]> git.ipfire.org Git - thirdparty/git.git/blob - refs.c
add a stat_validity struct
[thirdparty/git.git] / refs.c
1 #include "cache.h"
2 #include "refs.h"
3 #include "object.h"
4 #include "tag.h"
5 #include "dir.h"
6 #include "string-list.h"
7
8 /*
9 * Make sure "ref" is something reasonable to have under ".git/refs/";
10 * We do not like it if:
11 *
12 * - any path component of it begins with ".", or
13 * - it has double dots "..", or
14 * - it has ASCII control character, "~", "^", ":" or SP, anywhere, or
15 * - it ends with a "/".
16 * - it ends with ".lock"
17 * - it contains a "\" (backslash)
18 */
19
20 /* Return true iff ch is not allowed in reference names. */
21 static inline int bad_ref_char(int ch)
22 {
23 if (((unsigned) ch) <= ' ' || ch == 0x7f ||
24 ch == '~' || ch == '^' || ch == ':' || ch == '\\')
25 return 1;
26 /* 2.13 Pattern Matching Notation */
27 if (ch == '*' || ch == '?' || ch == '[') /* Unsupported */
28 return 1;
29 return 0;
30 }
31
32 /*
33 * Try to read one refname component from the front of refname. Return
34 * the length of the component found, or -1 if the component is not
35 * legal.
36 */
37 static int check_refname_component(const char *refname, int flags)
38 {
39 const char *cp;
40 char last = '\0';
41
42 for (cp = refname; ; cp++) {
43 char ch = *cp;
44 if (ch == '\0' || ch == '/')
45 break;
46 if (bad_ref_char(ch))
47 return -1; /* Illegal character in refname. */
48 if (last == '.' && ch == '.')
49 return -1; /* Refname contains "..". */
50 if (last == '@' && ch == '{')
51 return -1; /* Refname contains "@{". */
52 last = ch;
53 }
54 if (cp == refname)
55 return 0; /* Component has zero length. */
56 if (refname[0] == '.') {
57 if (!(flags & REFNAME_DOT_COMPONENT))
58 return -1; /* Component starts with '.'. */
59 /*
60 * Even if leading dots are allowed, don't allow "."
61 * as a component (".." is prevented by a rule above).
62 */
63 if (refname[1] == '\0')
64 return -1; /* Component equals ".". */
65 }
66 if (cp - refname >= 5 && !memcmp(cp - 5, ".lock", 5))
67 return -1; /* Refname ends with ".lock". */
68 return cp - refname;
69 }
70
71 int check_refname_format(const char *refname, int flags)
72 {
73 int component_len, component_count = 0;
74
75 if (!strcmp(refname, "@"))
76 /* Refname is a single character '@'. */
77 return -1;
78
79 while (1) {
80 /* We are at the start of a path component. */
81 component_len = check_refname_component(refname, flags);
82 if (component_len <= 0) {
83 if ((flags & REFNAME_REFSPEC_PATTERN) &&
84 refname[0] == '*' &&
85 (refname[1] == '\0' || refname[1] == '/')) {
86 /* Accept one wildcard as a full refname component. */
87 flags &= ~REFNAME_REFSPEC_PATTERN;
88 component_len = 1;
89 } else {
90 return -1;
91 }
92 }
93 component_count++;
94 if (refname[component_len] == '\0')
95 break;
96 /* Skip to next component. */
97 refname += component_len + 1;
98 }
99
100 if (refname[component_len - 1] == '.')
101 return -1; /* Refname ends with '.'. */
102 if (!(flags & REFNAME_ALLOW_ONELEVEL) && component_count < 2)
103 return -1; /* Refname has only one component. */
104 return 0;
105 }
106
107 struct ref_entry;
108
109 /*
110 * Information used (along with the information in ref_entry) to
111 * describe a single cached reference. This data structure only
112 * occurs embedded in a union in struct ref_entry, and only when
113 * (ref_entry->flag & REF_DIR) is zero.
114 */
115 struct ref_value {
116 /*
117 * The name of the object to which this reference resolves
118 * (which may be a tag object). If REF_ISBROKEN, this is
119 * null. If REF_ISSYMREF, then this is the name of the object
120 * referred to by the last reference in the symlink chain.
121 */
122 unsigned char sha1[20];
123
124 /*
125 * If REF_KNOWS_PEELED, then this field holds the peeled value
126 * of this reference, or null if the reference is known not to
127 * be peelable. See the documentation for peel_ref() for an
128 * exact definition of "peelable".
129 */
130 unsigned char peeled[20];
131 };
132
133 struct ref_cache;
134
135 /*
136 * Information used (along with the information in ref_entry) to
137 * describe a level in the hierarchy of references. This data
138 * structure only occurs embedded in a union in struct ref_entry, and
139 * only when (ref_entry.flag & REF_DIR) is set. In that case,
140 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
141 * in the directory have already been read:
142 *
143 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
144 * or packed references, already read.
145 *
146 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
147 * references that hasn't been read yet (nor has any of its
148 * subdirectories).
149 *
150 * Entries within a directory are stored within a growable array of
151 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
152 * sorted are sorted by their component name in strcmp() order and the
153 * remaining entries are unsorted.
154 *
155 * Loose references are read lazily, one directory at a time. When a
156 * directory of loose references is read, then all of the references
157 * in that directory are stored, and REF_INCOMPLETE stubs are created
158 * for any subdirectories, but the subdirectories themselves are not
159 * read. The reading is triggered by get_ref_dir().
160 */
161 struct ref_dir {
162 int nr, alloc;
163
164 /*
165 * Entries with index 0 <= i < sorted are sorted by name. New
166 * entries are appended to the list unsorted, and are sorted
167 * only when required; thus we avoid the need to sort the list
168 * after the addition of every reference.
169 */
170 int sorted;
171
172 /* A pointer to the ref_cache that contains this ref_dir. */
173 struct ref_cache *ref_cache;
174
175 struct ref_entry **entries;
176 };
177
178 /*
179 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
180 * REF_ISPACKED=0x02, and REF_ISBROKEN=0x04 are public values; see
181 * refs.h.
182 */
183
184 /*
185 * The field ref_entry->u.value.peeled of this value entry contains
186 * the correct peeled value for the reference, which might be
187 * null_sha1 if the reference is not a tag or if it is broken.
188 */
189 #define REF_KNOWS_PEELED 0x08
190
191 /* ref_entry represents a directory of references */
192 #define REF_DIR 0x10
193
194 /*
195 * Entry has not yet been read from disk (used only for REF_DIR
196 * entries representing loose references)
197 */
198 #define REF_INCOMPLETE 0x20
199
200 /*
201 * A ref_entry represents either a reference or a "subdirectory" of
202 * references.
203 *
204 * Each directory in the reference namespace is represented by a
205 * ref_entry with (flags & REF_DIR) set and containing a subdir member
206 * that holds the entries in that directory that have been read so
207 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
208 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
209 * used for loose reference directories.
210 *
211 * References are represented by a ref_entry with (flags & REF_DIR)
212 * unset and a value member that describes the reference's value. The
213 * flag member is at the ref_entry level, but it is also needed to
214 * interpret the contents of the value field (in other words, a
215 * ref_value object is not very much use without the enclosing
216 * ref_entry).
217 *
218 * Reference names cannot end with slash and directories' names are
219 * always stored with a trailing slash (except for the top-level
220 * directory, which is always denoted by ""). This has two nice
221 * consequences: (1) when the entries in each subdir are sorted
222 * lexicographically by name (as they usually are), the references in
223 * a whole tree can be generated in lexicographic order by traversing
224 * the tree in left-to-right, depth-first order; (2) the names of
225 * references and subdirectories cannot conflict, and therefore the
226 * presence of an empty subdirectory does not block the creation of a
227 * similarly-named reference. (The fact that reference names with the
228 * same leading components can conflict *with each other* is a
229 * separate issue that is regulated by is_refname_available().)
230 *
231 * Please note that the name field contains the fully-qualified
232 * reference (or subdirectory) name. Space could be saved by only
233 * storing the relative names. But that would require the full names
234 * to be generated on the fly when iterating in do_for_each_ref(), and
235 * would break callback functions, who have always been able to assume
236 * that the name strings that they are passed will not be freed during
237 * the iteration.
238 */
239 struct ref_entry {
240 unsigned char flag; /* ISSYMREF? ISPACKED? */
241 union {
242 struct ref_value value; /* if not (flags&REF_DIR) */
243 struct ref_dir subdir; /* if (flags&REF_DIR) */
244 } u;
245 /*
246 * The full name of the reference (e.g., "refs/heads/master")
247 * or the full name of the directory with a trailing slash
248 * (e.g., "refs/heads/"):
249 */
250 char name[FLEX_ARRAY];
251 };
252
253 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
254
255 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
256 {
257 struct ref_dir *dir;
258 assert(entry->flag & REF_DIR);
259 dir = &entry->u.subdir;
260 if (entry->flag & REF_INCOMPLETE) {
261 read_loose_refs(entry->name, dir);
262 entry->flag &= ~REF_INCOMPLETE;
263 }
264 return dir;
265 }
266
267 static struct ref_entry *create_ref_entry(const char *refname,
268 const unsigned char *sha1, int flag,
269 int check_name)
270 {
271 int len;
272 struct ref_entry *ref;
273
274 if (check_name &&
275 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL|REFNAME_DOT_COMPONENT))
276 die("Reference has invalid format: '%s'", refname);
277 len = strlen(refname) + 1;
278 ref = xmalloc(sizeof(struct ref_entry) + len);
279 hashcpy(ref->u.value.sha1, sha1);
280 hashclr(ref->u.value.peeled);
281 memcpy(ref->name, refname, len);
282 ref->flag = flag;
283 return ref;
284 }
285
286 static void clear_ref_dir(struct ref_dir *dir);
287
288 static void free_ref_entry(struct ref_entry *entry)
289 {
290 if (entry->flag & REF_DIR) {
291 /*
292 * Do not use get_ref_dir() here, as that might
293 * trigger the reading of loose refs.
294 */
295 clear_ref_dir(&entry->u.subdir);
296 }
297 free(entry);
298 }
299
300 /*
301 * Add a ref_entry to the end of dir (unsorted). Entry is always
302 * stored directly in dir; no recursion into subdirectories is
303 * done.
304 */
305 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
306 {
307 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
308 dir->entries[dir->nr++] = entry;
309 /* optimize for the case that entries are added in order */
310 if (dir->nr == 1 ||
311 (dir->nr == dir->sorted + 1 &&
312 strcmp(dir->entries[dir->nr - 2]->name,
313 dir->entries[dir->nr - 1]->name) < 0))
314 dir->sorted = dir->nr;
315 }
316
317 /*
318 * Clear and free all entries in dir, recursively.
319 */
320 static void clear_ref_dir(struct ref_dir *dir)
321 {
322 int i;
323 for (i = 0; i < dir->nr; i++)
324 free_ref_entry(dir->entries[i]);
325 free(dir->entries);
326 dir->sorted = dir->nr = dir->alloc = 0;
327 dir->entries = NULL;
328 }
329
330 /*
331 * Create a struct ref_entry object for the specified dirname.
332 * dirname is the name of the directory with a trailing slash (e.g.,
333 * "refs/heads/") or "" for the top-level directory.
334 */
335 static struct ref_entry *create_dir_entry(struct ref_cache *ref_cache,
336 const char *dirname, size_t len,
337 int incomplete)
338 {
339 struct ref_entry *direntry;
340 direntry = xcalloc(1, sizeof(struct ref_entry) + len + 1);
341 memcpy(direntry->name, dirname, len);
342 direntry->name[len] = '\0';
343 direntry->u.subdir.ref_cache = ref_cache;
344 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
345 return direntry;
346 }
347
348 static int ref_entry_cmp(const void *a, const void *b)
349 {
350 struct ref_entry *one = *(struct ref_entry **)a;
351 struct ref_entry *two = *(struct ref_entry **)b;
352 return strcmp(one->name, two->name);
353 }
354
355 static void sort_ref_dir(struct ref_dir *dir);
356
357 struct string_slice {
358 size_t len;
359 const char *str;
360 };
361
362 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
363 {
364 const struct string_slice *key = key_;
365 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
366 int cmp = strncmp(key->str, ent->name, key->len);
367 if (cmp)
368 return cmp;
369 return '\0' - (unsigned char)ent->name[key->len];
370 }
371
372 /*
373 * Return the index of the entry with the given refname from the
374 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
375 * no such entry is found. dir must already be complete.
376 */
377 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
378 {
379 struct ref_entry **r;
380 struct string_slice key;
381
382 if (refname == NULL || !dir->nr)
383 return -1;
384
385 sort_ref_dir(dir);
386 key.len = len;
387 key.str = refname;
388 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
389 ref_entry_cmp_sslice);
390
391 if (r == NULL)
392 return -1;
393
394 return r - dir->entries;
395 }
396
397 /*
398 * Search for a directory entry directly within dir (without
399 * recursing). Sort dir if necessary. subdirname must be a directory
400 * name (i.e., end in '/'). If mkdir is set, then create the
401 * directory if it is missing; otherwise, return NULL if the desired
402 * directory cannot be found. dir must already be complete.
403 */
404 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
405 const char *subdirname, size_t len,
406 int mkdir)
407 {
408 int entry_index = search_ref_dir(dir, subdirname, len);
409 struct ref_entry *entry;
410 if (entry_index == -1) {
411 if (!mkdir)
412 return NULL;
413 /*
414 * Since dir is complete, the absence of a subdir
415 * means that the subdir really doesn't exist;
416 * therefore, create an empty record for it but mark
417 * the record complete.
418 */
419 entry = create_dir_entry(dir->ref_cache, subdirname, len, 0);
420 add_entry_to_dir(dir, entry);
421 } else {
422 entry = dir->entries[entry_index];
423 }
424 return get_ref_dir(entry);
425 }
426
427 /*
428 * If refname is a reference name, find the ref_dir within the dir
429 * tree that should hold refname. If refname is a directory name
430 * (i.e., ends in '/'), then return that ref_dir itself. dir must
431 * represent the top-level directory and must already be complete.
