208 static struct packed_ref_cache *get_packed_ref_cache(struct ref_cache *refs)
1209 {
1210 const char *packed_refs_file;
1211
1212 if (*refs->name)
1213 packed_refs_file = git_path_submodule(refs->name, "packed-refs");
1214 else
1215 packed_refs_file = git_path("packed-refs");
1216
1217 if (refs->packed &&
1218 !stat_validity_check(&refs->packed->validity, packed_refs_file))
1219 clear_packed_ref_cache(refs);
1220
1221 if (!refs->packed) {
1222 FILE *f;
1223
1224 refs->packed = xcalloc(1, sizeof(*refs->packed));
1225 acquire_packed_ref_cache(refs->packed);
1226 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1227 f = fopen(packed_refs_file, "r");
1228 if (f) {
1229 stat_validity_update(&refs->packed->validity, fileno(f));
1230 read_packed_refs(f, get_ref_dir(refs->packed->root));
1231 fclose(f);
1232 }
1233 }
1234 return refs->packed;
1235 }
1236
1237 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1238 {
1239 return get_ref_dir(packed_ref_cache->root);
1240 }
1241
1242 static struct ref_dir *get_packed_refs(struct ref_cache *refs)
1243 {
1244 return get_packed_ref_dir(get_packed_ref_cache(refs));
1245 }
1246
1247 void add_packed_ref(const char *refname, const unsigned char *sha1)
1248 {
1249 struct packed_ref_cache *packed_ref_cache =
1250 get_packed_ref_cache(&ref_cache);
1251
1252 if (!packed_ref_cache->lock)
1253 die("internal error: packed refs not locked");
1254 add_ref(get_packed_ref_dir(packed_ref_cache),
1255 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1256 }
1257
1258 /*
1259 * Read the loose references from the namespace dirname into dir
1260 * (without recursing). dirname must end with '/'. dir must be the
1261 * directory entry corresponding to dirname.
1262 */
1263 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1264 {
1265 struct ref_cache *refs = dir->ref_cache;
1266 DIR *d;
1267 const char *path;
1268 struct dirent *de;
1269 int dirnamelen = strlen(dirname);
1270 struct strbuf refname;
1271
1272 if (*refs->name)
1273 path = git_path_submodule(refs->name, "%s", dirname);
1274 else
1275 path = git_path("%s", dirname);
1276
1277 d = opendir(path);
1278 if (!d)
1279 return;
1280
1281 strbuf_init(&refname, dirnamelen + 257);
1282 strbuf_add(&refname, dirname, dirnamelen);
1283
1284 while ((de = readdir(d)) != NULL) {
1285 unsigned char sha1[20];
1286 struct stat st;
1287 int flag;
1288 const char *refdir;
1289
1290 if (de->d_name[0] == '.')
1291 continue;
1292 if (ends_with(de->d_name, ".lock"))
1293 continue;
1294 strbuf_addstr(&refname, de->d_name);
1295 refdir = *refs->name
1296 ? git_path_submodule(refs->name, "%s", refname.buf)
1297 : git_path("%s", refname.buf);
1298 if (stat(refdir, &st) < 0) {
1299 ; /* silently ignore */
1300 } else if (S_ISDIR(st.st_mode)) {
1301 strbuf_addch(&refname, '/');
1302 add_entry_to_dir(dir,
1303 create_dir_entry(refs, refname.buf,
1304 refname.len, 1));
1305 } else {
1306 if (*refs->name) {
1307 hashclr(sha1);
1308 flag = 0;
1309 if (resolve_gitlink_ref(refs->name, refname.buf, sha1) < 0) {
1310 hashclr(sha1);
1311 flag |= REF_ISBROKEN;
1312 }
1313 } else if (read_ref_full(refname.buf,
1314 RESOLVE_REF_READING,
1315 sha1, &flag)) {
1316 hashclr(sha1);
1317 flag |= REF_ISBROKEN;
1318 }
1319 if (check_refname_format(refname.buf,
1320 REFNAME_ALLOW_ONELEVEL)) {
1321 hashclr(sha1);
1322 flag |= REF_BAD_NAME | REF_ISBROKEN;
1323 }
1324 add_entry_to_dir(dir,
1325 create_ref_entry(refname.buf, sha1, flag, 0));
1326 }
1327 strbuf_setlen(&refname, dirnamelen);
1328 }
1329 strbuf_release(&refname);
1330 closedir(d);
1331 }
1332
1333 static struct ref_dir *get_loose_refs(struct ref_cache *refs)
1334 {
1335 if (!refs->loose) {
1336 /*
1337 * Mark the top-level directory complete because we
1338 * are about to read the only subdirectory that can
1339 * hold references:
1340 */
1341 refs->loose = create_dir_entry(refs, "", 0, 0);
1342 /*
1343 * Create an incomplete entry for "refs/":
1344 */
1345 add_entry_to_dir(get_ref_dir(refs->loose),
1346 create_dir_entry(refs, "refs/", 5, 1));
1347 }
1348 return get_ref_dir(refs->loose);
1349 }
1350
1351 /* We allow "recursive" symbolic refs. Only within reason, though */
1352 #define MAXDEPTH 5
1353 #define MAXREFLEN (1024)
1354
1355 /*
1356 * Called by resolve_gitlink_ref_recursive() after it failed to read
1357 * from the loose refs in ref_cache refs. Find <refname> in the
1358 * packed-refs file for the submodule.
1359 */
1360 static int resolve_gitlink_packed_ref(struct ref_cache *refs,
1361 const char *refname, unsigned char *sha1)
1362 {
1363 struct ref_entry *ref;
1364 struct ref_dir *dir = get_packed_refs(refs);
1365
1366 ref = find_ref(dir, refname);
1367 if (ref == NULL)
1368 return -1;
1369
1370 hashcpy(sha1, ref->u.value.sha1);
1371 return 0;
1372 }
1373
1374 static int resolve_gitlink_ref_recursive(struct ref_cache *refs,
1375 const char *refname, unsigned char *sha1,
1376 int recursion)
1377 {
1378 int fd, len;
1379 char buffer[128], *p;
1380 char *path;
1381
1382 if (recursion > MAXDEPTH || strlen(refname) > MAXREFLEN)
1383 return -1;
1384 path = *refs->name
1385 ? git_path_submodule(refs->name, "%s", refname)
1386 : git_path("%s", refname);
1387 fd = open(path, O_RDONLY);
1388 if (fd < 0)
1389 return resolve_gitlink_packed_ref(refs, refname, sha1);
1390
1391 len = read(fd, buffer, sizeof(buffer)-1);
1392 close(fd);
1393 if (len < 0)
1394 return -1;
1395 while (len && isspace(buffer[len-1]))
1396 len--;
1397 buffer[len] = 0;
1398
1399 /* Was it a detached head or an old-fashioned symlink? */
1400 if (!get_sha1_hex(buffer, sha1))
1401 return 0;
1402
1403 /* Symref? */
1404 if (strncmp(buffer, "ref:", 4))
1405 return -1;
1406 p = buffer + 4;
1407 while (isspace(*p))
1408 p++;
1409
1410 return resolve_gitlink_ref_recursive(refs, p, sha1, recursion+1);
1411 }
1412
1413 int resolve_gitlink_ref(const char *path, const char *refname, unsigned char *sha1)
1414 {
1415 int len = strlen(path), retval;
1416 char *submodule;
1417 struct ref_cache *refs;
1418
1419 while (len && path[len-1] == '/')
1420 len--;
1421 if (!len)
1422 return -1;
1423 submodule = xstrndup(path, len);
1424 refs = get_ref_cache(submodule);
1425 free(submodule);
1426
1427 retval = resolve_gitlink_ref_recursive(refs, refname, sha1, 0);
1428 return retval;
1429 }
1430
1431 /*
1432 * Return the ref_entry for the given refname from the packed
1433 * references. If it does not exist, return NULL.
1434 */
1435 static struct ref_entry *get_packed_ref(const char *refname)
1436 {
1437 return find_ref(get_packed_refs(&ref_cache), refname);
1438 }
1439
1440 /*
1441 * A loose ref file doesn't exist; check for a packed ref. The
1442 * options are forwarded from resolve_safe_unsafe().
1443 */
1444 static int resolve_missing_loose_ref(const char *refname,
1445 int resolve_flags,
1446 unsigned char *sha1,
1447 int *flags)
1448 {
1449 struct ref_entry *entry;
1450
1451 /*
1452 * The loose reference file does not exist; check for a packed
1453 * reference.
1454 */
1455 entry = get_packed_ref(refname);
1456 if (entry) {
1457 hashcpy(sha1, entry->u.value.sha1);
1458 if (flags)
1459 *flags |= REF_ISPACKED;
1460 return 0;
1461 }
1462 /* The reference is not a packed reference, either. */
1463 if (resolve_flags & RESOLVE_REF_READING) {
1464 errno = ENOENT;
1465 return -1;
1466 } else {
1467 hashclr(sha1);
1468 return 0;
1469 }
1470 }
1471
1472 /* This function needs to return a meaningful errno on failure */
1473 const char *resolve_ref_unsafe(const char *refname, int resolve_flags, unsigned char *sha1, int *flags)
1474 {
1475 int depth = MAXDEPTH;
1476 ssize_t len;
1477 char buffer[256];
1478 static char refname_buffer[256];
1479 int bad_name = 0;
1480
1481 if (flags)
1482 *flags = 0;
1483
1484 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1485 if (flags)
1486 *flags |= REF_BAD_NAME;
1487
1488 if (!(resolve_flags & RESOLVE_REF_ALLOW_BAD_NAME) ||
1489 !refname_is_safe(refname)) {
1490 errno = EINVAL;
1491 return NULL;
1492 }
1493 /*
1494 * dwim_ref() uses REF_ISBROKEN to distinguish between
1495 * missing refs and refs that were present but invalid,
1496 * to complain about the latter to stderr.
1497 *
1498 * We don't know whether the ref exists, so don't set
1499 * REF_ISBROKEN yet.
1500 */
1501 bad_name = 1;
1502 }
1503 for (;;) {
1504 char path[PATH_MAX];
1505 struct stat st;
1506 char *buf;
1507 int fd;
1508
1509 if (--depth < 0) {
1510 errno = ELOOP;
1511 return NULL;
1512 }
1513
1514 git_snpath(path, sizeof(path), "%s", refname);
1515
1516 /*
1517 * We might have to loop back here to avoid a race
1518 * condition: first we lstat() the file, then we try
1519 * to read it as a link or as a file. But if somebody
1520 * changes the type of the file (file <-> directory
1521 * <-> symlink) between the lstat() and reading, then
1522 * we don't want to report that as an error but rather
1523 * try again starting with the lstat().
1524 */
1525 stat_ref:
1526 if (lstat(path, &st) < 0) {
1527 if (errno != ENOENT)
1528 return NULL;
1529 if (resolve_missing_loose_ref(refname, resolve_flags,
1530 sha1, flags))
1531 return NULL;
1532 if (bad_name) {
1533 hashclr(sha1);
1534 if (flags)
1535 *flags |= REF_ISBROKEN;
1536 }
1537 return refname;
1538 }
1539
1540 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1541 if (S_ISLNK(st.st_mode)) {
1542 len = readlink(path, buffer, sizeof(buffer)-1);
1543 if (len < 0) {
1544 if (errno == ENOENT || errno == EINVAL)
1545 /* inconsistent with lstat; retry */
1546 goto stat_ref;
1547 else
1548 return NULL;
1549 }
1550 buffer[len] = 0;
1551 if (starts_with(buffer, "refs/") &&
1552 !check_refname_format(buffer, 0)) {
1553 strcpy(refname_buffer, buffer);
1554 refname = refname_buffer;
1555 if (flags)
1556 *flags |= REF_ISSYMREF;
1557 if (resolve_flags & RESOLVE_REF_NO_RECURSE) {
1558 hashclr(sha1);
1559 return refname;
1560 }
1561 continue;
1562 }
1563 }
1564
1565 /* Is it a directory? */
1566 if (S_ISDIR(st.st_mode)) {
1567 errno = EISDIR;
1568 return NULL;
1569 }
1570
1571 /*
1572 * Anything else, just open it and try to use it as
1573 * a ref
1574 */
1575 fd = open(path, O_RDONLY);
1576 if (fd < 0) {
1577 if (errno == ENOENT)
1578 /* inconsistent with lstat; retry */
1579 goto stat_ref;
1580 else
1581 return NULL;
1582 }
1583 len = read_in_full(fd, buffer, sizeof(buffer)-1);
1584 if (len < 0) {
1585 int save_errno = errno;
1586 close(fd);
1587 errno = save_errno;
1588 return NULL;
1589 }
1590 close(fd);
1591 while (len && isspace(buffer[len-1]))
1592 len--;
1593 buffer[len] = '\0';
1594
1595 /*
1596 * Is it a symbolic ref?
