]> git.ipfire.org Git - thirdparty/git.git/blob - refs.c
lock_ref_sha1_basic(): report errors via a "struct strbuf *err"
[thirdparty/git.git] / refs.c
1 #include "cache.h"
2 #include "lockfile.h"
3 #include "refs.h"
4 #include "object.h"
5 #include "tag.h"
6 #include "dir.h"
7 #include "string-list.h"
8
9 struct ref_lock {
10 char *ref_name;
11 char *orig_ref_name;
12 struct lock_file *lk;
13 unsigned char old_sha1[20];
14 int lock_fd;
15 };
16
17 /*
18 * How to handle various characters in refnames:
19 * 0: An acceptable character for refs
20 * 1: End-of-component
21 * 2: ., look for a preceding . to reject .. in refs
22 * 3: {, look for a preceding @ to reject @{ in refs
23 * 4: A bad character: ASCII control characters, "~", "^", ":" or SP
24 */
25 static unsigned char refname_disposition[256] = {
26 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
27 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
28 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 1,
29 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4,
30 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
31 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 4, 0,
32 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
33 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 4, 4
34 };
35
36 /*
37 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken
38 * refs (i.e., because the reference is about to be deleted anyway).
39 */
40 #define REF_DELETING 0x02
41
42 /*
43 * Used as a flag in ref_update::flags when a loose ref is being
44 * pruned.
45 */
46 #define REF_ISPRUNING 0x04
47
48 /*
49 * Used as a flag in ref_update::flags when the reference should be
50 * updated to new_sha1.
51 */
52 #define REF_HAVE_NEW 0x08
53
54 /*
55 * Used as a flag in ref_update::flags when old_sha1 should be
56 * checked.
57 */
58 #define REF_HAVE_OLD 0x10
59
60 /*
61 * Try to read one refname component from the front of refname.
62 * Return the length of the component found, or -1 if the component is
63 * not legal. It is legal if it is something reasonable to have under
64 * ".git/refs/"; We do not like it if:
65 *
66 * - any path component of it begins with ".", or
67 * - it has double dots "..", or
68 * - it has ASCII control character, "~", "^", ":" or SP, anywhere, or
69 * - it ends with a "/".
70 * - it ends with ".lock"
71 * - it contains a "\" (backslash)
72 */
73 static int check_refname_component(const char *refname, int flags)
74 {
75 const char *cp;
76 char last = '\0';
77
78 for (cp = refname; ; cp++) {
79 int ch = *cp & 255;
80 unsigned char disp = refname_disposition[ch];
81 switch (disp) {
82 case 1:
83 goto out;
84 case 2:
85 if (last == '.')
86 return -1; /* Refname contains "..". */
87 break;
88 case 3:
89 if (last == '@')
90 return -1; /* Refname contains "@{". */
91 break;
92 case 4:
93 return -1;
94 }
95 last = ch;
96 }
97 out:
98 if (cp == refname)
99 return 0; /* Component has zero length. */
100 if (refname[0] == '.')
101 return -1; /* Component starts with '.'. */
102 if (cp - refname >= LOCK_SUFFIX_LEN &&
103 !memcmp(cp - LOCK_SUFFIX_LEN, LOCK_SUFFIX, LOCK_SUFFIX_LEN))
104 return -1; /* Refname ends with ".lock". */
105 return cp - refname;
106 }
107
108 int check_refname_format(const char *refname, int flags)
109 {
110 int component_len, component_count = 0;
111
112 if (!strcmp(refname, "@"))
113 /* Refname is a single character '@'. */
114 return -1;
115
116 while (1) {
117 /* We are at the start of a path component. */
118 component_len = check_refname_component(refname, flags);
119 if (component_len <= 0) {
120 if ((flags & REFNAME_REFSPEC_PATTERN) &&
121 refname[0] == '*' &&
122 (refname[1] == '\0' || refname[1] == '/')) {
123 /* Accept one wildcard as a full refname component. */
124 flags &= ~REFNAME_REFSPEC_PATTERN;
125 component_len = 1;
126 } else {
127 return -1;
128 }
129 }
130 component_count++;
131 if (refname[component_len] == '\0')
132 break;
133 /* Skip to next component. */
134 refname += component_len + 1;
135 }
136
137 if (refname[component_len - 1] == '.')
138 return -1; /* Refname ends with '.'. */
139 if (!(flags & REFNAME_ALLOW_ONELEVEL) && component_count < 2)
140 return -1; /* Refname has only one component. */
141 return 0;
142 }
143
144 struct ref_entry;
145
146 /*
147 * Information used (along with the information in ref_entry) to
148 * describe a single cached reference. This data structure only
149 * occurs embedded in a union in struct ref_entry, and only when
150 * (ref_entry->flag & REF_DIR) is zero.
151 */
152 struct ref_value {
153 /*
154 * The name of the object to which this reference resolves
155 * (which may be a tag object). If REF_ISBROKEN, this is
156 * null. If REF_ISSYMREF, then this is the name of the object
157 * referred to by the last reference in the symlink chain.
158 */
159 unsigned char sha1[20];
160
161 /*
162 * If REF_KNOWS_PEELED, then this field holds the peeled value
163 * of this reference, or null if the reference is known not to
164 * be peelable. See the documentation for peel_ref() for an
165 * exact definition of "peelable".
166 */
167 unsigned char peeled[20];
168 };
169
170 struct ref_cache;
171
172 /*
173 * Information used (along with the information in ref_entry) to
174 * describe a level in the hierarchy of references. This data
175 * structure only occurs embedded in a union in struct ref_entry, and
176 * only when (ref_entry.flag & REF_DIR) is set. In that case,
177 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
178 * in the directory have already been read:
179 *
180 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
181 * or packed references, already read.
182 *
183 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
184 * references that hasn't been read yet (nor has any of its
185 * subdirectories).
186 *
187 * Entries within a directory are stored within a growable array of
188 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
189 * sorted are sorted by their component name in strcmp() order and the
190 * remaining entries are unsorted.
191 *
192 * Loose references are read lazily, one directory at a time. When a
193 * directory of loose references is read, then all of the references
194 * in that directory are stored, and REF_INCOMPLETE stubs are created
195 * for any subdirectories, but the subdirectories themselves are not
196 * read. The reading is triggered by get_ref_dir().
197 */
198 struct ref_dir {
199 int nr, alloc;
200
201 /*
202 * Entries with index 0 <= i < sorted are sorted by name. New
203 * entries are appended to the list unsorted, and are sorted
204 * only when required; thus we avoid the need to sort the list
205 * after the addition of every reference.
206 */
207 int sorted;
208
209 /* A pointer to the ref_cache that contains this ref_dir. */
210 struct ref_cache *ref_cache;
211
212 struct ref_entry **entries;
213 };
214
215 /*
216 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
217 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
218 * public values; see refs.h.
219 */
220
221 /*
222 * The field ref_entry->u.value.peeled of this value entry contains
223 * the correct peeled value for the reference, which might be
224 * null_sha1 if the reference is not a tag or if it is broken.
225 */
226 #define REF_KNOWS_PEELED 0x10
227
228 /* ref_entry represents a directory of references */
229 #define REF_DIR 0x20
230
231 /*
232 * Entry has not yet been read from disk (used only for REF_DIR
233 * entries representing loose references)
234 */
235 #define REF_INCOMPLETE 0x40
236
237 /*
238 * A ref_entry represents either a reference or a "subdirectory" of
239 * references.
240 *
241 * Each directory in the reference namespace is represented by a
242 * ref_entry with (flags & REF_DIR) set and containing a subdir member
243 * that holds the entries in that directory that have been read so
244 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
245 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
246 * used for loose reference directories.
247 *
248 * References are represented by a ref_entry with (flags & REF_DIR)
249 * unset and a value member that describes the reference's value. The
250 * flag member is at the ref_entry level, but it is also needed to
251 * interpret the contents of the value field (in other words, a
252 * ref_value object is not very much use without the enclosing
253 * ref_entry).