432 * Sort ref_dirs and recurse into subdirectories as necessary. If
433 * mkdir is set, then create any missing directories; otherwise,
434 * return NULL if the desired directory cannot be found.
435 */
436 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
437 const char *refname, int mkdir)
438 {
439 const char *slash;
440 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
441 size_t dirnamelen = slash - refname + 1;
442 struct ref_dir *subdir;
443 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
444 if (!subdir) {
445 dir = NULL;
446 break;
447 }
448 dir = subdir;
449 }
450
451 return dir;
452 }
453
454 /*
455 * Find the value entry with the given name in dir, sorting ref_dirs
456 * and recursing into subdirectories as necessary. If the name is not
457 * found or it corresponds to a directory entry, return NULL.
458 */
459 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
460 {
461 int entry_index;
462 struct ref_entry *entry;
463 dir = find_containing_dir(dir, refname, 0);
464 if (!dir)
465 return NULL;
466 entry_index = search_ref_dir(dir, refname, strlen(refname));
467 if (entry_index == -1)
468 return NULL;
469 entry = dir->entries[entry_index];
470 return (entry->flag & REF_DIR) ? NULL : entry;
471 }
472
473 /*
474 * Remove the entry with the given name from dir, recursing into
475 * subdirectories as necessary. If refname is the name of a directory
476 * (i.e., ends with '/'), then remove the directory and its contents.
477 * If the removal was successful, return the number of entries
478 * remaining in the directory entry that contained the deleted entry.
479 * If the name was not found, return -1. Please note that this
480 * function only deletes the entry from the cache; it does not delete
481 * it from the filesystem or ensure that other cache entries (which
482 * might be symbolic references to the removed entry) are updated.
483 * Nor does it remove any containing dir entries that might be made
484 * empty by the removal. dir must represent the top-level directory
485 * and must already be complete.
486 */
487 static int remove_entry(struct ref_dir *dir, const char *refname)
488 {
489 int refname_len = strlen(refname);
490 int entry_index;
491 struct ref_entry *entry;
492 int is_dir = refname[refname_len - 1] == '/';
493 if (is_dir) {
494 /*
495 * refname represents a reference directory. Remove
496 * the trailing slash; otherwise we will get the
497 * directory *representing* refname rather than the
498 * one *containing* it.
499 */
500 char *dirname = xmemdupz(refname, refname_len - 1);
501 dir = find_containing_dir(dir, dirname, 0);
502 free(dirname);
503 } else {
504 dir = find_containing_dir(dir, refname, 0);
505 }
506 if (!dir)
507 return -1;
508 entry_index = search_ref_dir(dir, refname, refname_len);
509 if (entry_index == -1)
510 return -1;
511 entry = dir->entries[entry_index];
512
513 memmove(&dir->entries[entry_index],
514 &dir->entries[entry_index + 1],
515 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
516 );
517 dir->nr--;
518 if (dir->sorted > entry_index)
519 dir->sorted--;
520 free_ref_entry(entry);
521 return dir->nr;
522 }
523
524 /*
525 * Add a ref_entry to the ref_dir (unsorted), recursing into
526 * subdirectories as necessary. dir must represent the top-level
527 * directory. Return 0 on success.
528 */
529 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
530 {
531 dir = find_containing_dir(dir, ref->name, 1);
532 if (!dir)
533 return -1;
534 add_entry_to_dir(dir, ref);
535 return 0;
536 }
537
538 /*
539 * Emit a warning and return true iff ref1 and ref2 have the same name
540 * and the same sha1. Die if they have the same name but different
541 * sha1s.
542 */
543 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
544 {
545 if (strcmp(ref1->name, ref2->name))
546 return 0;
547
548 /* Duplicate name; make sure that they don't conflict: */
549
550 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
551 /* This is impossible by construction */
552 die("Reference directory conflict: %s", ref1->name);
553
554 if (hashcmp(ref1->u.value.sha1, ref2->u.value.sha1))
555 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
556
557 warning("Duplicated ref: %s", ref1->name);
558 return 1;
559 }
560
561 /*
562 * Sort the entries in dir non-recursively (if they are not already
563 * sorted) and remove any duplicate entries.
564 */
565 static void sort_ref_dir(struct ref_dir *dir)
566 {
567 int i, j;
568 struct ref_entry *last = NULL;
569
570 /*
571 * This check also prevents passing a zero-length array to qsort(),
572 * which is a problem on some platforms.
573 */
574 if (dir->sorted == dir->nr)
575 return;
576
577 qsort(dir->entries, dir->nr, sizeof(*dir->entries), ref_entry_cmp);
578
579 /* Remove any duplicates: */
580 for (i = 0, j = 0; j < dir->nr; j++) {
581 struct ref_entry *entry = dir->entries[j];
582 if (last && is_dup_ref(last, entry))
583 free_ref_entry(entry);
584 else
585 last = dir->entries[i++] = entry;
586 }
587 dir->sorted = dir->nr = i;
588 }
589
590 /* Include broken references in a do_for_each_ref*() iteration: */
591 #define DO_FOR_EACH_INCLUDE_BROKEN 0x01
592
593 /*
594 * Return true iff the reference described by entry can be resolved to
595 * an object in the database. Emit a warning if the referred-to
596 * object does not exist.
597 */
598 static int ref_resolves_to_object(struct ref_entry *entry)
599 {
600 if (entry->flag & REF_ISBROKEN)
601 return 0;
602 if (!has_sha1_file(entry->u.value.sha1)) {
603 error("%s does not point to a valid object!", entry->name);
604 return 0;
605 }
606 return 1;
607 }
608
609 /*
610 * current_ref is a performance hack: when iterating over references
611 * using the for_each_ref*() functions, current_ref is set to the
612 * current reference's entry before calling the callback function. If
613 * the callback function calls peel_ref(), then peel_ref() first
614 * checks whether the reference to be peeled is the current reference
615 * (it usually is) and if so, returns that reference's peeled version
616 * if it is available. This avoids a refname lookup in a common case.
617 */
618 static struct ref_entry *current_ref;
619
620 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
621
622 struct ref_entry_cb {
623 const char *base;
624 int trim;
625 int flags;
626 each_ref_fn *fn;
627 void *cb_data;
628 };
629
630 /*
631 * Handle one reference in a do_for_each_ref*()-style iteration,
632 * calling an each_ref_fn for each entry.
633 */
634 static int do_one_ref(struct ref_entry *entry, void *cb_data)
635 {
636 struct ref_entry_cb *data = cb_data;
637 int retval;
638 if (prefixcmp(entry->name, data->base))
639 return 0;
640
641 if (!(data->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
642 !ref_resolves_to_object(entry))
643 return 0;
644
645 current_ref = entry;
646 retval = data->fn(entry->name + data->trim, entry->u.value.sha1,
647 entry->flag, data->cb_data);
648 current_ref = NULL;
649 return retval;
650 }
651
652 /*
653 * Call fn for each reference in dir that has index in the range
654 * offset <= index < dir->nr. Recurse into subdirectories that are in
655 * that index range, sorting them before iterating. This function
656 * does not sort dir itself; it should be sorted beforehand. fn is
657 * called for all references, including broken ones.
658 */
659 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
660 each_ref_entry_fn fn, void *cb_data)
661 {
662 int i;
663 assert(dir->sorted == dir->nr);
664 for (i = offset; i < dir->nr; i++) {
665 struct ref_entry *entry = dir->entries[i];
666 int retval;
667 if (entry->flag & REF_DIR) {
668 struct ref_dir *subdir = get_ref_dir(entry);
669 sort_ref_dir(subdir);
670 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
671 } else {
672 retval = fn(entry, cb_data);
673 }
674 if (retval)
675 return retval;
676 }
677 return 0;
678 }
679
680 /*
681 * Call fn for each reference in the union of dir1 and dir2, in order
682 * by refname. Recurse into subdirectories. If a value entry appears
683 * in both dir1 and dir2, then only process the version that is in
684 * dir2. The input dirs must already be sorted, but subdirs will be
685 * sorted as needed. fn is called for all references, including
686 * broken ones.
687 */
688 static int do_for_each_entry_in_dirs(struct ref_dir *dir1,
689 struct ref_dir *dir2,
690 each_ref_entry_fn fn, void *cb_data)
691 {
692 int retval;
693 int i1 = 0, i2 = 0;
694
695 assert(dir1->sorted == dir1->nr);
696 assert(dir2->sorted == dir2->nr);
697 while (1) {
698 struct ref_entry *e1, *e2;
699 int cmp;
700 if (i1 == dir1->nr) {
701 return do_for_each_entry_in_dir(dir2, i2, fn, cb_data);
702 }
703 if (i2 == dir2->nr) {
704 return do_for_each_entry_in_dir(dir1, i1, fn, cb_data);
705 }
706 e1 = dir1->entries[i1];
707 e2 = dir2->entries[i2];
708 cmp = strcmp(e1->name, e2->name);
709 if (cmp == 0) {
710 if ((e1->flag & REF_DIR) && (e2->flag & REF_DIR)) {
711 /* Both are directories; descend them in parallel. */
712 struct ref_dir *subdir1 = get_ref_dir(e1);
713 struct ref_dir *subdir2 = get_ref_dir(e2);
714 sort_ref_dir(subdir1);
715 sort_ref_dir(subdir2);
716 retval = do_for_each_entry_in_dirs(
717 subdir1, subdir2, fn, cb_data);
718 i1++;
719 i2++;
720 } else if (!(e1->flag & REF_DIR) && !(e2->flag & REF_DIR)) {
721 /* Both are references; ignore the one from dir1. */
722 retval = fn(e2, cb_data);
723 i1++;
724 i2++;
725 } else {
726 die("conflict between reference and directory: %s",
727 e1->name);
728 }
729 } else {
730 struct ref_entry *e;
731 if (cmp < 0) {
732 e = e1;
733 i1++;
734 } else {
735 e = e2;
736 i2++;
737 }
738 if (e->flag & REF_DIR) {
739 struct ref_dir *subdir = get_ref_dir(e);
740 sort_ref_dir(subdir);
741 retval = do_for_each_entry_in_dir(
742 subdir, 0, fn, cb_data);
743 } else {
744 retval = fn(e, cb_data);
745 }
746 }
747 if (retval)
748 return retval;
749 }
750 }
751
752 /*
753 * Return true iff refname1 and refname2 conflict with each other.
754 * Two reference names conflict if one of them exactly matches the
755 * leading components of the other; e.g., "foo/bar" conflicts with
756 * both "foo" and with "foo/bar/baz" but not with "foo/bar" or
757 * "foo/barbados".
758 */
759 static int names_conflict(const char *refname1, const char *refname2)
760 {
761 for (; *refname1 && *refname1 == *refname2; refname1++, refname2++)
762 ;
763 return (*refname1 == '\0' && *refname2 == '/')
764 || (*refname1 == '/' && *refname2 == '\0');
765 }
766
767 struct name_conflict_cb {
768 const char *refname;
769 const char *oldrefname;
770 const char *conflicting_refname;
771 };
772
773 static int name_conflict_fn(struct ref_entry *entry, void *cb_data)
774 {
775 struct name_conflict_cb *data = (struct name_conflict_cb *)cb_data;
776 if (data->oldrefname && !strcmp(data->oldrefname, entry->name))
777 return 0;
778 if (names_conflict(data->refname, entry->name)) {
779 data->conflicting_refname = entry->name;
780 return 1;
781 }
782 return 0;
783 }
784
785 /*
786 * Return true iff a reference named refname could be created without
787 * conflicting with the name of an existing reference in dir. If
788 * oldrefname is non-NULL, ignore potential conflicts with oldrefname
789 * (e.g., because oldrefname is scheduled for deletion in the same
790 * operation).
791 */
792 static int is_refname_available(const char *refname, const char *oldrefname,
793 struct ref_dir *dir)
794 {
795 struct name_conflict_cb data;
796 data.refname = refname;
797 data.oldrefname = oldrefname;
798 data.conflicting_refname = NULL;
799
800 sort_ref_dir(dir);
801 if (do_for_each_entry_in_dir(dir, 0, name_conflict_fn, &data)) {
802 error("'%s' exists; cannot create '%s'",
803 data.conflicting_refname, refname);
804 return 0;
805 }
806 return 1;
807 }
808
809 struct packed_ref_cache {
810 struct ref_entry *root;
811
812 /*
813 * Count of references to the data structure in this instance,
814 * including the pointer from ref_cache::packed if any. The
815 * data will not be freed as long as the reference count is
816 * nonzero.
817 */
818 unsigned int referrers;
819
820 /*
821 * Iff the packed-refs file associated with this instance is
822 * currently locked for writing, this points at the associated
823 * lock (which is owned by somebody else). The referrer count
824 * is also incremented when the file is locked and decremented
825 * when it is unlocked.
826 */
827 struct lock_file *lock;
828 };
829
830 /*
831 * Future: need to be in "struct repository"
832 * when doing a full libification.
833 */
834 static struct ref_cache {
835 struct ref_cache *next;
836 struct ref_entry *loose;
837 struct packed_ref_cache *packed;
838 /*
839 * The submodule name, or "" for the main repo. We allocate
840 * length 1 rather than FLEX_ARRAY so that the main ref_cache
841 * is initialized correctly.
842 */
843 char name[1];
844 } ref_cache, *submodule_ref_caches;
845
846 /* Lock used for the main packed-refs file: */
847 static struct lock_file packlock;
848
849 /*
850 * Increment the reference count of *packed_refs.
851 */
852 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
853 {
854 packed_refs->referrers++;
855 }
856
857 /*
858 * Decrease the reference count of *packed_refs. If it goes to zero,
859 * free *packed_refs and return true; otherwise return false.
