]> git.ipfire.org Git - thirdparty/git.git/blob - refs.c
refs: handle the main ref_cache specially
[thirdparty/git.git] / refs.c
1 #include "cache.h"
2 #include "refs.h"
3 #include "object.h"
4 #include "tag.h"
5 #include "dir.h"
6
7 /*
8 * Make sure "ref" is something reasonable to have under ".git/refs/";
9 * We do not like it if:
10 *
11 * - any path component of it begins with ".", or
12 * - it has double dots "..", or
13 * - it has ASCII control character, "~", "^", ":" or SP, anywhere, or
14 * - it ends with a "/".
15 * - it ends with ".lock"
16 * - it contains a "\" (backslash)
17 */
18
19 /* Return true iff ch is not allowed in reference names. */
20 static inline int bad_ref_char(int ch)
21 {
22 if (((unsigned) ch) <= ' ' || ch == 0x7f ||
23 ch == '~' || ch == '^' || ch == ':' || ch == '\\')
24 return 1;
25 /* 2.13 Pattern Matching Notation */
26 if (ch == '*' || ch == '?' || ch == '[') /* Unsupported */
27 return 1;
28 return 0;
29 }
30
31 /*
32 * Try to read one refname component from the front of refname. Return
33 * the length of the component found, or -1 if the component is not
34 * legal.
35 */
36 static int check_refname_component(const char *refname, int flags)
37 {
38 const char *cp;
39 char last = '\0';
40
41 for (cp = refname; ; cp++) {
42 char ch = *cp;
43 if (ch == '\0' || ch == '/')
44 break;
45 if (bad_ref_char(ch))
46 return -1; /* Illegal character in refname. */
47 if (last == '.' && ch == '.')
48 return -1; /* Refname contains "..". */
49 if (last == '@' && ch == '{')
50 return -1; /* Refname contains "@{". */
51 last = ch;
52 }
53 if (cp == refname)
54 return 0; /* Component has zero length. */
55 if (refname[0] == '.') {
56 if (!(flags & REFNAME_DOT_COMPONENT))
57 return -1; /* Component starts with '.'. */
58 /*
59 * Even if leading dots are allowed, don't allow "."
60 * as a component (".." is prevented by a rule above).
61 */
62 if (refname[1] == '\0')
63 return -1; /* Component equals ".". */
64 }
65 if (cp - refname >= 5 && !memcmp(cp - 5, ".lock", 5))
66 return -1; /* Refname ends with ".lock". */
67 return cp - refname;
68 }
69
70 int check_refname_format(const char *refname, int flags)
71 {
72 int component_len, component_count = 0;
73
74 while (1) {
75 /* We are at the start of a path component. */
76 component_len = check_refname_component(refname, flags);
77 if (component_len <= 0) {
78 if ((flags & REFNAME_REFSPEC_PATTERN) &&
79 refname[0] == '*' &&
80 (refname[1] == '\0' || refname[1] == '/')) {
81 /* Accept one wildcard as a full refname component. */
82 flags &= ~REFNAME_REFSPEC_PATTERN;
83 component_len = 1;
84 } else {
85 return -1;
86 }
87 }
88 component_count++;
89 if (refname[component_len] == '\0')
90 break;
91 /* Skip to next component. */
92 refname += component_len + 1;
93 }
94
95 if (refname[component_len - 1] == '.')
96 return -1; /* Refname ends with '.'. */
97 if (!(flags & REFNAME_ALLOW_ONELEVEL) && component_count < 2)
98 return -1; /* Refname has only one component. */
99 return 0;
100 }
101
102 struct ref_entry;
103
104 /*
105 * Information used (along with the information in ref_entry) to
106 * describe a single cached reference. This data structure only
107 * occurs embedded in a union in struct ref_entry, and only when
108 * (ref_entry->flag & REF_DIR) is zero.
109 */
110 struct ref_value {
111 /*
112 * The name of the object to which this reference resolves
113 * (which may be a tag object). If REF_ISBROKEN, this is
114 * null. If REF_ISSYMREF, then this is the name of the object
115 * referred to by the last reference in the symlink chain.
116 */
117 unsigned char sha1[20];
118
119 /*
120 * If REF_KNOWS_PEELED, then this field holds the peeled value
121 * of this reference, or null if the reference is known not to
122 * be peelable. See the documentation for peel_ref() for an
123 * exact definition of "peelable".
124 */
125 unsigned char peeled[20];
126 };
127
128 struct ref_cache;
129
130 /*
131 * Information used (along with the information in ref_entry) to
132 * describe a level in the hierarchy of references. This data
133 * structure only occurs embedded in a union in struct ref_entry, and
134 * only when (ref_entry.flag & REF_DIR) is set. In that case,
135 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
136 * in the directory have already been read:
137 *
138 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
139 * or packed references, already read.
140 *
141 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
142 * references that hasn't been read yet (nor has any of its
143 * subdirectories).
144 *
145 * Entries within a directory are stored within a growable array of
146 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
147 * sorted are sorted by their component name in strcmp() order and the
148 * remaining entries are unsorted.
149 *
150 * Loose references are read lazily, one directory at a time. When a
151 * directory of loose references is read, then all of the references
152 * in that directory are stored, and REF_INCOMPLETE stubs are created
153 * for any subdirectories, but the subdirectories themselves are not
154 * read. The reading is triggered by get_ref_dir().
155 */
156 struct ref_dir {
157 int nr, alloc;
158
159 /*
160 * Entries with index 0 <= i < sorted are sorted by name. New
161 * entries are appended to the list unsorted, and are sorted
162 * only when required; thus we avoid the need to sort the list
163 * after the addition of every reference.
164 */
165 int sorted;
166
167 /* A pointer to the ref_cache that contains this ref_dir. */
168 struct ref_cache *ref_cache;
169
170 struct ref_entry **entries;
171 };
172
173 /*
174 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
175 * REF_ISPACKED=0x02, and REF_ISBROKEN=0x04 are public values; see
176 * refs.h.
177 */
178
179 /*
180 * The field ref_entry->u.value.peeled of this value entry contains
181 * the correct peeled value for the reference, which might be
182 * null_sha1 if the reference is not a tag or if it is broken.
183 */
184 #define REF_KNOWS_PEELED 0x08
185
186 /* ref_entry represents a directory of references */
187 #define REF_DIR 0x10
188
189 /*
190 * Entry has not yet been read from disk (used only for REF_DIR
191 * entries representing loose references)
192 */
193 #define REF_INCOMPLETE 0x20
194
195 /*
196 * A ref_entry represents either a reference or a "subdirectory" of
197 * references.
198 *
199 * Each directory in the reference namespace is represented by a
200 * ref_entry with (flags & REF_DIR) set and containing a subdir member
201 * that holds the entries in that directory that have been read so
202 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
203 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
204 * used for loose reference directories.
205 *
206 * References are represented by a ref_entry with (flags & REF_DIR)
207 * unset and a value member that describes the reference's value. The
208 * flag member is at the ref_entry level, but it is also needed to
209 * interpret the contents of the value field (in other words, a
210 * ref_value object is not very much use without the enclosing
211 * ref_entry).
212 *
213 * Reference names cannot end with slash and directories' names are
214 * always stored with a trailing slash (except for the top-level
215 * directory, which is always denoted by ""). This has two nice
216 * consequences: (1) when the entries in each subdir are sorted
217 * lexicographically by name (as they usually are), the references in
218 * a whole tree can be generated in lexicographic order by traversing
219 * the tree in left-to-right, depth-first order; (2) the names of
220 * references and subdirectories cannot conflict, and therefore the
221 * presence of an empty subdirectory does not block the creation of a
222 * similarly-named reference. (The fact that reference names with the
223 * same leading components can conflict *with each other* is a
224 * separate issue that is regulated by is_refname_available().)
225 *
226 * Please note that the name field contains the fully-qualified
227 * reference (or subdirectory) name. Space could be saved by only
228 * storing the relative names. But that would require the full names
229 * to be generated on the fly when iterating in do_for_each_ref(), and
230 * would break callback functions, who have always been able to assume
231 * that the name strings that they are passed will not be freed during
232 * the iteration.
233 */
234 struct ref_entry {
235 unsigned char flag; /* ISSYMREF? ISPACKED? */
236 union {
237 struct ref_value value; /* if not (flags&REF_DIR) */
238 struct ref_dir subdir; /* if (flags&REF_DIR) */
239 } u;
240 /*
241 * The full name of the reference (e.g., "refs/heads/master")
242 * or the full name of the directory with a trailing slash
243 * (e.g., "refs/heads/"):
244 */
245 char name[FLEX_ARRAY];
246 };
247
248 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
249
250 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
251 {
252 struct ref_dir *dir;
253 assert(entry->flag & REF_DIR);
254 dir = &entry->u.subdir;
255 if (entry->flag & REF_INCOMPLETE) {
256 read_loose_refs(entry->name, dir);
257 entry->flag &= ~REF_INCOMPLETE;
258 }
259 return dir;
260 }
261
262 static struct ref_entry *create_ref_entry(const char *refname,
263 const unsigned char *sha1, int flag,
264 int check_name)
265 {
266 int len;
267 struct ref_entry *ref;
268
269 if (check_name &&
270 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL|REFNAME_DOT_COMPONENT))
271 die("Reference has invalid format: '%s'", refname);
272 len = strlen(refname) + 1;
273 ref = xmalloc(sizeof(struct ref_entry) + len);
274 hashcpy(ref->u.value.sha1, sha1);
275 hashclr(ref->u.value.peeled);
276 memcpy(ref->name, refname, len);
277 ref->flag = flag;
278 return ref;
279 }
280
281 static void clear_ref_dir(struct ref_dir *dir);
282
283 static void free_ref_entry(struct ref_entry *entry)
284 {
285 if (entry->flag & REF_DIR) {
286 /*
287 * Do not use get_ref_dir() here, as that might
288 * trigger the reading of loose refs.
289 */
290 clear_ref_dir(&entry->u.subdir);
291 }
292 free(entry);
293 }
294
295 /*
296 * Add a ref_entry to the end of dir (unsorted). Entry is always
297 * stored directly in dir; no recursion into subdirectories is
298 * done.
299 */
300 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
301 {
302 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
303 dir->entries[dir->nr++] = entry;
304 /* optimize for the case that entries are added in order */
305 if (dir->nr == 1 ||
306 (dir->nr == dir->sorted + 1 &&
307 strcmp(dir->entries[dir->nr - 2]->name,
308 dir->entries[dir->nr - 1]->name) < 0))
309 dir->sorted = dir->nr;
310 }
311
312 /*
313 * Clear and free all entries in dir, recursively.
314 */
315 static void clear_ref_dir(struct ref_dir *dir)
316 {
317 int i;
318 for (i = 0; i < dir->nr; i++)
319 free_ref_entry(dir->entries[i]);
320 free(dir->entries);
321 dir->sorted = dir->nr = dir->alloc = 0;
322 dir->entries = NULL;
323 }
324
325 /*
326 * Create a struct ref_entry object for the specified dirname.
327 * dirname is the name of the directory with a trailing slash (e.g.,
328 * "refs/heads/") or "" for the top-level directory.
329 */
330 static struct ref_entry *create_dir_entry(struct ref_cache *ref_cache,
331 const char *dirname, size_t len,
332 int incomplete)
333 {
334 struct ref_entry *direntry;
335 direntry = xcalloc(1, sizeof(struct ref_entry) + len + 1);
336 memcpy(direntry->name, dirname, len);
337 direntry->name[len] = '\0';
338 direntry->u.subdir.ref_cache = ref_cache;
339 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
340 return direntry;
341 }
342
343 static int ref_entry_cmp(const void *a, const void *b)
344 {
345 struct ref_entry *one = *(struct ref_entry **)a;
346 struct ref_entry *two = *(struct ref_entry **)b;
347 return strcmp(one->name, two->name);
348 }
349
350 static void sort_ref_dir(struct ref_dir *dir);
351
352 struct string_slice {
353 size_t len;
354 const char *str;
355 };
356
357 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
358 {
359 struct string_slice *key = (struct string_slice *)key_;
360 struct ref_entry *ent = *(struct ref_entry **)ent_;
361 int entlen = strlen(ent->name);
362 int cmplen = key->len < entlen ? key->len : entlen;
363 int cmp = memcmp(key->str, ent->name, cmplen);
364 if (cmp)
365 return cmp;
366 return key->len - entlen;
367 }
368
369 /*
370 * Return the index of the entry with the given refname from the
371 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
372 * no such entry is found. dir must already be complete.
373 */
374 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
375 {
376 struct ref_entry **r;
377 struct string_slice key;
378
379 if (refname == NULL || !dir->nr)
380 return -1;
381
382 sort_ref_dir(dir);
383 key.len = len;
384 key.str = refname;
385 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
386 ref_entry_cmp_sslice);
387
388 if (r == NULL)
389 return -1;
390
391 return r - dir->entries;
392 }
393
394 /*
395 * Search for a directory entry directly within dir (without
396 * recursing). Sort dir if necessary. subdirname must be a directory
397 * name (i.e., end in '/'). If mkdir is set, then create the
398 * directory if it is missing; otherwise, return NULL if the desired
399 * directory cannot be found. dir must already be complete.