254 *
255 * Reference names cannot end with slash and directories' names are
256 * always stored with a trailing slash (except for the top-level
257 * directory, which is always denoted by ""). This has two nice
258 * consequences: (1) when the entries in each subdir are sorted
259 * lexicographically by name (as they usually are), the references in
260 * a whole tree can be generated in lexicographic order by traversing
261 * the tree in left-to-right, depth-first order; (2) the names of
262 * references and subdirectories cannot conflict, and therefore the
263 * presence of an empty subdirectory does not block the creation of a
264 * similarly-named reference. (The fact that reference names with the
265 * same leading components can conflict *with each other* is a
266 * separate issue that is regulated by verify_refname_available().)
267 *
268 * Please note that the name field contains the fully-qualified
269 * reference (or subdirectory) name. Space could be saved by only
270 * storing the relative names. But that would require the full names
271 * to be generated on the fly when iterating in do_for_each_ref(), and
272 * would break callback functions, who have always been able to assume
273 * that the name strings that they are passed will not be freed during
274 * the iteration.
275 */
276 struct ref_entry {
277 unsigned char flag; /* ISSYMREF? ISPACKED? */
278 union {
279 struct ref_value value; /* if not (flags&REF_DIR) */
280 struct ref_dir subdir; /* if (flags&REF_DIR) */
281 } u;
282 /*
283 * The full name of the reference (e.g., "refs/heads/master")
284 * or the full name of the directory with a trailing slash
285 * (e.g., "refs/heads/"):
286 */
287 char name[FLEX_ARRAY];
288 };
289
290 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
291
292 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
293 {
294 struct ref_dir *dir;
295 assert(entry->flag & REF_DIR);
296 dir = &entry->u.subdir;
297 if (entry->flag & REF_INCOMPLETE) {
298 read_loose_refs(entry->name, dir);
299 entry->flag &= ~REF_INCOMPLETE;
300 }
301 return dir;
302 }
303
304 /*
305 * Check if a refname is safe.
306 * For refs that start with "refs/" we consider it safe as long they do
307 * not try to resolve to outside of refs/.
308 *
309 * For all other refs we only consider them safe iff they only contain
310 * upper case characters and '_' (like "HEAD" AND "MERGE_HEAD", and not like
311 * "config").
312 */
313 static int refname_is_safe(const char *refname)
314 {
315 if (starts_with(refname, "refs/")) {
316 char *buf;
317 int result;
318
319 buf = xmalloc(strlen(refname) + 1);
320 /*
321 * Does the refname try to escape refs/?
322 * For example: refs/foo/../bar is safe but refs/foo/../../bar
323 * is not.
324 */
325 result = !normalize_path_copy(buf, refname + strlen("refs/"));
326 free(buf);
327 return result;
328 }
329 while (*refname) {
330 if (!isupper(*refname) && *refname != '_')
331 return 0;
332 refname++;
333 }
334 return 1;
335 }
336
337 static struct ref_entry *create_ref_entry(const char *refname,
338 const unsigned char *sha1, int flag,
339 int check_name)
340 {
341 int len;
342 struct ref_entry *ref;
343
344 if (check_name &&
345 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
346 die("Reference has invalid format: '%s'", refname);
347 if (!check_name && !refname_is_safe(refname))
348 die("Reference has invalid name: '%s'", refname);
349 len = strlen(refname) + 1;
350 ref = xmalloc(sizeof(struct ref_entry) + len);
351 hashcpy(ref->u.value.sha1, sha1);
352 hashclr(ref->u.value.peeled);
353 memcpy(ref->name, refname, len);
354 ref->flag = flag;
355 return ref;
356 }
357
358 static void clear_ref_dir(struct ref_dir *dir);
359
360 static void free_ref_entry(struct ref_entry *entry)
361 {
362 if (entry->flag & REF_DIR) {
363 /*
364 * Do not use get_ref_dir() here, as that might
365 * trigger the reading of loose refs.
366 */
367 clear_ref_dir(&entry->u.subdir);
368 }
369 free(entry);
370 }
371
372 /*
373 * Add a ref_entry to the end of dir (unsorted). Entry is always
374 * stored directly in dir; no recursion into subdirectories is
375 * done.
376 */
377 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
378 {
379 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
380 dir->entries[dir->nr++] = entry;
381 /* optimize for the case that entries are added in order */
382 if (dir->nr == 1 ||
383 (dir->nr == dir->sorted + 1 &&
384 strcmp(dir->entries[dir->nr - 2]->name,
385 dir->entries[dir->nr - 1]->name) < 0))
386 dir->sorted = dir->nr;
387 }
388
389 /*
390 * Clear and free all entries in dir, recursively.
391 */
392 static void clear_ref_dir(struct ref_dir *dir)
393 {
394 int i;
395 for (i = 0; i < dir->nr; i++)
396 free_ref_entry(dir->entries[i]);
397 free(dir->entries);
398 dir->sorted = dir->nr = dir->alloc = 0;
399 dir->entries = NULL;
400 }
401
402 /*
403 * Create a struct ref_entry object for the specified dirname.
404 * dirname is the name of the directory with a trailing slash (e.g.,
405 * "refs/heads/") or "" for the top-level directory.
406 */
407 static struct ref_entry *create_dir_entry(struct ref_cache *ref_cache,
408 const char *dirname, size_t len,
409 int incomplete)
410 {
411 struct ref_entry *direntry;
412 direntry = xcalloc(1, sizeof(struct ref_entry) + len + 1);
413 memcpy(direntry->name, dirname, len);
414 direntry->name[len] = '\0';
415 direntry->u.subdir.ref_cache = ref_cache;
416 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
417 return direntry;
418 }
419
420 static int ref_entry_cmp(const void *a, const void *b)
421 {
422 struct ref_entry *one = *(struct ref_entry **)a;
423 struct ref_entry *two = *(struct ref_entry **)b;
424 return strcmp(one->name, two->name);
425 }
426
427 static void sort_ref_dir(struct ref_dir *dir);
428
429 struct string_slice {
430 size_t len;
431 const char *str;
432 };
433
434 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
435 {
436 const struct string_slice *key = key_;
437 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
438 int cmp = strncmp(key->str, ent->name, key->len);
439 if (cmp)
440 return cmp;
441 return '\0' - (unsigned char)ent->name[key->len];
442 }
443
444 /*
445 * Return the index of the entry with the given refname from the
446 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
447 * no such entry is found. dir must already be complete.
448 */
449 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
450 {
451 struct ref_entry **r;
452 struct string_slice key;
453
454 if (refname == NULL || !dir->nr)
455 return -1;
456
457 sort_ref_dir(dir);
458 key.len = len;
459 key.str = refname;
460 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
461 ref_entry_cmp_sslice);
462
463 if (r == NULL)
464 return -1;
465
466 return r - dir->entries;
467 }
468
469 /*
470 * Search for a directory entry directly within dir (without
471 * recursing). Sort dir if necessary. subdirname must be a directory
472 * name (i.e., end in '/'). If mkdir is set, then create the
473 * directory if it is missing; otherwise, return NULL if the desired
474 * directory cannot be found. dir must already be complete.
475 */
476 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
477 const char *subdirname, size_t len,
478 int mkdir)
479 {
480 int entry_index = search_ref_dir(dir, subdirname, len);
481 struct ref_entry *entry;
482 if (entry_index == -1) {
483 if (!mkdir)
484 return NULL;
485 /*
486 * Since dir is complete, the absence of a subdir
487 * means that the subdir really doesn't exist;
488 * therefore, create an empty record for it but mark
489 * the record complete.
490 */
491 entry = create_dir_entry(dir->ref_cache, subdirname, len, 0);
492 add_entry_to_dir(dir, entry);
493 } else {
494 entry = dir->entries[entry_index];
495 }
496 return get_ref_dir(entry);
497 }
498
499 /*
500 * If refname is a reference name, find the ref_dir within the dir
501 * tree that should hold refname. If refname is a directory name
502 * (i.e., ends in '/'), then return that ref_dir itself. dir must
503 * represent the top-level directory and must already be complete.
504 * Sort ref_dirs and recurse into subdirectories as necessary. If
505 * mkdir is set, then create any missing directories; otherwise,
506 * return NULL if the desired directory cannot be found.