860 */
861 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
862 {
863 if (!--packed_refs->referrers) {
864 free_ref_entry(packed_refs->root);
865 free(packed_refs);
866 return 1;
867 } else {
868 return 0;
869 }
870 }
871
872 static void clear_packed_ref_cache(struct ref_cache *refs)
873 {
874 if (refs->packed) {
875 struct packed_ref_cache *packed_refs = refs->packed;
876
877 if (packed_refs->lock)
878 die("internal error: packed-ref cache cleared while locked");
879 refs->packed = NULL;
880 release_packed_ref_cache(packed_refs);
881 }
882 }
883
884 static void clear_loose_ref_cache(struct ref_cache *refs)
885 {
886 if (refs->loose) {
887 free_ref_entry(refs->loose);
888 refs->loose = NULL;
889 }
890 }
891
892 static struct ref_cache *create_ref_cache(const char *submodule)
893 {
894 int len;
895 struct ref_cache *refs;
896 if (!submodule)
897 submodule = "";
898 len = strlen(submodule) + 1;
899 refs = xcalloc(1, sizeof(struct ref_cache) + len);
900 memcpy(refs->name, submodule, len);
901 return refs;
902 }
903
904 /*
905 * Return a pointer to a ref_cache for the specified submodule. For
906 * the main repository, use submodule==NULL. The returned structure
907 * will be allocated and initialized but not necessarily populated; it
908 * should not be freed.
909 */
910 static struct ref_cache *get_ref_cache(const char *submodule)
911 {
912 struct ref_cache *refs;
913
914 if (!submodule || !*submodule)
915 return &ref_cache;
916
917 for (refs = submodule_ref_caches; refs; refs = refs->next)
918 if (!strcmp(submodule, refs->name))
919 return refs;
920
921 refs = create_ref_cache(submodule);
922 refs->next = submodule_ref_caches;
923 submodule_ref_caches = refs;
924 return refs;
925 }
926
927 void invalidate_ref_cache(const char *submodule)
928 {
929 struct ref_cache *refs = get_ref_cache(submodule);
930 clear_packed_ref_cache(refs);
931 clear_loose_ref_cache(refs);
932 }
933
934 /* The length of a peeled reference line in packed-refs, including EOL: */
935 #define PEELED_LINE_LENGTH 42
936
937 /*
938 * The packed-refs header line that we write out. Perhaps other
939 * traits will be added later. The trailing space is required.
940 */
941 static const char PACKED_REFS_HEADER[] =
942 "# pack-refs with: peeled fully-peeled \n";
943
944 /*
945 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
946 * Return a pointer to the refname within the line (null-terminated),
947 * or NULL if there was a problem.
948 */
949 static const char *parse_ref_line(char *line, unsigned char *sha1)
950 {
951 /*
952 * 42: the answer to everything.
953 *
954 * In this case, it happens to be the answer to
955 * 40 (length of sha1 hex representation)
956 * +1 (space in between hex and name)
957 * +1 (newline at the end of the line)
958 */
959 int len = strlen(line) - 42;
960
961 if (len <= 0)
962 return NULL;
963 if (get_sha1_hex(line, sha1) < 0)
964 return NULL;
965 if (!isspace(line[40]))
966 return NULL;
967 line += 41;
968 if (isspace(*line))
969 return NULL;
970 if (line[len] != '\n')
971 return NULL;
972 line[len] = 0;
973
974 return line;
975 }
976
977 /*
978 * Read f, which is a packed-refs file, into dir.
979 *
980 * A comment line of the form "# pack-refs with: " may contain zero or
981 * more traits. We interpret the traits as follows:
982 *
983 * No traits:
984 *
985 * Probably no references are peeled. But if the file contains a
986 * peeled value for a reference, we will use it.
987 *
988 * peeled:
989 *
990 * References under "refs/tags/", if they *can* be peeled, *are*
991 * peeled in this file. References outside of "refs/tags/" are
992 * probably not peeled even if they could have been, but if we find
993 * a peeled value for such a reference we will use it.
994 *
995 * fully-peeled:
996 *
997 * All references in the file that can be peeled are peeled.
998 * Inversely (and this is more important), any references in the
999 * file for which no peeled value is recorded is not peelable. This
1000 * trait should typically be written alongside "peeled" for
1001 * compatibility with older clients, but we do not require it
1002 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
1003 */
1004 static void read_packed_refs(FILE *f, struct ref_dir *dir)
1005 {
1006 struct ref_entry *last = NULL;
1007 char refline[PATH_MAX];
1008 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1009
1010 while (fgets(refline, sizeof(refline), f)) {
1011 unsigned char sha1[20];
1012 const char *refname;
1013 static const char header[] = "# pack-refs with:";
1014
1015 if (!strncmp(refline, header, sizeof(header)-1)) {
1016 const char *traits = refline + sizeof(header) - 1;
1017 if (strstr(traits, " fully-peeled "))
1018 peeled = PEELED_FULLY;
1019 else if (strstr(traits, " peeled "))
1020 peeled = PEELED_TAGS;
1021 /* perhaps other traits later as well */
1022 continue;
1023 }
1024
1025 refname = parse_ref_line(refline, sha1);
1026 if (refname) {
1027 last = create_ref_entry(refname, sha1, REF_ISPACKED, 1);
1028 if (peeled == PEELED_FULLY ||
1029 (peeled == PEELED_TAGS && !prefixcmp(refname, "refs/tags/")))
1030 last->flag |= REF_KNOWS_PEELED;
1031 add_ref(dir, last);
1032 continue;
1033 }
1034 if (last &&
1035 refline[0] == '^' &&
1036 strlen(refline) == PEELED_LINE_LENGTH &&
1037 refline[PEELED_LINE_LENGTH - 1] == '\n' &&
1038 !get_sha1_hex(refline + 1, sha1)) {
1039 hashcpy(last->u.value.peeled, sha1);
1040 /*
1041 * Regardless of what the file header said,
1042 * we definitely know the value of *this*
1043 * reference:
1044 */
1045 last->flag |= REF_KNOWS_PEELED;
1046 }
1047 }
1048 }
1049
1050 /*
1051 * Get the packed_ref_cache for the specified ref_cache, creating it
1052 * if necessary.
1053 */
1054 static struct packed_ref_cache *get_packed_ref_cache(struct ref_cache *refs)
1055 {
1056 if (!refs->packed) {
1057 const char *packed_refs_file;
1058 FILE *f;
1059
1060 refs->packed = xcalloc(1, sizeof(*refs->packed));
1061 acquire_packed_ref_cache(refs->packed);
1062 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1063 if (*refs->name)
1064 packed_refs_file = git_path_submodule(refs->name, "packed-refs");
1065 else
1066 packed_refs_file = git_path("packed-refs");
1067 f = fopen(packed_refs_file, "r");
1068 if (f) {
1069 read_packed_refs(f, get_ref_dir(refs->packed->root));
1070 fclose(f);
1071 }
1072 }
1073 return refs->packed;
1074 }
1075
1076 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1077 {
1078 return get_ref_dir(packed_ref_cache->root);
1079 }
1080
1081 static struct ref_dir *get_packed_refs(struct ref_cache *refs)
1082 {
1083 return get_packed_ref_dir(get_packed_ref_cache(refs));
1084 }
1085
1086 void add_packed_ref(const char *refname, const unsigned char *sha1)
1087 {
1088 struct packed_ref_cache *packed_ref_cache =
1089 get_packed_ref_cache(&ref_cache);
1090
1091 if (!packed_ref_cache->lock)
1092 die("internal error: packed refs not locked");
1093 add_ref(get_packed_ref_dir(packed_ref_cache),
1094 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1095 }
1096
1097 /*
1098 * Read the loose references from the namespace dirname into dir
1099 * (without recursing). dirname must end with '/'. dir must be the
1100 * directory entry corresponding to dirname.
1101 */
1102 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1103 {
1104 struct ref_cache *refs = dir->ref_cache;
1105 DIR *d;
1106 const char *path;
1107 struct dirent *de;
1108 int dirnamelen = strlen(dirname);
1109 struct strbuf refname;
1110
1111 if (*refs->name)
1112 path = git_path_submodule(refs->name, "%s", dirname);
1113 else
1114 path = git_path("%s", dirname);
1115
1116 d = opendir(path);
1117 if (!d)
1118 return;
1119
1120 strbuf_init(&refname, dirnamelen + 257);
1121 strbuf_add(&refname, dirname, dirnamelen);
1122
1123 while ((de = readdir(d)) != NULL) {
1124 unsigned char sha1[20];
1125 struct stat st;
1126 int flag;
1127 const char *refdir;
1128
1129 if (de->d_name[0] == '.')
1130 continue;
1131 if (has_extension(de->d_name, ".lock"))
1132 continue;
1133 strbuf_addstr(&refname, de->d_name);
1134 refdir = *refs->name
1135 ? git_path_submodule(refs->name, "%s", refname.buf)
1136 : git_path("%s", refname.buf);
1137 if (stat(refdir, &st) < 0) {
1138 ; /* silently ignore */
1139 } else if (S_ISDIR(st.st_mode)) {
1140 strbuf_addch(&refname, '/');
1141 add_entry_to_dir(dir,
1142 create_dir_entry(refs, refname.buf,
1143 refname.len, 1));
1144 } else {
1145 if (*refs->name) {
1146 hashclr(sha1);
1147 flag = 0;
1148 if (resolve_gitlink_ref(refs->name, refname.buf, sha1) < 0) {
1149 hashclr(sha1);
1150 flag |= REF_ISBROKEN;
1151 }
1152 } else if (read_ref_full(refname.buf, sha1, 1, &flag)) {
1153 hashclr(sha1);
1154 flag |= REF_ISBROKEN;
1155 }
1156 add_entry_to_dir(dir,
1157 create_ref_entry(refname.buf, sha1, flag, 1));
1158 }
1159 strbuf_setlen(&refname, dirnamelen);
1160 }
1161 strbuf_release(&refname);
1162 closedir(d);
1163 }
1164
1165 static struct ref_dir *get_loose_refs(struct ref_cache *refs)
1166 {
1167 if (!refs->loose) {
1168 /*
1169 * Mark the top-level directory complete because we
1170 * are about to read the only subdirectory that can
1171 * hold references:
1172 */
1173 refs->loose = create_dir_entry(refs, "", 0, 0);
1174 /*
1175 * Create an incomplete entry for "refs/":
1176 */
1177 add_entry_to_dir(get_ref_dir(refs->loose),
1178 create_dir_entry(refs, "refs/", 5, 1));
1179 }
1180 return get_ref_dir(refs->loose);
1181 }
1182
1183 /* We allow "recursive" symbolic refs. Only within reason, though */
1184 #define MAXDEPTH 5
1185 #define MAXREFLEN (1024)
1186
1187 /*
1188 * Called by resolve_gitlink_ref_recursive() after it failed to read
1189 * from the loose refs in ref_cache refs. Find <refname> in the
1190 * packed-refs file for the submodule.
1191 */
1192 static int resolve_gitlink_packed_ref(struct ref_cache *refs,
1193 const char *refname, unsigned char *sha1)
1194 {
1195 struct ref_entry *ref;
1196 struct ref_dir *dir = get_packed_refs(refs);
1197
1198 ref = find_ref(dir, refname);
1199 if (ref == NULL)
1200 return -1;
1201
1202 memcpy(sha1, ref->u.value.sha1, 20);
1203 return 0;
1204 }
1205
1206 static int resolve_gitlink_ref_recursive(struct ref_cache *refs,
1207 const char *refname, unsigned char *sha1,
1208 int recursion)
1209 {
1210 int fd, len;
1211 char buffer[128], *p;
1212 char *path;
1213
1214 if (recursion > MAXDEPTH || strlen(refname) > MAXREFLEN)
1215 return -1;
1216 path = *refs->name
1217 ? git_path_submodule(refs->name, "%s", refname)
1218 : git_path("%s", refname);
1219 fd = open(path, O_RDONLY);
1220 if (fd < 0)
1221 return resolve_gitlink_packed_ref(refs, refname, sha1);
1222
1223 len = read(fd, buffer, sizeof(buffer)-1);
1224 close(fd);
1225 if (len < 0)
1226 return -1;
1227 while (len && isspace(buffer[len-1]))
1228 len--;
1229 buffer[len] = 0;
1230
1231 /* Was it a detached head or an old-fashioned symlink? */
1232 if (!get_sha1_hex(buffer, sha1))
1233 return 0;
1234
1235 /* Symref? */
1236 if (strncmp(buffer, "ref:", 4))
1237 return -1;
1238 p = buffer + 4;
1239 while (isspace(*p))
1240 p++;
1241
1242 return resolve_gitlink_ref_recursive(refs, p, sha1, recursion+1);
1243 }
1244
1245 int resolve_gitlink_ref(const char *path, const char *refname, unsigned char *sha1)
1246 {
1247 int len = strlen(path), retval;
1248 char *submodule;
1249 struct ref_cache *refs;
1250
1251 while (len && path[len-1] == '/')
1252 len--;
1253 if (!len)
1254 return -1;
1255 submodule = xstrndup(path, len);
1256 refs = get_ref_cache(submodule);
1257 free(submodule);
1258
1259 retval = resolve_gitlink_ref_recursive(refs, refname, sha1, 0);
1260 return retval;
1261 }
1262
1263 /*
1264 * Return the ref_entry for the given refname from the packed
1265 * references. If it does not exist, return NULL.
1266 */
1267 static struct ref_entry *get_packed_ref(const char *refname)
1268 {
1269 return find_ref(get_packed_refs(&ref_cache), refname);
1270 }
1271
1272 const char *resolve_ref_unsafe(const char *refname, unsigned char *sha1, int reading, int *flag)
1273 {
1274 int depth = MAXDEPTH;
1275 ssize_t len;
1276 char buffer[256];
1277 static char refname_buffer[256];
1278
1279 if (flag)
1280 *flag = 0;
1281
1282 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
1283 return NULL;
1284
1285 for (;;) {
1286 char path[PATH_MAX];
1287 struct stat st;
1288 char *buf;
1289 int fd;
1290
1291 if (--depth < 0)
1292 return NULL;
1293
1294 git_snpath(path, sizeof(path), "%s", refname);
1295
1296 if (lstat(path, &st) < 0) {
1297 struct ref_entry *entry;
1298
1299 if (errno != ENOENT)
1300 return NULL;
1301 /*
1302 * The loose reference file does not exist;
1303 * check for a packed reference.