400 */
401 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
402 const char *subdirname, size_t len,
403 int mkdir)
404 {
405 int entry_index = search_ref_dir(dir, subdirname, len);
406 struct ref_entry *entry;
407 if (entry_index == -1) {
408 if (!mkdir)
409 return NULL;
410 /*
411 * Since dir is complete, the absence of a subdir
412 * means that the subdir really doesn't exist;
413 * therefore, create an empty record for it but mark
414 * the record complete.
415 */
416 entry = create_dir_entry(dir->ref_cache, subdirname, len, 0);
417 add_entry_to_dir(dir, entry);
418 } else {
419 entry = dir->entries[entry_index];
420 }
421 return get_ref_dir(entry);
422 }
423
424 /*
425 * If refname is a reference name, find the ref_dir within the dir
426 * tree that should hold refname. If refname is a directory name
427 * (i.e., ends in '/'), then return that ref_dir itself. dir must
428 * represent the top-level directory and must already be complete.
429 * Sort ref_dirs and recurse into subdirectories as necessary. If
430 * mkdir is set, then create any missing directories; otherwise,
431 * return NULL if the desired directory cannot be found.
432 */
433 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
434 const char *refname, int mkdir)
435 {
436 const char *slash;
437 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
438 size_t dirnamelen = slash - refname + 1;
439 struct ref_dir *subdir;
440 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
441 if (!subdir) {
442 dir = NULL;
443 break;
444 }
445 dir = subdir;
446 }
447
448 return dir;
449 }
450
451 /*
452 * Find the value entry with the given name in dir, sorting ref_dirs
453 * and recursing into subdirectories as necessary. If the name is not
454 * found or it corresponds to a directory entry, return NULL.
455 */
456 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
457 {
458 int entry_index;
459 struct ref_entry *entry;
460 dir = find_containing_dir(dir, refname, 0);
461 if (!dir)
462 return NULL;
463 entry_index = search_ref_dir(dir, refname, strlen(refname));
464 if (entry_index == -1)
465 return NULL;
466 entry = dir->entries[entry_index];
467 return (entry->flag & REF_DIR) ? NULL : entry;
468 }
469
470 /*
471 * Remove the entry with the given name from dir, recursing into
472 * subdirectories as necessary. If refname is the name of a directory
473 * (i.e., ends with '/'), then remove the directory and its contents.
474 * If the removal was successful, return the number of entries
475 * remaining in the directory entry that contained the deleted entry.
476 * If the name was not found, return -1. Please note that this
477 * function only deletes the entry from the cache; it does not delete
478 * it from the filesystem or ensure that other cache entries (which
479 * might be symbolic references to the removed entry) are updated.
480 * Nor does it remove any containing dir entries that might be made
481 * empty by the removal. dir must represent the top-level directory
482 * and must already be complete.
483 */
484 static int remove_entry(struct ref_dir *dir, const char *refname)
485 {
486 int refname_len = strlen(refname);
487 int entry_index;
488 struct ref_entry *entry;
489 int is_dir = refname[refname_len - 1] == '/';
490 if (is_dir) {
491 /*
492 * refname represents a reference directory. Remove
493 * the trailing slash; otherwise we will get the
494 * directory *representing* refname rather than the
495 * one *containing* it.
496 */
497 char *dirname = xmemdupz(refname, refname_len - 1);
498 dir = find_containing_dir(dir, dirname, 0);
499 free(dirname);
500 } else {
501 dir = find_containing_dir(dir, refname, 0);
502 }
503 if (!dir)
504 return -1;
505 entry_index = search_ref_dir(dir, refname, refname_len);
506 if (entry_index == -1)
507 return -1;
508 entry = dir->entries[entry_index];
509
510 memmove(&dir->entries[entry_index],
511 &dir->entries[entry_index + 1],
512 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
513 );
514 dir->nr--;
515 if (dir->sorted > entry_index)
516 dir->sorted--;
517 free_ref_entry(entry);
518 return dir->nr;
519 }
520
521 /*
522 * Add a ref_entry to the ref_dir (unsorted), recursing into
523 * subdirectories as necessary. dir must represent the top-level
524 * directory. Return 0 on success.
525 */
526 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
527 {
528 dir = find_containing_dir(dir, ref->name, 1);
529 if (!dir)
530 return -1;
531 add_entry_to_dir(dir, ref);
532 return 0;
533 }
534
535 /*
536 * Emit a warning and return true iff ref1 and ref2 have the same name
537 * and the same sha1. Die if they have the same name but different
538 * sha1s.
539 */
540 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
541 {
542 if (strcmp(ref1->name, ref2->name))
543 return 0;
544
545 /* Duplicate name; make sure that they don't conflict: */
546
547 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
548 /* This is impossible by construction */
549 die("Reference directory conflict: %s", ref1->name);
550
551 if (hashcmp(ref1->u.value.sha1, ref2->u.value.sha1))
552 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
553
554 warning("Duplicated ref: %s", ref1->name);
555 return 1;
556 }
557
558 /*
559 * Sort the entries in dir non-recursively (if they are not already
560 * sorted) and remove any duplicate entries.
561 */
562 static void sort_ref_dir(struct ref_dir *dir)
563 {
564 int i, j;
565 struct ref_entry *last = NULL;
566
567 /*
568 * This check also prevents passing a zero-length array to qsort(),
569 * which is a problem on some platforms.
570 */
571 if (dir->sorted == dir->nr)
572 return;
573
574 qsort(dir->entries, dir->nr, sizeof(*dir->entries), ref_entry_cmp);
575
576 /* Remove any duplicates: */
577 for (i = 0, j = 0; j < dir->nr; j++) {
578 struct ref_entry *entry = dir->entries[j];
579 if (last && is_dup_ref(last, entry))
580 free_ref_entry(entry);
581 else
582 last = dir->entries[i++] = entry;
583 }
584 dir->sorted = dir->nr = i;
585 }
586
587 /* Include broken references in a do_for_each_ref*() iteration: */
588 #define DO_FOR_EACH_INCLUDE_BROKEN 0x01
589
590 /*
591 * Return true iff the reference described by entry can be resolved to
592 * an object in the database. Emit a warning if the referred-to
593 * object does not exist.
594 */
595 static int ref_resolves_to_object(struct ref_entry *entry)
596 {
597 if (entry->flag & REF_ISBROKEN)
598 return 0;
599 if (!has_sha1_file(entry->u.value.sha1)) {
600 error("%s does not point to a valid object!", entry->name);
601 return 0;
602 }
603 return 1;
604 }
605
606 /*
607 * current_ref is a performance hack: when iterating over references
608 * using the for_each_ref*() functions, current_ref is set to the
609 * current reference's entry before calling the callback function. If
610 * the callback function calls peel_ref(), then peel_ref() first
611 * checks whether the reference to be peeled is the current reference
612 * (it usually is) and if so, returns that reference's peeled version
613 * if it is available. This avoids a refname lookup in a common case.
614 */
615 static struct ref_entry *current_ref;
616
617 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
618
619 struct ref_entry_cb {
620 const char *base;
621 int trim;
622 int flags;
623 each_ref_fn *fn;
624 void *cb_data;
625 };
626
627 /*
628 * Handle one reference in a do_for_each_ref*()-style iteration,
629 * calling an each_ref_fn for each entry.
630 */
631 static int do_one_ref(struct ref_entry *entry, void *cb_data)
632 {
633 struct ref_entry_cb *data = cb_data;
634 int retval;
635 if (prefixcmp(entry->name, data->base))
636 return 0;
637
638 if (!(data->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
639 !ref_resolves_to_object(entry))
640 return 0;
641
642 current_ref = entry;
643 retval = data->fn(entry->name + data->trim, entry->u.value.sha1,
644 entry->flag, data->cb_data);
645 current_ref = NULL;
646 return retval;
647 }
648
649 /*
650 * Call fn for each reference in dir that has index in the range
651 * offset <= index < dir->nr. Recurse into subdirectories that are in
652 * that index range, sorting them before iterating. This function
653 * does not sort dir itself; it should be sorted beforehand. fn is
654 * called for all references, including broken ones.
655 */
656 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
657 each_ref_entry_fn fn, void *cb_data)
658 {
659 int i;
660 assert(dir->sorted == dir->nr);
661 for (i = offset; i < dir->nr; i++) {
662 struct ref_entry *entry = dir->entries[i];
663 int retval;
664 if (entry->flag & REF_DIR) {
665 struct ref_dir *subdir = get_ref_dir(entry);
666 sort_ref_dir(subdir);
667 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
668 } else {
669 retval = fn(entry, cb_data);
670 }
671 if (retval)
672 return retval;
673 }
674 return 0;
675 }
676
677 /*
678 * Call fn for each reference in the union of dir1 and dir2, in order
679 * by refname. Recurse into subdirectories. If a value entry appears
680 * in both dir1 and dir2, then only process the version that is in
681 * dir2. The input dirs must already be sorted, but subdirs will be
682 * sorted as needed. fn is called for all references, including
683 * broken ones.
684 */
685 static int do_for_each_entry_in_dirs(struct ref_dir *dir1,
686 struct ref_dir *dir2,
687 each_ref_entry_fn fn, void *cb_data)
688 {
689 int retval;
690 int i1 = 0, i2 = 0;
691
692 assert(dir1->sorted == dir1->nr);
693 assert(dir2->sorted == dir2->nr);
694 while (1) {
695 struct ref_entry *e1, *e2;
696 int cmp;
697 if (i1 == dir1->nr) {
698 return do_for_each_entry_in_dir(dir2, i2, fn, cb_data);
699 }
700 if (i2 == dir2->nr) {
701 return do_for_each_entry_in_dir(dir1, i1, fn, cb_data);
702 }
703 e1 = dir1->entries[i1];
704 e2 = dir2->entries[i2];
705 cmp = strcmp(e1->name, e2->name);
706 if (cmp == 0) {
707 if ((e1->flag & REF_DIR) && (e2->flag & REF_DIR)) {
708 /* Both are directories; descend them in parallel. */
709 struct ref_dir *subdir1 = get_ref_dir(e1);
710 struct ref_dir *subdir2 = get_ref_dir(e2);
711 sort_ref_dir(subdir1);
712 sort_ref_dir(subdir2);
713 retval = do_for_each_entry_in_dirs(
714 subdir1, subdir2, fn, cb_data);
715 i1++;
716 i2++;
717 } else if (!(e1->flag & REF_DIR) && !(e2->flag & REF_DIR)) {
718 /* Both are references; ignore the one from dir1. */
719 retval = fn(e2, cb_data);
720 i1++;
721 i2++;
722 } else {
723 die("conflict between reference and directory: %s",
724 e1->name);
725 }
726 } else {
727 struct ref_entry *e;
728 if (cmp < 0) {
729 e = e1;
730 i1++;
731 } else {
732 e = e2;
733 i2++;
734 }
735 if (e->flag & REF_DIR) {
736 struct ref_dir *subdir = get_ref_dir(e);
737 sort_ref_dir(subdir);
738 retval = do_for_each_entry_in_dir(
739 subdir, 0, fn, cb_data);
740 } else {
741 retval = fn(e, cb_data);
742 }
743 }
744 if (retval)
745 return retval;
746 }
747 }
748
749 /*
750 * Return true iff refname1 and refname2 conflict with each other.
751 * Two reference names conflict if one of them exactly matches the
752 * leading components of the other; e.g., "foo/bar" conflicts with
753 * both "foo" and with "foo/bar/baz" but not with "foo/bar" or
754 * "foo/barbados".
755 */
756 static int names_conflict(const char *refname1, const char *refname2)
757 {
758 for (; *refname1 && *refname1 == *refname2; refname1++, refname2++)
759 ;
760 return (*refname1 == '\0' && *refname2 == '/')
761 || (*refname1 == '/' && *refname2 == '\0');
762 }
763
764 struct name_conflict_cb {
765 const char *refname;
766 const char *oldrefname;
767 const char *conflicting_refname;
768 };
769
770 static int name_conflict_fn(struct ref_entry *entry, void *cb_data)
771 {
772 struct name_conflict_cb *data = (struct name_conflict_cb *)cb_data;
773 if (data->oldrefname && !strcmp(data->oldrefname, entry->name))
774 return 0;
775 if (names_conflict(data->refname, entry->name)) {
776 data->conflicting_refname = entry->name;
777 return 1;
778 }
779 return 0;
780 }
781
782 /*
783 * Return true iff a reference named refname could be created without
784 * conflicting with the name of an existing reference in dir. If
785 * oldrefname is non-NULL, ignore potential conflicts with oldrefname
786 * (e.g., because oldrefname is scheduled for deletion in the same
787 * operation).