507 */
508 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
509 const char *refname, int mkdir)
510 {
511 const char *slash;
512 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
513 size_t dirnamelen = slash - refname + 1;
514 struct ref_dir *subdir;
515 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
516 if (!subdir) {
517 dir = NULL;
518 break;
519 }
520 dir = subdir;
521 }
522
523 return dir;
524 }
525
526 /*
527 * Find the value entry with the given name in dir, sorting ref_dirs
528 * and recursing into subdirectories as necessary. If the name is not
529 * found or it corresponds to a directory entry, return NULL.
530 */
531 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
532 {
533 int entry_index;
534 struct ref_entry *entry;
535 dir = find_containing_dir(dir, refname, 0);
536 if (!dir)
537 return NULL;
538 entry_index = search_ref_dir(dir, refname, strlen(refname));
539 if (entry_index == -1)
540 return NULL;
541 entry = dir->entries[entry_index];
542 return (entry->flag & REF_DIR) ? NULL : entry;
543 }
544
545 /*
546 * Remove the entry with the given name from dir, recursing into
547 * subdirectories as necessary. If refname is the name of a directory
548 * (i.e., ends with '/'), then remove the directory and its contents.
549 * If the removal was successful, return the number of entries
550 * remaining in the directory entry that contained the deleted entry.
551 * If the name was not found, return -1. Please note that this
552 * function only deletes the entry from the cache; it does not delete
553 * it from the filesystem or ensure that other cache entries (which
554 * might be symbolic references to the removed entry) are updated.
555 * Nor does it remove any containing dir entries that might be made
556 * empty by the removal. dir must represent the top-level directory
557 * and must already be complete.
558 */
559 static int remove_entry(struct ref_dir *dir, const char *refname)
560 {
561 int refname_len = strlen(refname);
562 int entry_index;
563 struct ref_entry *entry;
564 int is_dir = refname[refname_len - 1] == '/';
565 if (is_dir) {
566 /*
567 * refname represents a reference directory. Remove
568 * the trailing slash; otherwise we will get the
569 * directory *representing* refname rather than the
570 * one *containing* it.
571 */
572 char *dirname = xmemdupz(refname, refname_len - 1);
573 dir = find_containing_dir(dir, dirname, 0);
574 free(dirname);
575 } else {
576 dir = find_containing_dir(dir, refname, 0);
577 }
578 if (!dir)
579 return -1;
580 entry_index = search_ref_dir(dir, refname, refname_len);
581 if (entry_index == -1)
582 return -1;
583 entry = dir->entries[entry_index];
584
585 memmove(&dir->entries[entry_index],
586 &dir->entries[entry_index + 1],
587 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
588 );
589 dir->nr--;
590 if (dir->sorted > entry_index)
591 dir->sorted--;
592 free_ref_entry(entry);
593 return dir->nr;
594 }
595
596 /*
597 * Add a ref_entry to the ref_dir (unsorted), recursing into
598 * subdirectories as necessary. dir must represent the top-level
599 * directory. Return 0 on success.
600 */
601 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
602 {
603 dir = find_containing_dir(dir, ref->name, 1);
604 if (!dir)
605 return -1;
606 add_entry_to_dir(dir, ref);
607 return 0;
608 }
609
610 /*
611 * Emit a warning and return true iff ref1 and ref2 have the same name
612 * and the same sha1. Die if they have the same name but different
613 * sha1s.
614 */
615 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
616 {
617 if (strcmp(ref1->name, ref2->name))
618 return 0;
619
620 /* Duplicate name; make sure that they don't conflict: */
621
622 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
623 /* This is impossible by construction */
624 die("Reference directory conflict: %s", ref1->name);
625
626 if (hashcmp(ref1->u.value.sha1, ref2->u.value.sha1))
627 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
628
629 warning("Duplicated ref: %s", ref1->name);
630 return 1;
631 }
632
633 /*
634 * Sort the entries in dir non-recursively (if they are not already
635 * sorted) and remove any duplicate entries.
636 */
637 static void sort_ref_dir(struct ref_dir *dir)
638 {
639 int i, j;
640 struct ref_entry *last = NULL;
641
642 /*
643 * This check also prevents passing a zero-length array to qsort(),
644 * which is a problem on some platforms.
645 */
646 if (dir->sorted == dir->nr)
647 return;
648
649 qsort(dir->entries, dir->nr, sizeof(*dir->entries), ref_entry_cmp);
650
651 /* Remove any duplicates: */
652 for (i = 0, j = 0; j < dir->nr; j++) {
653 struct ref_entry *entry = dir->entries[j];
654 if (last && is_dup_ref(last, entry))
655 free_ref_entry(entry);
656 else
657 last = dir->entries[i++] = entry;
658 }
659 dir->sorted = dir->nr = i;
660 }
661
662 /* Include broken references in a do_for_each_ref*() iteration: */
663 #define DO_FOR_EACH_INCLUDE_BROKEN 0x01
664
665 /*
666 * Return true iff the reference described by entry can be resolved to
667 * an object in the database. Emit a warning if the referred-to
668 * object does not exist.
669 */
670 static int ref_resolves_to_object(struct ref_entry *entry)
671 {
672 if (entry->flag & REF_ISBROKEN)
673 return 0;
674 if (!has_sha1_file(entry->u.value.sha1)) {
675 error("%s does not point to a valid object!", entry->name);
676 return 0;
677 }
678 return 1;
679 }
680
681 /*
682 * current_ref is a performance hack: when iterating over references
683 * using the for_each_ref*() functions, current_ref is set to the
684 * current reference's entry before calling the callback function. If
685 * the callback function calls peel_ref(), then peel_ref() first
686 * checks whether the reference to be peeled is the current reference
687 * (it usually is) and if so, returns that reference's peeled version
688 * if it is available. This avoids a refname lookup in a common case.
689 */
690 static struct ref_entry *current_ref;
691
692 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
693
694 struct ref_entry_cb {
695 const char *base;
696 int trim;
697 int flags;
698 each_ref_fn *fn;
699 void *cb_data;
700 };
701
702 /*
703 * Handle one reference in a do_for_each_ref*()-style iteration,
704 * calling an each_ref_fn for each entry.
705 */
706 static int do_one_ref(struct ref_entry *entry, void *cb_data)
707 {
708 struct ref_entry_cb *data = cb_data;
709 struct ref_entry *old_current_ref;
710 int retval;
711
712 if (!starts_with(entry->name, data->base))
713 return 0;
714
715 if (!(data->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
716 !ref_resolves_to_object(entry))
717 return 0;
718
719 /* Store the old value, in case this is a recursive call: */
720 old_current_ref = current_ref;
721 current_ref = entry;
722 retval = data->fn(entry->name + data->trim, entry->u.value.sha1,
723 entry->flag, data->cb_data);
724 current_ref = old_current_ref;
725 return retval;
726 }
727
728 /*
729 * Call fn for each reference in dir that has index in the range
730 * offset <= index < dir->nr. Recurse into subdirectories that are in
731 * that index range, sorting them before iterating. This function
732 * does not sort dir itself; it should be sorted beforehand. fn is
733 * called for all references, including broken ones.
734 */
735 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
736 each_ref_entry_fn fn, void *cb_data)
737 {
738 int i;
739 assert(dir->sorted == dir->nr);
740 for (i = offset; i < dir->nr; i++) {
741 struct ref_entry *entry = dir->entries[i];
742 int retval;
743 if (entry->flag & REF_DIR) {
744 struct ref_dir *subdir = get_ref_dir(entry);
745 sort_ref_dir(subdir);
746 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
747 } else {
748 retval = fn(entry, cb_data);
749 }
750 if (retval)
751 return retval;
752 }
753 return 0;
754 }
755
756 /*
757 * Call fn for each reference in the union of dir1 and dir2, in order
758 * by refname. Recurse into subdirectories. If a value entry appears
759 * in both dir1 and dir2, then only process the version that is in
760 * dir2. The input dirs must already be sorted, but subdirs will be
761 * sorted as needed. fn is called for all references, including
762 * broken ones.