1597 */
1598 if (!starts_with(buffer, "ref:")) {
1599 /*
1600 * Please note that FETCH_HEAD has a second
1601 * line containing other data.
1602 */
1603 if (get_sha1_hex(buffer, sha1) ||
1604 (buffer[40] != '\0' && !isspace(buffer[40]))) {
1605 if (flags)
1606 *flags |= REF_ISBROKEN;
1607 errno = EINVAL;
1608 return NULL;
1609 }
1610 if (bad_name) {
1611 hashclr(sha1);
1612 if (flags)
1613 *flags |= REF_ISBROKEN;
1614 }
1615 return refname;
1616 }
1617 if (flags)
1618 *flags |= REF_ISSYMREF;
1619 buf = buffer + 4;
1620 while (isspace(*buf))
1621 buf++;
1622 refname = strcpy(refname_buffer, buf);
1623 if (resolve_flags & RESOLVE_REF_NO_RECURSE) {
1624 hashclr(sha1);
1625 return refname;
1626 }
1627 if (check_refname_format(buf, REFNAME_ALLOW_ONELEVEL)) {
1628 if (flags)
1629 *flags |= REF_ISBROKEN;
1630
1631 if (!(resolve_flags & RESOLVE_REF_ALLOW_BAD_NAME) ||
1632 !refname_is_safe(buf)) {
1633 errno = EINVAL;
1634 return NULL;
1635 }
1636 bad_name = 1;
1637 }
1638 }
1639 }
1640
1641 char *resolve_refdup(const char *ref, int resolve_flags, unsigned char *sha1, int *flags)
1642 {
1643 return xstrdup_or_null(resolve_ref_unsafe(ref, resolve_flags, sha1, flags));
1644 }
1645
1646 /* The argument to filter_refs */
1647 struct ref_filter {
1648 const char *pattern;
1649 each_ref_fn *fn;
1650 void *cb_data;
1651 };
1652
1653 int read_ref_full(const char *refname, int resolve_flags, unsigned char *sha1, int *flags)
1654 {
1655 if (resolve_ref_unsafe(refname, resolve_flags, sha1, flags))
1656 return 0;
1657 return -1;
1658 }
1659
1660 int read_ref(const char *refname, unsigned char *sha1)
1661 {
1662 return read_ref_full(refname, RESOLVE_REF_READING, sha1, NULL);
1663 }
1664
1665 int ref_exists(const char *refname)
1666 {
1667 unsigned char sha1[20];
1668 return !!resolve_ref_unsafe(refname, RESOLVE_REF_READING, sha1, NULL);
1669 }
1670
1671 static int filter_refs(const char *refname, const unsigned char *sha1, int flags,
1672 void *data)
1673 {
1674 struct ref_filter *filter = (struct ref_filter *)data;
1675 if (wildmatch(filter->pattern, refname, 0, NULL))
1676 return 0;
1677 return filter->fn(refname, sha1, flags, filter->cb_data);
1678 }
1679
1680 enum peel_status {
1681 /* object was peeled successfully: */
1682 PEEL_PEELED = 0,
1683
1684 /*
1685 * object cannot be peeled because the named object (or an
1686 * object referred to by a tag in the peel chain), does not
1687 * exist.
1688 */
1689 PEEL_INVALID = -1,
1690
1691 /* object cannot be peeled because it is not a tag: */
1692 PEEL_NON_TAG = -2,
1693
1694 /* ref_entry contains no peeled value because it is a symref: */
1695 PEEL_IS_SYMREF = -3,
1696
1697 /*
1698 * ref_entry cannot be peeled because it is broken (i.e., the
1699 * symbolic reference cannot even be resolved to an object
1700 * name):
1701 */
1702 PEEL_BROKEN = -4
1703 };
1704
1705 /*
1706 * Peel the named object; i.e., if the object is a tag, resolve the
1707 * tag recursively until a non-tag is found. If successful, store the
1708 * result to sha1 and return PEEL_PEELED. If the object is not a tag
1709 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
1710 * and leave sha1 unchanged.
1711 */
1712 static enum peel_status peel_object(const unsigned char *name, unsigned char *sha1)
1713 {
1714 struct object *o = lookup_unknown_object(name);
1715
1716 if (o->type == OBJ_NONE) {
1717 int type = sha1_object_info(name, NULL);
1718 if (type < 0 || !object_as_type(o, type, 0))
1719 return PEEL_INVALID;
1720 }
1721
1722 if (o->type != OBJ_TAG)
1723 return PEEL_NON_TAG;
1724
1725 o = deref_tag_noverify(o);
1726 if (!o)
1727 return PEEL_INVALID;
1728
1729 hashcpy(sha1, o->sha1);
1730 return PEEL_PEELED;
1731 }
1732
1733 /*
1734 * Peel the entry (if possible) and return its new peel_status. If
1735 * repeel is true, re-peel the entry even if there is an old peeled
1736 * value that is already stored in it.
1737 *
1738 * It is OK to call this function with a packed reference entry that
1739 * might be stale and might even refer to an object that has since
1740 * been garbage-collected. In such a case, if the entry has
1741 * REF_KNOWS_PEELED then leave the status unchanged and return
1742 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1743 */
1744 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1745 {
1746 enum peel_status status;
1747
1748 if (entry->flag & REF_KNOWS_PEELED) {
1749 if (repeel) {
1750 entry->flag &= ~REF_KNOWS_PEELED;
1751 hashclr(entry->u.value.peeled);
1752 } else {
1753 return is_null_sha1(entry->u.value.peeled) ?
1754 PEEL_NON_TAG : PEEL_PEELED;
1755 }
1756 }
1757 if (entry->flag & REF_ISBROKEN)
1758 return PEEL_BROKEN;
1759 if (entry->flag & REF_ISSYMREF)
1760 return PEEL_IS_SYMREF;
1761
1762 status = peel_object(entry->u.value.sha1, entry->u.value.peeled);
1763 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1764 entry->flag |= REF_KNOWS_PEELED;
1765 return status;
1766 }
1767
1768 int peel_ref(const char *refname, unsigned char *sha1)
1769 {
1770 int flag;
1771 unsigned char base[20];
1772
1773 if (current_ref && (current_ref->name == refname
1774 || !strcmp(current_ref->name, refname))) {
1775 if (peel_entry(current_ref, 0))
1776 return -1;
1777 hashcpy(sha1, current_ref->u.value.peeled);
1778 return 0;
1779 }
1780
1781 if (read_ref_full(refname, RESOLVE_REF_READING, base, &flag))
1782 return -1;
1783
1784 /*
1785 * If the reference is packed, read its ref_entry from the
1786 * cache in the hope that we already know its peeled value.
1787 * We only try this optimization on packed references because
1788 * (a) forcing the filling of the loose reference cache could
1789 * be expensive and (b) loose references anyway usually do not
1790 * have REF_KNOWS_PEELED.
1791 */
1792 if (flag & REF_ISPACKED) {
1793 struct ref_entry *r = get_packed_ref(refname);
1794 if (r) {
1795 if (peel_entry(r, 0))
1796 return -1;
1797 hashcpy(sha1, r->u.value.peeled);
1798 return 0;
1799 }
1800 }
1801
1802 return peel_object(base, sha1);
1803 }
1804
1805 struct warn_if_dangling_data {
1806 FILE *fp;
1807 const char *refname;
1808 const struct string_list *refnames;
1809 const char *msg_fmt;
1810 };
1811
1812 static int warn_if_dangling_symref(const char *refname, const unsigned char *sha1,
1813 int flags, void *cb_data)
1814 {
1815 struct warn_if_dangling_data *d = cb_data;
1816 const char *resolves_to;
1817 unsigned char junk[20];
1818
1819 if (!(flags & REF_ISSYMREF))
1820 return 0;
1821
1822 resolves_to = resolve_ref_unsafe(refname, 0, junk, NULL);
1823 if (!resolves_to
1824 || (d->refname
1825 ? strcmp(resolves_to, d->refname)
1826 : !string_list_has_string(d->refnames, resolves_to))) {
1827 return 0;
1828 }
1829
1830 fprintf(d->fp, d->msg_fmt, refname);
1831 fputc('\n', d->fp);
1832 return 0;
1833 }
1834
1835 void warn_dangling_symref(FILE *fp, const char *msg_fmt, const char *refname)
1836 {
1837 struct warn_if_dangling_data data;
1838
1839 data.fp = fp;
1840 data.refname = refname;
1841 data.refnames = NULL;
1842 data.msg_fmt = msg_fmt;
1843 for_each_rawref(warn_if_dangling_symref, &data);
1844 }
1845
1846 void warn_dangling_symrefs(FILE *fp, const char *msg_fmt, const struct string_list *refnames)
1847 {
1848 struct warn_if_dangling_data data;
1849
1850 data.fp = fp;
1851 data.refname = NULL;
1852 data.refnames = refnames;
1853 data.msg_fmt = msg_fmt;
1854 for_each_rawref(warn_if_dangling_symref, &data);
1855 }
1856
1857 /*
1858 * Call fn for each reference in the specified ref_cache, omitting
1859 * references not in the containing_dir of base. fn is called for all
1860 * references, including broken ones. If fn ever returns a non-zero
1861 * value, stop the iteration and return that value; otherwise, return
1862 * 0.
1863 */
1864 static int do_for_each_entry(struct ref_cache *refs, const char *base,
1865 each_ref_entry_fn fn, void *cb_data)
1866 {
1867 struct packed_ref_cache *packed_ref_cache;
1868 struct ref_dir *loose_dir;
1869 struct ref_dir *packed_dir;
1870 int retval = 0;
1871
1872 /*
1873 * We must make sure that all loose refs are read before accessing the
1874 * packed-refs file; this avoids a race condition in which loose refs
1875 * are migrated to the packed-refs file by a simultaneous process, but
1876 * our in-memory view is from before the migration. get_packed_ref_cache()
1877 * takes care of making sure our view is up to date with what is on
1878 * disk.
1879 */
1880 loose_dir = get_loose_refs(refs);
1881 if (base && *base) {
1882 loose_dir = find_containing_dir(loose_dir, base, 0);
1883 }
1884 if (loose_dir)
1885 prime_ref_dir(loose_dir);
1886
1887 packed_ref_cache = get_packed_ref_cache(refs);
1888 acquire_packed_ref_cache(packed_ref_cache);
1889 packed_dir = get_packed_ref_dir(packed_ref_cache);
1890 if (base && *base) {
1891 packed_dir = find_containing_dir(packed_dir, base, 0);
1892 }
1893
1894 if (packed_dir && loose_dir) {
1895 sort_ref_dir(packed_dir);
1896 sort_ref_dir(loose_dir);
1897 retval = do_for_each_entry_in_dirs(
1898 packed_dir, loose_dir, fn, cb_data);
1899 } else if (packed_dir) {
1900 sort_ref_dir(packed_dir);
1901 retval = do_for_each_entry_in_dir(
1902 packed_dir, 0, fn, cb_data);
1903 } else if (loose_dir) {
1904 sort_ref_dir(loose_dir);
1905 retval = do_for_each_entry_in_dir(
1906 loose_dir, 0, fn, cb_data);
1907 }
1908
1909 release_packed_ref_cache(packed_ref_cache);
1910 return retval;
1911 }
1912
1913 /*
1914 * Call fn for each reference in the specified ref_cache for which the
1915 * refname begins with base. If trim is non-zero, then trim that many
1916 * characters off the beginning of each refname before passing the
1917 * refname to fn. flags can be DO_FOR_EACH_INCLUDE_BROKEN to include
1918 * broken references in the iteration. If fn ever returns a non-zero
1919 * value, stop the iteration and return that value; otherwise, return
1920 * 0.