1304 */
1305 entry = get_packed_ref(refname);
1306 if (entry) {
1307 hashcpy(sha1, entry->u.value.sha1);
1308 if (flag)
1309 *flag |= REF_ISPACKED;
1310 return refname;
1311 }
1312 /* The reference is not a packed reference, either. */
1313 if (reading) {
1314 return NULL;
1315 } else {
1316 hashclr(sha1);
1317 return refname;
1318 }
1319 }
1320
1321 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1322 if (S_ISLNK(st.st_mode)) {
1323 len = readlink(path, buffer, sizeof(buffer)-1);
1324 if (len < 0)
1325 return NULL;
1326 buffer[len] = 0;
1327 if (!prefixcmp(buffer, "refs/") &&
1328 !check_refname_format(buffer, 0)) {
1329 strcpy(refname_buffer, buffer);
1330 refname = refname_buffer;
1331 if (flag)
1332 *flag |= REF_ISSYMREF;
1333 continue;
1334 }
1335 }
1336
1337 /* Is it a directory? */
1338 if (S_ISDIR(st.st_mode)) {
1339 errno = EISDIR;
1340 return NULL;
1341 }
1342
1343 /*
1344 * Anything else, just open it and try to use it as
1345 * a ref
1346 */
1347 fd = open(path, O_RDONLY);
1348 if (fd < 0)
1349 return NULL;
1350 len = read_in_full(fd, buffer, sizeof(buffer)-1);
1351 close(fd);
1352 if (len < 0)
1353 return NULL;
1354 while (len && isspace(buffer[len-1]))
1355 len--;
1356 buffer[len] = '\0';
1357
1358 /*
1359 * Is it a symbolic ref?
1360 */
1361 if (prefixcmp(buffer, "ref:"))
1362 break;
1363 if (flag)
1364 *flag |= REF_ISSYMREF;
1365 buf = buffer + 4;
1366 while (isspace(*buf))
1367 buf++;
1368 if (check_refname_format(buf, REFNAME_ALLOW_ONELEVEL)) {
1369 if (flag)
1370 *flag |= REF_ISBROKEN;
1371 return NULL;
1372 }
1373 refname = strcpy(refname_buffer, buf);
1374 }
1375 /* Please note that FETCH_HEAD has a second line containing other data. */
1376 if (get_sha1_hex(buffer, sha1) || (buffer[40] != '\0' && !isspace(buffer[40]))) {
1377 if (flag)
1378 *flag |= REF_ISBROKEN;
1379 return NULL;
1380 }
1381 return refname;
1382 }
1383
1384 char *resolve_refdup(const char *ref, unsigned char *sha1, int reading, int *flag)
1385 {
1386 const char *ret = resolve_ref_unsafe(ref, sha1, reading, flag);
1387 return ret ? xstrdup(ret) : NULL;
1388 }
1389
1390 /* The argument to filter_refs */
1391 struct ref_filter {
1392 const char *pattern;
1393 each_ref_fn *fn;
1394 void *cb_data;
1395 };
1396
1397 int read_ref_full(const char *refname, unsigned char *sha1, int reading, int *flags)
1398 {
1399 if (resolve_ref_unsafe(refname, sha1, reading, flags))
1400 return 0;
1401 return -1;
1402 }
1403
1404 int read_ref(const char *refname, unsigned char *sha1)
1405 {
1406 return read_ref_full(refname, sha1, 1, NULL);
1407 }
1408
1409 int ref_exists(const char *refname)
1410 {
1411 unsigned char sha1[20];
1412 return !!resolve_ref_unsafe(refname, sha1, 1, NULL);
1413 }
1414
1415 static int filter_refs(const char *refname, const unsigned char *sha1, int flags,
1416 void *data)
1417 {
1418 struct ref_filter *filter = (struct ref_filter *)data;
1419 if (fnmatch(filter->pattern, refname, 0))
1420 return 0;
1421 return filter->fn(refname, sha1, flags, filter->cb_data);
1422 }
1423
1424 enum peel_status {
1425 /* object was peeled successfully: */
1426 PEEL_PEELED = 0,
1427
1428 /*
1429 * object cannot be peeled because the named object (or an
1430 * object referred to by a tag in the peel chain), does not
1431 * exist.
1432 */
1433 PEEL_INVALID = -1,
1434
1435 /* object cannot be peeled because it is not a tag: */
1436 PEEL_NON_TAG = -2,
1437
1438 /* ref_entry contains no peeled value because it is a symref: */
1439 PEEL_IS_SYMREF = -3,
1440
1441 /*
1442 * ref_entry cannot be peeled because it is broken (i.e., the
1443 * symbolic reference cannot even be resolved to an object
1444 * name):
1445 */
1446 PEEL_BROKEN = -4
1447 };
1448
1449 /*
1450 * Peel the named object; i.e., if the object is a tag, resolve the
1451 * tag recursively until a non-tag is found. If successful, store the
1452 * result to sha1 and return PEEL_PEELED. If the object is not a tag
1453 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
1454 * and leave sha1 unchanged.
1455 */
1456 static enum peel_status peel_object(const unsigned char *name, unsigned char *sha1)
1457 {
1458 struct object *o = lookup_unknown_object(name);
1459
1460 if (o->type == OBJ_NONE) {
1461 int type = sha1_object_info(name, NULL);
1462 if (type < 0)
1463 return PEEL_INVALID;
1464 o->type = type;
1465 }
1466
1467 if (o->type != OBJ_TAG)
1468 return PEEL_NON_TAG;
1469
1470 o = deref_tag_noverify(o);
1471 if (!o)
1472 return PEEL_INVALID;
1473
1474 hashcpy(sha1, o->sha1);
1475 return PEEL_PEELED;
1476 }
1477
1478 /*
1479 * Peel the entry (if possible) and return its new peel_status. If
1480 * repeel is true, re-peel the entry even if there is an old peeled
1481 * value that is already stored in it.
1482 *
1483 * It is OK to call this function with a packed reference entry that
1484 * might be stale and might even refer to an object that has since
1485 * been garbage-collected. In such a case, if the entry has
1486 * REF_KNOWS_PEELED then leave the status unchanged and return
1487 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1488 */
1489 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1490 {
1491 enum peel_status status;
1492
1493 if (entry->flag & REF_KNOWS_PEELED) {
1494 if (repeel) {
1495 entry->flag &= ~REF_KNOWS_PEELED;
1496 hashclr(entry->u.value.peeled);
1497 } else {
1498 return is_null_sha1(entry->u.value.peeled) ?
1499 PEEL_NON_TAG : PEEL_PEELED;
1500 }
1501 }
1502 if (entry->flag & REF_ISBROKEN)
1503 return PEEL_BROKEN;
1504 if (entry->flag & REF_ISSYMREF)
1505 return PEEL_IS_SYMREF;
1506
1507 status = peel_object(entry->u.value.sha1, entry->u.value.peeled);
1508 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1509 entry->flag |= REF_KNOWS_PEELED;
1510 return status;
1511 }
1512
1513 int peel_ref(const char *refname, unsigned char *sha1)
1514 {
1515 int flag;
1516 unsigned char base[20];
1517
1518 if (current_ref && (current_ref->name == refname
1519 || !strcmp(current_ref->name, refname))) {
1520 if (peel_entry(current_ref, 0))
1521 return -1;
1522 hashcpy(sha1, current_ref->u.value.peeled);
1523 return 0;
1524 }
1525
1526 if (read_ref_full(refname, base, 1, &flag))
1527 return -1;
1528
1529 /*
1530 * If the reference is packed, read its ref_entry from the
1531 * cache in the hope that we already know its peeled value.
1532 * We only try this optimization on packed references because
1533 * (a) forcing the filling of the loose reference cache could
1534 * be expensive and (b) loose references anyway usually do not
1535 * have REF_KNOWS_PEELED.
1536 */
1537 if (flag & REF_ISPACKED) {
1538 struct ref_entry *r = get_packed_ref(refname);
1539 if (r) {
1540 if (peel_entry(r, 0))
1541 return -1;
1542 hashcpy(sha1, r->u.value.peeled);
1543 return 0;
1544 }
1545 }
1546
1547 return peel_object(base, sha1);
1548 }
1549
1550 struct warn_if_dangling_data {
1551 FILE *fp;
1552 const char *refname;
1553 const char *msg_fmt;
1554 };
1555
1556 static int warn_if_dangling_symref(const char *refname, const unsigned char *sha1,
1557 int flags, void *cb_data)
1558 {
1559 struct warn_if_dangling_data *d = cb_data;
1560 const char *resolves_to;
1561 unsigned char junk[20];
1562
1563 if (!(flags & REF_ISSYMREF))
1564 return 0;
1565
1566 resolves_to = resolve_ref_unsafe(refname, junk, 0, NULL);
1567 if (!resolves_to || strcmp(resolves_to, d->refname))
1568 return 0;
1569
1570 fprintf(d->fp, d->msg_fmt, refname);
1571 fputc('\n', d->fp);
1572 return 0;
1573 }
1574
1575 void warn_dangling_symref(FILE *fp, const char *msg_fmt, const char *refname)
1576 {
1577 struct warn_if_dangling_data data;
1578
1579 data.fp = fp;
1580 data.refname = refname;
1581 data.msg_fmt = msg_fmt;
1582 for_each_rawref(warn_if_dangling_symref, &data);
1583 }
1584
1585 /*
1586 * Call fn for each reference in the specified ref_cache, omitting
1587 * references not in the containing_dir of base. fn is called for all
1588 * references, including broken ones. If fn ever returns a non-zero
1589 * value, stop the iteration and return that value; otherwise, return
1590 * 0.
1591 */
1592 static int do_for_each_entry(struct ref_cache *refs, const char *base,
1593 each_ref_entry_fn fn, void *cb_data)
1594 {
1595 struct packed_ref_cache *packed_ref_cache = get_packed_ref_cache(refs);
1596 struct ref_dir *packed_dir = get_packed_ref_dir(packed_ref_cache);
1597 struct ref_dir *loose_dir = get_loose_refs(refs);
1598 int retval = 0;
1599
1600 acquire_packed_ref_cache(packed_ref_cache);
1601 if (base && *base) {
1602 packed_dir = find_containing_dir(packed_dir, base, 0);
1603 loose_dir = find_containing_dir(loose_dir, base, 0);
1604 }
1605
1606 if (packed_dir && loose_dir) {
1607 sort_ref_dir(packed_dir);
1608 sort_ref_dir(loose_dir);
1609 retval = do_for_each_entry_in_dirs(
1610 packed_dir, loose_dir, fn, cb_data);
1611 } else if (packed_dir) {
1612 sort_ref_dir(packed_dir);
1613 retval = do_for_each_entry_in_dir(
1614 packed_dir, 0, fn, cb_data);
1615 } else if (loose_dir) {
1616 sort_ref_dir(loose_dir);
1617 retval = do_for_each_entry_in_dir(
1618 loose_dir, 0, fn, cb_data);
1619 }
1620
1621 release_packed_ref_cache(packed_ref_cache);
1622 return retval;
1623 }
1624
1625 /*
1626 * Call fn for each reference in the specified ref_cache for which the
1627 * refname begins with base. If trim is non-zero, then trim that many
1628 * characters off the beginning of each refname before passing the
1629 * refname to fn. flags can be DO_FOR_EACH_INCLUDE_BROKEN to include
1630 * broken references in the iteration. If fn ever returns a non-zero
1631 * value, stop the iteration and return that value; otherwise, return
1632 * 0.