763 */
764 static int do_for_each_entry_in_dirs(struct ref_dir *dir1,
765 struct ref_dir *dir2,
766 each_ref_entry_fn fn, void *cb_data)
767 {
768 int retval;
769 int i1 = 0, i2 = 0;
770
771 assert(dir1->sorted == dir1->nr);
772 assert(dir2->sorted == dir2->nr);
773 while (1) {
774 struct ref_entry *e1, *e2;
775 int cmp;
776 if (i1 == dir1->nr) {
777 return do_for_each_entry_in_dir(dir2, i2, fn, cb_data);
778 }
779 if (i2 == dir2->nr) {
780 return do_for_each_entry_in_dir(dir1, i1, fn, cb_data);
781 }
782 e1 = dir1->entries[i1];
783 e2 = dir2->entries[i2];
784 cmp = strcmp(e1->name, e2->name);
785 if (cmp == 0) {
786 if ((e1->flag & REF_DIR) && (e2->flag & REF_DIR)) {
787 /* Both are directories; descend them in parallel. */
788 struct ref_dir *subdir1 = get_ref_dir(e1);
789 struct ref_dir *subdir2 = get_ref_dir(e2);
790 sort_ref_dir(subdir1);
791 sort_ref_dir(subdir2);
792 retval = do_for_each_entry_in_dirs(
793 subdir1, subdir2, fn, cb_data);
794 i1++;
795 i2++;
796 } else if (!(e1->flag & REF_DIR) && !(e2->flag & REF_DIR)) {
797 /* Both are references; ignore the one from dir1. */
798 retval = fn(e2, cb_data);
799 i1++;
800 i2++;
801 } else {
802 die("conflict between reference and directory: %s",
803 e1->name);
804 }
805 } else {
806 struct ref_entry *e;
807 if (cmp < 0) {
808 e = e1;
809 i1++;
810 } else {
811 e = e2;
812 i2++;
813 }
814 if (e->flag & REF_DIR) {
815 struct ref_dir *subdir = get_ref_dir(e);
816 sort_ref_dir(subdir);
817 retval = do_for_each_entry_in_dir(
818 subdir, 0, fn, cb_data);
819 } else {
820 retval = fn(e, cb_data);
821 }
822 }
823 if (retval)
824 return retval;
825 }
826 }
827
828 /*
829 * Load all of the refs from the dir into our in-memory cache. The hard work
830 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
831 * through all of the sub-directories. We do not even need to care about
832 * sorting, as traversal order does not matter to us.
833 */
834 static void prime_ref_dir(struct ref_dir *dir)
835 {
836 int i;
837 for (i = 0; i < dir->nr; i++) {
838 struct ref_entry *entry = dir->entries[i];
839 if (entry->flag & REF_DIR)
840 prime_ref_dir(get_ref_dir(entry));
841 }
842 }
843
844 struct nonmatching_ref_data {
845 const struct string_list *skip;
846 const char *conflicting_refname;
847 };
848
849 static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
850 {
851 struct nonmatching_ref_data *data = vdata;
852
853 if (data->skip && string_list_has_string(data->skip, entry->name))
854 return 0;
855
856 data->conflicting_refname = entry->name;
857 return 1;
858 }
859
860 /*
861 * Return 0 if a reference named refname could be created without
862 * conflicting with the name of an existing reference in dir.
863 * Otherwise, return a negative value and write an explanation to err.
864 * If extras is non-NULL, it is a list of additional refnames with
865 * which refname is not allowed to conflict. If skip is non-NULL,
866 * ignore potential conflicts with refs in skip (e.g., because they
867 * are scheduled for deletion in the same operation). Behavior is
868 * undefined if the same name is listed in both extras and skip.
869 *
870 * Two reference names conflict if one of them exactly matches the
871 * leading components of the other; e.g., "refs/foo/bar" conflicts
872 * with both "refs/foo" and with "refs/foo/bar/baz" but not with
873 * "refs/foo/bar" or "refs/foo/barbados".
874 *
875 * extras and skip must be sorted.
876 */
877 static int verify_refname_available(const char *refname,
878 const struct string_list *extras,
879 const struct string_list *skip,
880 struct ref_dir *dir,
881 struct strbuf *err)
882 {
883 const char *slash;
884 int pos;
885 struct strbuf dirname = STRBUF_INIT;
886 int ret = -1;
887
888 /*
889 * For the sake of comments in this function, suppose that
890 * refname is "refs/foo/bar".
891 */
892
893 assert(err);
894
895 strbuf_grow(&dirname, strlen(refname) + 1);
896 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
897 /* Expand dirname to the new prefix, not including the trailing slash: */
898 strbuf_add(&dirname, refname + dirname.len, slash - refname - dirname.len);
899
900 /*
901 * We are still at a leading dir of the refname (e.g.,
902 * "refs/foo"; if there is a reference with that name,
903 * it is a conflict, *unless* it is in skip.
904 */
905 if (dir) {
906 pos = search_ref_dir(dir, dirname.buf, dirname.len);
907 if (pos >= 0 &&
908 (!skip || !string_list_has_string(skip, dirname.buf))) {
909 /*
910 * We found a reference whose name is
911 * a proper prefix of refname; e.g.,
912 * "refs/foo", and is not in skip.
913 */
914 strbuf_addf(err, "'%s' exists; cannot create '%s'",
915 dirname.buf, refname);
916 goto cleanup;
917 }
918 }
919
920 if (extras && string_list_has_string(extras, dirname.buf) &&
921 (!skip || !string_list_has_string(skip, dirname.buf))) {
922 strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
923 refname, dirname.buf);
924 goto cleanup;
925 }
926
927 /*
928 * Otherwise, we can try to continue our search with
929 * the next component. So try to look up the
930 * directory, e.g., "refs/foo/". If we come up empty,
931 * we know there is nothing under this whole prefix,
932 * but even in that case we still have to continue the
933 * search for conflicts with extras.
934 */
935 strbuf_addch(&dirname, '/');
936 if (dir) {
937 pos = search_ref_dir(dir, dirname.buf, dirname.len);
938 if (pos < 0) {
939 /*
940 * There was no directory "refs/foo/",
941 * so there is nothing under this
942 * whole prefix. So there is no need
943 * to continue looking for conflicting
944 * references. But we need to continue
945 * looking for conflicting extras.
946 */
947 dir = NULL;
948 } else {
949 dir = get_ref_dir(dir->entries[pos]);
950 }
951 }
952 }
953
954 /*
955 * We are at the leaf of our refname (e.g., "refs/foo/bar").
956 * There is no point in searching for a reference with that
957 * name, because a refname isn't considered to conflict with
958 * itself. But we still need to check for references whose
959 * names are in the "refs/foo/bar/" namespace, because they
960 * *do* conflict.
961 */
962 strbuf_addstr(&dirname, refname + dirname.len);
963 strbuf_addch(&dirname, '/');
964
965 if (dir) {
966 pos = search_ref_dir(dir, dirname.buf, dirname.len);
967
968 if (pos >= 0) {
969 /*
970 * We found a directory named "$refname/"
971 * (e.g., "refs/foo/bar/"). It is a problem
972 * iff it contains any ref that is not in
973 * "skip".
974 */
975 struct nonmatching_ref_data data;
976
977 data.skip = skip;
978 data.conflicting_refname = NULL;
979 dir = get_ref_dir(dir->entries[pos]);
980 sort_ref_dir(dir);
981 if (do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data)) {
982 strbuf_addf(err, "'%s' exists; cannot create '%s'",
983 data.conflicting_refname, refname);
984 goto cleanup;
985 }
986 }
987 }
988
989 if (extras) {
990 /*
991 * Check for entries in extras that start with
992 * "$refname/". We do that by looking for the place
993 * where "$refname/" would be inserted in extras. If
994 * there is an entry at that position that starts with
995 * "$refname/" and is not in skip, then we have a
996 * conflict.