788 */
789 static int is_refname_available(const char *refname, const char *oldrefname,
790 struct ref_dir *dir)
791 {
792 struct name_conflict_cb data;
793 data.refname = refname;
794 data.oldrefname = oldrefname;
795 data.conflicting_refname = NULL;
796
797 sort_ref_dir(dir);
798 if (do_for_each_entry_in_dir(dir, 0, name_conflict_fn, &data)) {
799 error("'%s' exists; cannot create '%s'",
800 data.conflicting_refname, refname);
801 return 0;
802 }
803 return 1;
804 }
805
806 /*
807 * Future: need to be in "struct repository"
808 * when doing a full libification.
809 */
810 static struct ref_cache {
811 struct ref_cache *next;
812 struct ref_entry *loose;
813 struct ref_entry *packed;
814 /*
815 * The submodule name, or "" for the main repo. We allocate
816 * length 1 rather than FLEX_ARRAY so that the main ref_cache
817 * is initialized correctly.
818 */
819 char name[1];
820 } ref_cache, *submodule_ref_caches;
821
822 static void clear_packed_ref_cache(struct ref_cache *refs)
823 {
824 if (refs->packed) {
825 free_ref_entry(refs->packed);
826 refs->packed = NULL;
827 }
828 }
829
830 static void clear_loose_ref_cache(struct ref_cache *refs)
831 {
832 if (refs->loose) {
833 free_ref_entry(refs->loose);
834 refs->loose = NULL;
835 }
836 }
837
838 static struct ref_cache *create_ref_cache(const char *submodule)
839 {
840 int len;
841 struct ref_cache *refs;
842 if (!submodule)
843 submodule = "";
844 len = strlen(submodule) + 1;
845 refs = xcalloc(1, sizeof(struct ref_cache) + len);
846 memcpy(refs->name, submodule, len);
847 return refs;
848 }
849
850 /*
851 * Return a pointer to a ref_cache for the specified submodule. For
852 * the main repository, use submodule==NULL. The returned structure
853 * will be allocated and initialized but not necessarily populated; it
854 * should not be freed.
855 */
856 static struct ref_cache *get_ref_cache(const char *submodule)
857 {
858 struct ref_cache *refs;
859
860 if (!submodule || !*submodule)
861 return &ref_cache;
862
863 for (refs = submodule_ref_caches; refs; refs = refs->next)
864 if (!strcmp(submodule, refs->name))
865 return refs;
866
867 refs = create_ref_cache(submodule);
868 refs->next = submodule_ref_caches;
869 submodule_ref_caches = refs;
870 return refs;
871 }
872
873 void invalidate_ref_cache(const char *submodule)
874 {
875 struct ref_cache *refs = get_ref_cache(submodule);
876 clear_packed_ref_cache(refs);
877 clear_loose_ref_cache(refs);
878 }
879
880 /* The length of a peeled reference line in packed-refs, including EOL: */
881 #define PEELED_LINE_LENGTH 42
882
883 /*
884 * The packed-refs header line that we write out. Perhaps other
885 * traits will be added later. The trailing space is required.
886 */
887 static const char PACKED_REFS_HEADER[] =
888 "# pack-refs with: peeled fully-peeled \n";
889
890 /*
891 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
892 * Return a pointer to the refname within the line (null-terminated),
893 * or NULL if there was a problem.
894 */
895 static const char *parse_ref_line(char *line, unsigned char *sha1)
896 {
897 /*
898 * 42: the answer to everything.
899 *
900 * In this case, it happens to be the answer to
901 * 40 (length of sha1 hex representation)
902 * +1 (space in between hex and name)
903 * +1 (newline at the end of the line)
904 */
905 int len = strlen(line) - 42;
906
907 if (len <= 0)
908 return NULL;
909 if (get_sha1_hex(line, sha1) < 0)
910 return NULL;
911 if (!isspace(line[40]))
912 return NULL;
913 line += 41;
914 if (isspace(*line))
915 return NULL;
916 if (line[len] != '\n')
917 return NULL;
918 line[len] = 0;
919
920 return line;
921 }
922
923 /*
924 * Read f, which is a packed-refs file, into dir.
925 *
926 * A comment line of the form "# pack-refs with: " may contain zero or
927 * more traits. We interpret the traits as follows:
928 *
929 * No traits:
930 *
931 * Probably no references are peeled. But if the file contains a
932 * peeled value for a reference, we will use it.
933 *
934 * peeled:
935 *
936 * References under "refs/tags/", if they *can* be peeled, *are*
937 * peeled in this file. References outside of "refs/tags/" are
938 * probably not peeled even if they could have been, but if we find
939 * a peeled value for such a reference we will use it.
940 *
941 * fully-peeled:
942 *
943 * All references in the file that can be peeled are peeled.
944 * Inversely (and this is more important), any references in the
945 * file for which no peeled value is recorded is not peelable. This
946 * trait should typically be written alongside "peeled" for
947 * compatibility with older clients, but we do not require it
948 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
949 */
950 static void read_packed_refs(FILE *f, struct ref_dir *dir)
951 {
952 struct ref_entry *last = NULL;
953 char refline[PATH_MAX];
954 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
955
956 while (fgets(refline, sizeof(refline), f)) {
957 unsigned char sha1[20];
958 const char *refname;
959 static const char header[] = "# pack-refs with:";
960
961 if (!strncmp(refline, header, sizeof(header)-1)) {
962 const char *traits = refline + sizeof(header) - 1;
963 if (strstr(traits, " fully-peeled "))
964 peeled = PEELED_FULLY;
965 else if (strstr(traits, " peeled "))
966 peeled = PEELED_TAGS;
967 /* perhaps other traits later as well */
968 continue;
969 }
970
971 refname = parse_ref_line(refline, sha1);
972 if (refname) {
973 last = create_ref_entry(refname, sha1, REF_ISPACKED, 1);
974 if (peeled == PEELED_FULLY ||
975 (peeled == PEELED_TAGS && !prefixcmp(refname, "refs/tags/")))
976 last->flag |= REF_KNOWS_PEELED;
977 add_ref(dir, last);
978 continue;
979 }
980 if (last &&
981 refline[0] == '^' &&
982 strlen(refline) == PEELED_LINE_LENGTH &&
983 refline[PEELED_LINE_LENGTH - 1] == '\n' &&
984 !get_sha1_hex(refline + 1, sha1)) {
985 hashcpy(last->u.value.peeled, sha1);
986 /*
987 * Regardless of what the file header said,
988 * we definitely know the value of *this*
989 * reference:
990 */
991 last->flag |= REF_KNOWS_PEELED;
992 }
993 }
994 }
995
996 static struct ref_dir *get_packed_refs(struct ref_cache *refs)
997 {
998 if (!refs->packed) {
999 const char *packed_refs_file;
1000 FILE *f;
1001
1002 refs->packed = create_dir_entry(refs, "", 0, 0);
1003 if (*refs->name)
1004 packed_refs_file = git_path_submodule(refs->name, "packed-refs");
1005 else
1006 packed_refs_file = git_path("packed-refs");
1007 f = fopen(packed_refs_file, "r");
1008 if (f) {
1009 read_packed_refs(f, get_ref_dir(refs->packed));
1010 fclose(f);
1011 }
1012 }
1013 return get_ref_dir(refs->packed);
1014 }
1015
1016 void add_packed_ref(const char *refname, const unsigned char *sha1)
1017 {
1018 add_ref(get_packed_refs(&ref_cache),
1019 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1020 }
1021
1022 /*
1023 * Read the loose references from the namespace dirname into dir
1024 * (without recursing). dirname must end with '/'. dir must be the
1025 * directory entry corresponding to dirname.
1026 */
1027 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1028 {
1029 struct ref_cache *refs = dir->ref_cache;
1030 DIR *d;
1031 const char *path;
1032 struct dirent *de;
1033 int dirnamelen = strlen(dirname);
1034 struct strbuf refname;
1035
1036 if (*refs->name)
1037 path = git_path_submodule(refs->name, "%s", dirname);
1038 else
1039 path = git_path("%s", dirname);
1040
1041 d = opendir(path);
1042 if (!d)
1043 return;
1044
1045 strbuf_init(&refname, dirnamelen + 257);
1046 strbuf_add(&refname, dirname, dirnamelen);
1047
1048 while ((de = readdir(d)) != NULL) {
1049 unsigned char sha1[20];
1050 struct stat st;
1051 int flag;
1052 const char *refdir;
1053
1054 if (de->d_name[0] == '.')
1055 continue;
1056 if (has_extension(de->d_name, ".lock"))
1057 continue;
1058 strbuf_addstr(&refname, de->d_name);
1059 refdir = *refs->name
1060 ? git_path_submodule(refs->name, "%s", refname.buf)
1061 : git_path("%s", refname.buf);
1062 if (stat(refdir, &st) < 0) {
1063 ; /* silently ignore */
1064 } else if (S_ISDIR(st.st_mode)) {
1065 strbuf_addch(&refname, '/');
1066 add_entry_to_dir(dir,
1067 create_dir_entry(refs, refname.buf,
1068 refname.len, 1));
1069 } else {
1070 if (*refs->name) {
1071 hashclr(sha1);
1072 flag = 0;
1073 if (resolve_gitlink_ref(refs->name, refname.buf, sha1) < 0) {
1074 hashclr(sha1);
1075 flag |= REF_ISBROKEN;
1076 }
1077 } else if (read_ref_full(refname.buf, sha1, 1, &flag)) {
1078 hashclr(sha1);
1079 flag |= REF_ISBROKEN;
1080 }
1081 add_entry_to_dir(dir,
1082 create_ref_entry(refname.buf, sha1, flag, 1));
1083 }
1084 strbuf_setlen(&refname, dirnamelen);
1085 }
1086 strbuf_release(&refname);
1087 closedir(d);
1088 }
1089
1090 static struct ref_dir *get_loose_refs(struct ref_cache *refs)
1091 {
1092 if (!refs->loose) {
1093 /*
1094 * Mark the top-level directory complete because we
1095 * are about to read the only subdirectory that can
1096 * hold references:
1097 */
1098 refs->loose = create_dir_entry(refs, "", 0, 0);
1099 /*
1100 * Create an incomplete entry for "refs/":
1101 */
1102 add_entry_to_dir(get_ref_dir(refs->loose),
1103 create_dir_entry(refs, "refs/", 5, 1));
1104 }
1105 return get_ref_dir(refs->loose);
1106 }
1107
1108 /* We allow "recursive" symbolic refs. Only within reason, though */
1109 #define MAXDEPTH 5
1110 #define MAXREFLEN (1024)
1111
1112 /*
1113 * Called by resolve_gitlink_ref_recursive() after it failed to read
1114 * from the loose refs in ref_cache refs. Find <refname> in the
1115 * packed-refs file for the submodule.
1116 */
1117 static int resolve_gitlink_packed_ref(struct ref_cache *refs,
1118 const char *refname, unsigned char *sha1)
1119 {
1120 struct ref_entry *ref;
1121 struct ref_dir *dir = get_packed_refs(refs);
1122
1123 ref = find_ref(dir, refname);
1124 if (ref == NULL)
1125 return -1;
1126
1127 memcpy(sha1, ref->u.value.sha1, 20);
1128 return 0;
1129 }
1130
1131 static int resolve_gitlink_ref_recursive(struct ref_cache *refs,
1132 const char *refname, unsigned char *sha1,
1133 int recursion)
1134 {
1135 int fd, len;
1136 char buffer[128], *p;
1137 char *path;
1138
1139 if (recursion > MAXDEPTH || strlen(refname) > MAXREFLEN)
1140 return -1;
1141 path = *refs->name
1142 ? git_path_submodule(refs->name, "%s", refname)
1143 : git_path("%s", refname);
1144 fd = open(path, O_RDONLY);
1145 if (fd < 0)
1146 return resolve_gitlink_packed_ref(refs, refname, sha1);
1147
1148 len = read(fd, buffer, sizeof(buffer)-1);
1149 close(fd);
1150 if (len < 0)
1151 return -1;
1152 while (len && isspace(buffer[len-1]))
1153 len--;
1154 buffer[len] = 0;
1155
1156 /* Was it a detached head or an old-fashioned symlink? */
1157 if (!get_sha1_hex(buffer, sha1))
1158 return 0;
1159
1160 /* Symref? */
1161 if (strncmp(buffer, "ref:", 4))
1162 return -1;
1163 p = buffer + 4;
1164 while (isspace(*p))
1165 p++;
1166
1167 return resolve_gitlink_ref_recursive(refs, p, sha1, recursion+1);
1168 }
1169
1170 int resolve_gitlink_ref(const char *path, const char *refname, unsigned char *sha1)
1171 {
1172 int len = strlen(path), retval;
1173 char *submodule;
1174 struct ref_cache *refs;
1175
1176 while (len && path[len-1] == '/')
1177 len--;
1178 if (!len)
1179 return -1;
1180 submodule = xstrndup(path, len);
1181 refs = get_ref_cache(submodule);
1182 free(submodule);
1183
1184 retval = resolve_gitlink_ref_recursive(refs, refname, sha1, 0);
1185 return retval;
1186 }
1187
1188 /*
1189 * Return the ref_entry for the given refname from the packed
1190 * references. If it does not exist, return NULL.