1921 */
1922 static int do_for_each_ref(struct ref_cache *refs, const char *base,
1923 each_ref_fn fn, int trim, int flags, void *cb_data)
1924 {
1925 struct ref_entry_cb data;
1926 data.base = base;
1927 data.trim = trim;
1928 data.flags = flags;
1929 data.fn = fn;
1930 data.cb_data = cb_data;
1931
1932 return do_for_each_entry(refs, base, do_one_ref, &data);
1933 }
1934
1935 static int do_head_ref(const char *submodule, each_ref_fn fn, void *cb_data)
1936 {
1937 unsigned char sha1[20];
1938 int flag;
1939
1940 if (submodule) {
1941 if (resolve_gitlink_ref(submodule, "HEAD", sha1) == 0)
1942 return fn("HEAD", sha1, 0, cb_data);
1943
1944 return 0;
1945 }
1946
1947 if (!read_ref_full("HEAD", RESOLVE_REF_READING, sha1, &flag))
1948 return fn("HEAD", sha1, flag, cb_data);
1949
1950 return 0;
1951 }
1952
1953 int head_ref(each_ref_fn fn, void *cb_data)
1954 {
1955 return do_head_ref(NULL, fn, cb_data);
1956 }
1957
1958 int head_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1959 {
1960 return do_head_ref(submodule, fn, cb_data);
1961 }
1962
1963 int for_each_ref(each_ref_fn fn, void *cb_data)
1964 {
1965 return do_for_each_ref(&ref_cache, "", fn, 0, 0, cb_data);
1966 }
1967
1968 int for_each_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1969 {
1970 return do_for_each_ref(get_ref_cache(submodule), "", fn, 0, 0, cb_data);
1971 }
1972
1973 int for_each_ref_in(const char *prefix, each_ref_fn fn, void *cb_data)
1974 {
1975 return do_for_each_ref(&ref_cache, prefix, fn, strlen(prefix), 0, cb_data);
1976 }
1977
1978 int for_each_ref_in_submodule(const char *submodule, const char *prefix,
1979 each_ref_fn fn, void *cb_data)
1980 {
1981 return do_for_each_ref(get_ref_cache(submodule), prefix, fn, strlen(prefix), 0, cb_data);
1982 }
1983
1984 int for_each_tag_ref(each_ref_fn fn, void *cb_data)
1985 {
1986 return for_each_ref_in("refs/tags/", fn, cb_data);
1987 }
1988
1989 int for_each_tag_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1990 {
1991 return for_each_ref_in_submodule(submodule, "refs/tags/", fn, cb_data);
1992 }
1993
1994 int for_each_branch_ref(each_ref_fn fn, void *cb_data)
1995 {
1996 return for_each_ref_in("refs/heads/", fn, cb_data);
1997 }
1998
1999 int for_each_branch_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2000 {
2001 return for_each_ref_in_submodule(submodule, "refs/heads/", fn, cb_data);
2002 }
2003
2004 int for_each_remote_ref(each_ref_fn fn, void *cb_data)
2005 {
2006 return for_each_ref_in("refs/remotes/", fn, cb_data);
2007 }
2008
2009 int for_each_remote_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2010 {
2011 return for_each_ref_in_submodule(submodule, "refs/remotes/", fn, cb_data);
2012 }
2013
2014 int for_each_replace_ref(each_ref_fn fn, void *cb_data)
2015 {
2016 return do_for_each_ref(&ref_cache, "refs/replace/", fn, 13, 0, cb_data);
2017 }
2018
2019 int head_ref_namespaced(each_ref_fn fn, void *cb_data)
2020 {
2021 struct strbuf buf = STRBUF_INIT;
2022 int ret = 0;
2023 unsigned char sha1[20];
2024 int flag;
2025
2026 strbuf_addf(&buf, "%sHEAD", get_git_namespace());
2027 if (!read_ref_full(buf.buf, RESOLVE_REF_READING, sha1, &flag))
2028 ret = fn(buf.buf, sha1, flag, cb_data);
2029 strbuf_release(&buf);
2030
2031 return ret;
2032 }
2033
2034 int for_each_namespaced_ref(each_ref_fn fn, void *cb_data)
2035 {
2036 struct strbuf buf = STRBUF_INIT;
2037 int ret;
2038 strbuf_addf(&buf, "%srefs/", get_git_namespace());
2039 ret = do_for_each_ref(&ref_cache, buf.buf, fn, 0, 0, cb_data);
2040 strbuf_release(&buf);
2041 return ret;
2042 }
2043
2044 int for_each_glob_ref_in(each_ref_fn fn, const char *pattern,
2045 const char *prefix, void *cb_data)
2046 {
2047 struct strbuf real_pattern = STRBUF_INIT;
2048 struct ref_filter filter;
2049 int ret;
2050
2051 if (!prefix && !starts_with(pattern, "refs/"))
2052 strbuf_addstr(&real_pattern, "refs/");
2053 else if (prefix)
2054 strbuf_addstr(&real_pattern, prefix);
2055 strbuf_addstr(&real_pattern, pattern);
2056
2057 if (!has_glob_specials(pattern)) {
2058 /* Append implied '/' '*' if not present. */
2059 if (real_pattern.buf[real_pattern.len - 1] != '/')
2060 strbuf_addch(&real_pattern, '/');
2061 /* No need to check for '*', there is none. */
2062 strbuf_addch(&real_pattern, '*');
2063 }
2064
2065 filter.pattern = real_pattern.buf;
2066 filter.fn = fn;
2067 filter.cb_data = cb_data;
2068 ret = for_each_ref(filter_refs, &filter);
2069
2070 strbuf_release(&real_pattern);
2071 return ret;
2072 }
2073
2074 int for_each_glob_ref(each_ref_fn fn, const char *pattern, void *cb_data)
2075 {
2076 return for_each_glob_ref_in(fn, pattern, NULL, cb_data);
2077 }
2078
2079 int for_each_rawref(each_ref_fn fn, void *cb_data)
2080 {
2081 return do_for_each_ref(&ref_cache, "", fn, 0,
2082 DO_FOR_EACH_INCLUDE_BROKEN, cb_data);
2083 }
2084
2085 const char *prettify_refname(const char *name)
2086 {
2087 return name + (
2088 starts_with(name, "refs/heads/") ? 11 :
2089 starts_with(name, "refs/tags/") ? 10 :
2090 starts_with(name, "refs/remotes/") ? 13 :
2091 0);
2092 }
2093
2094 static const char *ref_rev_parse_rules[] = {
2095 "%.*s",
2096 "refs/%.*s",
2097 "refs/tags/%.*s",
2098 "refs/heads/%.*s",
2099 "refs/remotes/%.*s",
2100 "refs/remotes/%.*s/HEAD",
2101 NULL
2102 };
2103
2104 int refname_match(const char *abbrev_name, const char *full_name)
2105 {
2106 const char **p;
2107 const int abbrev_name_len = strlen(abbrev_name);
2108
2109 for (p = ref_rev_parse_rules; *p; p++) {
2110 if (!strcmp(full_name, mkpath(*p, abbrev_name_len, abbrev_name))) {
2111 return 1;
2112 }
2113 }
2114
2115 return 0;
2116 }
2117
2118 static void unlock_ref(struct ref_lock *lock)
2119 {
2120 /* Do not free lock->lk -- atexit() still looks at them */
2121 if (lock->lk)
2122 rollback_lock_file(lock->lk);
2123 free(lock->ref_name);
2124 free(lock->orig_ref_name);
2125 free(lock);
2126 }
2127
2128 /* This function should make sure errno is meaningful on error */
2129 static struct ref_lock *verify_lock(struct ref_lock *lock,
2130 const unsigned char *old_sha1, int mustexist)
2131 {
2132 if (read_ref_full(lock->ref_name,
2133 mustexist ? RESOLVE_REF_READING : 0,
2134 lock->old_sha1, NULL)) {
2135 int save_errno = errno;
2136 error("Can't verify ref %s", lock->ref_name);
2137 unlock_ref(lock);
2138 errno = save_errno;
2139 return NULL;
2140 }
2141 if (hashcmp(lock->old_sha1, old_sha1)) {
2142 error("Ref %s is at %s but expected %s", lock->ref_name,
2143 sha1_to_hex(lock->old_sha1), sha1_to_hex(old_sha1));
2144 unlock_ref(lock);
2145 errno = EBUSY;
2146 return NULL;
2147 }
2148 return lock;
2149 }
2150
2151 static int remove_empty_directories(const char *file)
2152 {
2153 /* we want to create a file but there is a directory there;
2154 * if that is an empty directory (or a directory that contains
2155 * only empty directories), remove them.
2156 */
2157 struct strbuf path;
2158 int result, save_errno;
2159
2160 strbuf_init(&path, 20);
2161 strbuf_addstr(&path, file);
2162
2163 result = remove_dir_recursively(&path, REMOVE_DIR_EMPTY_ONLY);
2164 save_errno = errno;
2165
2166 strbuf_release(&path);
2167 errno = save_errno;
2168
2169 return result;
2170 }
2171
2172 /*
2173 * *string and *len will only be substituted, and *string returned (for
2174 * later free()ing) if the string passed in is a magic short-hand form
2175 * to name a branch.
2176 */
2177 static char *substitute_branch_name(const char **string, int *len)
2178 {
2179 struct strbuf buf = STRBUF_INIT;
2180 int ret = interpret_branch_name(*string, *len, &buf);
2181
2182 if (ret == *len) {
2183 size_t size;
2184 *string = strbuf_detach(&buf, &size);
2185 *len = size;
2186 return (char *)*string;
2187 }
2188
2189 return NULL;
2190 }
2191
2192 int dwim_ref(const char *str, int len, unsigned char *sha1, char **ref)
2193 {
2194 char *last_branch = substitute_branch_name(&str, &len);
2195 const char **p, *r;
2196 int refs_found = 0;
2197
2198 *ref = NULL;
2199 for (p = ref_rev_parse_rules; *p; p++) {
2200 char fullref[PATH_MAX];
2201 unsigned char sha1_from_ref[20];
2202 unsigned char *this_result;
2203 int flag;
2204
2205 this_result = refs_found ? sha1_from_ref : sha1;
2206 mksnpath(fullref, sizeof(fullref), *p, len, str);
2207 r = resolve_ref_unsafe(fullref, RESOLVE_REF_READING,
2208 this_result, &flag);
2209 if (r) {
2210 if (!refs_found++)
2211 *ref = xstrdup(r);
2212 if (!warn_ambiguous_refs)
2213 break;
2214 } else if ((flag & REF_ISSYMREF) && strcmp(fullref, "HEAD")) {
2215 warning("ignoring dangling symref %s.", fullref);
2216 } else if ((flag & REF_ISBROKEN) && strchr(fullref, '/')) {
2217 warning("ignoring broken ref %s.", fullref);
2218 }
2219 }
2220 free(last_branch);
2221 return refs_found;
2222 }
2223
2224 int dwim_log(const char *str, int len, unsigned char *sha1, char **log)
2225 {
2226 char *last_branch = substitute_branch_name(&str, &len);
2227 const char **p;
2228 int logs_found = 0;
2229
2230 *log = NULL;
2231 for (p = ref_rev_parse_rules; *p; p++) {
2232 unsigned char hash[20];
2233 char path[PATH_MAX];
2234 const char *ref, *it;
2235
2236 mksnpath(path, sizeof(path), *p, len, str);
2237 ref = resolve_ref_unsafe(path, RESOLVE_REF_READING,
2238 hash, NULL);
2239 if (!ref)
2240 continue;
2241 if (reflog_exists(path))
2242 it = path;
2243 else if (strcmp(ref, path) && reflog_exists(ref))
2244 it = ref;
2245 else
2246 continue;
2247 if (!logs_found++) {
2248 *log = xstrdup(it);
2249 hashcpy(sha1, hash);
2250 }
2251 if (!warn_ambiguous_refs)
2252 break;
2253 }
2254 free(last_branch);
2255 return logs_found;
2256 }
2257
2258 /*
2259 * Locks a ref returning the lock on success and NULL on failure.
2260 * On failure errno is set to something meaningful.
2261 */
2262 static struct ref_lock *lock_ref_sha1_basic(const char *refname,
2263 const unsigned char *old_sha1,
2264 const struct string_list *skip,
2265 unsigned int flags, int *type_p)
2266 {
2267 char *ref_file;
2268 const char *orig_refname = refname;
2269 struct ref_lock *lock;
2270 int last_errno = 0;
2271 int type, lflags;
2272 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2273 int resolve_flags = 0;
2274 int missing = 0;
2275 int attempts_remaining = 3;
2276
2277 lock = xcalloc(1, sizeof(struct ref_lock));
2278 lock->lock_fd = -1;
2279
2280 if (mustexist)
2281 resolve_flags |= RESOLVE_REF_READING;
2282 if (flags & REF_DELETING) {
2283 resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2284 if (flags & REF_NODEREF)
2285 resolve_flags |= RESOLVE_REF_NO_RECURSE;
2286 }
2287
2288 refname = resolve_ref_unsafe(refname, resolve_flags,
2289 lock->old_sha1, &type);
2290 if (!refname && errno == EISDIR) {
2291 /* we are trying to lock foo but we used to
2292 * have foo/bar which now does not exist;
2293 * it is normal for the empty directory 'foo'
2294 * to remain.
2295 */
2296 ref_file = git_path("%s", orig_refname);
2297 if (remove_empty_directories(ref_file)) {
2298 last_errno = errno;
2299 error("there are still refs under '%s'", orig_refname);
2300 goto error_return;
2301 }
2302 refname = resolve_ref_unsafe(orig_refname, resolve_flags,
2303 lock->old_sha1, &type);
2304 }
2305 if (type_p)
2306 *type_p = type;
2307 if (!refname) {
2308 last_errno = errno;
2309 error("unable to resolve reference %s: %s",
2310 orig_refname, strerror(errno));
2311 goto error_return;
2312 }
2313 missing = is_null_sha1(lock->old_sha1);
2314 /* When the ref did not exist and we are creating it,
2315 * make sure there is no existing ref that is packed
2316 * whose name begins with our refname, nor a ref whose
2317 * name is a proper prefix of our refname.