997 */
998 for (pos = string_list_find_insert_index(extras, dirname.buf, 0);
999 pos < extras->nr; pos++) {
1000 const char *extra_refname = extras->items[pos].string;
1001
1002 if (!starts_with(extra_refname, dirname.buf))
1003 break;
1004
1005 if (!skip || !string_list_has_string(skip, extra_refname)) {
1006 strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
1007 refname, extra_refname);
1008 goto cleanup;
1009 }
1010 }
1011 }
1012
1013 /* No conflicts were found */
1014 ret = 0;
1015
1016 cleanup:
1017 strbuf_release(&dirname);
1018 return ret;
1019 }
1020
1021 struct packed_ref_cache {
1022 struct ref_entry *root;
1023
1024 /*
1025 * Count of references to the data structure in this instance,
1026 * including the pointer from ref_cache::packed if any. The
1027 * data will not be freed as long as the reference count is
1028 * nonzero.
1029 */
1030 unsigned int referrers;
1031
1032 /*
1033 * Iff the packed-refs file associated with this instance is
1034 * currently locked for writing, this points at the associated
1035 * lock (which is owned by somebody else). The referrer count
1036 * is also incremented when the file is locked and decremented
1037 * when it is unlocked.
1038 */
1039 struct lock_file *lock;
1040
1041 /* The metadata from when this packed-refs cache was read */
1042 struct stat_validity validity;
1043 };
1044
1045 /*
1046 * Future: need to be in "struct repository"
1047 * when doing a full libification.
1048 */
1049 static struct ref_cache {
1050 struct ref_cache *next;
1051 struct ref_entry *loose;
1052 struct packed_ref_cache *packed;
1053 /*
1054 * The submodule name, or "" for the main repo. We allocate
1055 * length 1 rather than FLEX_ARRAY so that the main ref_cache
1056 * is initialized correctly.
1057 */
1058 char name[1];
1059 } ref_cache, *submodule_ref_caches;
1060
1061 /* Lock used for the main packed-refs file: */
1062 static struct lock_file packlock;
1063
1064 /*
1065 * Increment the reference count of *packed_refs.
1066 */
1067 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
1068 {
1069 packed_refs->referrers++;
1070 }
1071
1072 /*
1073 * Decrease the reference count of *packed_refs. If it goes to zero,
1074 * free *packed_refs and return true; otherwise return false.
1075 */
1076 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
1077 {
1078 if (!--packed_refs->referrers) {
1079 free_ref_entry(packed_refs->root);
1080 stat_validity_clear(&packed_refs->validity);
1081 free(packed_refs);
1082 return 1;
1083 } else {
1084 return 0;
1085 }
1086 }
1087
1088 static void clear_packed_ref_cache(struct ref_cache *refs)
1089 {
1090 if (refs->packed) {
1091 struct packed_ref_cache *packed_refs = refs->packed;
1092
1093 if (packed_refs->lock)
1094 die("internal error: packed-ref cache cleared while locked");
1095 refs->packed = NULL;
1096 release_packed_ref_cache(packed_refs);
1097 }
1098 }
1099
1100 static void clear_loose_ref_cache(struct ref_cache *refs)
1101 {
1102 if (refs->loose) {
1103 free_ref_entry(refs->loose);
1104 refs->loose = NULL;
1105 }
1106 }
1107
1108 static struct ref_cache *create_ref_cache(const char *submodule)
1109 {
1110 int len;
1111 struct ref_cache *refs;
1112 if (!submodule)
1113 submodule = "";
1114 len = strlen(submodule) + 1;
1115 refs = xcalloc(1, sizeof(struct ref_cache) + len);
1116 memcpy(refs->name, submodule, len);
1117 return refs;
1118 }
1119
1120 /*
1121 * Return a pointer to a ref_cache for the specified submodule. For
1122 * the main repository, use submodule==NULL. The returned structure
1123 * will be allocated and initialized but not necessarily populated; it
1124 * should not be freed.
1125 */
1126 static struct ref_cache *get_ref_cache(const char *submodule)
1127 {
1128 struct ref_cache *refs;
1129
1130 if (!submodule || !*submodule)
1131 return &ref_cache;
1132
1133 for (refs = submodule_ref_caches; refs; refs = refs->next)
1134 if (!strcmp(submodule, refs->name))
1135 return refs;
1136
1137 refs = create_ref_cache(submodule);
1138 refs->next = submodule_ref_caches;
1139 submodule_ref_caches = refs;
1140 return refs;
1141 }
1142
1143 /* The length of a peeled reference line in packed-refs, including EOL: */
1144 #define PEELED_LINE_LENGTH 42
1145
1146 /*
1147 * The packed-refs header line that we write out. Perhaps other
1148 * traits will be added later. The trailing space is required.
1149 */
1150 static const char PACKED_REFS_HEADER[] =
1151 "# pack-refs with: peeled fully-peeled \n";
1152
1153 /*
1154 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
1155 * Return a pointer to the refname within the line (null-terminated),
1156 * or NULL if there was a problem.
1157 */
1158 static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1159 {
1160 const char *ref;
1161
1162 /*
1163 * 42: the answer to everything.
1164 *
1165 * In this case, it happens to be the answer to
1166 * 40 (length of sha1 hex representation)
1167 * +1 (space in between hex and name)
1168 * +1 (newline at the end of the line)
1169 */
1170 if (line->len <= 42)
1171 return NULL;
1172
1173 if (get_sha1_hex(line->buf, sha1) < 0)
1174 return NULL;
1175 if (!isspace(line->buf[40]))
1176 return NULL;
1177
1178 ref = line->buf + 41;
1179 if (isspace(*ref))
1180 return NULL;
1181
1182 if (line->buf[line->len - 1] != '\n')
1183 return NULL;
1184 line->buf[--line->len] = 0;
1185
1186 return ref;
1187 }
1188
1189 /*
1190 * Read f, which is a packed-refs file, into dir.
1191 *
1192 * A comment line of the form "# pack-refs with: " may contain zero or
1193 * more traits. We interpret the traits as follows:
1194 *
1195 * No traits:
1196 *
1197 * Probably no references are peeled. But if the file contains a
1198 * peeled value for a reference, we will use it.
1199 *
1200 * peeled:
1201 *
1202 * References under "refs/tags/", if they *can* be peeled, *are*
1203 * peeled in this file. References outside of "refs/tags/" are
1204 * probably not peeled even if they could have been, but if we find
1205 * a peeled value for such a reference we will use it.
1206 *
1207 * fully-peeled:
1208 *
1209 * All references in the file that can be peeled are peeled.
1210 * Inversely (and this is more important), any references in the
1211 * file for which no peeled value is recorded is not peelable. This
1212 * trait should typically be written alongside "peeled" for
1213 * compatibility with older clients, but we do not require it
1214 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
1215 */
1216 static void read_packed_refs(FILE *f, struct ref_dir *dir)
1217 {
1218 struct ref_entry *last = NULL;
1219 struct strbuf line = STRBUF_INIT;
1220 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1221
1222 while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1223 unsigned char sha1[20];
1224 const char *refname;
1225 const char *traits;
1226
1227 if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1228 if (strstr(traits, " fully-peeled "))
1229 peeled = PEELED_FULLY;
1230 else if (strstr(traits, " peeled "))
1231 peeled = PEELED_TAGS;
1232 /* perhaps other traits later as well */
1233 continue;
1234 }
1235
1236 refname = parse_ref_line(&line, sha1);
1237 if (refname) {
1238 int flag = REF_ISPACKED;
1239
1240 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1241 hashclr(sha1);
1242 flag |= REF_BAD_NAME | REF_ISBROKEN;
1243 }
1244 last = create_ref_entry(refname, sha1, flag, 0);
1245 if (peeled == PEELED_FULLY ||
1246 (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1247 last->flag |= REF_KNOWS_PEELED;
1248 add_ref(dir, last);
1249 continue;
1250 }
1251 if (last &&
1252 line.buf[0] == '^' &&
1253 line.len == PEELED_LINE_LENGTH &&
1254 line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1255 !get_sha1_hex(line.buf + 1, sha1)) {
1256 hashcpy(last->u.value.peeled, sha1);
1257 /*
1258 * Regardless of what the file header said,
1259 * we definitely know the value of *this*
1260 * reference:
1261 */
1262 last->flag |= REF_KNOWS_PEELED;
1263 }
1264 }
1265
1266 strbuf_release(&line);
1267 }
1268
1269 /*
1270 * Get the packed_ref_cache for the specified ref_cache, creating it
1271 * if necessary.