1191 */
1192 static struct ref_entry *get_packed_ref(const char *refname)
1193 {
1194 return find_ref(get_packed_refs(&ref_cache), refname);
1195 }
1196
1197 const char *resolve_ref_unsafe(const char *refname, unsigned char *sha1, int reading, int *flag)
1198 {
1199 int depth = MAXDEPTH;
1200 ssize_t len;
1201 char buffer[256];
1202 static char refname_buffer[256];
1203
1204 if (flag)
1205 *flag = 0;
1206
1207 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
1208 return NULL;
1209
1210 for (;;) {
1211 char path[PATH_MAX];
1212 struct stat st;
1213 char *buf;
1214 int fd;
1215
1216 if (--depth < 0)
1217 return NULL;
1218
1219 git_snpath(path, sizeof(path), "%s", refname);
1220
1221 if (lstat(path, &st) < 0) {
1222 struct ref_entry *entry;
1223
1224 if (errno != ENOENT)
1225 return NULL;
1226 /*
1227 * The loose reference file does not exist;
1228 * check for a packed reference.
1229 */
1230 entry = get_packed_ref(refname);
1231 if (entry) {
1232 hashcpy(sha1, entry->u.value.sha1);
1233 if (flag)
1234 *flag |= REF_ISPACKED;
1235 return refname;
1236 }
1237 /* The reference is not a packed reference, either. */
1238 if (reading) {
1239 return NULL;
1240 } else {
1241 hashclr(sha1);
1242 return refname;
1243 }
1244 }
1245
1246 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1247 if (S_ISLNK(st.st_mode)) {
1248 len = readlink(path, buffer, sizeof(buffer)-1);
1249 if (len < 0)
1250 return NULL;
1251 buffer[len] = 0;
1252 if (!prefixcmp(buffer, "refs/") &&
1253 !check_refname_format(buffer, 0)) {
1254 strcpy(refname_buffer, buffer);
1255 refname = refname_buffer;
1256 if (flag)
1257 *flag |= REF_ISSYMREF;
1258 continue;
1259 }
1260 }
1261
1262 /* Is it a directory? */
1263 if (S_ISDIR(st.st_mode)) {
1264 errno = EISDIR;
1265 return NULL;
1266 }
1267
1268 /*
1269 * Anything else, just open it and try to use it as
1270 * a ref
1271 */
1272 fd = open(path, O_RDONLY);
1273 if (fd < 0)
1274 return NULL;
1275 len = read_in_full(fd, buffer, sizeof(buffer)-1);
1276 close(fd);
1277 if (len < 0)
1278 return NULL;
1279 while (len && isspace(buffer[len-1]))
1280 len--;
1281 buffer[len] = '\0';
1282
1283 /*
1284 * Is it a symbolic ref?
1285 */
1286 if (prefixcmp(buffer, "ref:"))
1287 break;
1288 if (flag)
1289 *flag |= REF_ISSYMREF;
1290 buf = buffer + 4;
1291 while (isspace(*buf))
1292 buf++;
1293 if (check_refname_format(buf, REFNAME_ALLOW_ONELEVEL)) {
1294 if (flag)
1295 *flag |= REF_ISBROKEN;
1296 return NULL;
1297 }
1298 refname = strcpy(refname_buffer, buf);
1299 }
1300 /* Please note that FETCH_HEAD has a second line containing other data. */
1301 if (get_sha1_hex(buffer, sha1) || (buffer[40] != '\0' && !isspace(buffer[40]))) {
1302 if (flag)
1303 *flag |= REF_ISBROKEN;
1304 return NULL;
1305 }
1306 return refname;
1307 }
1308
1309 char *resolve_refdup(const char *ref, unsigned char *sha1, int reading, int *flag)
1310 {
1311 const char *ret = resolve_ref_unsafe(ref, sha1, reading, flag);
1312 return ret ? xstrdup(ret) : NULL;
1313 }
1314
1315 /* The argument to filter_refs */
1316 struct ref_filter {
1317 const char *pattern;
1318 each_ref_fn *fn;
1319 void *cb_data;
1320 };
1321
1322 int read_ref_full(const char *refname, unsigned char *sha1, int reading, int *flags)
1323 {
1324 if (resolve_ref_unsafe(refname, sha1, reading, flags))
1325 return 0;
1326 return -1;
1327 }
1328
1329 int read_ref(const char *refname, unsigned char *sha1)
1330 {
1331 return read_ref_full(refname, sha1, 1, NULL);
1332 }
1333
1334 int ref_exists(const char *refname)
1335 {
1336 unsigned char sha1[20];
1337 return !!resolve_ref_unsafe(refname, sha1, 1, NULL);
1338 }
1339
1340 static int filter_refs(const char *refname, const unsigned char *sha1, int flags,
1341 void *data)
1342 {
1343 struct ref_filter *filter = (struct ref_filter *)data;
1344 if (fnmatch(filter->pattern, refname, 0))
1345 return 0;
1346 return filter->fn(refname, sha1, flags, filter->cb_data);
1347 }
1348
1349 enum peel_status {
1350 /* object was peeled successfully: */
1351 PEEL_PEELED = 0,
1352
1353 /*
1354 * object cannot be peeled because the named object (or an
1355 * object referred to by a tag in the peel chain), does not
1356 * exist.
1357 */
1358 PEEL_INVALID = -1,
1359
1360 /* object cannot be peeled because it is not a tag: */
1361 PEEL_NON_TAG = -2,
1362
1363 /* ref_entry contains no peeled value because it is a symref: */
1364 PEEL_IS_SYMREF = -3,
1365
1366 /*
1367 * ref_entry cannot be peeled because it is broken (i.e., the
1368 * symbolic reference cannot even be resolved to an object
1369 * name):
1370 */
1371 PEEL_BROKEN = -4
1372 };
1373
1374 /*
1375 * Peel the named object; i.e., if the object is a tag, resolve the
1376 * tag recursively until a non-tag is found. If successful, store the
1377 * result to sha1 and return PEEL_PEELED. If the object is not a tag
1378 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
1379 * and leave sha1 unchanged.
1380 */
1381 static enum peel_status peel_object(const unsigned char *name, unsigned char *sha1)
1382 {
1383 struct object *o = lookup_unknown_object(name);
1384
1385 if (o->type == OBJ_NONE) {
1386 int type = sha1_object_info(name, NULL);
1387 if (type < 0)
1388 return PEEL_INVALID;
1389 o->type = type;
1390 }
1391
1392 if (o->type != OBJ_TAG)
1393 return PEEL_NON_TAG;
1394
1395 o = deref_tag_noverify(o);
1396 if (!o)
1397 return PEEL_INVALID;
1398
1399 hashcpy(sha1, o->sha1);
1400 return PEEL_PEELED;
1401 }
1402
1403 /*
1404 * Peel the entry (if possible) and return its new peel_status. If
1405 * repeel is true, re-peel the entry even if there is an old peeled
1406 * value that is already stored in it.
1407 *
1408 * It is OK to call this function with a packed reference entry that
1409 * might be stale and might even refer to an object that has since
1410 * been garbage-collected. In such a case, if the entry has
1411 * REF_KNOWS_PEELED then leave the status unchanged and return
1412 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1413 */
1414 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1415 {
1416 enum peel_status status;
1417
1418 if (entry->flag & REF_KNOWS_PEELED) {
1419 if (repeel) {
1420 entry->flag &= ~REF_KNOWS_PEELED;
1421 hashclr(entry->u.value.peeled);
1422 } else {
1423 return is_null_sha1(entry->u.value.peeled) ?
1424 PEEL_NON_TAG : PEEL_PEELED;
1425 }
1426 }
1427 if (entry->flag & REF_ISBROKEN)
1428 return PEEL_BROKEN;
1429 if (entry->flag & REF_ISSYMREF)
1430 return PEEL_IS_SYMREF;
1431
1432 status = peel_object(entry->u.value.sha1, entry->u.value.peeled);
1433 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1434 entry->flag |= REF_KNOWS_PEELED;
1435 return status;
1436 }
1437
1438 int peel_ref(const char *refname, unsigned char *sha1)
1439 {
1440 int flag;
1441 unsigned char base[20];
1442
1443 if (current_ref && (current_ref->name == refname
1444 || !strcmp(current_ref->name, refname))) {
1445 if (peel_entry(current_ref, 0))
1446 return -1;
1447 hashcpy(sha1, current_ref->u.value.peeled);
1448 return 0;
1449 }
1450
1451 if (read_ref_full(refname, base, 1, &flag))
1452 return -1;
1453
1454 /*
1455 * If the reference is packed, read its ref_entry from the
1456 * cache in the hope that we already know its peeled value.
1457 * We only try this optimization on packed references because
1458 * (a) forcing the filling of the loose reference cache could
1459 * be expensive and (b) loose references anyway usually do not
1460 * have REF_KNOWS_PEELED.
1461 */
1462 if (flag & REF_ISPACKED) {
1463 struct ref_entry *r = get_packed_ref(refname);
1464 if (r) {
1465 if (peel_entry(r, 0))
1466 return -1;
1467 hashcpy(sha1, r->u.value.peeled);
1468 return 0;
1469 }
1470 }
1471
1472 return peel_object(base, sha1);
1473 }
1474
1475 struct warn_if_dangling_data {
1476 FILE *fp;
1477 const char *refname;
1478 const char *msg_fmt;
1479 };
1480
1481 static int warn_if_dangling_symref(const char *refname, const unsigned char *sha1,
1482 int flags, void *cb_data)
1483 {
1484 struct warn_if_dangling_data *d = cb_data;
1485 const char *resolves_to;
1486 unsigned char junk[20];
1487
1488 if (!(flags & REF_ISSYMREF))
1489 return 0;
1490
1491 resolves_to = resolve_ref_unsafe(refname, junk, 0, NULL);
1492 if (!resolves_to || strcmp(resolves_to, d->refname))
1493 return 0;
1494
1495 fprintf(d->fp, d->msg_fmt, refname);
1496 fputc('\n', d->fp);
1497 return 0;
1498 }
1499
1500 void warn_dangling_symref(FILE *fp, const char *msg_fmt, const char *refname)
1501 {
1502 struct warn_if_dangling_data data;
1503
1504 data.fp = fp;
1505 data.refname = refname;
1506 data.msg_fmt = msg_fmt;
1507 for_each_rawref(warn_if_dangling_symref, &data);
1508 }
1509
1510 /*
1511 * Call fn for each reference in the specified ref_cache, omitting
1512 * references not in the containing_dir of base. fn is called for all
1513 * references, including broken ones. If fn ever returns a non-zero
1514 * value, stop the iteration and return that value; otherwise, return
1515 * 0.
1516 */
1517 static int do_for_each_entry(struct ref_cache *refs, const char *base,
1518 each_ref_entry_fn fn, void *cb_data)
1519 {
1520 struct ref_dir *packed_dir = get_packed_refs(refs);
1521 struct ref_dir *loose_dir = get_loose_refs(refs);
1522 int retval = 0;
1523
1524 if (base && *base) {
1525 packed_dir = find_containing_dir(packed_dir, base, 0);
1526 loose_dir = find_containing_dir(loose_dir, base, 0);
1527 }
1528
1529 if (packed_dir && loose_dir) {
1530 sort_ref_dir(packed_dir);
1531 sort_ref_dir(loose_dir);
1532 retval = do_for_each_entry_in_dirs(
1533 packed_dir, loose_dir, fn, cb_data);
1534 } else if (packed_dir) {
1535 sort_ref_dir(packed_dir);
1536 retval = do_for_each_entry_in_dir(
1537 packed_dir, 0, fn, cb_data);
1538 } else if (loose_dir) {
1539 sort_ref_dir(loose_dir);
1540 retval = do_for_each_entry_in_dir(
1541 loose_dir, 0, fn, cb_data);
1542 }
1543
1544 return retval;
1545 }
1546
1547 /*
1548 * Call fn for each reference in the specified ref_cache for which the
1549 * refname begins with base. If trim is non-zero, then trim that many
1550 * characters off the beginning of each refname before passing the
1551 * refname to fn. flags can be DO_FOR_EACH_INCLUDE_BROKEN to include
1552 * broken references in the iteration. If fn ever returns a non-zero
1553 * value, stop the iteration and return that value; otherwise, return
1554 * 0.