1633 */
1634 static int do_for_each_ref(struct ref_cache *refs, const char *base,
1635 each_ref_fn fn, int trim, int flags, void *cb_data)
1636 {
1637 struct ref_entry_cb data;
1638 data.base = base;
1639 data.trim = trim;
1640 data.flags = flags;
1641 data.fn = fn;
1642 data.cb_data = cb_data;
1643
1644 return do_for_each_entry(refs, base, do_one_ref, &data);
1645 }
1646
1647 static int do_head_ref(const char *submodule, each_ref_fn fn, void *cb_data)
1648 {
1649 unsigned char sha1[20];
1650 int flag;
1651
1652 if (submodule) {
1653 if (resolve_gitlink_ref(submodule, "HEAD", sha1) == 0)
1654 return fn("HEAD", sha1, 0, cb_data);
1655
1656 return 0;
1657 }
1658
1659 if (!read_ref_full("HEAD", sha1, 1, &flag))
1660 return fn("HEAD", sha1, flag, cb_data);
1661
1662 return 0;
1663 }
1664
1665 int head_ref(each_ref_fn fn, void *cb_data)
1666 {
1667 return do_head_ref(NULL, fn, cb_data);
1668 }
1669
1670 int head_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1671 {
1672 return do_head_ref(submodule, fn, cb_data);
1673 }
1674
1675 int for_each_ref(each_ref_fn fn, void *cb_data)
1676 {
1677 return do_for_each_ref(&ref_cache, "", fn, 0, 0, cb_data);
1678 }
1679
1680 int for_each_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1681 {
1682 return do_for_each_ref(get_ref_cache(submodule), "", fn, 0, 0, cb_data);
1683 }
1684
1685 int for_each_ref_in(const char *prefix, each_ref_fn fn, void *cb_data)
1686 {
1687 return do_for_each_ref(&ref_cache, prefix, fn, strlen(prefix), 0, cb_data);
1688 }
1689
1690 int for_each_ref_in_submodule(const char *submodule, const char *prefix,
1691 each_ref_fn fn, void *cb_data)
1692 {
1693 return do_for_each_ref(get_ref_cache(submodule), prefix, fn, strlen(prefix), 0, cb_data);
1694 }
1695
1696 int for_each_tag_ref(each_ref_fn fn, void *cb_data)
1697 {
1698 return for_each_ref_in("refs/tags/", fn, cb_data);
1699 }
1700
1701 int for_each_tag_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1702 {
1703 return for_each_ref_in_submodule(submodule, "refs/tags/", fn, cb_data);
1704 }
1705
1706 int for_each_branch_ref(each_ref_fn fn, void *cb_data)
1707 {
1708 return for_each_ref_in("refs/heads/", fn, cb_data);
1709 }
1710
1711 int for_each_branch_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1712 {
1713 return for_each_ref_in_submodule(submodule, "refs/heads/", fn, cb_data);
1714 }
1715
1716 int for_each_remote_ref(each_ref_fn fn, void *cb_data)
1717 {
1718 return for_each_ref_in("refs/remotes/", fn, cb_data);
1719 }
1720
1721 int for_each_remote_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1722 {
1723 return for_each_ref_in_submodule(submodule, "refs/remotes/", fn, cb_data);
1724 }
1725
1726 int for_each_replace_ref(each_ref_fn fn, void *cb_data)
1727 {
1728 return do_for_each_ref(&ref_cache, "refs/replace/", fn, 13, 0, cb_data);
1729 }
1730
1731 int head_ref_namespaced(each_ref_fn fn, void *cb_data)
1732 {
1733 struct strbuf buf = STRBUF_INIT;
1734 int ret = 0;
1735 unsigned char sha1[20];
1736 int flag;
1737
1738 strbuf_addf(&buf, "%sHEAD", get_git_namespace());
1739 if (!read_ref_full(buf.buf, sha1, 1, &flag))
1740 ret = fn(buf.buf, sha1, flag, cb_data);
1741 strbuf_release(&buf);
1742
1743 return ret;
1744 }
1745
1746 int for_each_namespaced_ref(each_ref_fn fn, void *cb_data)
1747 {
1748 struct strbuf buf = STRBUF_INIT;
1749 int ret;
1750 strbuf_addf(&buf, "%srefs/", get_git_namespace());
1751 ret = do_for_each_ref(&ref_cache, buf.buf, fn, 0, 0, cb_data);
1752 strbuf_release(&buf);
1753 return ret;
1754 }
1755
1756 int for_each_glob_ref_in(each_ref_fn fn, const char *pattern,
1757 const char *prefix, void *cb_data)
1758 {
1759 struct strbuf real_pattern = STRBUF_INIT;
1760 struct ref_filter filter;
1761 int ret;
1762
1763 if (!prefix && prefixcmp(pattern, "refs/"))
1764 strbuf_addstr(&real_pattern, "refs/");
1765 else if (prefix)
1766 strbuf_addstr(&real_pattern, prefix);
1767 strbuf_addstr(&real_pattern, pattern);
1768
1769 if (!has_glob_specials(pattern)) {
1770 /* Append implied '/' '*' if not present. */
1771 if (real_pattern.buf[real_pattern.len - 1] != '/')
1772 strbuf_addch(&real_pattern, '/');
1773 /* No need to check for '*', there is none. */
1774 strbuf_addch(&real_pattern, '*');
1775 }
1776
1777 filter.pattern = real_pattern.buf;
1778 filter.fn = fn;
1779 filter.cb_data = cb_data;
1780 ret = for_each_ref(filter_refs, &filter);
1781
1782 strbuf_release(&real_pattern);
1783 return ret;
1784 }
1785
1786 int for_each_glob_ref(each_ref_fn fn, const char *pattern, void *cb_data)
1787 {
1788 return for_each_glob_ref_in(fn, pattern, NULL, cb_data);
1789 }
1790
1791 int for_each_rawref(each_ref_fn fn, void *cb_data)
1792 {
1793 return do_for_each_ref(&ref_cache, "", fn, 0,
1794 DO_FOR_EACH_INCLUDE_BROKEN, cb_data);
1795 }
1796
1797 const char *prettify_refname(const char *name)
1798 {
1799 return name + (
1800 !prefixcmp(name, "refs/heads/") ? 11 :
1801 !prefixcmp(name, "refs/tags/") ? 10 :
1802 !prefixcmp(name, "refs/remotes/") ? 13 :
1803 0);
1804 }
1805
1806 const char *ref_rev_parse_rules[] = {
1807 "%.*s",
1808 "refs/%.*s",
1809 "refs/tags/%.*s",
1810 "refs/heads/%.*s",
1811 "refs/remotes/%.*s",
1812 "refs/remotes/%.*s/HEAD",
1813 NULL
1814 };
1815
1816 int refname_match(const char *abbrev_name, const char *full_name, const char **rules)
1817 {
1818 const char **p;
1819 const int abbrev_name_len = strlen(abbrev_name);
1820
1821 for (p = rules; *p; p++) {
1822 if (!strcmp(full_name, mkpath(*p, abbrev_name_len, abbrev_name))) {
1823 return 1;
1824 }
1825 }
1826
1827 return 0;
1828 }
1829
1830 static struct ref_lock *verify_lock(struct ref_lock *lock,
1831 const unsigned char *old_sha1, int mustexist)
1832 {
1833 if (read_ref_full(lock->ref_name, lock->old_sha1, mustexist, NULL)) {
1834 error("Can't verify ref %s", lock->ref_name);
1835 unlock_ref(lock);
1836 return NULL;
1837 }
1838 if (hashcmp(lock->old_sha1, old_sha1)) {
1839 error("Ref %s is at %s but expected %s", lock->ref_name,
1840 sha1_to_hex(lock->old_sha1), sha1_to_hex(old_sha1));
1841 unlock_ref(lock);
1842 return NULL;
1843 }
1844 return lock;
1845 }
1846
1847 static int remove_empty_directories(const char *file)
1848 {
1849 /* we want to create a file but there is a directory there;
1850 * if that is an empty directory (or a directory that contains
1851 * only empty directories), remove them.
1852 */
1853 struct strbuf path;
1854 int result;
1855
1856 strbuf_init(&path, 20);
1857 strbuf_addstr(&path, file);
1858
1859 result = remove_dir_recursively(&path, REMOVE_DIR_EMPTY_ONLY);
1860
1861 strbuf_release(&path);
1862
1863 return result;
1864 }
1865
1866 /*
1867 * *string and *len will only be substituted, and *string returned (for
1868 * later free()ing) if the string passed in is a magic short-hand form
1869 * to name a branch.
1870 */
1871 static char *substitute_branch_name(const char **string, int *len)
1872 {
1873 struct strbuf buf = STRBUF_INIT;
1874 int ret = interpret_branch_name(*string, &buf);
1875
1876 if (ret == *len) {
1877 size_t size;
1878 *string = strbuf_detach(&buf, &size);
1879 *len = size;
1880 return (char *)*string;
1881 }
1882
1883 return NULL;
1884 }
1885
1886 int dwim_ref(const char *str, int len, unsigned char *sha1, char **ref)
1887 {
1888 char *last_branch = substitute_branch_name(&str, &len);
1889 const char **p, *r;
1890 int refs_found = 0;
1891
1892 *ref = NULL;
1893 for (p = ref_rev_parse_rules; *p; p++) {
1894 char fullref[PATH_MAX];
1895 unsigned char sha1_from_ref[20];
1896 unsigned char *this_result;
1897 int flag;
1898
1899 this_result = refs_found ? sha1_from_ref : sha1;
1900 mksnpath(fullref, sizeof(fullref), *p, len, str);
1901 r = resolve_ref_unsafe(fullref, this_result, 1, &flag);
1902 if (r) {
1903 if (!refs_found++)
1904 *ref = xstrdup(r);
1905 if (!warn_ambiguous_refs)
1906 break;
1907 } else if ((flag & REF_ISSYMREF) && strcmp(fullref, "HEAD")) {
1908 warning("ignoring dangling symref %s.", fullref);
1909 } else if ((flag & REF_ISBROKEN) && strchr(fullref, '/')) {
1910 warning("ignoring broken ref %s.", fullref);
1911 }
1912 }
1913 free(last_branch);
1914 return refs_found;
1915 }
1916
1917 int dwim_log(const char *str, int len, unsigned char *sha1, char **log)
1918 {
1919 char *last_branch = substitute_branch_name(&str, &len);
1920 const char **p;
1921 int logs_found = 0;
1922
1923 *log = NULL;
1924 for (p = ref_rev_parse_rules; *p; p++) {
1925 struct stat st;
1926 unsigned char hash[20];
1927 char path[PATH_MAX];
1928 const char *ref, *it;
1929
1930 mksnpath(path, sizeof(path), *p, len, str);
1931 ref = resolve_ref_unsafe(path, hash, 1, NULL);
1932 if (!ref)
1933 continue;
1934 if (!stat(git_path("logs/%s", path), &st) &&
1935 S_ISREG(st.st_mode))
1936 it = path;
1937 else if (strcmp(ref, path) &&
1938 !stat(git_path("logs/%s", ref), &st) &&
1939 S_ISREG(st.st_mode))
1940 it = ref;
1941 else
1942 continue;
1943 if (!logs_found++) {
1944 *log = xstrdup(it);
1945 hashcpy(sha1, hash);
1946 }
1947 if (!warn_ambiguous_refs)
1948 break;
1949 }
1950 free(last_branch);
1951 return logs_found;
1952 }
1953
1954 static struct ref_lock *lock_ref_sha1_basic(const char *refname,
1955 const unsigned char *old_sha1,
1956 int flags, int *type_p)
1957 {
1958 char *ref_file;
1959 const char *orig_refname = refname;
1960 struct ref_lock *lock;
1961 int last_errno = 0;
1962 int type, lflags;
1963 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
1964 int missing = 0;
1965
1966 lock = xcalloc(1, sizeof(struct ref_lock));
1967 lock->lock_fd = -1;
1968
1969 refname = resolve_ref_unsafe(refname, lock->old_sha1, mustexist, &type);
1970 if (!refname && errno == EISDIR) {
1971 /* we are trying to lock foo but we used to
1972 * have foo/bar which now does not exist;
1973 * it is normal for the empty directory 'foo'
1974 * to remain.
1975 */
1976 ref_file = git_path("%s", orig_refname);
1977 if (remove_empty_directories(ref_file)) {
1978 last_errno = errno;
1979 error("there are still refs under '%s'", orig_refname);
1980 goto error_return;
1981 }
1982 refname = resolve_ref_unsafe(orig_refname, lock->old_sha1, mustexist, &type);
1983 }
1984 if (type_p)
1985 *type_p = type;
1986 if (!refname) {
1987 last_errno = errno;
1988 error("unable to resolve reference %s: %s",
1989 orig_refname, strerror(errno));
1990 goto error_return;
1991 }
1992 missing = is_null_sha1(lock->old_sha1);
1993 /* When the ref did not exist and we are creating it,
1994 * make sure there is no existing ref that is packed
1995 * whose name begins with our refname, nor a ref whose
1996 * name is a proper prefix of our refname.
1997 */
1998 if (missing &&
1999 !is_refname_available(refname, NULL, get_packed_refs(&ref_cache))) {
2000 last_errno = ENOTDIR;
2001 goto error_return;
2002 }
2003
2004 lock->lk = xcalloc(1, sizeof(struct lock_file));
2005
2006 lflags = LOCK_DIE_ON_ERROR;
2007 if (flags & REF_NODEREF) {
2008 refname = orig_refname;
2009 lflags |= LOCK_NODEREF;
2010 }
2011 lock->ref_name = xstrdup(refname);
2012 lock->orig_ref_name = xstrdup(orig_refname);
2013 ref_file = git_path("%s", refname);
2014 if (missing)
2015 lock->force_write = 1;
2016 if ((flags & REF_NODEREF) && (type & REF_ISSYMREF))
2017 lock->force_write = 1;
2018
2019 if (safe_create_leading_directories(ref_file)) {
2020 last_errno = errno;
2021 error("unable to create directory for %s", ref_file);
2022 goto error_return;
2023 }
2024
2025 lock->lock_fd = hold_lock_file_for_update(lock->lk, ref_file, lflags);
2026 return old_sha1 ? verify_lock(lock, old_sha1, mustexist) : lock;
2027
2028 error_return:
2029 unlock_ref(lock);
2030 errno = last_errno;
2031 return NULL;
2032 }
2033
2034 struct ref_lock *lock_ref_sha1(const char *refname, const unsigned char *old_sha1)
2035 {
2036 char refpath[PATH_MAX];
2037 if (check_refname_format(refname, 0))
2038 return NULL;
2039 strcpy(refpath, mkpath("refs/%s", refname));
2040 return lock_ref_sha1_basic(refpath, old_sha1, 0, NULL);
2041 }
2042
2043 struct ref_lock *lock_any_ref_for_update(const char *refname,
2044 const unsigned char *old_sha1, int flags)
2045 {
2046 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
2047 return NULL;
2048 return lock_ref_sha1_basic(refname, old_sha1, flags, NULL);
2049 }
2050
2051 /*
2052 * Write an entry to the packed-refs file for the specified refname.
2053 * If peeled is non-NULL, write it as the entry's peeled value.
2054 */
2055 static void write_packed_entry(int fd, char *refname, unsigned char *sha1,
2056 unsigned char *peeled)
2057 {
2058 char line[PATH_MAX + 100];
2059 int len;
2060
2061 len = snprintf(line, sizeof(line), "%s %s\n",
2062 sha1_to_hex(sha1), refname);
2063 /* this should not happen but just being defensive */
2064 if (len > sizeof(line))
2065 die("too long a refname '%s'", refname);
2066 write_or_die(fd, line, len);
2067
2068 if (peeled) {
2069 if (snprintf(line, sizeof(line), "^%s\n",
2070 sha1_to_hex(peeled)) != PEELED_LINE_LENGTH)
2071 die("internal error");
2072 write_or_die(fd, line, PEELED_LINE_LENGTH);
2073 }
2074 }
2075
2076 /*
2077 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2078 */
2079 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2080 {
2081 int *fd = cb_data;
2082 enum peel_status peel_status = peel_entry(entry, 0);
2083
2084 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2085 error("internal error: %s is not a valid packed reference!",
2086 entry->name);
2087 write_packed_entry(*fd, entry->name, entry->u.value.sha1,
2088 peel_status == PEEL_PEELED ?