2318 */
2319 if (missing &&
2320 !is_refname_available(refname, skip, get_packed_refs(&ref_cache))) {
2321 last_errno = ENOTDIR;
2322 goto error_return;
2323 }
2324
2325 lock->lk = xcalloc(1, sizeof(struct lock_file));
2326
2327 lflags = 0;
2328 if (flags & REF_NODEREF) {
2329 refname = orig_refname;
2330 lflags |= LOCK_NO_DEREF;
2331 }
2332 lock->ref_name = xstrdup(refname);
2333 lock->orig_ref_name = xstrdup(orig_refname);
2334 ref_file = git_path("%s", refname);
2335 if (missing)
2336 lock->force_write = 1;
2337 if ((flags & REF_NODEREF) && (type & REF_ISSYMREF))
2338 lock->force_write = 1;
2339
2340 retry:
2341 switch (safe_create_leading_directories(ref_file)) {
2342 case SCLD_OK:
2343 break; /* success */
2344 case SCLD_VANISHED:
2345 if (--attempts_remaining > 0)
2346 goto retry;
2347 /* fall through */
2348 default:
2349 last_errno = errno;
2350 error("unable to create directory for %s", ref_file);
2351 goto error_return;
2352 }
2353
2354 lock->lock_fd = hold_lock_file_for_update(lock->lk, ref_file, lflags);
2355 if (lock->lock_fd < 0) {
2356 last_errno = errno;
2357 if (errno == ENOENT && --attempts_remaining > 0)
2358 /*
2359 * Maybe somebody just deleted one of the
2360 * directories leading to ref_file. Try
2361 * again:
2362 */
2363 goto retry;
2364 else {
2365 struct strbuf err = STRBUF_INIT;
2366 unable_to_lock_message(ref_file, errno, &err);
2367 error("%s", err.buf);
2368 strbuf_release(&err);
2369 goto error_return;
2370 }
2371 }
2372 return old_sha1 ? verify_lock(lock, old_sha1, mustexist) : lock;
2373
2374 error_return:
2375 unlock_ref(lock);
2376 errno = last_errno;
2377 return NULL;
2378 }
2379
2380 /*
2381 * Write an entry to the packed-refs file for the specified refname.
2382 * If peeled is non-NULL, write it as the entry's peeled value.
2383 */
2384 static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2385 unsigned char *peeled)
2386 {
2387 fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2388 if (peeled)
2389 fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2390 }
2391
2392 /*
2393 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2394 */
2395 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2396 {
2397 enum peel_status peel_status = peel_entry(entry, 0);
2398
2399 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2400 error("internal error: %s is not a valid packed reference!",
2401 entry->name);
2402 write_packed_entry(cb_data, entry->name, entry->u.value.sha1,
2403 peel_status == PEEL_PEELED ?
2404 entry->u.value.peeled : NULL);
2405 return 0;
2406 }
2407
2408 /* This should return a meaningful errno on failure */
2409 int lock_packed_refs(int flags)
2410 {
2411 struct packed_ref_cache *packed_ref_cache;
2412
2413 if (hold_lock_file_for_update(&packlock, git_path("packed-refs"), flags) < 0)
2414 return -1;
2415 /*
2416 * Get the current packed-refs while holding the lock. If the
2417 * packed-refs file has been modified since we last read it,
2418 * this will automatically invalidate the cache and re-read
2419 * the packed-refs file.
2420 */
2421 packed_ref_cache = get_packed_ref_cache(&ref_cache);
2422 packed_ref_cache->lock = &packlock;
2423 /* Increment the reference count to prevent it from being freed: */
2424 acquire_packed_ref_cache(packed_ref_cache);
2425 return 0;
2426 }
2427
2428 /*
2429 * Commit the packed refs changes.
2430 * On error we must make sure that errno contains a meaningful value.
2431 */
2432 int commit_packed_refs(void)
2433 {
2434 struct packed_ref_cache *packed_ref_cache =
2435 get_packed_ref_cache(&ref_cache);
2436 int error = 0;
2437 int save_errno = 0;
2438 FILE *out;
2439
2440 if (!packed_ref_cache->lock)
2441 die("internal error: packed-refs not locked");
2442
2443 out = fdopen_lock_file(packed_ref_cache->lock, "w");
2444 if (!out)
2445 die_errno("unable to fdopen packed-refs descriptor");
2446
2447 fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2448 do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2449 0, write_packed_entry_fn, out);
2450
2451 if (commit_lock_file(packed_ref_cache->lock)) {
2452 save_errno = errno;
2453 error = -1;
2454 }
2455 packed_ref_cache->lock = NULL;
2456 release_packed_ref_cache(packed_ref_cache);
2457 errno = save_errno;
2458 return error;
2459 }
2460
2461 void rollback_packed_refs(void)
2462 {
2463 struct packed_ref_cache *packed_ref_cache =
2464 get_packed_ref_cache(&ref_cache);
2465
2466 if (!packed_ref_cache->lock)
2467 die("internal error: packed-refs not locked");
2468 rollback_lock_file(packed_ref_cache->lock);
2469 packed_ref_cache->lock = NULL;
2470 release_packed_ref_cache(packed_ref_cache);
2471 clear_packed_ref_cache(&ref_cache);
2472 }
2473
2474 struct ref_to_prune {
2475 struct ref_to_prune *next;
2476 unsigned char sha1[20];
2477 char name[FLEX_ARRAY];
2478 };
2479
2480 struct pack_refs_cb_data {
2481 unsigned int flags;
2482 struct ref_dir *packed_refs;
2483 struct ref_to_prune *ref_to_prune;
2484 };
2485
2486 /*
2487 * An each_ref_entry_fn that is run over loose references only. If
2488 * the loose reference can be packed, add an entry in the packed ref
2489 * cache. If the reference should be pruned, also add it to
2490 * ref_to_prune in the pack_refs_cb_data.
2491 */
2492 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2493 {
2494 struct pack_refs_cb_data *cb = cb_data;
2495 enum peel_status peel_status;
2496 struct ref_entry *packed_entry;
2497 int is_tag_ref = starts_with(entry->name, "refs/tags/");
2498
2499 /* ALWAYS pack tags */
2500 if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2501 return 0;
2502
2503 /* Do not pack symbolic or broken refs: */
2504 if ((entry->flag & REF_ISSYMREF) || !ref_resolves_to_object(entry))
2505 return 0;
2506
2507 /* Add a packed ref cache entry equivalent to the loose entry. */
2508 peel_status = peel_entry(entry, 1);
2509 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2510 die("internal error peeling reference %s (%s)",
2511 entry->name, sha1_to_hex(entry->u.value.sha1));
2512 packed_entry = find_ref(cb->packed_refs, entry->name);
2513 if (packed_entry) {
2514 /* Overwrite existing packed entry with info from loose entry */
2515 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2516 hashcpy(packed_entry->u.value.sha1, entry->u.value.sha1);
2517 } else {
2518 packed_entry = create_ref_entry(entry->name, entry->u.value.sha1,
2519 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2520 add_ref(cb->packed_refs, packed_entry);
2521 }
2522 hashcpy(packed_entry->u.value.peeled, entry->u.value.peeled);
2523
2524 /* Schedule the loose reference for pruning if requested. */
2525 if ((cb->flags & PACK_REFS_PRUNE)) {
2526 int namelen = strlen(entry->name) + 1;
2527 struct ref_to_prune *n = xcalloc(1, sizeof(*n) + namelen);
2528 hashcpy(n->sha1, entry->u.value.sha1);
2529 strcpy(n->name, entry->name);
2530 n->next = cb->ref_to_prune;
2531 cb->ref_to_prune = n;
2532 }
2533 return 0;
2534 }
2535
2536 /*
2537 * Remove empty parents, but spare refs/ and immediate subdirs.
2538 * Note: munges *name.
2539 */
2540 static void try_remove_empty_parents(char *name)
2541 {
2542 char *p, *q;
2543 int i;
2544 p = name;
2545 for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2546 while (*p && *p != '/')
2547 p++;
2548 /* tolerate duplicate slashes; see check_refname_format() */
2549 while (*p == '/')
2550 p++;
2551 }
2552 for (q = p; *q; q++)
2553 ;
2554 while (1) {
2555 while (q > p && *q != '/')
2556 q--;
2557 while (q > p && *(q-1) == '/')
2558 q--;
2559 if (q == p)
2560 break;
2561 *q = '\0';
2562 if (rmdir(git_path("%s", name)))
2563 break;
2564 }
2565 }
2566
2567 /* make sure nobody touched the ref, and unlink */
2568 static void prune_ref(struct ref_to_prune *r)
2569 {
2570 struct ref_transaction *transaction;
2571 struct strbuf err = STRBUF_INIT;
2572
2573 if (check_refname_format(r->name, 0))
2574 return;
2575
2576 transaction = ref_transaction_begin(&err);
2577 if (!transaction ||
2578 ref_transaction_delete(transaction, r->name, r->sha1,
2579 REF_ISPRUNING, NULL, &err) ||
2580 ref_transaction_commit(transaction, &err)) {
2581 ref_transaction_free(transaction);
2582 error("%s", err.buf);
2583 strbuf_release(&err);
2584 return;
2585 }
2586 ref_transaction_free(transaction);
2587 strbuf_release(&err);
2588 try_remove_empty_parents(r->name);
2589 }
2590
2591 static void prune_refs(struct ref_to_prune *r)
2592 {
2593 while (r) {
2594 prune_ref(r);
2595 r = r->next;
2596 }
2597 }
2598
2599 int pack_refs(unsigned int flags)
2600 {
2601 struct pack_refs_cb_data cbdata;
2602
2603 memset(&cbdata, 0, sizeof(cbdata));
2604 cbdata.flags = flags;
2605
2606 lock_packed_refs(LOCK_DIE_ON_ERROR);
2607 cbdata.packed_refs = get_packed_refs(&ref_cache);
2608
2609 do_for_each_entry_in_dir(get_loose_refs(&ref_cache), 0,
2610 pack_if_possible_fn, &cbdata);
2611
2612 if (commit_packed_refs())
2613 die_errno("unable to overwrite old ref-pack file");
2614
2615 prune_refs(cbdata.ref_to_prune);
2616 return 0;
2617 }
2618
2619 /*
2620 * If entry is no longer needed in packed-refs, add it to the string
2621 * list pointed to by cb_data. Reasons for deleting entries:
2622 *
2623 * - Entry is broken.
2624 * - Entry is overridden by a loose ref.
2625 * - Entry does not point at a valid object.
2626 *
2627 * In the first and third cases, also emit an error message because these
2628 * are indications of repository corruption.
2629 */
2630 static int curate_packed_ref_fn(struct ref_entry *entry, void *cb_data)
2631 {
2632 struct string_list *refs_to_delete = cb_data;
2633
2634 if (entry->flag & REF_ISBROKEN) {
2635 /* This shouldn't happen to packed refs. */
2636 error("%s is broken!", entry->name);
2637 string_list_append(refs_to_delete, entry->name);
2638 return 0;
2639 }
2640 if (!has_sha1_file(entry->u.value.sha1)) {
2641 unsigned char sha1[20];
2642 int flags;
2643
2644 if (read_ref_full(entry->name, 0, sha1, &flags))
2645 /* We should at least have found the packed ref. */
2646 die("Internal error");
2647 if ((flags & REF_ISSYMREF) || !(flags & REF_ISPACKED)) {
2648 /*
2649 * This packed reference is overridden by a
2650 * loose reference, so it is OK that its value
2651 * is no longer valid; for example, it might
2652 * refer to an object that has been garbage
2653 * collected. For this purpose we don't even
2654 * care whether the loose reference itself is
2655 * invalid, broken, symbolic, etc. Silently
2656 * remove the packed reference.
2657 */
2658 string_list_append(refs_to_delete, entry->name);
2659 return 0;
2660 }
2661 /*
2662 * There is no overriding loose reference, so the fact
2663 * that this reference doesn't refer to a valid object
2664 * indicates some kind of repository corruption.
2665 * Report the problem, then omit the reference from
2666 * the output.