1555 */
1556 static int do_for_each_ref(struct ref_cache *refs, const char *base,
1557 each_ref_fn fn, int trim, int flags, void *cb_data)
1558 {
1559 struct ref_entry_cb data;
1560 data.base = base;
1561 data.trim = trim;
1562 data.flags = flags;
1563 data.fn = fn;
1564 data.cb_data = cb_data;
1565
1566 return do_for_each_entry(refs, base, do_one_ref, &data);
1567 }
1568
1569 static int do_head_ref(const char *submodule, each_ref_fn fn, void *cb_data)
1570 {
1571 unsigned char sha1[20];
1572 int flag;
1573
1574 if (submodule) {
1575 if (resolve_gitlink_ref(submodule, "HEAD", sha1) == 0)
1576 return fn("HEAD", sha1, 0, cb_data);
1577
1578 return 0;
1579 }
1580
1581 if (!read_ref_full("HEAD", sha1, 1, &flag))
1582 return fn("HEAD", sha1, flag, cb_data);
1583
1584 return 0;
1585 }
1586
1587 int head_ref(each_ref_fn fn, void *cb_data)
1588 {
1589 return do_head_ref(NULL, fn, cb_data);
1590 }
1591
1592 int head_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1593 {
1594 return do_head_ref(submodule, fn, cb_data);
1595 }
1596
1597 int for_each_ref(each_ref_fn fn, void *cb_data)
1598 {
1599 return do_for_each_ref(&ref_cache, "", fn, 0, 0, cb_data);
1600 }
1601
1602 int for_each_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1603 {
1604 return do_for_each_ref(get_ref_cache(submodule), "", fn, 0, 0, cb_data);
1605 }
1606
1607 int for_each_ref_in(const char *prefix, each_ref_fn fn, void *cb_data)
1608 {
1609 return do_for_each_ref(&ref_cache, prefix, fn, strlen(prefix), 0, cb_data);
1610 }
1611
1612 int for_each_ref_in_submodule(const char *submodule, const char *prefix,
1613 each_ref_fn fn, void *cb_data)
1614 {
1615 return do_for_each_ref(get_ref_cache(submodule), prefix, fn, strlen(prefix), 0, cb_data);
1616 }
1617
1618 int for_each_tag_ref(each_ref_fn fn, void *cb_data)
1619 {
1620 return for_each_ref_in("refs/tags/", fn, cb_data);
1621 }
1622
1623 int for_each_tag_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1624 {
1625 return for_each_ref_in_submodule(submodule, "refs/tags/", fn, cb_data);
1626 }
1627
1628 int for_each_branch_ref(each_ref_fn fn, void *cb_data)
1629 {
1630 return for_each_ref_in("refs/heads/", fn, cb_data);
1631 }
1632
1633 int for_each_branch_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1634 {
1635 return for_each_ref_in_submodule(submodule, "refs/heads/", fn, cb_data);
1636 }
1637
1638 int for_each_remote_ref(each_ref_fn fn, void *cb_data)
1639 {
1640 return for_each_ref_in("refs/remotes/", fn, cb_data);
1641 }
1642
1643 int for_each_remote_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1644 {
1645 return for_each_ref_in_submodule(submodule, "refs/remotes/", fn, cb_data);
1646 }
1647
1648 int for_each_replace_ref(each_ref_fn fn, void *cb_data)
1649 {
1650 return do_for_each_ref(&ref_cache, "refs/replace/", fn, 13, 0, cb_data);
1651 }
1652
1653 int head_ref_namespaced(each_ref_fn fn, void *cb_data)
1654 {
1655 struct strbuf buf = STRBUF_INIT;
1656 int ret = 0;
1657 unsigned char sha1[20];
1658 int flag;
1659
1660 strbuf_addf(&buf, "%sHEAD", get_git_namespace());
1661 if (!read_ref_full(buf.buf, sha1, 1, &flag))
1662 ret = fn(buf.buf, sha1, flag, cb_data);
1663 strbuf_release(&buf);
1664
1665 return ret;
1666 }
1667
1668 int for_each_namespaced_ref(each_ref_fn fn, void *cb_data)
1669 {
1670 struct strbuf buf = STRBUF_INIT;
1671 int ret;
1672 strbuf_addf(&buf, "%srefs/", get_git_namespace());
1673 ret = do_for_each_ref(&ref_cache, buf.buf, fn, 0, 0, cb_data);
1674 strbuf_release(&buf);
1675 return ret;
1676 }
1677
1678 int for_each_glob_ref_in(each_ref_fn fn, const char *pattern,
1679 const char *prefix, void *cb_data)
1680 {
1681 struct strbuf real_pattern = STRBUF_INIT;
1682 struct ref_filter filter;
1683 int ret;
1684
1685 if (!prefix && prefixcmp(pattern, "refs/"))
1686 strbuf_addstr(&real_pattern, "refs/");
1687 else if (prefix)
1688 strbuf_addstr(&real_pattern, prefix);
1689 strbuf_addstr(&real_pattern, pattern);
1690
1691 if (!has_glob_specials(pattern)) {
1692 /* Append implied '/' '*' if not present. */
1693 if (real_pattern.buf[real_pattern.len - 1] != '/')
1694 strbuf_addch(&real_pattern, '/');
1695 /* No need to check for '*', there is none. */
1696 strbuf_addch(&real_pattern, '*');
1697 }
1698
1699 filter.pattern = real_pattern.buf;
1700 filter.fn = fn;
1701 filter.cb_data = cb_data;
1702 ret = for_each_ref(filter_refs, &filter);
1703
1704 strbuf_release(&real_pattern);
1705 return ret;
1706 }
1707
1708 int for_each_glob_ref(each_ref_fn fn, const char *pattern, void *cb_data)
1709 {
1710 return for_each_glob_ref_in(fn, pattern, NULL, cb_data);
1711 }
1712
1713 int for_each_rawref(each_ref_fn fn, void *cb_data)
1714 {
1715 return do_for_each_ref(&ref_cache, "", fn, 0,
1716 DO_FOR_EACH_INCLUDE_BROKEN, cb_data);
1717 }
1718
1719 const char *prettify_refname(const char *name)
1720 {
1721 return name + (
1722 !prefixcmp(name, "refs/heads/") ? 11 :
1723 !prefixcmp(name, "refs/tags/") ? 10 :
1724 !prefixcmp(name, "refs/remotes/") ? 13 :
1725 0);
1726 }
1727
1728 const char *ref_rev_parse_rules[] = {
1729 "%.*s",
1730 "refs/%.*s",
1731 "refs/tags/%.*s",
1732 "refs/heads/%.*s",
1733 "refs/remotes/%.*s",
1734 "refs/remotes/%.*s/HEAD",
1735 NULL
1736 };
1737
1738 int refname_match(const char *abbrev_name, const char *full_name, const char **rules)
1739 {
1740 const char **p;
1741 const int abbrev_name_len = strlen(abbrev_name);
1742
1743 for (p = rules; *p; p++) {
1744 if (!strcmp(full_name, mkpath(*p, abbrev_name_len, abbrev_name))) {
1745 return 1;
1746 }
1747 }
1748
1749 return 0;
1750 }
1751
1752 static struct ref_lock *verify_lock(struct ref_lock *lock,
1753 const unsigned char *old_sha1, int mustexist)
1754 {
1755 if (read_ref_full(lock->ref_name, lock->old_sha1, mustexist, NULL)) {
1756 error("Can't verify ref %s", lock->ref_name);
1757 unlock_ref(lock);
1758 return NULL;
1759 }
1760 if (hashcmp(lock->old_sha1, old_sha1)) {
1761 error("Ref %s is at %s but expected %s", lock->ref_name,
1762 sha1_to_hex(lock->old_sha1), sha1_to_hex(old_sha1));
1763 unlock_ref(lock);
1764 return NULL;
1765 }
1766 return lock;
1767 }
1768
1769 static int remove_empty_directories(const char *file)
1770 {
1771 /* we want to create a file but there is a directory there;
1772 * if that is an empty directory (or a directory that contains
1773 * only empty directories), remove them.
1774 */
1775 struct strbuf path;
1776 int result;
1777
1778 strbuf_init(&path, 20);
1779 strbuf_addstr(&path, file);
1780
1781 result = remove_dir_recursively(&path, REMOVE_DIR_EMPTY_ONLY);
1782
1783 strbuf_release(&path);
1784
1785 return result;
1786 }
1787
1788 /*
1789 * *string and *len will only be substituted, and *string returned (for
1790 * later free()ing) if the string passed in is a magic short-hand form
1791 * to name a branch.
1792 */
1793 static char *substitute_branch_name(const char **string, int *len)
1794 {
1795 struct strbuf buf = STRBUF_INIT;
1796 int ret = interpret_branch_name(*string, &buf);
1797
1798 if (ret == *len) {
1799 size_t size;
1800 *string = strbuf_detach(&buf, &size);
1801 *len = size;
1802 return (char *)*string;
1803 }
1804
1805 return NULL;
1806 }
1807
1808 int dwim_ref(const char *str, int len, unsigned char *sha1, char **ref)
1809 {
1810 char *last_branch = substitute_branch_name(&str, &len);
1811 const char **p, *r;
1812 int refs_found = 0;
1813
1814 *ref = NULL;
1815 for (p = ref_rev_parse_rules; *p; p++) {
1816 char fullref[PATH_MAX];
1817 unsigned char sha1_from_ref[20];
1818 unsigned char *this_result;
1819 int flag;
1820
1821 this_result = refs_found ? sha1_from_ref : sha1;
1822 mksnpath(fullref, sizeof(fullref), *p, len, str);
1823 r = resolve_ref_unsafe(fullref, this_result, 1, &flag);
1824 if (r) {
1825 if (!refs_found++)
1826 *ref = xstrdup(r);
1827 if (!warn_ambiguous_refs)
1828 break;
1829 } else if ((flag & REF_ISSYMREF) && strcmp(fullref, "HEAD")) {
1830 warning("ignoring dangling symref %s.", fullref);
1831 } else if ((flag & REF_ISBROKEN) && strchr(fullref, '/')) {
1832 warning("ignoring broken ref %s.", fullref);
1833 }
1834 }
1835 free(last_branch);
1836 return refs_found;
1837 }
1838
1839 int dwim_log(const char *str, int len, unsigned char *sha1, char **log)
1840 {
1841 char *last_branch = substitute_branch_name(&str, &len);
1842 const char **p;
1843 int logs_found = 0;
1844
1845 *log = NULL;
1846 for (p = ref_rev_parse_rules; *p; p++) {
1847 struct stat st;
1848 unsigned char hash[20];
1849 char path[PATH_MAX];
1850 const char *ref, *it;
1851
1852 mksnpath(path, sizeof(path), *p, len, str);
1853 ref = resolve_ref_unsafe(path, hash, 1, NULL);
1854 if (!ref)
1855 continue;
1856 if (!stat(git_path("logs/%s", path), &st) &&
1857 S_ISREG(st.st_mode))
1858 it = path;
1859 else if (strcmp(ref, path) &&
1860 !stat(git_path("logs/%s", ref), &st) &&
1861 S_ISREG(st.st_mode))
1862 it = ref;
1863 else
1864 continue;
1865 if (!logs_found++) {
1866 *log = xstrdup(it);
1867 hashcpy(sha1, hash);
1868 }
1869 if (!warn_ambiguous_refs)
1870 break;
1871 }
1872 free(last_branch);
1873 return logs_found;
1874 }
1875
1876 static struct ref_lock *lock_ref_sha1_basic(const char *refname,
1877 const unsigned char *old_sha1,
1878 int flags, int *type_p)
1879 {
1880 char *ref_file;
1881 const char *orig_refname = refname;
1882 struct ref_lock *lock;
1883 int last_errno = 0;
1884 int type, lflags;
1885 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
1886 int missing = 0;
1887
1888 lock = xcalloc(1, sizeof(struct ref_lock));
1889 lock->lock_fd = -1;
1890
1891 refname = resolve_ref_unsafe(refname, lock->old_sha1, mustexist, &type);
1892 if (!refname && errno == EISDIR) {
1893 /* we are trying to lock foo but we used to
1894 * have foo/bar which now does not exist;
1895 * it is normal for the empty directory 'foo'
1896 * to remain.
1897 */
1898 ref_file = git_path("%s", orig_refname);
1899 if (remove_empty_directories(ref_file)) {
1900 last_errno = errno;
1901 error("there are still refs under '%s'", orig_refname);
1902 goto error_return;
1903 }
1904 refname = resolve_ref_unsafe(orig_refname, lock->old_sha1, mustexist, &type);
1905 }
1906 if (type_p)
1907 *type_p = type;
1908 if (!refname) {
1909 last_errno = errno;
1910 error("unable to resolve reference %s: %s",
1911 orig_refname, strerror(errno));
1912 goto error_return;
1913 }
1914 missing = is_null_sha1(lock->old_sha1);
1915 /* When the ref did not exist and we are creating it,
1916 * make sure there is no existing ref that is packed
1917 * whose name begins with our refname, nor a ref whose
1918 * name is a proper prefix of our refname.