1272 */
1273 static struct packed_ref_cache *get_packed_ref_cache(struct ref_cache *refs)
1274 {
1275 const char *packed_refs_file;
1276
1277 if (*refs->name)
1278 packed_refs_file = git_path_submodule(refs->name, "packed-refs");
1279 else
1280 packed_refs_file = git_path("packed-refs");
1281
1282 if (refs->packed &&
1283 !stat_validity_check(&refs->packed->validity, packed_refs_file))
1284 clear_packed_ref_cache(refs);
1285
1286 if (!refs->packed) {
1287 FILE *f;
1288
1289 refs->packed = xcalloc(1, sizeof(*refs->packed));
1290 acquire_packed_ref_cache(refs->packed);
1291 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1292 f = fopen(packed_refs_file, "r");
1293 if (f) {
1294 stat_validity_update(&refs->packed->validity, fileno(f));
1295 read_packed_refs(f, get_ref_dir(refs->packed->root));
1296 fclose(f);
1297 }
1298 }
1299 return refs->packed;
1300 }
1301
1302 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1303 {
1304 return get_ref_dir(packed_ref_cache->root);
1305 }
1306
1307 static struct ref_dir *get_packed_refs(struct ref_cache *refs)
1308 {
1309 return get_packed_ref_dir(get_packed_ref_cache(refs));
1310 }
1311
1312 void add_packed_ref(const char *refname, const unsigned char *sha1)
1313 {
1314 struct packed_ref_cache *packed_ref_cache =
1315 get_packed_ref_cache(&ref_cache);
1316
1317 if (!packed_ref_cache->lock)
1318 die("internal error: packed refs not locked");
1319 add_ref(get_packed_ref_dir(packed_ref_cache),
1320 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1321 }
1322
1323 /*
1324 * Read the loose references from the namespace dirname into dir
1325 * (without recursing). dirname must end with '/'. dir must be the
1326 * directory entry corresponding to dirname.
1327 */
1328 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1329 {
1330 struct ref_cache *refs = dir->ref_cache;
1331 DIR *d;
1332 const char *path;
1333 struct dirent *de;
1334 int dirnamelen = strlen(dirname);
1335 struct strbuf refname;
1336
1337 if (*refs->name)
1338 path = git_path_submodule(refs->name, "%s", dirname);
1339 else
1340 path = git_path("%s", dirname);
1341
1342 d = opendir(path);
1343 if (!d)
1344 return;
1345
1346 strbuf_init(&refname, dirnamelen + 257);
1347 strbuf_add(&refname, dirname, dirnamelen);
1348
1349 while ((de = readdir(d)) != NULL) {
1350 unsigned char sha1[20];
1351 struct stat st;
1352 int flag;
1353 const char *refdir;
1354
1355 if (de->d_name[0] == '.')
1356 continue;
1357 if (ends_with(de->d_name, ".lock"))
1358 continue;
1359 strbuf_addstr(&refname, de->d_name);
1360 refdir = *refs->name
1361 ? git_path_submodule(refs->name, "%s", refname.buf)
1362 : git_path("%s", refname.buf);
1363 if (stat(refdir, &st) < 0) {
1364 ; /* silently ignore */
1365 } else if (S_ISDIR(st.st_mode)) {
1366 strbuf_addch(&refname, '/');
1367 add_entry_to_dir(dir,
1368 create_dir_entry(refs, refname.buf,
1369 refname.len, 1));
1370 } else {
1371 if (*refs->name) {
1372 hashclr(sha1);
1373 flag = 0;
1374 if (resolve_gitlink_ref(refs->name, refname.buf, sha1) < 0) {
1375 hashclr(sha1);
1376 flag |= REF_ISBROKEN;
1377 }
1378 } else if (read_ref_full(refname.buf,
1379 RESOLVE_REF_READING,
1380 sha1, &flag)) {
1381 hashclr(sha1);
1382 flag |= REF_ISBROKEN;
1383 }
1384 if (check_refname_format(refname.buf,
1385 REFNAME_ALLOW_ONELEVEL)) {
1386 hashclr(sha1);
1387 flag |= REF_BAD_NAME | REF_ISBROKEN;
1388 }
1389 add_entry_to_dir(dir,
1390 create_ref_entry(refname.buf, sha1, flag, 0));
1391 }
1392 strbuf_setlen(&refname, dirnamelen);
1393 }
1394 strbuf_release(&refname);
1395 closedir(d);
1396 }
1397
1398 static struct ref_dir *get_loose_refs(struct ref_cache *refs)
1399 {
1400 if (!refs->loose) {
1401 /*
1402 * Mark the top-level directory complete because we
1403 * are about to read the only subdirectory that can
1404 * hold references:
1405 */
1406 refs->loose = create_dir_entry(refs, "", 0, 0);
1407 /*
1408 * Create an incomplete entry for "refs/":
1409 */
1410 add_entry_to_dir(get_ref_dir(refs->loose),
1411 create_dir_entry(refs, "refs/", 5, 1));
1412 }
1413 return get_ref_dir(refs->loose);
1414 }
1415
1416 /* We allow "recursive" symbolic refs. Only within reason, though */
1417 #define MAXDEPTH 5
1418 #define MAXREFLEN (1024)
1419
1420 /*
1421 * Called by resolve_gitlink_ref_recursive() after it failed to read
1422 * from the loose refs in ref_cache refs. Find <refname> in the
1423 * packed-refs file for the submodule.
1424 */
1425 static int resolve_gitlink_packed_ref(struct ref_cache *refs,
1426 const char *refname, unsigned char *sha1)
1427 {
1428 struct ref_entry *ref;
1429 struct ref_dir *dir = get_packed_refs(refs);
1430
1431 ref = find_ref(dir, refname);
1432 if (ref == NULL)
1433 return -1;
1434
1435 hashcpy(sha1, ref->u.value.sha1);
1436 return 0;
1437 }
1438
1439 static int resolve_gitlink_ref_recursive(struct ref_cache *refs,
1440 const char *refname, unsigned char *sha1,
1441 int recursion)
1442 {
1443 int fd, len;
1444 char buffer[128], *p;
1445 char *path;
1446
1447 if (recursion > MAXDEPTH || strlen(refname) > MAXREFLEN)
1448 return -1;
1449 path = *refs->name
1450 ? git_path_submodule(refs->name, "%s", refname)
1451 : git_path("%s", refname);
1452 fd = open(path, O_RDONLY);
1453 if (fd < 0)
1454 return resolve_gitlink_packed_ref(refs, refname, sha1);
1455
1456 len = read(fd, buffer, sizeof(buffer)-1);
1457 close(fd);
1458 if (len < 0)
1459 return -1;
1460 while (len && isspace(buffer[len-1]))
1461 len--;
1462 buffer[len] = 0;
1463
1464 /* Was it a detached head or an old-fashioned symlink? */
1465 if (!get_sha1_hex(buffer, sha1))
1466 return 0;
1467
1468 /* Symref? */
1469 if (strncmp(buffer, "ref:", 4))
1470 return -1;
1471 p = buffer + 4;
1472 while (isspace(*p))
1473 p++;
1474
1475 return resolve_gitlink_ref_recursive(refs, p, sha1, recursion+1);
1476 }
1477
1478 int resolve_gitlink_ref(const char *path, const char *refname, unsigned char *sha1)
1479 {
1480 int len = strlen(path), retval;
1481 char *submodule;
1482 struct ref_cache *refs;
1483
1484 while (len && path[len-1] == '/')
1485 len--;
1486 if (!len)
1487 return -1;
1488 submodule = xstrndup(path, len);
1489 refs = get_ref_cache(submodule);
1490 free(submodule);
1491
1492 retval = resolve_gitlink_ref_recursive(refs, refname, sha1, 0);
1493 return retval;
1494 }
1495
1496 /*
1497 * Return the ref_entry for the given refname from the packed
1498 * references. If it does not exist, return NULL.
1499 */
1500 static struct ref_entry *get_packed_ref(const char *refname)
1501 {
1502 return find_ref(get_packed_refs(&ref_cache), refname);
1503 }
1504
1505 /*
1506 * A loose ref file doesn't exist; check for a packed ref. The
1507 * options are forwarded from resolve_safe_unsafe().