2667 */
2668 error("%s does not point to a valid object!", entry->name);
2669 string_list_append(refs_to_delete, entry->name);
2670 return 0;
2671 }
2672
2673 return 0;
2674 }
2675
2676 int repack_without_refs(struct string_list *refnames, struct strbuf *err)
2677 {
2678 struct ref_dir *packed;
2679 struct string_list refs_to_delete = STRING_LIST_INIT_DUP;
2680 struct string_list_item *refname, *ref_to_delete;
2681 int ret, needs_repacking = 0, removed = 0;
2682
2683 assert(err);
2684
2685 /* Look for a packed ref */
2686 for_each_string_list_item(refname, refnames) {
2687 if (get_packed_ref(refname->string)) {
2688 needs_repacking = 1;
2689 break;
2690 }
2691 }
2692
2693 /* Avoid locking if we have nothing to do */
2694 if (!needs_repacking)
2695 return 0; /* no refname exists in packed refs */
2696
2697 if (lock_packed_refs(0)) {
2698 unable_to_lock_message(git_path("packed-refs"), errno, err);
2699 return -1;
2700 }
2701 packed = get_packed_refs(&ref_cache);
2702
2703 /* Remove refnames from the cache */
2704 for_each_string_list_item(refname, refnames)
2705 if (remove_entry(packed, refname->string) != -1)
2706 removed = 1;
2707 if (!removed) {
2708 /*
2709 * All packed entries disappeared while we were
2710 * acquiring the lock.
2711 */
2712 rollback_packed_refs();
2713 return 0;
2714 }
2715
2716 /* Remove any other accumulated cruft */
2717 do_for_each_entry_in_dir(packed, 0, curate_packed_ref_fn, &refs_to_delete);
2718 for_each_string_list_item(ref_to_delete, &refs_to_delete) {
2719 if (remove_entry(packed, ref_to_delete->string) == -1)
2720 die("internal error");
2721 }
2722
2723 /* Write what remains */
2724 ret = commit_packed_refs();
2725 if (ret)
2726 strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2727 strerror(errno));
2728 return ret;
2729 }
2730
2731 static int delete_ref_loose(struct ref_lock *lock, int flag, struct strbuf *err)
2732 {
2733 assert(err);
2734
2735 if (!(flag & REF_ISPACKED) || flag & REF_ISSYMREF) {
2736 /*
2737 * loose. The loose file name is the same as the
2738 * lockfile name, minus ".lock":
2739 */
2740 char *loose_filename = get_locked_file_path(lock->lk);
2741 int res = unlink_or_msg(loose_filename, err);
2742 free(loose_filename);
2743 if (res)
2744 return 1;
2745 }
2746 return 0;
2747 }
2748
2749 int delete_ref(const char *refname, const unsigned char *sha1, unsigned int flags)
2750 {
2751 struct ref_transaction *transaction;
2752 struct strbuf err = STRBUF_INIT;
2753
2754 transaction = ref_transaction_begin(&err);
2755 if (!transaction ||
2756 ref_transaction_delete(transaction, refname,
2757 (sha1 && !is_null_sha1(sha1)) ? sha1 : NULL,
2758 flags, NULL, &err) ||
2759 ref_transaction_commit(transaction, &err)) {
2760 error("%s", err.buf);
2761 ref_transaction_free(transaction);
2762 strbuf_release(&err);
2763 return 1;
2764 }
2765 ref_transaction_free(transaction);
2766 strbuf_release(&err);
2767 return 0;
2768 }
2769
2770 /*
2771 * People using contrib's git-new-workdir have .git/logs/refs ->
2772 * /some/other/path/.git/logs/refs, and that may live on another device.
2773 *
2774 * IOW, to avoid cross device rename errors, the temporary renamed log must
2775 * live into logs/refs.
2776 */
2777 #define TMP_RENAMED_LOG "logs/refs/.tmp-renamed-log"
2778
2779 static int rename_tmp_log(const char *newrefname)
2780 {
2781 int attempts_remaining = 4;
2782
2783 retry:
2784 switch (safe_create_leading_directories(git_path("logs/%s", newrefname))) {
2785 case SCLD_OK:
2786 break; /* success */
2787 case SCLD_VANISHED:
2788 if (--attempts_remaining > 0)
2789 goto retry;
2790 /* fall through */
2791 default:
2792 error("unable to create directory for %s", newrefname);
2793 return -1;
2794 }
2795
2796 if (rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", newrefname))) {
2797 if ((errno==EISDIR || errno==ENOTDIR) && --attempts_remaining > 0) {
2798 /*
2799 * rename(a, b) when b is an existing
2800 * directory ought to result in ISDIR, but
2801 * Solaris 5.8 gives ENOTDIR. Sheesh.
2802 */
2803 if (remove_empty_directories(git_path("logs/%s", newrefname))) {
2804 error("Directory not empty: logs/%s", newrefname);
2805 return -1;
2806 }
2807 goto retry;
2808 } else if (errno == ENOENT && --attempts_remaining > 0) {
2809 /*
2810 * Maybe another process just deleted one of
2811 * the directories in the path to newrefname.
2812 * Try again from the beginning.
2813 */
2814 goto retry;
2815 } else {
2816 error("unable to move logfile "TMP_RENAMED_LOG" to logs/%s: %s",
2817 newrefname, strerror(errno));
2818 return -1;
2819 }
2820 }
2821 return 0;
2822 }
2823
2824 static int rename_ref_available(const char *oldname, const char *newname)
2825 {
2826 struct string_list skip = STRING_LIST_INIT_NODUP;
2827 int ret;
2828
2829 string_list_insert(&skip, oldname);
2830 ret = is_refname_available(newname, &skip, get_packed_refs(&ref_cache))
2831 && is_refname_available(newname, &skip, get_loose_refs(&ref_cache));
2832 string_list_clear(&skip, 0);
2833 return ret;
2834 }
2835
2836 static int write_ref_sha1(struct ref_lock *lock, const unsigned char *sha1,
2837 const char *logmsg);
2838
2839 int rename_ref(const char *oldrefname, const char *newrefname, const char *logmsg)
2840 {
2841 unsigned char sha1[20], orig_sha1[20];
2842 int flag = 0, logmoved = 0;
2843 struct ref_lock *lock;
2844 struct stat loginfo;
2845 int log = !lstat(git_path("logs/%s", oldrefname), &loginfo);
2846 const char *symref = NULL;
2847
2848 if (log && S_ISLNK(loginfo.st_mode))
2849 return error("reflog for %s is a symlink", oldrefname);
2850
2851 symref = resolve_ref_unsafe(oldrefname, RESOLVE_REF_READING,
2852 orig_sha1, &flag);
2853 if (flag & REF_ISSYMREF)
2854 return error("refname %s is a symbolic ref, renaming it is not supported",
2855 oldrefname);
2856 if (!symref)
2857 return error("refname %s not found", oldrefname);
2858
2859 if (!rename_ref_available(oldrefname, newrefname))
2860 return 1;
2861
2862 if (log && rename(git_path("logs/%s", oldrefname), git_path(TMP_RENAMED_LOG)))
2863 return error("unable to move logfile logs/%s to "TMP_RENAMED_LOG": %s",
2864 oldrefname, strerror(errno));
2865
2866 if (delete_ref(oldrefname, orig_sha1, REF_NODEREF)) {
2867 error("unable to delete old %s", oldrefname);
2868 goto rollback;
2869 }
2870
2871 if (!read_ref_full(newrefname, RESOLVE_REF_READING, sha1, NULL) &&
2872 delete_ref(newrefname, sha1, REF_NODEREF)) {
2873 if (errno==EISDIR) {
2874 if (remove_empty_directories(git_path("%s", newrefname))) {
2875 error("Directory not empty: %s", newrefname);
2876 goto rollback;
2877 }
2878 } else {
2879 error("unable to delete existing %s", newrefname);
2880 goto rollback;
2881 }
2882 }
2883
2884 if (log && rename_tmp_log(newrefname))
2885 goto rollback;
2886
2887 logmoved = log;
2888
2889 lock = lock_ref_sha1_basic(newrefname, NULL, NULL, 0, NULL);
2890 if (!lock) {
2891 error("unable to lock %s for update", newrefname);
2892 goto rollback;
2893 }
2894 lock->force_write = 1;
2895 hashcpy(lock->old_sha1, orig_sha1);
2896 if (write_ref_sha1(lock, orig_sha1, logmsg)) {
2897 error("unable to write current sha1 into %s", newrefname);
2898 goto rollback;
2899 }
2900
2901 return 0;
2902
2903 rollback:
2904 lock = lock_ref_sha1_basic(oldrefname, NULL, NULL, 0, NULL);
2905 if (!lock) {
2906 error("unable to lock %s for rollback", oldrefname);
2907 goto rollbacklog;
2908 }
2909
2910 lock->force_write = 1;
2911 flag = log_all_ref_updates;
2912 log_all_ref_updates = 0;
2913 if (write_ref_sha1(lock, orig_sha1, NULL))
2914 error("unable to write current sha1 into %s", oldrefname);
2915 log_all_ref_updates = flag;
2916
2917 rollbacklog:
2918 if (logmoved && rename(git_path("logs/%s", newrefname), git_path("logs/%s", oldrefname)))
2919 error("unable to restore logfile %s from %s: %s",
2920 oldrefname, newrefname, strerror(errno));
2921 if (!logmoved && log &&
2922 rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", oldrefname)))
2923 error("unable to restore logfile %s from "TMP_RENAMED_LOG": %s",
2924 oldrefname, strerror(errno));
2925
2926 return 1;
2927 }
2928
2929 static int close_ref(struct ref_lock *lock)
2930 {
2931 if (close_lock_file(lock->lk))
2932 return -1;
2933 lock->lock_fd = -1;
2934 return 0;
2935 }
2936
2937 static int commit_ref(struct ref_lock *lock)
2938 {
2939 if (commit_lock_file(lock->lk))
2940 return -1;
2941 lock->lock_fd = -1;
2942 return 0;
2943 }
2944
2945 /*
2946 * copy the reflog message msg to buf, which has been allocated sufficiently
2947 * large, while cleaning up the whitespaces. Especially, convert LF to space,
2948 * because reflog file is one line per entry.
2949 */
2950 static int copy_msg(char *buf, const char *msg)
2951 {
2952 char *cp = buf;
2953 char c;
2954 int wasspace = 1;
2955
2956 *cp++ = '\t';
2957 while ((c = *msg++)) {
2958 if (wasspace && isspace(c))
2959 continue;
2960 wasspace = isspace(c);
2961 if (wasspace)
2962 c = ' ';
2963 *cp++ = c;
2964 }
2965 while (buf < cp && isspace(cp[-1]))
2966 cp--;
2967 *cp++ = '\n';
2968 return cp - buf;
2969 }
2970
2971 /* This function must set a meaningful errno on failure */
2972 int log_ref_setup(const char *refname, char *logfile, int bufsize)
2973 {
2974 int logfd, oflags = O_APPEND | O_WRONLY;
2975
2976 git_snpath(logfile, bufsize, "logs/%s", refname);
2977 if (log_all_ref_updates &&
2978 (starts_with(refname, "refs/heads/") ||
2979 starts_with(refname, "refs/remotes/") ||
2980 starts_with(refname, "refs/notes/") ||
2981 !strcmp(refname, "HEAD"))) {
2982 if (safe_create_leading_directories(logfile) < 0) {
2983 int save_errno = errno;
2984 error("unable to create directory for %s", logfile);
2985 errno = save_errno;
2986 return -1;
2987 }
2988 oflags |= O_CREAT;
2989 }
2990
2991 logfd = open(logfile, oflags, 0666);
2992 if (logfd < 0) {
2993 if (!(oflags & O_CREAT) && (errno == ENOENT || errno == EISDIR))
2994 return 0;
2995
2996 if (errno == EISDIR) {
2997 if (remove_empty_directories(logfile)) {
2998 int save_errno = errno;
2999 error("There are still logs under '%s'",
3000 logfile);
3001 errno = save_errno;
3002 return -1;
3003 }
3004 logfd = open(logfile, oflags, 0666);
3005 }
3006
3007 if (logfd < 0) {
3008 int save_errno = errno;
3009 error("Unable to append to %s: %s", logfile,
3010 strerror(errno));
3011 errno = save_errno;
3012 return -1;
3013 }
3014 }
3015
3016 adjust_shared_perm(logfile);
3017 close(logfd);
3018 return 0;
3019 }
3020
3021 static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
3022 const unsigned char *new_sha1,
3023 const char *committer, const char *msg)
3024 {
3025 int msglen, written;
3026 unsigned maxlen, len;
3027 char *logrec;
3028
3029 msglen = msg ? strlen(msg) : 0;
3030 maxlen = strlen(committer) + msglen + 100;
3031 logrec = xmalloc(maxlen);
3032 len = sprintf(logrec, "%s %s %s\n",
3033 sha1_to_hex(old_sha1),
3034 sha1_to_hex(new_sha1),
3035 committer);
3036 if (msglen)
3037 len += copy_msg(logrec + len - 1, msg) - 1;
3038
3039 written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
3040 free(logrec);
3041 if (written != len)
3042 return -1;
3043
3044 return 0;
3045 }
3046
3047 static int log_ref_write(const char *refname, const unsigned char *old_sha1,
3048 const unsigned char *new_sha1, const char *msg)
3049 {
3050 int logfd, result, oflags = O_APPEND | O_WRONLY;
3051 char log_file[PATH_MAX];
3052
3053 if (log_all_ref_updates < 0)
3054 log_all_ref_updates = !is_bare_repository();
3055
3056 result = log_ref_setup(refname, log_file, sizeof(log_file));
3057 if (result)
3058 return result;
3059
3060 logfd = open(log_file, oflags);
3061 if (logfd < 0)
3062 return 0;
3063 result = log_ref_write_fd(logfd, old_sha1, new_sha1,
3064 git_committer_info(0), msg);
3065 if (result) {
3066 int save_errno = errno;
3067 close(logfd);
3068 error("Unable to append to %s", log_file);
3069 errno = save_errno;
3070 return -1;
3071 }
3072 if (close(logfd)) {
3073 int save_errno = errno;
3074 error("Unable to append to %s", log_file);
3075 errno = save_errno;
3076 return -1;
3077 }
3078 return 0;
3079 }
3080
3081 int is_branch(const char *refname)
3082 {
3083 return !strcmp(refname, "HEAD") || starts_with(refname, "refs/heads/");
3084 }
3085
3086 /*
3087 * Write sha1 into the ref specified by the lock. Make sure that errno
3088 * is sane on error.