1919 */
1920 if (missing &&
1921 !is_refname_available(refname, NULL, get_packed_refs(&ref_cache))) {
1922 last_errno = ENOTDIR;
1923 goto error_return;
1924 }
1925
1926 lock->lk = xcalloc(1, sizeof(struct lock_file));
1927
1928 lflags = LOCK_DIE_ON_ERROR;
1929 if (flags & REF_NODEREF) {
1930 refname = orig_refname;
1931 lflags |= LOCK_NODEREF;
1932 }
1933 lock->ref_name = xstrdup(refname);
1934 lock->orig_ref_name = xstrdup(orig_refname);
1935 ref_file = git_path("%s", refname);
1936 if (missing)
1937 lock->force_write = 1;
1938 if ((flags & REF_NODEREF) && (type & REF_ISSYMREF))
1939 lock->force_write = 1;
1940
1941 if (safe_create_leading_directories(ref_file)) {
1942 last_errno = errno;
1943 error("unable to create directory for %s", ref_file);
1944 goto error_return;
1945 }
1946
1947 lock->lock_fd = hold_lock_file_for_update(lock->lk, ref_file, lflags);
1948 return old_sha1 ? verify_lock(lock, old_sha1, mustexist) : lock;
1949
1950 error_return:
1951 unlock_ref(lock);
1952 errno = last_errno;
1953 return NULL;
1954 }
1955
1956 struct ref_lock *lock_ref_sha1(const char *refname, const unsigned char *old_sha1)
1957 {
1958 char refpath[PATH_MAX];
1959 if (check_refname_format(refname, 0))
1960 return NULL;
1961 strcpy(refpath, mkpath("refs/%s", refname));
1962 return lock_ref_sha1_basic(refpath, old_sha1, 0, NULL);
1963 }
1964
1965 struct ref_lock *lock_any_ref_for_update(const char *refname,
1966 const unsigned char *old_sha1, int flags)
1967 {
1968 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
1969 return NULL;
1970 return lock_ref_sha1_basic(refname, old_sha1, flags, NULL);
1971 }
1972
1973 /*
1974 * Write an entry to the packed-refs file for the specified refname.
1975 * If peeled is non-NULL, write it as the entry's peeled value.
1976 */
1977 static void write_packed_entry(int fd, char *refname, unsigned char *sha1,
1978 unsigned char *peeled)
1979 {
1980 char line[PATH_MAX + 100];
1981 int len;
1982
1983 len = snprintf(line, sizeof(line), "%s %s\n",
1984 sha1_to_hex(sha1), refname);
1985 /* this should not happen but just being defensive */
1986 if (len > sizeof(line))
1987 die("too long a refname '%s'", refname);
1988 write_or_die(fd, line, len);
1989
1990 if (peeled) {
1991 if (snprintf(line, sizeof(line), "^%s\n",
1992 sha1_to_hex(peeled)) != PEELED_LINE_LENGTH)
1993 die("internal error");
1994 write_or_die(fd, line, PEELED_LINE_LENGTH);
1995 }
1996 }
1997
1998 struct ref_to_prune {
1999 struct ref_to_prune *next;
2000 unsigned char sha1[20];
2001 char name[FLEX_ARRAY];
2002 };
2003
2004 struct pack_refs_cb_data {
2005 unsigned int flags;
2006 struct ref_to_prune *ref_to_prune;
2007 int fd;
2008 };
2009
2010 static int pack_one_ref(struct ref_entry *entry, void *cb_data)
2011 {
2012 struct pack_refs_cb_data *cb = cb_data;
2013 enum peel_status peel_status;
2014 int is_tag_ref = !prefixcmp(entry->name, "refs/tags/");
2015
2016 /* ALWAYS pack refs that were already packed or are tags */
2017 if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref &&
2018 !(entry->flag & REF_ISPACKED))
2019 return 0;
2020
2021 /* Do not pack symbolic or broken refs: */
2022 if ((entry->flag & REF_ISSYMREF) || !ref_resolves_to_object(entry))
2023 return 0;
2024
2025 peel_status = peel_entry(entry, 1);
2026 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2027 die("internal error peeling reference %s (%s)",
2028 entry->name, sha1_to_hex(entry->u.value.sha1));
2029 write_packed_entry(cb->fd, entry->name, entry->u.value.sha1,
2030 peel_status == PEEL_PEELED ?
2031 entry->u.value.peeled : NULL);
2032
2033 /* If the ref was already packed, there is no need to prune it. */
2034 if ((cb->flags & PACK_REFS_PRUNE) && !(entry->flag & REF_ISPACKED)) {
2035 int namelen = strlen(entry->name) + 1;
2036 struct ref_to_prune *n = xcalloc(1, sizeof(*n) + namelen);
2037 hashcpy(n->sha1, entry->u.value.sha1);
2038 strcpy(n->name, entry->name);
2039 n->next = cb->ref_to_prune;
2040 cb->ref_to_prune = n;
2041 }
2042 return 0;
2043 }
2044
2045 /*
2046 * Remove empty parents, but spare refs/ and immediate subdirs.
2047 * Note: munges *name.
2048 */
2049 static void try_remove_empty_parents(char *name)
2050 {
2051 char *p, *q;
2052 int i;
2053 p = name;
2054 for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2055 while (*p && *p != '/')
2056 p++;
2057 /* tolerate duplicate slashes; see check_refname_format() */
2058 while (*p == '/')
2059 p++;
2060 }
2061 for (q = p; *q; q++)
2062 ;
2063 while (1) {
2064 while (q > p && *q != '/')
2065 q--;
2066 while (q > p && *(q-1) == '/')
2067 q--;
2068 if (q == p)
2069 break;
2070 *q = '\0';
2071 if (rmdir(git_path("%s", name)))
2072 break;
2073 }
2074 }
2075
2076 /* make sure nobody touched the ref, and unlink */
2077 static void prune_ref(struct ref_to_prune *r)
2078 {
2079 struct ref_lock *lock = lock_ref_sha1(r->name + 5, r->sha1);
2080
2081 if (lock) {
2082 unlink_or_warn(git_path("%s", r->name));
2083 unlock_ref(lock);
2084 try_remove_empty_parents(r->name);
2085 }
2086 }
2087
2088 static void prune_refs(struct ref_to_prune *r)
2089 {
2090 while (r) {
2091 prune_ref(r);
2092 r = r->next;
2093 }
2094 }
2095
2096 static struct lock_file packlock;
2097
2098 int pack_refs(unsigned int flags)
2099 {
2100 struct pack_refs_cb_data cbdata;
2101
2102 memset(&cbdata, 0, sizeof(cbdata));
2103 cbdata.flags = flags;
2104
2105 cbdata.fd = hold_lock_file_for_update(&packlock, git_path("packed-refs"),
2106 LOCK_DIE_ON_ERROR);
2107
2108 write_or_die(cbdata.fd, PACKED_REFS_HEADER, strlen(PACKED_REFS_HEADER));
2109
2110 do_for_each_entry(&ref_cache, "", pack_one_ref, &cbdata);
2111 if (commit_lock_file(&packlock) < 0)
2112 die_errno("unable to overwrite old ref-pack file");
2113 prune_refs(cbdata.ref_to_prune);
2114 return 0;
2115 }
2116
2117 static int repack_ref_fn(struct ref_entry *entry, void *cb_data)
2118 {
2119 int *fd = cb_data;
2120 enum peel_status peel_status;
2121
2122 if (entry->flag & REF_ISBROKEN) {
2123 /* This shouldn't happen to packed refs. */
2124 error("%s is broken!", entry->name);
2125 return 0;
2126 }
2127 if (!has_sha1_file(entry->u.value.sha1)) {
2128 unsigned char sha1[20];
2129 int flags;
2130
2131 if (read_ref_full(entry->name, sha1, 0, &flags))
2132 /* We should at least have found the packed ref. */
2133 die("Internal error");
2134 if ((flags & REF_ISSYMREF) || !(flags & REF_ISPACKED))
2135 /*
2136 * This packed reference is overridden by a
2137 * loose reference, so it is OK that its value
2138 * is no longer valid; for example, it might
2139 * refer to an object that has been garbage
2140 * collected. For this purpose we don't even
2141 * care whether the loose reference itself is
2142 * invalid, broken, symbolic, etc. Silently
2143 * omit the packed reference from the output.
2144 */
2145 return 0;
2146 /*
2147 * There is no overriding loose reference, so the fact
2148 * that this reference doesn't refer to a valid object
2149 * indicates some kind of repository corruption.
2150 * Report the problem, then omit the reference from
2151 * the output.
2152 */
2153 error("%s does not point to a valid object!", entry->name);
2154 return 0;
2155 }
2156
2157 peel_status = peel_entry(entry, 0);
2158 write_packed_entry(*fd, entry->name, entry->u.value.sha1,
2159 peel_status == PEEL_PEELED ?
2160 entry->u.value.peeled : NULL);
2161
2162 return 0;
2163 }
2164
2165 static int repack_without_ref(const char *refname)
2166 {
2167 int fd;
2168 struct ref_dir *packed;
2169
2170 if (!get_packed_ref(refname))
2171 return 0; /* refname does not exist in packed refs */
2172
2173 fd = hold_lock_file_for_update(&packlock, git_path("packed-refs"), 0);
2174 if (fd < 0) {
2175 unable_to_lock_error(git_path("packed-refs"), errno);
2176 return error("cannot delete '%s' from packed refs", refname);
2177 }
2178 clear_packed_ref_cache(&ref_cache);
2179 packed = get_packed_refs(&ref_cache);
2180 /* Remove refname from the cache. */
2181 if (remove_entry(packed, refname) == -1) {
2182 /*
2183 * The packed entry disappeared while we were
2184 * acquiring the lock.
2185 */
2186 rollback_lock_file(&packlock);
2187 return 0;
2188 }
2189 write_or_die(fd, PACKED_REFS_HEADER, strlen(PACKED_REFS_HEADER));
2190 do_for_each_entry_in_dir(packed, 0, repack_ref_fn, &fd);
2191 return commit_lock_file(&packlock);
2192 }
2193
2194 int delete_ref(const char *refname, const unsigned char *sha1, int delopt)
2195 {
2196 struct ref_lock *lock;
2197 int err, i = 0, ret = 0, flag = 0;
2198
2199 lock = lock_ref_sha1_basic(refname, sha1, delopt, &flag);
2200 if (!lock)
2201 return 1;
2202 if (!(flag & REF_ISPACKED) || flag & REF_ISSYMREF) {
2203 /* loose */
2204 i = strlen(lock->lk->filename) - 5; /* .lock */
2205 lock->lk->filename[i] = 0;
2206 err = unlink_or_warn(lock->lk->filename);
2207 if (err && errno != ENOENT)
2208 ret = 1;
2209
2210 lock->lk->filename[i] = '.';
2211 }
2212 /* removing the loose one could have resurrected an earlier
2213 * packed one. Also, if it was not loose we need to repack
2214 * without it.
2215 */
2216 ret |= repack_without_ref(lock->ref_name);
2217
2218 unlink_or_warn(git_path("logs/%s", lock->ref_name));
2219 clear_loose_ref_cache(&ref_cache);
2220 unlock_ref(lock);
2221 return ret;
2222 }
2223
2224 /*
2225 * People using contrib's git-new-workdir have .git/logs/refs ->
2226 * /some/other/path/.git/logs/refs, and that may live on another device.
2227 *
2228 * IOW, to avoid cross device rename errors, the temporary renamed log must
2229 * live into logs/refs.
2230 */
2231 #define TMP_RENAMED_LOG "logs/refs/.tmp-renamed-log"
2232
2233 int rename_ref(const char *oldrefname, const char *newrefname, const char *logmsg)
2234 {
2235 unsigned char sha1[20], orig_sha1[20];
2236 int flag = 0, logmoved = 0;
2237 struct ref_lock *lock;
2238 struct stat loginfo;
2239 int log = !lstat(git_path("logs/%s", oldrefname), &loginfo);
2240 const char *symref = NULL;
2241
2242 if (log && S_ISLNK(loginfo.st_mode))
2243 return error("reflog for %s is a symlink", oldrefname);
2244
2245 symref = resolve_ref_unsafe(oldrefname, orig_sha1, 1, &flag);
2246 if (flag & REF_ISSYMREF)
2247 return error("refname %s is a symbolic ref, renaming it is not supported",
2248 oldrefname);
2249 if (!symref)
2250 return error("refname %s not found", oldrefname);
2251
2252 if (!is_refname_available(newrefname, oldrefname, get_packed_refs(&ref_cache)))
2253 return 1;
2254
2255 if (!is_refname_available(newrefname, oldrefname, get_loose_refs(&ref_cache)))
2256 return 1;
2257
2258 if (log && rename(git_path("logs/%s", oldrefname), git_path(TMP_RENAMED_LOG)))
2259 return error("unable to move logfile logs/%s to "TMP_RENAMED_LOG": %s",
2260 oldrefname, strerror(errno));
2261
2262 if (delete_ref(oldrefname, orig_sha1, REF_NODEREF)) {
2263 error("unable to delete old %s", oldrefname);
2264 goto rollback;
2265 }
2266
2267 if (!read_ref_full(newrefname, sha1, 1, &flag) &&
2268 delete_ref(newrefname, sha1, REF_NODEREF)) {
2269 if (errno==EISDIR) {
2270 if (remove_empty_directories(git_path("%s", newrefname))) {
2271 error("Directory not empty: %s", newrefname);
2272 goto rollback;
2273 }
2274 } else {
2275 error("unable to delete existing %s", newrefname);
2276 goto rollback;
2277 }
2278 }
2279
2280 if (log && safe_create_leading_directories(git_path("logs/%s", newrefname))) {
2281 error("unable to create directory for %s", newrefname);
2282 goto rollback;
2283 }
2284
2285 retry:
2286 if (log && rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", newrefname))) {
2287 if (errno==EISDIR || errno==ENOTDIR) {
2288 /*
2289 * rename(a, b) when b is an existing
2290 * directory ought to result in ISDIR, but
2291 * Solaris 5.8 gives ENOTDIR. Sheesh.