1508 */
1509 static int resolve_missing_loose_ref(const char *refname,
1510 int resolve_flags,
1511 unsigned char *sha1,
1512 int *flags)
1513 {
1514 struct ref_entry *entry;
1515
1516 /*
1517 * The loose reference file does not exist; check for a packed
1518 * reference.
1519 */
1520 entry = get_packed_ref(refname);
1521 if (entry) {
1522 hashcpy(sha1, entry->u.value.sha1);
1523 if (flags)
1524 *flags |= REF_ISPACKED;
1525 return 0;
1526 }
1527 /* The reference is not a packed reference, either. */
1528 if (resolve_flags & RESOLVE_REF_READING) {
1529 errno = ENOENT;
1530 return -1;
1531 } else {
1532 hashclr(sha1);
1533 return 0;
1534 }
1535 }
1536
1537 /* This function needs to return a meaningful errno on failure */
1538 const char *resolve_ref_unsafe(const char *refname, int resolve_flags, unsigned char *sha1, int *flags)
1539 {
1540 int depth = MAXDEPTH;
1541 ssize_t len;
1542 char buffer[256];
1543 static char refname_buffer[256];
1544 int bad_name = 0;
1545
1546 if (flags)
1547 *flags = 0;
1548
1549 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1550 if (flags)
1551 *flags |= REF_BAD_NAME;
1552
1553 if (!(resolve_flags & RESOLVE_REF_ALLOW_BAD_NAME) ||
1554 !refname_is_safe(refname)) {
1555 errno = EINVAL;
1556 return NULL;
1557 }
1558 /*
1559 * dwim_ref() uses REF_ISBROKEN to distinguish between
1560 * missing refs and refs that were present but invalid,
1561 * to complain about the latter to stderr.
1562 *
1563 * We don't know whether the ref exists, so don't set
1564 * REF_ISBROKEN yet.
1565 */
1566 bad_name = 1;
1567 }
1568 for (;;) {
1569 char path[PATH_MAX];
1570 struct stat st;
1571 char *buf;
1572 int fd;
1573
1574 if (--depth < 0) {
1575 errno = ELOOP;
1576 return NULL;
1577 }
1578
1579 git_snpath(path, sizeof(path), "%s", refname);
1580
1581 /*
1582 * We might have to loop back here to avoid a race
1583 * condition: first we lstat() the file, then we try
1584 * to read it as a link or as a file. But if somebody
1585 * changes the type of the file (file <-> directory
1586 * <-> symlink) between the lstat() and reading, then
1587 * we don't want to report that as an error but rather
1588 * try again starting with the lstat().
1589 */
1590 stat_ref:
1591 if (lstat(path, &st) < 0) {
1592 if (errno != ENOENT)
1593 return NULL;
1594 if (resolve_missing_loose_ref(refname, resolve_flags,
1595 sha1, flags))
1596 return NULL;
1597 if (bad_name) {
1598 hashclr(sha1);
1599 if (flags)
1600 *flags |= REF_ISBROKEN;
1601 }
1602 return refname;
1603 }
1604
1605 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1606 if (S_ISLNK(st.st_mode)) {
1607 len = readlink(path, buffer, sizeof(buffer)-1);
1608 if (len < 0) {
1609 if (errno == ENOENT || errno == EINVAL)
1610 /* inconsistent with lstat; retry */
1611 goto stat_ref;
1612 else
1613 return NULL;
1614 }
1615 buffer[len] = 0;
1616 if (starts_with(buffer, "refs/") &&
1617 !check_refname_format(buffer, 0)) {
1618 strcpy(refname_buffer, buffer);
1619 refname = refname_buffer;
1620 if (flags)
1621 *flags |= REF_ISSYMREF;
1622 if (resolve_flags & RESOLVE_REF_NO_RECURSE) {
1623 hashclr(sha1);
1624 return refname;
1625 }
1626 continue;
1627 }
1628 }
1629
1630 /* Is it a directory? */
1631 if (S_ISDIR(st.st_mode)) {
1632 errno = EISDIR;
1633 return NULL;
1634 }
1635
1636 /*
1637 * Anything else, just open it and try to use it as
1638 * a ref
1639 */
1640 fd = open(path, O_RDONLY);
1641 if (fd < 0) {
1642 if (errno == ENOENT)
1643 /* inconsistent with lstat; retry */
1644 goto stat_ref;
1645 else
1646 return NULL;
1647 }
1648 len = read_in_full(fd, buffer, sizeof(buffer)-1);
1649 if (len < 0) {
1650 int save_errno = errno;
1651 close(fd);
1652 errno = save_errno;
1653 return NULL;
1654 }
1655 close(fd);
1656 while (len && isspace(buffer[len-1]))
1657 len--;
1658 buffer[len] = '\0';
1659
1660 /*
1661 * Is it a symbolic ref?
1662 */
1663 if (!starts_with(buffer, "ref:")) {
1664 /*
1665 * Please note that FETCH_HEAD has a second
1666 * line containing other data.
1667 */
1668 if (get_sha1_hex(buffer, sha1) ||
1669 (buffer[40] != '\0' && !isspace(buffer[40]))) {
1670 if (flags)
1671 *flags |= REF_ISBROKEN;
1672 errno = EINVAL;
1673 return NULL;
1674 }
1675 if (bad_name) {
1676 hashclr(sha1);
1677 if (flags)
1678 *flags |= REF_ISBROKEN;
1679 }
1680 return refname;
1681 }
1682 if (flags)
1683 *flags |= REF_ISSYMREF;
1684 buf = buffer + 4;
1685 while (isspace(*buf))
1686 buf++;
1687 refname = strcpy(refname_buffer, buf);
1688 if (resolve_flags & RESOLVE_REF_NO_RECURSE) {
1689 hashclr(sha1);
1690 return refname;
1691 }
1692 if (check_refname_format(buf, REFNAME_ALLOW_ONELEVEL)) {
1693 if (flags)
1694 *flags |= REF_ISBROKEN;
1695
1696 if (!(resolve_flags & RESOLVE_REF_ALLOW_BAD_NAME) ||
1697 !refname_is_safe(buf)) {
1698 errno = EINVAL;
1699 return NULL;
1700 }
1701 bad_name = 1;
1702 }
1703 }
1704 }
1705
1706 char *resolve_refdup(const char *ref, int resolve_flags, unsigned char *sha1, int *flags)
1707 {
1708 return xstrdup_or_null(resolve_ref_unsafe(ref, resolve_flags, sha1, flags));
1709 }
1710
1711 /* The argument to filter_refs */
1712 struct ref_filter {
1713 const char *pattern;
1714 each_ref_fn *fn;
1715 void *cb_data;
1716 };
1717
1718 int read_ref_full(const char *refname, int resolve_flags, unsigned char *sha1, int *flags)
1719 {
1720 if (resolve_ref_unsafe(refname, resolve_flags, sha1, flags))
1721 return 0;
1722 return -1;
1723 }
1724
1725 int read_ref(const char *refname, unsigned char *sha1)
1726 {
1727 return read_ref_full(refname, RESOLVE_REF_READING, sha1, NULL);
1728 }
1729
1730 int ref_exists(const char *refname)
1731 {
1732 unsigned char sha1[20];
1733 return !!resolve_ref_unsafe(refname, RESOLVE_REF_READING, sha1, NULL);
1734 }
1735
1736 static int filter_refs(const char *refname, const unsigned char *sha1, int flags,
1737 void *data)
1738 {
1739 struct ref_filter *filter = (struct ref_filter *)data;
1740 if (wildmatch(filter->pattern, refname, 0, NULL))
1741 return 0;
1742 return filter->fn(refname, sha1, flags, filter->cb_data);
1743 }
1744
1745 enum peel_status {
1746 /* object was peeled successfully: */
1747 PEEL_PEELED = 0,
1748
1749 /*
1750 * object cannot be peeled because the named object (or an
1751 * object referred to by a tag in the peel chain), does not
1752 * exist.