2089 entry->u.value.peeled : NULL);
2090 return 0;
2091 }
2092
2093 int lock_packed_refs(int flags)
2094 {
2095 struct packed_ref_cache *packed_ref_cache;
2096
2097 /* Discard the old cache because it might be invalid: */
2098 clear_packed_ref_cache(&ref_cache);
2099 if (hold_lock_file_for_update(&packlock, git_path("packed-refs"), flags) < 0)
2100 return -1;
2101 /* Read the current packed-refs while holding the lock: */
2102 packed_ref_cache = get_packed_ref_cache(&ref_cache);
2103 packed_ref_cache->lock = &packlock;
2104 /* Increment the reference count to prevent it from being freed: */
2105 acquire_packed_ref_cache(packed_ref_cache);
2106 return 0;
2107 }
2108
2109 int commit_packed_refs(void)
2110 {
2111 struct packed_ref_cache *packed_ref_cache =
2112 get_packed_ref_cache(&ref_cache);
2113 int error = 0;
2114
2115 if (!packed_ref_cache->lock)
2116 die("internal error: packed-refs not locked");
2117 write_or_die(packed_ref_cache->lock->fd,
2118 PACKED_REFS_HEADER, strlen(PACKED_REFS_HEADER));
2119
2120 do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2121 0, write_packed_entry_fn,
2122 &packed_ref_cache->lock->fd);
2123 if (commit_lock_file(packed_ref_cache->lock))
2124 error = -1;
2125 packed_ref_cache->lock = NULL;
2126 release_packed_ref_cache(packed_ref_cache);
2127 return error;
2128 }
2129
2130 void rollback_packed_refs(void)
2131 {
2132 struct packed_ref_cache *packed_ref_cache =
2133 get_packed_ref_cache(&ref_cache);
2134
2135 if (!packed_ref_cache->lock)
2136 die("internal error: packed-refs not locked");
2137 rollback_lock_file(packed_ref_cache->lock);
2138 packed_ref_cache->lock = NULL;
2139 release_packed_ref_cache(packed_ref_cache);
2140 clear_packed_ref_cache(&ref_cache);
2141 }
2142
2143 struct ref_to_prune {
2144 struct ref_to_prune *next;
2145 unsigned char sha1[20];
2146 char name[FLEX_ARRAY];
2147 };
2148
2149 struct pack_refs_cb_data {
2150 unsigned int flags;
2151 struct ref_dir *packed_refs;
2152 struct ref_to_prune *ref_to_prune;
2153 };
2154
2155 /*
2156 * An each_ref_entry_fn that is run over loose references only. If
2157 * the loose reference can be packed, add an entry in the packed ref
2158 * cache. If the reference should be pruned, also add it to
2159 * ref_to_prune in the pack_refs_cb_data.
2160 */
2161 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2162 {
2163 struct pack_refs_cb_data *cb = cb_data;
2164 enum peel_status peel_status;
2165 struct ref_entry *packed_entry;
2166 int is_tag_ref = !prefixcmp(entry->name, "refs/tags/");
2167
2168 /* ALWAYS pack tags */
2169 if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2170 return 0;
2171
2172 /* Do not pack symbolic or broken refs: */
2173 if ((entry->flag & REF_ISSYMREF) || !ref_resolves_to_object(entry))
2174 return 0;
2175
2176 /* Add a packed ref cache entry equivalent to the loose entry. */
2177 peel_status = peel_entry(entry, 1);
2178 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2179 die("internal error peeling reference %s (%s)",
2180 entry->name, sha1_to_hex(entry->u.value.sha1));
2181 packed_entry = find_ref(cb->packed_refs, entry->name);
2182 if (packed_entry) {
2183 /* Overwrite existing packed entry with info from loose entry */
2184 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2185 hashcpy(packed_entry->u.value.sha1, entry->u.value.sha1);
2186 } else {
2187 packed_entry = create_ref_entry(entry->name, entry->u.value.sha1,
2188 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2189 add_ref(cb->packed_refs, packed_entry);
2190 }
2191 hashcpy(packed_entry->u.value.peeled, entry->u.value.peeled);
2192
2193 /* Schedule the loose reference for pruning if requested. */
2194 if ((cb->flags & PACK_REFS_PRUNE)) {
2195 int namelen = strlen(entry->name) + 1;
2196 struct ref_to_prune *n = xcalloc(1, sizeof(*n) + namelen);
2197 hashcpy(n->sha1, entry->u.value.sha1);
2198 strcpy(n->name, entry->name);
2199 n->next = cb->ref_to_prune;
2200 cb->ref_to_prune = n;
2201 }
2202 return 0;
2203 }
2204
2205 /*
2206 * Remove empty parents, but spare refs/ and immediate subdirs.
2207 * Note: munges *name.
2208 */
2209 static void try_remove_empty_parents(char *name)
2210 {
2211 char *p, *q;
2212 int i;
2213 p = name;
2214 for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2215 while (*p && *p != '/')
2216 p++;
2217 /* tolerate duplicate slashes; see check_refname_format() */
2218 while (*p == '/')
2219 p++;
2220 }
2221 for (q = p; *q; q++)
2222 ;
2223 while (1) {
2224 while (q > p && *q != '/')
2225 q--;
2226 while (q > p && *(q-1) == '/')
2227 q--;
2228 if (q == p)
2229 break;
2230 *q = '\0';
2231 if (rmdir(git_path("%s", name)))
2232 break;
2233 }
2234 }
2235
2236 /* make sure nobody touched the ref, and unlink */
2237 static void prune_ref(struct ref_to_prune *r)
2238 {
2239 struct ref_lock *lock = lock_ref_sha1(r->name + 5, r->sha1);
2240
2241 if (lock) {
2242 unlink_or_warn(git_path("%s", r->name));
2243 unlock_ref(lock);
2244 try_remove_empty_parents(r->name);
2245 }
2246 }
2247
2248 static void prune_refs(struct ref_to_prune *r)
2249 {
2250 while (r) {
2251 prune_ref(r);
2252 r = r->next;
2253 }
2254 }
2255
2256 int pack_refs(unsigned int flags)
2257 {
2258 struct pack_refs_cb_data cbdata;
2259
2260 memset(&cbdata, 0, sizeof(cbdata));
2261 cbdata.flags = flags;
2262
2263 lock_packed_refs(LOCK_DIE_ON_ERROR);
2264 cbdata.packed_refs = get_packed_refs(&ref_cache);
2265
2266 do_for_each_entry_in_dir(get_loose_refs(&ref_cache), 0,
2267 pack_if_possible_fn, &cbdata);
2268
2269 if (commit_packed_refs())
2270 die_errno("unable to overwrite old ref-pack file");
2271
2272 prune_refs(cbdata.ref_to_prune);
2273 return 0;
2274 }
2275
2276 /*
2277 * If entry is no longer needed in packed-refs, add it to the string
2278 * list pointed to by cb_data. Reasons for deleting entries:
2279 *
2280 * - Entry is broken.
2281 * - Entry is overridden by a loose ref.
2282 * - Entry does not point at a valid object.
2283 *
2284 * In the first and third cases, also emit an error message because these
2285 * are indications of repository corruption.
2286 */
2287 static int curate_packed_ref_fn(struct ref_entry *entry, void *cb_data)
2288 {
2289 struct string_list *refs_to_delete = cb_data;
2290
2291 if (entry->flag & REF_ISBROKEN) {
2292 /* This shouldn't happen to packed refs. */
2293 error("%s is broken!", entry->name);
2294 string_list_append(refs_to_delete, entry->name);
2295 return 0;
2296 }
2297 if (!has_sha1_file(entry->u.value.sha1)) {
2298 unsigned char sha1[20];
2299 int flags;
2300
2301 if (read_ref_full(entry->name, sha1, 0, &flags))
2302 /* We should at least have found the packed ref. */
2303 die("Internal error");
2304 if ((flags & REF_ISSYMREF) || !(flags & REF_ISPACKED)) {
2305 /*
2306 * This packed reference is overridden by a
2307 * loose reference, so it is OK that its value
2308 * is no longer valid; for example, it might
2309 * refer to an object that has been garbage
2310 * collected. For this purpose we don't even
2311 * care whether the loose reference itself is
2312 * invalid, broken, symbolic, etc. Silently
2313 * remove the packed reference.
2314 */
2315 string_list_append(refs_to_delete, entry->name);
2316 return 0;
2317 }
2318 /*
2319 * There is no overriding loose reference, so the fact
2320 * that this reference doesn't refer to a valid object
2321 * indicates some kind of repository corruption.
2322 * Report the problem, then omit the reference from
2323 * the output.
2324 */
2325 error("%s does not point to a valid object!", entry->name);
2326 string_list_append(refs_to_delete, entry->name);
2327 return 0;
2328 }
2329
2330 return 0;
2331 }
2332
2333 static int repack_without_ref(const char *refname)
2334 {
2335 struct ref_dir *packed;
2336 struct string_list refs_to_delete = STRING_LIST_INIT_DUP;
2337 struct string_list_item *ref_to_delete;
2338
2339 if (!get_packed_ref(refname))
2340 return 0; /* refname does not exist in packed refs */
2341
2342 if (lock_packed_refs(0)) {
2343 unable_to_lock_error(git_path("packed-refs"), errno);
2344 return error("cannot delete '%s' from packed refs", refname);
2345 }
2346 packed = get_packed_refs(&ref_cache);
2347
2348 /* Remove refname from the cache: */
2349 if (remove_entry(packed, refname) == -1) {
2350 /*
2351 * The packed entry disappeared while we were
2352 * acquiring the lock.
2353 */
2354 rollback_packed_refs();
2355 return 0;
2356 }
2357
2358 /* Remove any other accumulated cruft: */
2359 do_for_each_entry_in_dir(packed, 0, curate_packed_ref_fn, &refs_to_delete);
2360 for_each_string_list_item(ref_to_delete, &refs_to_delete) {
2361 if (remove_entry(packed, ref_to_delete->string) == -1)
2362 die("internal error");
2363 }
2364
2365 /* Write what remains: */
2366 return commit_packed_refs();
2367 }
2368
2369 int delete_ref(const char *refname, const unsigned char *sha1, int delopt)
2370 {
2371 struct ref_lock *lock;
2372 int err, i = 0, ret = 0, flag = 0;
2373
2374 lock = lock_ref_sha1_basic(refname, sha1, delopt, &flag);
2375 if (!lock)
2376 return 1;
2377 if (!(flag & REF_ISPACKED) || flag & REF_ISSYMREF) {
2378 /* loose */
2379 i = strlen(lock->lk->filename) - 5; /* .lock */
2380 lock->lk->filename[i] = 0;
2381 err = unlink_or_warn(lock->lk->filename);
2382 if (err && errno != ENOENT)
2383 ret = 1;
2384
2385 lock->lk->filename[i] = '.';
2386 }
2387 /* removing the loose one could have resurrected an earlier
2388 * packed one. Also, if it was not loose we need to repack
2389 * without it.
2390 */
2391 ret |= repack_without_ref(lock->ref_name);
2392
2393 unlink_or_warn(git_path("logs/%s", lock->ref_name));
2394 clear_loose_ref_cache(&ref_cache);
2395 unlock_ref(lock);
2396 return ret;
2397 }
2398
2399 /*
2400 * People using contrib's git-new-workdir have .git/logs/refs ->
2401 * /some/other/path/.git/logs/refs, and that may live on another device.
2402 *
2403 * IOW, to avoid cross device rename errors, the temporary renamed log must
2404 * live into logs/refs.
2405 */
2406 #define TMP_RENAMED_LOG "logs/refs/.tmp-renamed-log"
2407
2408 int rename_ref(const char *oldrefname, const char *newrefname, const char *logmsg)
2409 {
2410 unsigned char sha1[20], orig_sha1[20];
2411 int flag = 0, logmoved = 0;
2412 struct ref_lock *lock;
2413 struct stat loginfo;
2414 int log = !lstat(git_path("logs/%s", oldrefname), &loginfo);
2415 const char *symref = NULL;
2416
2417 if (log && S_ISLNK(loginfo.st_mode))
2418 return error("reflog for %s is a symlink", oldrefname);
2419
2420 symref = resolve_ref_unsafe(oldrefname, orig_sha1, 1, &flag);
2421 if (flag & REF_ISSYMREF)
2422 return error("refname %s is a symbolic ref, renaming it is not supported",
2423 oldrefname);
2424 if (!symref)
2425 return error("refname %s not found", oldrefname);
2426
2427 if (!is_refname_available(newrefname, oldrefname, get_packed_refs(&ref_cache)))
2428 return 1;
2429
2430 if (!is_refname_available(newrefname, oldrefname, get_loose_refs(&ref_cache)))
2431 return 1;
2432
2433 if (log && rename(git_path("logs/%s", oldrefname), git_path(TMP_RENAMED_LOG)))
2434 return error("unable to move logfile logs/%s to "TMP_RENAMED_LOG": %s",
2435 oldrefname, strerror(errno));
2436
2437 if (delete_ref(oldrefname, orig_sha1, REF_NODEREF)) {
2438 error("unable to delete old %s", oldrefname);
2439 goto rollback;
2440 }
2441
2442 if (!read_ref_full(newrefname, sha1, 1, &flag) &&
2443 delete_ref(newrefname, sha1, REF_NODEREF)) {
2444 if (errno==EISDIR) {
2445 if (remove_empty_directories(git_path("%s", newrefname))) {
2446 error("Directory not empty: %s", newrefname);
2447 goto rollback;
2448 }
2449 } else {
2450 error("unable to delete existing %s", newrefname);
2451 goto rollback;
2452 }
2453 }
2454
2455 if (log && safe_create_leading_directories(git_path("logs/%s", newrefname))) {
2456 error("unable to create directory for %s", newrefname);
2457 goto rollback;
2458 }
2459
2460 retry:
2461 if (log && rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", newrefname))) {
2462 if (errno==EISDIR || errno==ENOTDIR) {
2463 /*
2464 * rename(a, b) when b is an existing
2465 * directory ought to result in ISDIR, but
2466 * Solaris 5.8 gives ENOTDIR. Sheesh.