2292 */
2293 if (remove_empty_directories(git_path("logs/%s", newrefname))) {
2294 error("Directory not empty: logs/%s", newrefname);
2295 goto rollback;
2296 }
2297 goto retry;
2298 } else {
2299 error("unable to move logfile "TMP_RENAMED_LOG" to logs/%s: %s",
2300 newrefname, strerror(errno));
2301 goto rollback;
2302 }
2303 }
2304 logmoved = log;
2305
2306 lock = lock_ref_sha1_basic(newrefname, NULL, 0, NULL);
2307 if (!lock) {
2308 error("unable to lock %s for update", newrefname);
2309 goto rollback;
2310 }
2311 lock->force_write = 1;
2312 hashcpy(lock->old_sha1, orig_sha1);
2313 if (write_ref_sha1(lock, orig_sha1, logmsg)) {
2314 error("unable to write current sha1 into %s", newrefname);
2315 goto rollback;
2316 }
2317
2318 return 0;
2319
2320 rollback:
2321 lock = lock_ref_sha1_basic(oldrefname, NULL, 0, NULL);
2322 if (!lock) {
2323 error("unable to lock %s for rollback", oldrefname);
2324 goto rollbacklog;
2325 }
2326
2327 lock->force_write = 1;
2328 flag = log_all_ref_updates;
2329 log_all_ref_updates = 0;
2330 if (write_ref_sha1(lock, orig_sha1, NULL))
2331 error("unable to write current sha1 into %s", oldrefname);
2332 log_all_ref_updates = flag;
2333
2334 rollbacklog:
2335 if (logmoved && rename(git_path("logs/%s", newrefname), git_path("logs/%s", oldrefname)))
2336 error("unable to restore logfile %s from %s: %s",
2337 oldrefname, newrefname, strerror(errno));
2338 if (!logmoved && log &&
2339 rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", oldrefname)))
2340 error("unable to restore logfile %s from "TMP_RENAMED_LOG": %s",
2341 oldrefname, strerror(errno));
2342
2343 return 1;
2344 }
2345
2346 int close_ref(struct ref_lock *lock)
2347 {
2348 if (close_lock_file(lock->lk))
2349 return -1;
2350 lock->lock_fd = -1;
2351 return 0;
2352 }
2353
2354 int commit_ref(struct ref_lock *lock)
2355 {
2356 if (commit_lock_file(lock->lk))
2357 return -1;
2358 lock->lock_fd = -1;
2359 return 0;
2360 }
2361
2362 void unlock_ref(struct ref_lock *lock)
2363 {
2364 /* Do not free lock->lk -- atexit() still looks at them */
2365 if (lock->lk)
2366 rollback_lock_file(lock->lk);
2367 free(lock->ref_name);
2368 free(lock->orig_ref_name);
2369 free(lock);
2370 }
2371
2372 /*
2373 * copy the reflog message msg to buf, which has been allocated sufficiently
2374 * large, while cleaning up the whitespaces. Especially, convert LF to space,
2375 * because reflog file is one line per entry.
2376 */
2377 static int copy_msg(char *buf, const char *msg)
2378 {
2379 char *cp = buf;
2380 char c;
2381 int wasspace = 1;
2382
2383 *cp++ = '\t';
2384 while ((c = *msg++)) {
2385 if (wasspace && isspace(c))
2386 continue;
2387 wasspace = isspace(c);
2388 if (wasspace)
2389 c = ' ';
2390 *cp++ = c;
2391 }
2392 while (buf < cp && isspace(cp[-1]))
2393 cp--;
2394 *cp++ = '\n';
2395 return cp - buf;
2396 }
2397
2398 int log_ref_setup(const char *refname, char *logfile, int bufsize)
2399 {
2400 int logfd, oflags = O_APPEND | O_WRONLY;
2401
2402 git_snpath(logfile, bufsize, "logs/%s", refname);
2403 if (log_all_ref_updates &&
2404 (!prefixcmp(refname, "refs/heads/") ||
2405 !prefixcmp(refname, "refs/remotes/") ||
2406 !prefixcmp(refname, "refs/notes/") ||
2407 !strcmp(refname, "HEAD"))) {
2408 if (safe_create_leading_directories(logfile) < 0)
2409 return error("unable to create directory for %s",
2410 logfile);
2411 oflags |= O_CREAT;
2412 }
2413
2414 logfd = open(logfile, oflags, 0666);
2415 if (logfd < 0) {
2416 if (!(oflags & O_CREAT) && errno == ENOENT)
2417 return 0;
2418
2419 if ((oflags & O_CREAT) && errno == EISDIR) {
2420 if (remove_empty_directories(logfile)) {
2421 return error("There are still logs under '%s'",
2422 logfile);
2423 }
2424 logfd = open(logfile, oflags, 0666);
2425 }
2426
2427 if (logfd < 0)
2428 return error("Unable to append to %s: %s",
2429 logfile, strerror(errno));
2430 }
2431
2432 adjust_shared_perm(logfile);
2433 close(logfd);
2434 return 0;
2435 }
2436
2437 static int log_ref_write(const char *refname, const unsigned char *old_sha1,
2438 const unsigned char *new_sha1, const char *msg)
2439 {
2440 int logfd, result, written, oflags = O_APPEND | O_WRONLY;
2441 unsigned maxlen, len;
2442 int msglen;
2443 char log_file[PATH_MAX];
2444 char *logrec;
2445 const char *committer;
2446
2447 if (log_all_ref_updates < 0)
2448 log_all_ref_updates = !is_bare_repository();
2449
2450 result = log_ref_setup(refname, log_file, sizeof(log_file));
2451 if (result)
2452 return result;
2453
2454 logfd = open(log_file, oflags);
2455 if (logfd < 0)
2456 return 0;
2457 msglen = msg ? strlen(msg) : 0;
2458 committer = git_committer_info(0);
2459 maxlen = strlen(committer) + msglen + 100;
2460 logrec = xmalloc(maxlen);
2461 len = sprintf(logrec, "%s %s %s\n",
2462 sha1_to_hex(old_sha1),
2463 sha1_to_hex(new_sha1),
2464 committer);
2465 if (msglen)
2466 len += copy_msg(logrec + len - 1, msg) - 1;
2467 written = len <= maxlen ? write_in_full(logfd, logrec, len) : -1;
2468 free(logrec);
2469 if (close(logfd) != 0 || written != len)
2470 return error("Unable to append to %s", log_file);
2471 return 0;
2472 }
2473
2474 static int is_branch(const char *refname)
2475 {
2476 return !strcmp(refname, "HEAD") || !prefixcmp(refname, "refs/heads/");
2477 }
2478
2479 int write_ref_sha1(struct ref_lock *lock,
2480 const unsigned char *sha1, const char *logmsg)
2481 {
2482 static char term = '\n';
2483 struct object *o;
2484
2485 if (!lock)
2486 return -1;
2487 if (!lock->force_write && !hashcmp(lock->old_sha1, sha1)) {
2488 unlock_ref(lock);
2489 return 0;
2490 }
2491 o = parse_object(sha1);
2492 if (!o) {
2493 error("Trying to write ref %s with nonexistent object %s",
2494 lock->ref_name, sha1_to_hex(sha1));
2495 unlock_ref(lock);
2496 return -1;
2497 }
2498 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
2499 error("Trying to write non-commit object %s to branch %s",
2500 sha1_to_hex(sha1), lock->ref_name);
2501 unlock_ref(lock);
2502 return -1;
2503 }
2504 if (write_in_full(lock->lock_fd, sha1_to_hex(sha1), 40) != 40 ||
2505 write_in_full(lock->lock_fd, &term, 1) != 1
2506 || close_ref(lock) < 0) {
2507 error("Couldn't write %s", lock->lk->filename);
2508 unlock_ref(lock);
2509 return -1;
2510 }
2511 clear_loose_ref_cache(&ref_cache);
2512 if (log_ref_write(lock->ref_name, lock->old_sha1, sha1, logmsg) < 0 ||
2513 (strcmp(lock->ref_name, lock->orig_ref_name) &&
2514 log_ref_write(lock->orig_ref_name, lock->old_sha1, sha1, logmsg) < 0)) {
2515 unlock_ref(lock);
2516 return -1;
2517 }
2518 if (strcmp(lock->orig_ref_name, "HEAD") != 0) {
2519 /*
2520 * Special hack: If a branch is updated directly and HEAD
2521 * points to it (may happen on the remote side of a push
2522 * for example) then logically the HEAD reflog should be
2523 * updated too.
2524 * A generic solution implies reverse symref information,
2525 * but finding all symrefs pointing to the given branch
2526 * would be rather costly for this rare event (the direct
2527 * update of a branch) to be worth it. So let's cheat and
2528 * check with HEAD only which should cover 99% of all usage
2529 * scenarios (even 100% of the default ones).
2530 */
2531 unsigned char head_sha1[20];
2532 int head_flag;
2533 const char *head_ref;
2534 head_ref = resolve_ref_unsafe("HEAD", head_sha1, 1, &head_flag);
2535 if (head_ref && (head_flag & REF_ISSYMREF) &&
2536 !strcmp(head_ref, lock->ref_name))
2537 log_ref_write("HEAD", lock->old_sha1, sha1, logmsg);
2538 }
2539 if (commit_ref(lock)) {
2540 error("Couldn't set %s", lock->ref_name);
2541 unlock_ref(lock);
2542 return -1;
2543 }
2544 unlock_ref(lock);
2545 return 0;
2546 }
2547
2548 int create_symref(const char *ref_target, const char *refs_heads_master,
2549 const char *logmsg)
2550 {
2551 const char *lockpath;
2552 char ref[1000];
2553 int fd, len, written;
2554 char *git_HEAD = git_pathdup("%s", ref_target);
2555 unsigned char old_sha1[20], new_sha1[20];
2556
2557 if (logmsg && read_ref(ref_target, old_sha1))
2558 hashclr(old_sha1);
2559
2560 if (safe_create_leading_directories(git_HEAD) < 0)
2561 return error("unable to create directory for %s", git_HEAD);
2562
2563 #ifndef NO_SYMLINK_HEAD
2564 if (prefer_symlink_refs) {
2565 unlink(git_HEAD);
2566 if (!symlink(refs_heads_master, git_HEAD))
2567 goto done;
2568 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
2569 }
2570 #endif
2571
2572 len = snprintf(ref, sizeof(ref), "ref: %s\n", refs_heads_master);
2573 if (sizeof(ref) <= len) {
2574 error("refname too long: %s", refs_heads_master);
2575 goto error_free_return;
2576 }
2577 lockpath = mkpath("%s.lock", git_HEAD);
2578 fd = open(lockpath, O_CREAT | O_EXCL | O_WRONLY, 0666);
2579 if (fd < 0) {
2580 error("Unable to open %s for writing", lockpath);
2581 goto error_free_return;
2582 }
2583 written = write_in_full(fd, ref, len);
2584 if (close(fd) != 0 || written != len) {
2585 error("Unable to write to %s", lockpath);
2586 goto error_unlink_return;
2587 }
2588 if (rename(lockpath, git_HEAD) < 0) {
2589 error("Unable to create %s", git_HEAD);
2590 goto error_unlink_return;
2591 }
2592 if (adjust_shared_perm(git_HEAD)) {
2593 error("Unable to fix permissions on %s", lockpath);
2594 error_unlink_return:
2595 unlink_or_warn(lockpath);
2596 error_free_return:
2597 free(git_HEAD);
2598 return -1;
2599 }
2600
2601 #ifndef NO_SYMLINK_HEAD
2602 done:
2603 #endif
2604 if (logmsg && !read_ref(refs_heads_master, new_sha1))
2605 log_ref_write(ref_target, old_sha1, new_sha1, logmsg);
2606
2607 free(git_HEAD);
2608 return 0;
2609 }
2610
2611 static char *ref_msg(const char *line, const char *endp)
2612 {
2613 const char *ep;
2614 line += 82;
2615 ep = memchr(line, '\n', endp - line);
2616 if (!ep)
2617 ep = endp;
2618 return xmemdupz(line, ep - line);
2619 }
2620
2621 int read_ref_at(const char *refname, unsigned long at_time, int cnt,
2622 unsigned char *sha1, char **msg,
2623 unsigned long *cutoff_time, int *cutoff_tz, int *cutoff_cnt)
2624 {
2625 const char *logfile, *logdata, *logend, *rec, *lastgt, *lastrec;
2626 char *tz_c;
2627 int logfd, tz, reccnt = 0;
2628 struct stat st;
2629 unsigned long date;
2630 unsigned char logged_sha1[20];