3089 */
3090 static int write_ref_sha1(struct ref_lock *lock,
3091 const unsigned char *sha1, const char *logmsg)
3092 {
3093 static char term = '\n';
3094 struct object *o;
3095
3096 if (!lock) {
3097 errno = EINVAL;
3098 return -1;
3099 }
3100 if (!lock->force_write && !hashcmp(lock->old_sha1, sha1)) {
3101 unlock_ref(lock);
3102 return 0;
3103 }
3104 o = parse_object(sha1);
3105 if (!o) {
3106 error("Trying to write ref %s with nonexistent object %s",
3107 lock->ref_name, sha1_to_hex(sha1));
3108 unlock_ref(lock);
3109 errno = EINVAL;
3110 return -1;
3111 }
3112 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
3113 error("Trying to write non-commit object %s to branch %s",
3114 sha1_to_hex(sha1), lock->ref_name);
3115 unlock_ref(lock);
3116 errno = EINVAL;
3117 return -1;
3118 }
3119 if (write_in_full(lock->lock_fd, sha1_to_hex(sha1), 40) != 40 ||
3120 write_in_full(lock->lock_fd, &term, 1) != 1 ||
3121 close_ref(lock) < 0) {
3122 int save_errno = errno;
3123 error("Couldn't write %s", lock->lk->filename.buf);
3124 unlock_ref(lock);
3125 errno = save_errno;
3126 return -1;
3127 }
3128 clear_loose_ref_cache(&ref_cache);
3129 if (log_ref_write(lock->ref_name, lock->old_sha1, sha1, logmsg) < 0 ||
3130 (strcmp(lock->ref_name, lock->orig_ref_name) &&
3131 log_ref_write(lock->orig_ref_name, lock->old_sha1, sha1, logmsg) < 0)) {
3132 unlock_ref(lock);
3133 return -1;
3134 }
3135 if (strcmp(lock->orig_ref_name, "HEAD") != 0) {
3136 /*
3137 * Special hack: If a branch is updated directly and HEAD
3138 * points to it (may happen on the remote side of a push
3139 * for example) then logically the HEAD reflog should be
3140 * updated too.
3141 * A generic solution implies reverse symref information,
3142 * but finding all symrefs pointing to the given branch
3143 * would be rather costly for this rare event (the direct
3144 * update of a branch) to be worth it. So let's cheat and
3145 * check with HEAD only which should cover 99% of all usage
3146 * scenarios (even 100% of the default ones).
3147 */
3148 unsigned char head_sha1[20];
3149 int head_flag;
3150 const char *head_ref;
3151 head_ref = resolve_ref_unsafe("HEAD", RESOLVE_REF_READING,
3152 head_sha1, &head_flag);
3153 if (head_ref && (head_flag & REF_ISSYMREF) &&
3154 !strcmp(head_ref, lock->ref_name))
3155 log_ref_write("HEAD", lock->old_sha1, sha1, logmsg);
3156 }
3157 if (commit_ref(lock)) {
3158 error("Couldn't set %s", lock->ref_name);
3159 unlock_ref(lock);
3160 return -1;
3161 }
3162 unlock_ref(lock);
3163 return 0;
3164 }
3165
3166 int create_symref(const char *ref_target, const char *refs_heads_master,
3167 const char *logmsg)
3168 {
3169 const char *lockpath;
3170 char ref[1000];
3171 int fd, len, written;
3172 char *git_HEAD = git_pathdup("%s", ref_target);
3173 unsigned char old_sha1[20], new_sha1[20];
3174
3175 if (logmsg && read_ref(ref_target, old_sha1))
3176 hashclr(old_sha1);
3177
3178 if (safe_create_leading_directories(git_HEAD) < 0)
3179 return error("unable to create directory for %s", git_HEAD);
3180
3181 #ifndef NO_SYMLINK_HEAD
3182 if (prefer_symlink_refs) {
3183 unlink(git_HEAD);
3184 if (!symlink(refs_heads_master, git_HEAD))
3185 goto done;
3186 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3187 }
3188 #endif
3189
3190 len = snprintf(ref, sizeof(ref), "ref: %s\n", refs_heads_master);
3191 if (sizeof(ref) <= len) {
3192 error("refname too long: %s", refs_heads_master);
3193 goto error_free_return;
3194 }
3195 lockpath = mkpath("%s.lock", git_HEAD);
3196 fd = open(lockpath, O_CREAT | O_EXCL | O_WRONLY, 0666);
3197 if (fd < 0) {
3198 error("Unable to open %s for writing", lockpath);
3199 goto error_free_return;
3200 }
3201 written = write_in_full(fd, ref, len);
3202 if (close(fd) != 0 || written != len) {
3203 error("Unable to write to %s", lockpath);
3204 goto error_unlink_return;
3205 }
3206 if (rename(lockpath, git_HEAD) < 0) {
3207 error("Unable to create %s", git_HEAD);
3208 goto error_unlink_return;
3209 }
3210 if (adjust_shared_perm(git_HEAD)) {
3211 error("Unable to fix permissions on %s", lockpath);
3212 error_unlink_return:
3213 unlink_or_warn(lockpath);
3214 error_free_return:
3215 free(git_HEAD);
3216 return -1;
3217 }
3218
3219 #ifndef NO_SYMLINK_HEAD
3220 done:
3221 #endif
3222 if (logmsg && !read_ref(refs_heads_master, new_sha1))
3223 log_ref_write(ref_target, old_sha1, new_sha1, logmsg);
3224
3225 free(git_HEAD);
3226 return 0;
3227 }
3228
3229 struct read_ref_at_cb {
3230 const char *refname;
3231 unsigned long at_time;
3232 int cnt;
3233 int reccnt;
3234 unsigned char *sha1;
3235 int found_it;
3236
3237 unsigned char osha1[20];
3238 unsigned char nsha1[20];
3239 int tz;
3240 unsigned long date;
3241 char **msg;
3242 unsigned long *cutoff_time;
3243 int *cutoff_tz;
3244 int *cutoff_cnt;
3245 };
3246
3247 static int read_ref_at_ent(unsigned char *osha1, unsigned char *nsha1,
3248 const char *email, unsigned long timestamp, int tz,
3249 const char *message, void *cb_data)
3250 {
3251 struct read_ref_at_cb *cb = cb_data;
3252
3253 cb->reccnt++;
3254 cb->tz = tz;
3255 cb->date = timestamp;
3256
3257 if (timestamp <= cb->at_time || cb->cnt == 0) {
3258 if (cb->msg)
3259 *cb->msg = xstrdup(message);
3260 if (cb->cutoff_time)
3261 *cb->cutoff_time = timestamp;
3262 if (cb->cutoff_tz)
3263 *cb->cutoff_tz = tz;
3264 if (cb->cutoff_cnt)
3265 *cb->cutoff_cnt = cb->reccnt - 1;
3266 /*
3267 * we have not yet updated cb->[n|o]sha1 so they still
3268 * hold the values for the previous record.
3269 */
3270 if (!is_null_sha1(cb->osha1)) {
3271 hashcpy(cb->sha1, nsha1);
3272 if (hashcmp(cb->osha1, nsha1))
3273 warning("Log for ref %s has gap after %s.",
3274 cb->refname, show_date(cb->date, cb->tz, DATE_RFC2822));
3275 }
3276 else if (cb->date == cb->at_time)
3277 hashcpy(cb->sha1, nsha1);
3278 else if (hashcmp(nsha1, cb->sha1))
3279 warning("Log for ref %s unexpectedly ended on %s.",
3280 cb->refname, show_date(cb->date, cb->tz,
3281 DATE_RFC2822));
3282 hashcpy(cb->osha1, osha1);
3283 hashcpy(cb->nsha1, nsha1);
3284 cb->found_it = 1;
3285 return 1;
3286 }
3287 hashcpy(cb->osha1, osha1);
3288 hashcpy(cb->nsha1, nsha1);
3289 if (cb->cnt > 0)
3290 cb->cnt--;
3291 return 0;
3292 }
3293
3294 static int read_ref_at_ent_oldest(unsigned char *osha1, unsigned char *nsha1,
3295 const char *email, unsigned long timestamp,
3296 int tz, const char *message, void *cb_data)
3297 {
3298 struct read_ref_at_cb *cb = cb_data;
3299
3300 if (cb->msg)
3301 *cb->msg = xstrdup(message);
3302 if (cb->cutoff_time)
3303 *cb->cutoff_time = timestamp;
3304 if (cb->cutoff_tz)
3305 *cb->cutoff_tz = tz;
3306 if (cb->cutoff_cnt)
3307 *cb->cutoff_cnt = cb->reccnt;
3308 hashcpy(cb->sha1, osha1);
3309 if (is_null_sha1(cb->sha1))
3310 hashcpy(cb->sha1, nsha1);
3311 /* We just want the first entry */
3312 return 1;
3313 }
3314
3315 int read_ref_at(const char *refname, unsigned int flags, unsigned long at_time, int cnt,
3316 unsigned char *sha1, char **msg,
3317 unsigned long *cutoff_time, int *cutoff_tz, int *cutoff_cnt)
3318 {
3319 struct read_ref_at_cb cb;
3320
3321 memset(&cb, 0, sizeof(cb));
3322 cb.refname = refname;
3323 cb.at_time = at_time;
3324 cb.cnt = cnt;
3325 cb.msg = msg;
3326 cb.cutoff_time = cutoff_time;
3327 cb.cutoff_tz = cutoff_tz;
3328 cb.cutoff_cnt = cutoff_cnt;
3329 cb.sha1 = sha1;
3330
3331 for_each_reflog_ent_reverse(refname, read_ref_at_ent, &cb);
3332
3333 if (!cb.reccnt) {
3334 if (flags & GET_SHA1_QUIETLY)
3335 exit(128);
3336 else
3337 die("Log for %s is empty.", refname);
3338 }
3339 if (cb.found_it)
3340 return 0;
3341
3342 for_each_reflog_ent(refname, read_ref_at_ent_oldest, &cb);
3343
3344 return 1;
3345 }
3346
3347 int reflog_exists(const char *refname)
3348 {
3349 struct stat st;
3350
3351 return !lstat(git_path("logs/%s", refname), &st) &&
3352 S_ISREG(st.st_mode);
3353 }
3354
3355 int delete_reflog(const char *refname)
3356 {
3357 return remove_path(git_path("logs/%s", refname));
3358 }
3359
3360 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3361 {
3362 unsigned char osha1[20], nsha1[20];
3363 char *email_end, *message;
3364 unsigned long timestamp;
3365 int tz;
3366
3367 /* old SP new SP name <email> SP time TAB msg LF */
3368 if (sb->len < 83 || sb->buf[sb->len - 1] != '\n' ||
3369 get_sha1_hex(sb->buf, osha1) || sb->buf[40] != ' ' ||
3370 get_sha1_hex(sb->buf + 41, nsha1) || sb->buf[81] != ' ' ||
3371 !(email_end = strchr(sb->buf + 82, '>')) ||
3372 email_end[1] != ' ' ||
3373 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3374 !message || message[0] != ' ' ||
3375 (message[1] != '+' && message[1] != '-') ||
3376 !isdigit(message[2]) || !isdigit(message[3]) ||
3377 !isdigit(message[4]) || !isdigit(message[5]))
3378 return 0; /* corrupt? */
3379 email_end[1] = '\0';
3380 tz = strtol(message + 1, NULL, 10);
3381 if (message[6] != '\t')
3382 message += 6;
3383 else
3384 message += 7;
3385 return fn(osha1, nsha1, sb->buf + 82, timestamp, tz, message, cb_data);
3386 }
3387
3388 static char *find_beginning_of_line(char *bob, char *scan)
3389 {
3390 while (bob < scan && *(--scan) != '\n')
3391 ; /* keep scanning backwards */
3392 /*
3393 * Return either beginning of the buffer, or LF at the end of
3394 * the previous line.