2467 */
2468 if (remove_empty_directories(git_path("logs/%s", newrefname))) {
2469 error("Directory not empty: logs/%s", newrefname);
2470 goto rollback;
2471 }
2472 goto retry;
2473 } else {
2474 error("unable to move logfile "TMP_RENAMED_LOG" to logs/%s: %s",
2475 newrefname, strerror(errno));
2476 goto rollback;
2477 }
2478 }
2479 logmoved = log;
2480
2481 lock = lock_ref_sha1_basic(newrefname, NULL, 0, NULL);
2482 if (!lock) {
2483 error("unable to lock %s for update", newrefname);
2484 goto rollback;
2485 }
2486 lock->force_write = 1;
2487 hashcpy(lock->old_sha1, orig_sha1);
2488 if (write_ref_sha1(lock, orig_sha1, logmsg)) {
2489 error("unable to write current sha1 into %s", newrefname);
2490 goto rollback;
2491 }
2492
2493 return 0;
2494
2495 rollback:
2496 lock = lock_ref_sha1_basic(oldrefname, NULL, 0, NULL);
2497 if (!lock) {
2498 error("unable to lock %s for rollback", oldrefname);
2499 goto rollbacklog;
2500 }
2501
2502 lock->force_write = 1;
2503 flag = log_all_ref_updates;
2504 log_all_ref_updates = 0;
2505 if (write_ref_sha1(lock, orig_sha1, NULL))
2506 error("unable to write current sha1 into %s", oldrefname);
2507 log_all_ref_updates = flag;
2508
2509 rollbacklog:
2510 if (logmoved && rename(git_path("logs/%s", newrefname), git_path("logs/%s", oldrefname)))
2511 error("unable to restore logfile %s from %s: %s",
2512 oldrefname, newrefname, strerror(errno));
2513 if (!logmoved && log &&
2514 rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", oldrefname)))
2515 error("unable to restore logfile %s from "TMP_RENAMED_LOG": %s",
2516 oldrefname, strerror(errno));
2517
2518 return 1;
2519 }
2520
2521 int close_ref(struct ref_lock *lock)
2522 {
2523 if (close_lock_file(lock->lk))
2524 return -1;
2525 lock->lock_fd = -1;
2526 return 0;
2527 }
2528
2529 int commit_ref(struct ref_lock *lock)
2530 {
2531 if (commit_lock_file(lock->lk))
2532 return -1;
2533 lock->lock_fd = -1;
2534 return 0;
2535 }
2536
2537 void unlock_ref(struct ref_lock *lock)
2538 {
2539 /* Do not free lock->lk -- atexit() still looks at them */
2540 if (lock->lk)
2541 rollback_lock_file(lock->lk);
2542 free(lock->ref_name);
2543 free(lock->orig_ref_name);
2544 free(lock);
2545 }
2546
2547 /*
2548 * copy the reflog message msg to buf, which has been allocated sufficiently
2549 * large, while cleaning up the whitespaces. Especially, convert LF to space,
2550 * because reflog file is one line per entry.
2551 */
2552 static int copy_msg(char *buf, const char *msg)
2553 {
2554 char *cp = buf;
2555 char c;
2556 int wasspace = 1;
2557
2558 *cp++ = '\t';
2559 while ((c = *msg++)) {
2560 if (wasspace && isspace(c))
2561 continue;
2562 wasspace = isspace(c);
2563 if (wasspace)
2564 c = ' ';
2565 *cp++ = c;
2566 }
2567 while (buf < cp && isspace(cp[-1]))
2568 cp--;
2569 *cp++ = '\n';
2570 return cp - buf;
2571 }
2572
2573 int log_ref_setup(const char *refname, char *logfile, int bufsize)
2574 {
2575 int logfd, oflags = O_APPEND | O_WRONLY;
2576
2577 git_snpath(logfile, bufsize, "logs/%s", refname);
2578 if (log_all_ref_updates &&
2579 (!prefixcmp(refname, "refs/heads/") ||
2580 !prefixcmp(refname, "refs/remotes/") ||
2581 !prefixcmp(refname, "refs/notes/") ||
2582 !strcmp(refname, "HEAD"))) {
2583 if (safe_create_leading_directories(logfile) < 0)
2584 return error("unable to create directory for %s",
2585 logfile);
2586 oflags |= O_CREAT;
2587 }
2588
2589 logfd = open(logfile, oflags, 0666);
2590 if (logfd < 0) {
2591 if (!(oflags & O_CREAT) && errno == ENOENT)
2592 return 0;
2593
2594 if ((oflags & O_CREAT) && errno == EISDIR) {
2595 if (remove_empty_directories(logfile)) {
2596 return error("There are still logs under '%s'",
2597 logfile);
2598 }
2599 logfd = open(logfile, oflags, 0666);
2600 }
2601
2602 if (logfd < 0)
2603 return error("Unable to append to %s: %s",
2604 logfile, strerror(errno));
2605 }
2606
2607 adjust_shared_perm(logfile);
2608 close(logfd);
2609 return 0;
2610 }
2611
2612 static int log_ref_write(const char *refname, const unsigned char *old_sha1,
2613 const unsigned char *new_sha1, const char *msg)
2614 {
2615 int logfd, result, written, oflags = O_APPEND | O_WRONLY;
2616 unsigned maxlen, len;
2617 int msglen;
2618 char log_file[PATH_MAX];
2619 char *logrec;
2620 const char *committer;
2621
2622 if (log_all_ref_updates < 0)
2623 log_all_ref_updates = !is_bare_repository();
2624
2625 result = log_ref_setup(refname, log_file, sizeof(log_file));
2626 if (result)
2627 return result;
2628
2629 logfd = open(log_file, oflags);
2630 if (logfd < 0)
2631 return 0;
2632 msglen = msg ? strlen(msg) : 0;
2633 committer = git_committer_info(0);
2634 maxlen = strlen(committer) + msglen + 100;
2635 logrec = xmalloc(maxlen);
2636 len = sprintf(logrec, "%s %s %s\n",
2637 sha1_to_hex(old_sha1),
2638 sha1_to_hex(new_sha1),
2639 committer);
2640 if (msglen)
2641 len += copy_msg(logrec + len - 1, msg) - 1;
2642 written = len <= maxlen ? write_in_full(logfd, logrec, len) : -1;
2643 free(logrec);
2644 if (close(logfd) != 0 || written != len)
2645 return error("Unable to append to %s", log_file);
2646 return 0;
2647 }
2648
2649 static int is_branch(const char *refname)
2650 {
2651 return !strcmp(refname, "HEAD") || !prefixcmp(refname, "refs/heads/");
2652 }
2653
2654 int write_ref_sha1(struct ref_lock *lock,
2655 const unsigned char *sha1, const char *logmsg)
2656 {
2657 static char term = '\n';
2658 struct object *o;
2659
2660 if (!lock)
2661 return -1;
2662 if (!lock->force_write && !hashcmp(lock->old_sha1, sha1)) {
2663 unlock_ref(lock);
2664 return 0;
2665 }
2666 o = parse_object(sha1);
2667 if (!o) {
2668 error("Trying to write ref %s with nonexistent object %s",
2669 lock->ref_name, sha1_to_hex(sha1));
2670 unlock_ref(lock);
2671 return -1;
2672 }
2673 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
2674 error("Trying to write non-commit object %s to branch %s",
2675 sha1_to_hex(sha1), lock->ref_name);
2676 unlock_ref(lock);
2677 return -1;
2678 }
2679 if (write_in_full(lock->lock_fd, sha1_to_hex(sha1), 40) != 40 ||
2680 write_in_full(lock->lock_fd, &term, 1) != 1
2681 || close_ref(lock) < 0) {
2682 error("Couldn't write %s", lock->lk->filename);
2683 unlock_ref(lock);
2684 return -1;
2685 }
2686 clear_loose_ref_cache(&ref_cache);
2687 if (log_ref_write(lock->ref_name, lock->old_sha1, sha1, logmsg) < 0 ||
2688 (strcmp(lock->ref_name, lock->orig_ref_name) &&
2689 log_ref_write(lock->orig_ref_name, lock->old_sha1, sha1, logmsg) < 0)) {
2690 unlock_ref(lock);
2691 return -1;
2692 }
2693 if (strcmp(lock->orig_ref_name, "HEAD") != 0) {
2694 /*
2695 * Special hack: If a branch is updated directly and HEAD
2696 * points to it (may happen on the remote side of a push
2697 * for example) then logically the HEAD reflog should be
2698 * updated too.
2699 * A generic solution implies reverse symref information,
2700 * but finding all symrefs pointing to the given branch
2701 * would be rather costly for this rare event (the direct
2702 * update of a branch) to be worth it. So let's cheat and
2703 * check with HEAD only which should cover 99% of all usage
2704 * scenarios (even 100% of the default ones).
2705 */
2706 unsigned char head_sha1[20];
2707 int head_flag;
2708 const char *head_ref;
2709 head_ref = resolve_ref_unsafe("HEAD", head_sha1, 1, &head_flag);
2710 if (head_ref && (head_flag & REF_ISSYMREF) &&
2711 !strcmp(head_ref, lock->ref_name))
2712 log_ref_write("HEAD", lock->old_sha1, sha1, logmsg);
2713 }
2714 if (commit_ref(lock)) {
2715 error("Couldn't set %s", lock->ref_name);
2716 unlock_ref(lock);
2717 return -1;
2718 }
2719 unlock_ref(lock);
2720 return 0;
2721 }
2722
2723 int create_symref(const char *ref_target, const char *refs_heads_master,
2724 const char *logmsg)
2725 {
2726 const char *lockpath;
2727 char ref[1000];
2728 int fd, len, written;
2729 char *git_HEAD = git_pathdup("%s", ref_target);
2730 unsigned char old_sha1[20], new_sha1[20];
2731
2732 if (logmsg && read_ref(ref_target, old_sha1))
2733 hashclr(old_sha1);
2734
2735 if (safe_create_leading_directories(git_HEAD) < 0)
2736 return error("unable to create directory for %s", git_HEAD);
2737
2738 #ifndef NO_SYMLINK_HEAD
2739 if (prefer_symlink_refs) {
2740 unlink(git_HEAD);
2741 if (!symlink(refs_heads_master, git_HEAD))
2742 goto done;
2743 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
2744 }
2745 #endif
2746
2747 len = snprintf(ref, sizeof(ref), "ref: %s\n", refs_heads_master);
2748 if (sizeof(ref) <= len) {
2749 error("refname too long: %s", refs_heads_master);
2750 goto error_free_return;
2751 }
2752 lockpath = mkpath("%s.lock", git_HEAD);
2753 fd = open(lockpath, O_CREAT | O_EXCL | O_WRONLY, 0666);
2754 if (fd < 0) {
2755 error("Unable to open %s for writing", lockpath);
2756 goto error_free_return;
2757 }
2758 written = write_in_full(fd, ref, len);
2759 if (close(fd) != 0 || written != len) {
2760 error("Unable to write to %s", lockpath);
2761 goto error_unlink_return;
2762 }
2763 if (rename(lockpath, git_HEAD) < 0) {
2764 error("Unable to create %s", git_HEAD);
2765 goto error_unlink_return;
2766 }
2767 if (adjust_shared_perm(git_HEAD)) {
2768 error("Unable to fix permissions on %s", lockpath);
2769 error_unlink_return:
2770 unlink_or_warn(lockpath);
2771 error_free_return:
2772 free(git_HEAD);
2773 return -1;
2774 }
2775
2776 #ifndef NO_SYMLINK_HEAD
2777 done:
2778 #endif
2779 if (logmsg && !read_ref(refs_heads_master, new_sha1))
2780 log_ref_write(ref_target, old_sha1, new_sha1, logmsg);
2781
2782 free(git_HEAD);
2783 return 0;
2784 }
2785
2786 static char *ref_msg(const char *line, const char *endp)
2787 {
2788 const char *ep;
2789 line += 82;
2790 ep = memchr(line, '\n', endp - line);
2791 if (!ep)
2792 ep = endp;
2793 return xmemdupz(line, ep - line);
2794 }
2795
2796 int read_ref_at(const char *refname, unsigned long at_time, int cnt,
2797 unsigned char *sha1, char **msg,
2798 unsigned long *cutoff_time, int *cutoff_tz, int *cutoff_cnt)
2799 {
2800 const char *logfile, *logdata, *logend, *rec, *lastgt, *lastrec;
2801 char *tz_c;
2802 int logfd, tz, reccnt = 0;
2803 struct stat st;
2804 unsigned long date;
2805 unsigned char logged_sha1[20];
2806 void *log_mapped;
2807 size_t mapsz;
2808
2809 logfile = git_path("logs/%s", refname);
2810 logfd = open(logfile, O_RDONLY, 0);
2811 if (logfd < 0)
2812 die_errno("Unable to read log '%s'", logfile);
2813 fstat(logfd, &st);
2814 if (!st.st_size)
2815 die("Log %s is empty.", logfile);
2816 mapsz = xsize_t(st.st_size);
2817 log_mapped = xmmap(NULL, mapsz, PROT_READ, MAP_PRIVATE, logfd, 0);
2818 logdata = log_mapped;
2819 close(logfd);
2820
2821 lastrec = NULL;
2822 rec = logend = logdata + st.st_size;
2823 while (logdata < rec) {
2824 reccnt++;
2825 if (logdata < rec && *(rec-1) == '\n')
2826 rec--;
2827 lastgt = NULL;
2828 while (logdata < rec && *(rec-1) != '\n') {
2829 rec--;
2830 if (*rec == '>')
2831 lastgt = rec;
2832 }
2833 if (!lastgt)
2834 die("Log %s is corrupt.", logfile);
2835 date = strtoul(lastgt + 1, &tz_c, 10);
2836 if (date <= at_time || cnt == 0) {
2837 tz = strtoul(tz_c, NULL, 10);
2838 if (msg)
2839 *msg = ref_msg(rec, logend);
2840 if (cutoff_time)
2841 *cutoff_time = date;
2842 if (cutoff_tz)
2843 *cutoff_tz = tz;
2844 if (cutoff_cnt)
2845 *cutoff_cnt = reccnt - 1;
2846 if (lastrec) {
2847 if (get_sha1_hex(lastrec, logged_sha1))
2848 die("Log %s is corrupt.", logfile);
2849 if (get_sha1_hex(rec + 41, sha1))
2850 die("Log %s is corrupt.", logfile);
2851 if (hashcmp(logged_sha1, sha1)) {
2852 warning("Log %s has gap after %s.",
2853 logfile, show_date(date, tz, DATE_RFC2822));
2854 }
2855 }
2856 else if (date == at_time) {
2857 if (get_sha1_hex(rec + 41, sha1))
2858 die("Log %s is corrupt.", logfile);
2859 }
2860 else {
2861 if (get_sha1_hex(rec + 41, logged_sha1))
2862 die("Log %s is corrupt.", logfile);
2863 if (hashcmp(logged_sha1, sha1)) {
2864 warning("Log %s unexpectedly ended on %s.",
2865 logfile, show_date(date, tz, DATE_RFC2822));
2866 }
2867 }
2868 munmap(log_mapped, mapsz);
2869 return 0;
2870 }
2871 lastrec = rec;
2872 if (cnt > 0)
2873 cnt--;
2874 }
2875
2876 rec = logdata;
2877 while (rec < logend && *rec != '>' && *rec != '\n')
2878 rec++;
2879 if (rec == logend || *rec == '\n')
2880 die("Log %s is corrupt.", logfile);
2881 date = strtoul(rec + 1, &tz_c, 10);
2882 tz = strtoul(tz_c, NULL, 10);
2883 if (get_sha1_hex(logdata, sha1))
2884 die("Log %s is corrupt.", logfile);
2885 if (is_null_sha1(sha1)) {
2886 if (get_sha1_hex(logdata + 41, sha1))
2887 die("Log %s is corrupt.", logfile);
2888 }
2889 if (msg)
2890 *msg = ref_msg(logdata, logend);
2891 munmap(log_mapped, mapsz);
2892
2893 if (cutoff_time)
2894 *cutoff_time = date;
2895 if (cutoff_tz)
2896 *cutoff_tz = tz;
2897 if (cutoff_cnt)
2898 *cutoff_cnt = reccnt;
2899 return 1;
2900 }
2901
2902 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
2903 {
2904 unsigned char osha1[20], nsha1[20];
2905 char *email_end, *message;
2906 unsigned long timestamp;
2907 int tz;
2908
2909 /* old SP new SP name <email> SP time TAB msg LF */
2910 if (sb->len < 83 || sb->buf[sb->len - 1] != '\n' ||
2911 get_sha1_hex(sb->buf, osha1) || sb->buf[40] != ' ' ||
2912 get_sha1_hex(sb->buf + 41, nsha1) || sb->buf[81] != ' ' ||
2913 !(email_end = strchr(sb->buf + 82, '>')) ||
2914 email_end[1] != ' ' ||
2915 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
2916 !message || message[0] != ' ' ||
2917 (message[1] != '+' && message[1] != '-') ||
2918 !isdigit(message[2]) || !isdigit(message[3]) ||
2919 !isdigit(message[4]) || !isdigit(message[5]))
2920 return 0; /* corrupt? */
2921 email_end[1] = '\0';
2922 tz = strtol(message + 1, NULL, 10);
2923 if (message[6] != '\t')
2924 message += 6;
2925 else
2926 message += 7;
2927 return fn(osha1, nsha1, sb->buf + 82, timestamp, tz, message, cb_data);
2928 }
2929
2930 static char *find_beginning_of_line(char *bob, char *scan)
2931 {
2932 while (bob < scan && *(--scan) != '\n')
2933 ; /* keep scanning backwards */
2934 /*
2935 * Return either beginning of the buffer, or LF at the end of
2936 * the previous line.