2631 void *log_mapped;
2632 size_t mapsz;
2633
2634 logfile = git_path("logs/%s", refname);
2635 logfd = open(logfile, O_RDONLY, 0);
2636 if (logfd < 0)
2637 die_errno("Unable to read log '%s'", logfile);
2638 fstat(logfd, &st);
2639 if (!st.st_size)
2640 die("Log %s is empty.", logfile);
2641 mapsz = xsize_t(st.st_size);
2642 log_mapped = xmmap(NULL, mapsz, PROT_READ, MAP_PRIVATE, logfd, 0);
2643 logdata = log_mapped;
2644 close(logfd);
2645
2646 lastrec = NULL;
2647 rec = logend = logdata + st.st_size;
2648 while (logdata < rec) {
2649 reccnt++;
2650 if (logdata < rec && *(rec-1) == '\n')
2651 rec--;
2652 lastgt = NULL;
2653 while (logdata < rec && *(rec-1) != '\n') {
2654 rec--;
2655 if (*rec == '>')
2656 lastgt = rec;
2657 }
2658 if (!lastgt)
2659 die("Log %s is corrupt.", logfile);
2660 date = strtoul(lastgt + 1, &tz_c, 10);
2661 if (date <= at_time || cnt == 0) {
2662 tz = strtoul(tz_c, NULL, 10);
2663 if (msg)
2664 *msg = ref_msg(rec, logend);
2665 if (cutoff_time)
2666 *cutoff_time = date;
2667 if (cutoff_tz)
2668 *cutoff_tz = tz;
2669 if (cutoff_cnt)
2670 *cutoff_cnt = reccnt - 1;
2671 if (lastrec) {
2672 if (get_sha1_hex(lastrec, logged_sha1))
2673 die("Log %s is corrupt.", logfile);
2674 if (get_sha1_hex(rec + 41, sha1))
2675 die("Log %s is corrupt.", logfile);
2676 if (hashcmp(logged_sha1, sha1)) {
2677 warning("Log %s has gap after %s.",
2678 logfile, show_date(date, tz, DATE_RFC2822));
2679 }
2680 }
2681 else if (date == at_time) {
2682 if (get_sha1_hex(rec + 41, sha1))
2683 die("Log %s is corrupt.", logfile);
2684 }
2685 else {
2686 if (get_sha1_hex(rec + 41, logged_sha1))
2687 die("Log %s is corrupt.", logfile);
2688 if (hashcmp(logged_sha1, sha1)) {
2689 warning("Log %s unexpectedly ended on %s.",
2690 logfile, show_date(date, tz, DATE_RFC2822));
2691 }
2692 }
2693 munmap(log_mapped, mapsz);
2694 return 0;
2695 }
2696 lastrec = rec;
2697 if (cnt > 0)
2698 cnt--;
2699 }
2700
2701 rec = logdata;
2702 while (rec < logend && *rec != '>' && *rec != '\n')
2703 rec++;
2704 if (rec == logend || *rec == '\n')
2705 die("Log %s is corrupt.", logfile);
2706 date = strtoul(rec + 1, &tz_c, 10);
2707 tz = strtoul(tz_c, NULL, 10);
2708 if (get_sha1_hex(logdata, sha1))
2709 die("Log %s is corrupt.", logfile);
2710 if (is_null_sha1(sha1)) {
2711 if (get_sha1_hex(logdata + 41, sha1))
2712 die("Log %s is corrupt.", logfile);
2713 }
2714 if (msg)
2715 *msg = ref_msg(logdata, logend);
2716 munmap(log_mapped, mapsz);
2717
2718 if (cutoff_time)
2719 *cutoff_time = date;
2720 if (cutoff_tz)
2721 *cutoff_tz = tz;
2722 if (cutoff_cnt)
2723 *cutoff_cnt = reccnt;
2724 return 1;
2725 }
2726
2727 int for_each_recent_reflog_ent(const char *refname, each_reflog_ent_fn fn, long ofs, void *cb_data)
2728 {
2729 const char *logfile;
2730 FILE *logfp;
2731 struct strbuf sb = STRBUF_INIT;
2732 int ret = 0;
2733
2734 logfile = git_path("logs/%s", refname);
2735 logfp = fopen(logfile, "r");
2736 if (!logfp)
2737 return -1;
2738
2739 if (ofs) {
2740 struct stat statbuf;
2741 if (fstat(fileno(logfp), &statbuf) ||
2742 statbuf.st_size < ofs ||
2743 fseek(logfp, -ofs, SEEK_END) ||
2744 strbuf_getwholeline(&sb, logfp, '\n')) {
2745 fclose(logfp);
2746 strbuf_release(&sb);
2747 return -1;
2748 }
2749 }
2750
2751 while (!strbuf_getwholeline(&sb, logfp, '\n')) {
2752 unsigned char osha1[20], nsha1[20];
2753 char *email_end, *message;
2754 unsigned long timestamp;
2755 int tz;
2756
2757 /* old SP new SP name <email> SP time TAB msg LF */
2758 if (sb.len < 83 || sb.buf[sb.len - 1] != '\n' ||
2759 get_sha1_hex(sb.buf, osha1) || sb.buf[40] != ' ' ||
2760 get_sha1_hex(sb.buf + 41, nsha1) || sb.buf[81] != ' ' ||
2761 !(email_end = strchr(sb.buf + 82, '>')) ||
2762 email_end[1] != ' ' ||
2763 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
2764 !message || message[0] != ' ' ||
2765 (message[1] != '+' && message[1] != '-') ||
2766 !isdigit(message[2]) || !isdigit(message[3]) ||
2767 !isdigit(message[4]) || !isdigit(message[5]))
2768 continue; /* corrupt? */
2769 email_end[1] = '\0';
2770 tz = strtol(message + 1, NULL, 10);
2771 if (message[6] != '\t')
2772 message += 6;
2773 else
2774 message += 7;
2775 ret = fn(osha1, nsha1, sb.buf + 82, timestamp, tz, message,
2776 cb_data);
2777 if (ret)
2778 break;
2779 }
2780 fclose(logfp);
2781 strbuf_release(&sb);
2782 return ret;
2783 }
2784
2785 int for_each_reflog_ent(const char *refname, each_reflog_ent_fn fn, void *cb_data)
2786 {
2787 return for_each_recent_reflog_ent(refname, fn, 0, cb_data);
2788 }
2789
2790 /*
2791 * Call fn for each reflog in the namespace indicated by name. name
2792 * must be empty or end with '/'. Name will be used as a scratch
2793 * space, but its contents will be restored before return.
2794 */
2795 static int do_for_each_reflog(struct strbuf *name, each_ref_fn fn, void *cb_data)
2796 {
2797 DIR *d = opendir(git_path("logs/%s", name->buf));
2798 int retval = 0;
2799 struct dirent *de;
2800 int oldlen = name->len;
2801
2802 if (!d)
2803 return name->len ? errno : 0;
2804
2805 while ((de = readdir(d)) != NULL) {
2806 struct stat st;
2807
2808 if (de->d_name[0] == '.')
2809 continue;
2810 if (has_extension(de->d_name, ".lock"))
2811 continue;
2812 strbuf_addstr(name, de->d_name);
2813 if (stat(git_path("logs/%s", name->buf), &st) < 0) {
2814 ; /* silently ignore */
2815 } else {
2816 if (S_ISDIR(st.st_mode)) {
2817 strbuf_addch(name, '/');
2818 retval = do_for_each_reflog(name, fn, cb_data);
2819 } else {
2820 unsigned char sha1[20];
2821 if (read_ref_full(name->buf, sha1, 0, NULL))
2822 retval = error("bad ref for %s", name->buf);
2823 else
2824 retval = fn(name->buf, sha1, 0, cb_data);
2825 }
2826 if (retval)
2827 break;
2828 }
2829 strbuf_setlen(name, oldlen);
2830 }
2831 closedir(d);
2832 return retval;
2833 }
2834
2835 int for_each_reflog(each_ref_fn fn, void *cb_data)
2836 {
2837 int retval;
2838 struct strbuf name;
2839 strbuf_init(&name, PATH_MAX);
2840 retval = do_for_each_reflog(&name, fn, cb_data);
2841 strbuf_release(&name);
2842 return retval;
2843 }
2844
2845 int update_ref(const char *action, const char *refname,
2846 const unsigned char *sha1, const unsigned char *oldval,
2847 int flags, enum action_on_err onerr)
2848 {
2849 static struct ref_lock *lock;
2850 lock = lock_any_ref_for_update(refname, oldval, flags);
2851 if (!lock) {
2852 const char *str = "Cannot lock the ref '%s'.";
2853 switch (onerr) {
2854 case MSG_ON_ERR: error(str, refname); break;
2855 case DIE_ON_ERR: die(str, refname); break;
2856 case QUIET_ON_ERR: break;
2857 }
2858 return 1;
2859 }
2860 if (write_ref_sha1(lock, sha1, action) < 0) {
2861 const char *str = "Cannot update the ref '%s'.";
2862 switch (onerr) {
2863 case MSG_ON_ERR: error(str, refname); break;
2864 case DIE_ON_ERR: die(str, refname); break;
2865 case QUIET_ON_ERR: break;
2866 }
2867 return 1;
2868 }
2869 return 0;
2870 }
2871
2872 struct ref *find_ref_by_name(const struct ref *list, const char *name)
2873 {
2874 for ( ; list; list = list->next)
2875 if (!strcmp(list->name, name))
2876 return (struct ref *)list;
2877 return NULL;
2878 }
2879
2880 /*
2881 * generate a format suitable for scanf from a ref_rev_parse_rules
2882 * rule, that is replace the "%.*s" spec with a "%s" spec
2883 */
2884 static void gen_scanf_fmt(char *scanf_fmt, const char *rule)
2885 {
2886 char *spec;
2887
2888 spec = strstr(rule, "%.*s");
2889 if (!spec || strstr(spec + 4, "%.*s"))
2890 die("invalid rule in ref_rev_parse_rules: %s", rule);
2891
2892 /* copy all until spec */
2893 strncpy(scanf_fmt, rule, spec - rule);
2894 scanf_fmt[spec - rule] = '\0';
2895 /* copy new spec */
2896 strcat(scanf_fmt, "%s");
2897 /* copy remaining rule */
2898 strcat(scanf_fmt, spec + 4);
2899
2900 return;
2901 }
2902
2903 char *shorten_unambiguous_ref(const char *refname, int strict)
2904 {
2905 int i;
2906 static char **scanf_fmts;
2907 static int nr_rules;
2908 char *short_name;
2909
2910 /* pre generate scanf formats from ref_rev_parse_rules[] */
2911 if (!nr_rules) {
2912 size_t total_len = 0;
2913
2914 /* the rule list is NULL terminated, count them first */
2915 for (; ref_rev_parse_rules[nr_rules]; nr_rules++)
2916 /* no +1 because strlen("%s") < strlen("%.*s") */
2917 total_len += strlen(ref_rev_parse_rules[nr_rules]);
2918
2919 scanf_fmts = xmalloc(nr_rules * sizeof(char *) + total_len);
2920
2921 total_len = 0;
2922 for (i = 0; i < nr_rules; i++) {
2923 scanf_fmts[i] = (char *)&scanf_fmts[nr_rules]
2924 + total_len;
2925 gen_scanf_fmt(scanf_fmts[i], ref_rev_parse_rules[i]);
2926 total_len += strlen(ref_rev_parse_rules[i]);
2927 }
2928 }
2929
2930 /* bail out if there are no rules */
2931 if (!nr_rules)
2932 return xstrdup(refname);
2933
2934 /* buffer for scanf result, at most refname must fit */
2935 short_name = xstrdup(refname);
2936
2937 /* skip first rule, it will always match */
2938 for (i = nr_rules - 1; i > 0 ; --i) {
2939 int j;
2940 int rules_to_fail = i;
2941 int short_name_len;
2942
2943 if (1 != sscanf(refname, scanf_fmts[i], short_name))
2944 continue;
2945
2946 short_name_len = strlen(short_name);
2947
2948 /*
2949 * in strict mode, all (except the matched one) rules
2950 * must fail to resolve to a valid non-ambiguous ref
2951 */
2952 if (strict)
2953 rules_to_fail = nr_rules;
2954
2955 /*
2956 * check if the short name resolves to a valid ref,
2957 * but use only rules prior to the matched one
2958 */
2959 for (j = 0; j < rules_to_fail; j++) {
2960 const char *rule = ref_rev_parse_rules[j];
2961 char refname[PATH_MAX];
2962
2963 /* skip matched rule */
2964 if (i == j)
2965 continue;
2966
2967 /*
2968 * the short name is ambiguous, if it resolves
2969 * (with this previous rule) to a valid ref
2970 * read_ref() returns 0 on success
2971 */
2972 mksnpath(refname, sizeof(refname),
2973 rule, short_name_len, short_name);
2974 if (ref_exists(refname))
2975 break;
2976 }
2977
2978 /*
2979 * short name is non-ambiguous if all previous rules
2980 * haven't resolved to a valid ref
2981 */
2982 if (j == rules_to_fail)
2983 return short_name;
2984 }
2985
2986 free(short_name);
2987 return xstrdup(refname);
2988 }