3395 */
3396 return scan;
3397 }
3398
3399 int for_each_reflog_ent_reverse(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3400 {
3401 struct strbuf sb = STRBUF_INIT;
3402 FILE *logfp;
3403 long pos;
3404 int ret = 0, at_tail = 1;
3405
3406 logfp = fopen(git_path("logs/%s", refname), "r");
3407 if (!logfp)
3408 return -1;
3409
3410 /* Jump to the end */
3411 if (fseek(logfp, 0, SEEK_END) < 0)
3412 return error("cannot seek back reflog for %s: %s",
3413 refname, strerror(errno));
3414 pos = ftell(logfp);
3415 while (!ret && 0 < pos) {
3416 int cnt;
3417 size_t nread;
3418 char buf[BUFSIZ];
3419 char *endp, *scanp;
3420
3421 /* Fill next block from the end */
3422 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3423 if (fseek(logfp, pos - cnt, SEEK_SET))
3424 return error("cannot seek back reflog for %s: %s",
3425 refname, strerror(errno));
3426 nread = fread(buf, cnt, 1, logfp);
3427 if (nread != 1)
3428 return error("cannot read %d bytes from reflog for %s: %s",
3429 cnt, refname, strerror(errno));
3430 pos -= cnt;
3431
3432 scanp = endp = buf + cnt;
3433 if (at_tail && scanp[-1] == '\n')
3434 /* Looking at the final LF at the end of the file */
3435 scanp--;
3436 at_tail = 0;
3437
3438 while (buf < scanp) {
3439 /*
3440 * terminating LF of the previous line, or the beginning
3441 * of the buffer.
3442 */
3443 char *bp;
3444
3445 bp = find_beginning_of_line(buf, scanp);
3446
3447 if (*bp == '\n') {
3448 /*
3449 * The newline is the end of the previous line,
3450 * so we know we have complete line starting
3451 * at (bp + 1). Prefix it onto any prior data
3452 * we collected for the line and process it.
3453 */
3454 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3455 scanp = bp;
3456 endp = bp + 1;
3457 ret = show_one_reflog_ent(&sb, fn, cb_data);
3458 strbuf_reset(&sb);
3459 if (ret)
3460 break;
3461 } else if (!pos) {
3462 /*
3463 * We are at the start of the buffer, and the
3464 * start of the file; there is no previous
3465 * line, and we have everything for this one.
3466 * Process it, and we can end the loop.
3467 */
3468 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3469 ret = show_one_reflog_ent(&sb, fn, cb_data);
3470 strbuf_reset(&sb);
3471 break;
3472 }
3473
3474 if (bp == buf) {
3475 /*
3476 * We are at the start of the buffer, and there
3477 * is more file to read backwards. Which means
3478 * we are in the middle of a line. Note that we
3479 * may get here even if *bp was a newline; that
3480 * just means we are at the exact end of the
3481 * previous line, rather than some spot in the
3482 * middle.
3483 *
3484 * Save away what we have to be combined with
3485 * the data from the next read.
3486 */
3487 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3488 break;
3489 }
3490 }
3491
3492 }
3493 if (!ret && sb.len)
3494 die("BUG: reverse reflog parser had leftover data");
3495
3496 fclose(logfp);
3497 strbuf_release(&sb);
3498 return ret;
3499 }
3500
3501 int for_each_reflog_ent(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3502 {
3503 FILE *logfp;
3504 struct strbuf sb = STRBUF_INIT;
3505 int ret = 0;
3506
3507 logfp = fopen(git_path("logs/%s", refname), "r");
3508 if (!logfp)
3509 return -1;
3510
3511 while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3512 ret = show_one_reflog_ent(&sb, fn, cb_data);
3513 fclose(logfp);
3514 strbuf_release(&sb);
3515 return ret;
3516 }
3517 /*
3518 * Call fn for each reflog in the namespace indicated by name. name
3519 * must be empty or end with '/'. Name will be used as a scratch
3520 * space, but its contents will be restored before return.
3521 */
3522 static int do_for_each_reflog(struct strbuf *name, each_ref_fn fn, void *cb_data)
3523 {
3524 DIR *d = opendir(git_path("logs/%s", name->buf));
3525 int retval = 0;
3526 struct dirent *de;
3527 int oldlen = name->len;
3528
3529 if (!d)
3530 return name->len ? errno : 0;
3531
3532 while ((de = readdir(d)) != NULL) {
3533 struct stat st;
3534
3535 if (de->d_name[0] == '.')
3536 continue;
3537 if (ends_with(de->d_name, ".lock"))
3538 continue;
3539 strbuf_addstr(name, de->d_name);
3540 if (stat(git_path("logs/%s", name->buf), &st) < 0) {
3541 ; /* silently ignore */
3542 } else {
3543 if (S_ISDIR(st.st_mode)) {
3544 strbuf_addch(name, '/');
3545 retval = do_for_each_reflog(name, fn, cb_data);
3546 } else {
3547 unsigned char sha1[20];
3548 if (read_ref_full(name->buf, 0, sha1, NULL))
3549 retval = error("bad ref for %s", name->buf);
3550 else
3551 retval = fn(name->buf, sha1, 0, cb_data);
3552 }
3553 if (retval)
3554 break;
3555 }
3556 strbuf_setlen(name, oldlen);
3557 }
3558 closedir(d);
3559 return retval;
3560 }
3561
3562 int for_each_reflog(each_ref_fn fn, void *cb_data)
3563 {
3564 int retval;
3565 struct strbuf name;
3566 strbuf_init(&name, PATH_MAX);
3567 retval = do_for_each_reflog(&name, fn, cb_data);
3568 strbuf_release(&name);
3569 return retval;
3570 }
3571
3572 /**
3573 * Information needed for a single ref update. Set new_sha1 to the new
3574 * value or to null_sha1 to delete the ref. To check the old value
3575 * while the ref is locked, set (flags & REF_HAVE_OLD) and set
3576 * old_sha1 to the old value, or to null_sha1 to ensure the ref does
3577 * not exist before update.
3578 */
3579 struct ref_update {
3580 unsigned char new_sha1[20];
3581 unsigned char old_sha1[20];
3582 /*
3583 * One or more of REF_HAVE_OLD, REF_NODEREF,
3584 * REF_DELETING, and REF_ISPRUNING:
3585 */
3586 unsigned int flags;
3587 struct ref_lock *lock;
3588 int type;
3589 char *msg;
3590 const char refname[FLEX_ARRAY];
3591 };
3592
3593 /*
3594 * Transaction states.
3595 * OPEN: The transaction is in a valid state and can accept new updates.
3596 * An OPEN transaction can be committed.
3597 * CLOSED: A closed transaction is no longer active and no other operations
3598 * than free can be used on it in this state.
3599 * A transaction can either become closed by successfully committing
3600 * an active transaction or if there is a failure while building
3601 * the transaction thus rendering it failed/inactive.
3602 */
3603 enum ref_transaction_state {
3604 REF_TRANSACTION_OPEN = 0,
3605 REF_TRANSACTION_CLOSED = 1
3606 };
3607
3608 /*
3609 * Data structure for holding a reference transaction, which can
3610 * consist of checks and updates to multiple references, carried out
3611 * as atomically as possible. This structure is opaque to callers.
3612 */
3613 struct ref_transaction {
3614 struct ref_update **updates;
3615 size_t alloc;
3616 size_t nr;
3617 enum ref_transaction_state state;
3618 };
3619
3620 struct ref_transaction *ref_transaction_begin(struct strbuf *err)
3621 {
3622 assert(err);
3623
3624 return xcalloc(1, sizeof(struct ref_transaction));
3625 }
3626
3627 void ref_transaction_free(struct ref_transaction *transaction)
3628 {
3629 int i;
3630
3631 if (!transaction)
3632 return;
3633
3634 for (i = 0; i < transaction->nr; i++) {
3635 free(transaction->updates[i]->msg);
3636 free(transaction->updates[i]);
3637 }
3638 free(transaction->updates);
3639 free(transaction);
3640 }
3641
3642 static struct ref_update *add_update(struct ref_transaction *transaction,
3643 const char *refname)
3644 {
3645 size_t len = strlen(refname);
3646 struct ref_update *update = xcalloc(1, sizeof(*update) + len + 1);
3647
3648 strcpy((char *)update->refname, refname);
3649 ALLOC_GROW(transaction->updates, transaction->nr + 1, transaction->alloc);
3650 transaction->updates[transaction->nr++] = update;
3651 return update;
3652 }
3653
3654 int ref_transaction_update(struct ref_transaction *transaction,
3655 const char *refname,
3656 const unsigned char *new_sha1,
3657 const unsigned char *old_sha1,
3658 unsigned int flags, const char *msg,
3659 struct strbuf *err)
3660 {
3661 struct ref_update *update;
3662
3663 assert(err);
3664
3665 if (transaction->state != REF_TRANSACTION_OPEN)
3666 die("BUG: update called for transaction that is not open");
3667
3668 if (!is_null_sha1(new_sha1) &&
3669 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
3670 strbuf_addf(err, "refusing to update ref with bad name %s",
3671 refname);
3672 return -1;
3673 }
3674
3675 update = add_update(transaction, refname);
3676 hashcpy(update->new_sha1, new_sha1);
3677 if (old_sha1) {
3678 hashcpy(update->old_sha1, old_sha1);
3679 flags |= REF_HAVE_OLD;
3680 }
3681 update->flags = flags;
3682 if (msg)
3683 update->msg = xstrdup(msg);
3684 return 0;
3685 }
3686
3687 int ref_transaction_create(struct ref_transaction *transaction,
3688 const char *refname,
3689 const unsigned char *new_sha1,
3690 unsigned int flags, const char *msg,
3691 struct strbuf *err)
3692 {
3693 return ref_transaction_update(transaction, refname, new_sha1,
3694 null_sha1, flags, msg, err);
3695 }
3696
3697 int ref_transaction_delete(struct ref_transaction *transaction,
3698 const char *refname,
3699 const unsigned char *old_sha1,
3700 unsigned int flags, const char *msg,
3701 struct strbuf *err)
3702 {
3703 return ref_transaction_update(transaction, refname,
3704 null_sha1, old_sha1,
3705 flags, msg, err);
3706 }
3707
3708 int update_ref(const char *action, const char *refname,
3709 const unsigned char *sha1, const unsigned char *oldval,
3710 unsigned int flags, enum action_on_err onerr)
3711 {
3712 struct ref_transaction *t;
3713 struct strbuf err = STRBUF_INIT;
3714
3715 t = ref_transaction_begin(&err);
3716 if (!t ||
3717 ref_transaction_update(t, refname, sha1, oldval,
3718 flags, action, &err) ||
3719 ref_transaction_commit(t, &err)) {
3720 const char *str = "update_ref failed for ref '%s': %s";
3721
3722 ref_transaction_free(t);
3723 switch (onerr) {
3724 case UPDATE_REFS_MSG_ON_ERR:
3725 error(str, refname, err.buf);
3726 break;
3727 case UPDATE_REFS_DIE_ON_ERR:
3728 die(str, refname, err.buf);
3729 break;
3730 case UPDATE_REFS_QUIET_ON_ERR:
3731 break;
3732 }
3733 strbuf_release(&err);
3734 return 1;
3735 }
3736 strbuf_release(&err);
3737 ref_transaction_free(t);
3738 return 0;
3739 }
3740
3741 static int ref_update_compare(const void *r1, const void *r2)
3742 {
3743 const struct ref_update * const *u1 = r1;
3744 const struct ref_update * const *u2 = r2;
3745 return strcmp((*u1)->refname, (*u2)->refname);
3746 }
3747
3748 static int ref_update_reject_duplicates(struct ref_update **updates, int n,
3749 struct strbuf *err)
3750 {
3751 int i;
3752
3753 assert(err);
3754
3755 for (i = 1; i < n; i++)
3756 if (!strcmp(updates[i - 1]->refname, updates[i]->refname)) {
3757 strbuf_addf(err,
3758 "Multiple updates for ref '%s' not allowed.",
3759 updates[i]->refname);
3760 return 1;
3761 }
3762 return 0;
3763 }
3764
3765 int ref_transaction_commit(struct ref_transaction *transaction,
3766 struct strbuf *err)
3767 {
3768 int ret = 0, i;
3769 int n = transaction->nr;
3770 struct ref_update **updates = transaction->updates;
3771 struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3772 struct string_list_item *ref_to_delete;
3773
3774 assert(err);
3775
3776 if (transaction->state != REF_TRANSACTION_OPEN)
3777 die("BUG: commit called for transaction that is not open");
3778
3779 if (!n) {
3780 transaction->state = REF_TRANSACTION_CLOSED;
3781 return 0;
3782 }
3783
3784 /* Copy, sort, and reject duplicate refs */
3785 qsort(updates, n, sizeof(*updates), ref_update_compare);
3786 if (ref_update_reject_duplicates(updates, n, err)) {
3787 ret = TRANSACTION_GENERIC_ERROR;
3788 goto cleanup;
3789 }
3790
3791 /* Acquire all locks while verifying old values */
3792 for (i = 0; i < n; i++) {
3793 struct ref_update *update = updates[i];
3794 unsigned int flags = update->flags;
3795
3796 if (is_null_sha1(update->new_sha1))
3797 flags |= REF_DELETING;
3798 update->lock = lock_ref_sha1_basic(
3799 update->refname,
3800 ((update->flags & REF_HAVE_OLD) ?