2937 */
2938 return scan;
2939 }
2940
2941 int for_each_reflog_ent_reverse(const char *refname, each_reflog_ent_fn fn, void *cb_data)
2942 {
2943 struct strbuf sb = STRBUF_INIT;
2944 FILE *logfp;
2945 long pos;
2946 int ret = 0, at_tail = 1;
2947
2948 logfp = fopen(git_path("logs/%s", refname), "r");
2949 if (!logfp)
2950 return -1;
2951
2952 /* Jump to the end */
2953 if (fseek(logfp, 0, SEEK_END) < 0)
2954 return error("cannot seek back reflog for %s: %s",
2955 refname, strerror(errno));
2956 pos = ftell(logfp);
2957 while (!ret && 0 < pos) {
2958 int cnt;
2959 size_t nread;
2960 char buf[BUFSIZ];
2961 char *endp, *scanp;
2962
2963 /* Fill next block from the end */
2964 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
2965 if (fseek(logfp, pos - cnt, SEEK_SET))
2966 return error("cannot seek back reflog for %s: %s",
2967 refname, strerror(errno));
2968 nread = fread(buf, cnt, 1, logfp);
2969 if (nread != 1)
2970 return error("cannot read %d bytes from reflog for %s: %s",
2971 cnt, refname, strerror(errno));
2972 pos -= cnt;
2973
2974 scanp = endp = buf + cnt;
2975 if (at_tail && scanp[-1] == '\n')
2976 /* Looking at the final LF at the end of the file */
2977 scanp--;
2978 at_tail = 0;
2979
2980 while (buf < scanp) {
2981 /*
2982 * terminating LF of the previous line, or the beginning
2983 * of the buffer.
2984 */
2985 char *bp;
2986
2987 bp = find_beginning_of_line(buf, scanp);
2988
2989 if (*bp != '\n') {
2990 strbuf_splice(&sb, 0, 0, buf, endp - buf);
2991 if (pos)
2992 break; /* need to fill another block */
2993 scanp = buf - 1; /* leave loop */
2994 } else {
2995 /*
2996 * (bp + 1) thru endp is the beginning of the
2997 * current line we have in sb
2998 */
2999 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3000 scanp = bp;
3001 endp = bp + 1;
3002 }
3003 ret = show_one_reflog_ent(&sb, fn, cb_data);
3004 strbuf_reset(&sb);
3005 if (ret)
3006 break;
3007 }
3008
3009 }
3010 if (!ret && sb.len)
3011 ret = show_one_reflog_ent(&sb, fn, cb_data);
3012
3013 fclose(logfp);
3014 strbuf_release(&sb);
3015 return ret;
3016 }
3017
3018 int for_each_reflog_ent(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3019 {
3020 FILE *logfp;
3021 struct strbuf sb = STRBUF_INIT;
3022 int ret = 0;
3023
3024 logfp = fopen(git_path("logs/%s", refname), "r");
3025 if (!logfp)
3026 return -1;
3027
3028 while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3029 ret = show_one_reflog_ent(&sb, fn, cb_data);
3030 fclose(logfp);
3031 strbuf_release(&sb);
3032 return ret;
3033 }
3034 /*
3035 * Call fn for each reflog in the namespace indicated by name. name
3036 * must be empty or end with '/'. Name will be used as a scratch
3037 * space, but its contents will be restored before return.
3038 */
3039 static int do_for_each_reflog(struct strbuf *name, each_ref_fn fn, void *cb_data)
3040 {
3041 DIR *d = opendir(git_path("logs/%s", name->buf));
3042 int retval = 0;
3043 struct dirent *de;
3044 int oldlen = name->len;
3045
3046 if (!d)
3047 return name->len ? errno : 0;
3048
3049 while ((de = readdir(d)) != NULL) {
3050 struct stat st;
3051
3052 if (de->d_name[0] == '.')
3053 continue;
3054 if (has_extension(de->d_name, ".lock"))
3055 continue;
3056 strbuf_addstr(name, de->d_name);
3057 if (stat(git_path("logs/%s", name->buf), &st) < 0) {
3058 ; /* silently ignore */
3059 } else {
3060 if (S_ISDIR(st.st_mode)) {
3061 strbuf_addch(name, '/');
3062 retval = do_for_each_reflog(name, fn, cb_data);
3063 } else {
3064 unsigned char sha1[20];
3065 if (read_ref_full(name->buf, sha1, 0, NULL))
3066 retval = error("bad ref for %s", name->buf);
3067 else
3068 retval = fn(name->buf, sha1, 0, cb_data);
3069 }
3070 if (retval)
3071 break;
3072 }
3073 strbuf_setlen(name, oldlen);
3074 }
3075 closedir(d);
3076 return retval;
3077 }
3078
3079 int for_each_reflog(each_ref_fn fn, void *cb_data)
3080 {
3081 int retval;
3082 struct strbuf name;
3083 strbuf_init(&name, PATH_MAX);
3084 retval = do_for_each_reflog(&name, fn, cb_data);
3085 strbuf_release(&name);
3086 return retval;
3087 }
3088
3089 int update_ref(const char *action, const char *refname,
3090 const unsigned char *sha1, const unsigned char *oldval,
3091 int flags, enum action_on_err onerr)
3092 {
3093 static struct ref_lock *lock;
3094 lock = lock_any_ref_for_update(refname, oldval, flags);
3095 if (!lock) {
3096 const char *str = "Cannot lock the ref '%s'.";
3097 switch (onerr) {
3098 case MSG_ON_ERR: error(str, refname); break;
3099 case DIE_ON_ERR: die(str, refname); break;
3100 case QUIET_ON_ERR: break;
3101 }
3102 return 1;
3103 }
3104 if (write_ref_sha1(lock, sha1, action) < 0) {
3105 const char *str = "Cannot update the ref '%s'.";
3106 switch (onerr) {
3107 case MSG_ON_ERR: error(str, refname); break;
3108 case DIE_ON_ERR: die(str, refname); break;
3109 case QUIET_ON_ERR: break;
3110 }
3111 return 1;
3112 }
3113 return 0;
3114 }
3115
3116 struct ref *find_ref_by_name(const struct ref *list, const char *name)
3117 {
3118 for ( ; list; list = list->next)
3119 if (!strcmp(list->name, name))
3120 return (struct ref *)list;
3121 return NULL;
3122 }
3123
3124 /*
3125 * generate a format suitable for scanf from a ref_rev_parse_rules
3126 * rule, that is replace the "%.*s" spec with a "%s" spec
3127 */
3128 static void gen_scanf_fmt(char *scanf_fmt, const char *rule)
3129 {
3130 char *spec;
3131
3132 spec = strstr(rule, "%.*s");
3133 if (!spec || strstr(spec + 4, "%.*s"))
3134 die("invalid rule in ref_rev_parse_rules: %s", rule);
3135
3136 /* copy all until spec */
3137 strncpy(scanf_fmt, rule, spec - rule);
3138 scanf_fmt[spec - rule] = '\0';
3139 /* copy new spec */
3140 strcat(scanf_fmt, "%s");
3141 /* copy remaining rule */
3142 strcat(scanf_fmt, spec + 4);
3143
3144 return;
3145 }
3146
3147 char *shorten_unambiguous_ref(const char *refname, int strict)
3148 {
3149 int i;
3150 static char **scanf_fmts;
3151 static int nr_rules;
3152 char *short_name;
3153
3154 /* pre generate scanf formats from ref_rev_parse_rules[] */
3155 if (!nr_rules) {
3156 size_t total_len = 0;
3157
3158 /* the rule list is NULL terminated, count them first */
3159 for (; ref_rev_parse_rules[nr_rules]; nr_rules++)
3160 /* no +1 because strlen("%s") < strlen("%.*s") */
3161 total_len += strlen(ref_rev_parse_rules[nr_rules]);
3162
3163 scanf_fmts = xmalloc(nr_rules * sizeof(char *) + total_len);
3164
3165 total_len = 0;
3166 for (i = 0; i < nr_rules; i++) {
3167 scanf_fmts[i] = (char *)&scanf_fmts[nr_rules]
3168 + total_len;
3169 gen_scanf_fmt(scanf_fmts[i], ref_rev_parse_rules[i]);
3170 total_len += strlen(ref_rev_parse_rules[i]);
3171 }
3172 }
3173
3174 /* bail out if there are no rules */
3175 if (!nr_rules)
3176 return xstrdup(refname);
3177
3178 /* buffer for scanf result, at most refname must fit */
3179 short_name = xstrdup(refname);
3180
3181 /* skip first rule, it will always match */
3182 for (i = nr_rules - 1; i > 0 ; --i) {
3183 int j;
3184 int rules_to_fail = i;
3185 int short_name_len;
3186
3187 if (1 != sscanf(refname, scanf_fmts[i], short_name))
3188 continue;
3189
3190 short_name_len = strlen(short_name);
3191
3192 /*
3193 * in strict mode, all (except the matched one) rules
3194 * must fail to resolve to a valid non-ambiguous ref
3195 */
3196 if (strict)
3197 rules_to_fail = nr_rules;
3198
3199 /*
3200 * check if the short name resolves to a valid ref,
3201 * but use only rules prior to the matched one
3202 */
3203 for (j = 0; j < rules_to_fail; j++) {
3204 const char *rule = ref_rev_parse_rules[j];
3205 char refname[PATH_MAX];
3206
3207 /* skip matched rule */
3208 if (i == j)
3209 continue;
3210
3211 /*
3212 * the short name is ambiguous, if it resolves
3213 * (with this previous rule) to a valid ref
3214 * read_ref() returns 0 on success
3215 */
3216 mksnpath(refname, sizeof(refname),
3217 rule, short_name_len, short_name);
3218 if (ref_exists(refname))
3219 break;
3220 }
3221
3222 /*
3223 * short name is non-ambiguous if all previous rules
3224 * haven't resolved to a valid ref
3225 */
3226 if (j == rules_to_fail)
3227 return short_name;
3228 }
3229
3230 free(short_name);
3231 return xstrdup(refname);
3232 }
3233
3234 static struct string_list *hide_refs;
3235
3236 int parse_hide_refs_config(const char *var, const char *value, const char *section)
3237 {
3238 if (!strcmp("transfer.hiderefs", var) ||
3239 /* NEEDSWORK: use parse_config_key() once both are merged */
3240 (!prefixcmp(var, section) && var[strlen(section)] == '.' &&
3241 !strcmp(var + strlen(section), ".hiderefs"))) {
3242 char *ref;
3243 int len;
3244
3245 if (!value)
3246 return config_error_nonbool(var);
3247 ref = xstrdup(value);
3248 len = strlen(ref);
3249 while (len && ref[len - 1] == '/')
3250 ref[--len] = '\0';
3251 if (!hide_refs) {
3252 hide_refs = xcalloc(1, sizeof(*hide_refs));
3253 hide_refs->strdup_strings = 1;
3254 }
3255 string_list_append(hide_refs, ref);
3256 }
3257 return 0;
3258 }
3259
3260 int ref_is_hidden(const char *refname)
3261 {
3262 struct string_list_item *item;
3263
3264 if (!hide_refs)
3265 return 0;
3266 for_each_string_list_item(item, hide_refs) {
3267 int len;
3268 if (prefixcmp(refname, item->string))
3269 continue;
3270 len = strlen(item->string);
3271 if (!refname[len] || refname[len] == '/')
3272 return 1;
3273 }
3274 return 0;
3275 }