3801 update->old_sha1 : NULL),
3802 NULL,
3803 flags,
3804 &update->type);
3805 if (!update->lock) {
3806 ret = (errno == ENOTDIR)
3807 ? TRANSACTION_NAME_CONFLICT
3808 : TRANSACTION_GENERIC_ERROR;
3809 strbuf_addf(err, "Cannot lock the ref '%s'.",
3810 update->refname);
3811 goto cleanup;
3812 }
3813 }
3814
3815 /* Perform updates first so live commits remain referenced */
3816 for (i = 0; i < n; i++) {
3817 struct ref_update *update = updates[i];
3818
3819 if (!is_null_sha1(update->new_sha1)) {
3820 if (write_ref_sha1(update->lock, update->new_sha1,
3821 update->msg)) {
3822 update->lock = NULL; /* freed by write_ref_sha1 */
3823 strbuf_addf(err, "Cannot update the ref '%s'.",
3824 update->refname);
3825 ret = TRANSACTION_GENERIC_ERROR;
3826 goto cleanup;
3827 }
3828 update->lock = NULL; /* freed by write_ref_sha1 */
3829 }
3830 }
3831
3832 /* Perform deletes now that updates are safely completed */
3833 for (i = 0; i < n; i++) {
3834 struct ref_update *update = updates[i];
3835
3836 if (update->lock) {
3837 if (delete_ref_loose(update->lock, update->type, err)) {
3838 ret = TRANSACTION_GENERIC_ERROR;
3839 goto cleanup;
3840 }
3841
3842 if (!(update->flags & REF_ISPRUNING))
3843 string_list_append(&refs_to_delete,
3844 update->lock->ref_name);
3845 }
3846 }
3847
3848 if (repack_without_refs(&refs_to_delete, err)) {
3849 ret = TRANSACTION_GENERIC_ERROR;
3850 goto cleanup;
3851 }
3852 for_each_string_list_item(ref_to_delete, &refs_to_delete)
3853 unlink_or_warn(git_path("logs/%s", ref_to_delete->string));
3854 clear_loose_ref_cache(&ref_cache);
3855
3856 cleanup:
3857 transaction->state = REF_TRANSACTION_CLOSED;
3858
3859 for (i = 0; i < n; i++)
3860 if (updates[i]->lock)
3861 unlock_ref(updates[i]->lock);
3862 string_list_clear(&refs_to_delete, 0);
3863 return ret;
3864 }
3865
3866 char *shorten_unambiguous_ref(const char *refname, int strict)
3867 {
3868 int i;
3869 static char **scanf_fmts;
3870 static int nr_rules;
3871 char *short_name;
3872
3873 if (!nr_rules) {
3874 /*
3875 * Pre-generate scanf formats from ref_rev_parse_rules[].
3876 * Generate a format suitable for scanf from a
3877 * ref_rev_parse_rules rule by interpolating "%s" at the
3878 * location of the "%.*s".
3879 */
3880 size_t total_len = 0;
3881 size_t offset = 0;
3882
3883 /* the rule list is NULL terminated, count them first */
3884 for (nr_rules = 0; ref_rev_parse_rules[nr_rules]; nr_rules++)
3885 /* -2 for strlen("%.*s") - strlen("%s"); +1 for NUL */
3886 total_len += strlen(ref_rev_parse_rules[nr_rules]) - 2 + 1;
3887
3888 scanf_fmts = xmalloc(nr_rules * sizeof(char *) + total_len);
3889
3890 offset = 0;
3891 for (i = 0; i < nr_rules; i++) {
3892 assert(offset < total_len);
3893 scanf_fmts[i] = (char *)&scanf_fmts[nr_rules] + offset;
3894 offset += snprintf(scanf_fmts[i], total_len - offset,
3895 ref_rev_parse_rules[i], 2, "%s") + 1;
3896 }
3897 }
3898
3899 /* bail out if there are no rules */
3900 if (!nr_rules)
3901 return xstrdup(refname);
3902
3903 /* buffer for scanf result, at most refname must fit */
3904 short_name = xstrdup(refname);
3905
3906 /* skip first rule, it will always match */
3907 for (i = nr_rules - 1; i > 0 ; --i) {
3908 int j;
3909 int rules_to_fail = i;
3910 int short_name_len;
3911
3912 if (1 != sscanf(refname, scanf_fmts[i], short_name))
3913 continue;
3914
3915 short_name_len = strlen(short_name);
3916
3917 /*
3918 * in strict mode, all (except the matched one) rules
3919 * must fail to resolve to a valid non-ambiguous ref
3920 */
3921 if (strict)
3922 rules_to_fail = nr_rules;
3923
3924 /*
3925 * check if the short name resolves to a valid ref,
3926 * but use only rules prior to the matched one
3927 */
3928 for (j = 0; j < rules_to_fail; j++) {
3929 const char *rule = ref_rev_parse_rules[j];
3930 char refname[PATH_MAX];
3931
3932 /* skip matched rule */
3933 if (i == j)
3934 continue;
3935
3936 /*
3937 * the short name is ambiguous, if it resolves
3938 * (with this previous rule) to a valid ref
3939 * read_ref() returns 0 on success
3940 */
3941 mksnpath(refname, sizeof(refname),
3942 rule, short_name_len, short_name);
3943 if (ref_exists(refname))
3944 break;
3945 }
3946
3947 /*
3948 * short name is non-ambiguous if all previous rules
3949 * haven't resolved to a valid ref
3950 */
3951 if (j == rules_to_fail)
3952 return short_name;
3953 }
3954
3955 free(short_name);
3956 return xstrdup(refname);
3957 }
3958
3959 static struct string_list *hide_refs;
3960
3961 int parse_hide_refs_config(const char *var, const char *value, const char *section)
3962 {
3963 if (!strcmp("transfer.hiderefs", var) ||
3964 /* NEEDSWORK: use parse_config_key() once both are merged */
3965 (starts_with(var, section) && var[strlen(section)] == '.' &&
3966 !strcmp(var + strlen(section), ".hiderefs"))) {
3967 char *ref;
3968 int len;
3969
3970 if (!value)
3971 return config_error_nonbool(var);
3972 ref = xstrdup(value);
3973 len = strlen(ref);
3974 while (len && ref[len - 1] == '/')
3975 ref[--len] = '\0';
3976 if (!hide_refs) {
3977 hide_refs = xcalloc(1, sizeof(*hide_refs));
3978 hide_refs->strdup_strings = 1;
3979 }
3980 string_list_append(hide_refs, ref);
3981 }
3982 return 0;
3983 }
3984
3985 int ref_is_hidden(const char *refname)
3986 {
3987 struct string_list_item *item;
3988
3989 if (!hide_refs)
3990 return 0;
3991 for_each_string_list_item(item, hide_refs) {
3992 int len;
3993 if (!starts_with(refname, item->string))
3994 continue;
3995 len = strlen(item->string);
3996 if (!refname[len] || refname[len] == '/')
3997 return 1;
3998 }
3999 return 0;
4000 }
4001
4002 struct expire_reflog_cb {
4003 unsigned int flags;
4004 reflog_expiry_should_prune_fn *should_prune_fn;
4005 void *policy_cb;
4006 FILE *newlog;
4007 unsigned char last_kept_sha1[20];
4008 };
4009
4010 static int expire_reflog_ent(unsigned char *osha1, unsigned char *nsha1,
4011 const char *email, unsigned long timestamp, int tz,
4012 const char *message, void *cb_data)
4013 {
4014 struct expire_reflog_cb *cb = cb_data;
4015 struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
4016
4017 if (cb->flags & EXPIRE_REFLOGS_REWRITE)
4018 osha1 = cb->last_kept_sha1;
4019
4020 if ((*cb->should_prune_fn)(osha1, nsha1, email, timestamp, tz,
4021 message, policy_cb)) {
4022 if (!cb->newlog)
4023 printf("would prune %s", message);
4024 else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4025 printf("prune %s", message);
4026 } else {
4027 if (cb->newlog) {
4028 fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
4029 sha1_to_hex(osha1), sha1_to_hex(nsha1),
4030 email, timestamp, tz, message);
4031 hashcpy(cb->last_kept_sha1, nsha1);
4032 }
4033 if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4034 printf("keep %s", message);
4035 }
4036 return 0;
4037 }
4038
4039 int reflog_expire(const char *refname, const unsigned char *sha1,
4040 unsigned int flags,
4041 reflog_expiry_prepare_fn prepare_fn,
4042 reflog_expiry_should_prune_fn should_prune_fn,
4043 reflog_expiry_cleanup_fn cleanup_fn,
4044 void *policy_cb_data)
4045 {
4046 static struct lock_file reflog_lock;
4047 struct expire_reflog_cb cb;
4048 struct ref_lock *lock;
4049 char *log_file;
4050 int status = 0;
4051
4052 memset(&cb, 0, sizeof(cb));
4053 cb.flags = flags;
4054 cb.policy_cb = policy_cb_data;
4055 cb.should_prune_fn = should_prune_fn;
4056
4057 /*
4058 * The reflog file is locked by holding the lock on the
4059 * reference itself, plus we might need to update the
4060 * reference if --updateref was specified:
4061 */
4062 lock = lock_ref_sha1_basic(refname, sha1, NULL, 0, NULL);
4063 if (!lock)
4064 return error("cannot lock ref '%s'", refname);
4065 if (!reflog_exists(refname)) {
4066 unlock_ref(lock);
4067 return 0;
4068 }
4069
4070 log_file = git_pathdup("logs/%s", refname);
4071 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4072 /*
4073 * Even though holding $GIT_DIR/logs/$reflog.lock has
4074 * no locking implications, we use the lock_file
4075 * machinery here anyway because it does a lot of the
4076 * work we need, including cleaning up if the program
4077 * exits unexpectedly.
4078 */
4079 if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4080 struct strbuf err = STRBUF_INIT;
4081 unable_to_lock_message(log_file, errno, &err);
4082 error("%s", err.buf);
4083 strbuf_release(&err);
4084 goto failure;
4085 }
4086 cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4087 if (!cb.newlog) {
4088 error("cannot fdopen %s (%s)",
4089 reflog_lock.filename.buf, strerror(errno));
4090 goto failure;
4091 }
4092 }
4093
4094 (*prepare_fn)(refname, sha1, cb.policy_cb);
4095 for_each_reflog_ent(refname, expire_reflog_ent, &cb);
4096 (*cleanup_fn)(cb.policy_cb);
4097
4098 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4099 if (close_lock_file(&reflog_lock)) {
4100 status |= error("couldn't write %s: %s", log_file,
4101 strerror(errno));
4102 } else if ((flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4103 (write_in_full(lock->lock_fd,
4104 sha1_to_hex(cb.last_kept_sha1), 40) != 40 ||
4105 write_str_in_full(lock->lock_fd, "\n") != 1 ||
4106 close_ref(lock) < 0)) {
4107 status |= error("couldn't write %s",
4108 lock->lk->filename.buf);
4109 rollback_lock_file(&reflog_lock);
4110 } else if (commit_lock_file(&reflog_lock)) {
4111 status |= error("unable to commit reflog '%s' (%s)",
4112 log_file, strerror(errno));
4113 } else if ((flags & EXPIRE_REFLOGS_UPDATE_REF) && commit_ref(lock)) {
4114 status |= error("couldn't set %s", lock->ref_name);
4115 }
4116 }
4117 free(log_file);
4118 unlock_ref(lock);
4119 return status;
4120
4121 failure:
4122 rollback_lock_file(&reflog_lock);
4123 free(log_file);
4124 unlock_ref(lock);
4125 return -1;
4126 }