1753 */
1754 PEEL_INVALID = -1,
1755
1756 /* object cannot be peeled because it is not a tag: */
1757 PEEL_NON_TAG = -2,
1758
1759 /* ref_entry contains no peeled value because it is a symref: */
1760 PEEL_IS_SYMREF = -3,
1761
1762 /*
1763 * ref_entry cannot be peeled because it is broken (i.e., the
1764 * symbolic reference cannot even be resolved to an object
1765 * name):
1766 */
1767 PEEL_BROKEN = -4
1768 };
1769
1770 /*
1771 * Peel the named object; i.e., if the object is a tag, resolve the
1772 * tag recursively until a non-tag is found. If successful, store the
1773 * result to sha1 and return PEEL_PEELED. If the object is not a tag
1774 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
1775 * and leave sha1 unchanged.
1776 */
1777 static enum peel_status peel_object(const unsigned char *name, unsigned char *sha1)
1778 {
1779 struct object *o = lookup_unknown_object(name);
1780
1781 if (o->type == OBJ_NONE) {
1782 int type = sha1_object_info(name, NULL);
1783 if (type < 0 || !object_as_type(o, type, 0))
1784 return PEEL_INVALID;
1785 }
1786
1787 if (o->type != OBJ_TAG)
1788 return PEEL_NON_TAG;
1789
1790 o = deref_tag_noverify(o);
1791 if (!o)
1792 return PEEL_INVALID;
1793
1794 hashcpy(sha1, o->sha1);
1795 return PEEL_PEELED;
1796 }
1797
1798 /*
1799 * Peel the entry (if possible) and return its new peel_status. If
1800 * repeel is true, re-peel the entry even if there is an old peeled
1801 * value that is already stored in it.
1802 *
1803 * It is OK to call this function with a packed reference entry that
1804 * might be stale and might even refer to an object that has since
1805 * been garbage-collected. In such a case, if the entry has
1806 * REF_KNOWS_PEELED then leave the status unchanged and return
1807 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1808 */
1809 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1810 {
1811 enum peel_status status;
1812
1813 if (entry->flag & REF_KNOWS_PEELED) {
1814 if (repeel) {
1815 entry->flag &= ~REF_KNOWS_PEELED;
1816 hashclr(entry->u.value.peeled);
1817 } else {
1818 return is_null_sha1(entry->u.value.peeled) ?
1819 PEEL_NON_TAG : PEEL_PEELED;
1820 }
1821 }
1822 if (entry->flag & REF_ISBROKEN)
1823 return PEEL_BROKEN;
1824 if (entry->flag & REF_ISSYMREF)
1825 return PEEL_IS_SYMREF;
1826
1827 status = peel_object(entry->u.value.sha1, entry->u.value.peeled);
1828 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1829 entry->flag |= REF_KNOWS_PEELED;
1830 return status;
1831 }
1832
1833 int peel_ref(const char *refname, unsigned char *sha1)
1834 {
1835 int flag;
1836 unsigned char base[20];
1837
1838 if (current_ref && (current_ref->name == refname
1839 || !strcmp(current_ref->name, refname))) {
1840 if (peel_entry(current_ref, 0))
1841 return -1;
1842 hashcpy(sha1, current_ref->u.value.peeled);
1843 return 0;
1844 }
1845
1846 if (read_ref_full(refname, RESOLVE_REF_READING, base, &flag))
1847 return -1;
1848
1849 /*
1850 * If the reference is packed, read its ref_entry from the
1851 * cache in the hope that we already know its peeled value.
1852 * We only try this optimization on packed references because
1853 * (a) forcing the filling of the loose reference cache could
1854 * be expensive and (b) loose references anyway usually do not
1855 * have REF_KNOWS_PEELED.
1856 */
1857 if (flag & REF_ISPACKED) {
1858 struct ref_entry *r = get_packed_ref(refname);
1859 if (r) {
1860 if (peel_entry(r, 0))
1861 return -1;
1862 hashcpy(sha1, r->u.value.peeled);
1863 return 0;
1864 }
1865 }
1866
1867 return peel_object(base, sha1);
1868 }
1869
1870 struct warn_if_dangling_data {
1871 FILE *fp;
1872 const char *refname;
1873 const struct string_list *refnames;
1874 const char *msg_fmt;
1875 };
1876
1877 static int warn_if_dangling_symref(const char *refname, const unsigned char *sha1,
1878 int flags, void *cb_data)
1879 {
1880 struct warn_if_dangling_data *d = cb_data;
1881 const char *resolves_to;
1882 unsigned char junk[20];
1883
1884 if (!(flags & REF_ISSYMREF))
1885 return 0;
1886
1887 resolves_to = resolve_ref_unsafe(refname, 0, junk, NULL);
1888 if (!resolves_to
1889 || (d->refname
1890 ? strcmp(resolves_to, d->refname)
1891 : !string_list_has_string(d->refnames, resolves_to))) {
1892 return 0;
1893 }
1894
1895 fprintf(d->fp, d->msg_fmt, refname);
1896 fputc('\n', d->fp);
1897 return 0;
1898 }
1899
1900 void warn_dangling_symref(FILE *fp, const char *msg_fmt, const char *refname)
1901 {
1902 struct warn_if_dangling_data data;
1903
1904 data.fp = fp;
1905 data.refname = refname;
1906 data.refnames = NULL;
1907 data.msg_fmt = msg_fmt;
1908 for_each_rawref(warn_if_dangling_symref, &data);
1909 }
1910
1911 void warn_dangling_symrefs(FILE *fp, const char *msg_fmt, const struct string_list *refnames)
1912 {
1913 struct warn_if_dangling_data data;
1914
1915 data.fp = fp;
1916 data.refname = NULL;
1917 data.refnames = refnames;
1918 data.msg_fmt = msg_fmt;
1919 for_each_rawref(warn_if_dangling_symref, &data);
1920 }
1921
1922 /*
1923 * Call fn for each reference in the specified ref_cache, omitting
1924 * references not in the containing_dir of base. fn is called for all
1925 * references, including broken ones. If fn ever returns a non-zero
1926 * value, stop the iteration and return that value; otherwise, return
1927 * 0.
1928 */
1929 static int do_for_each_entry(struct ref_cache *refs, const char *base,
1930 each_ref_entry_fn fn, void *cb_data)
1931 {
1932 struct packed_ref_cache *packed_ref_cache;
1933 struct ref_dir *loose_dir;
1934 struct ref_dir *packed_dir;
1935 int retval = 0;
1936
1937 /*
1938 * We must make sure that all loose refs are read before accessing the
1939 * packed-refs file; this avoids a race condition in which loose refs
1940 * are migrated to the packed-refs file by a simultaneous process, but
1941 * our in-memory view is from before the migration. get_packed_ref_cache()
1942 * takes care of making sure our view is up to date with what is on
1943 * disk.
1944 */
1945 loose_dir = get_loose_refs(refs);
1946 if (base && *base) {
1947 loose_dir = find_containing_dir(loose_dir, base, 0);
1948 }
1949 if (loose_dir)
1950 prime_ref_dir(loose_dir);
1951
1952 packed_ref_cache = get_packed_ref_cache(refs);
1953 acquire_packed_ref_cache(packed_ref_cache);
1954 packed_dir = get_packed_ref_dir(packed_ref_cache);
1955 if (base && *base) {
1956 packed_dir = find_containing_dir(packed_dir, base, 0);
1957 }
1958
1959 if (packed_dir && loose_dir) {
1960 sort_ref_dir(packed_dir);
1961 sort_ref_dir(loose_dir);
1962 retval = do_for_each_entry_in_dirs(
1963 packed_dir, loose_dir, fn, cb_data);
1964 } else if (packed_dir) {
1965 sort_ref_dir(packed_dir);
1966 retval = do_for_each_entry_in_dir(
1967 packed_dir, 0, fn, cb_data);
1968 } else if (loose_dir) {
1969 sort_ref_dir(loose_dir);
1970 retval = do_for_each_entry_in_dir(
1971 loose_dir, 0, fn, cb_data);
1972 }
1973
1974 release_packed_ref_cache(packed_ref_cache);
1975 return retval;
1976 }
1977
1978 /*
1979 * Call fn for each reference in the specified ref_cache for which the
1980 * refname begins with base. If trim is non-zero, then trim that many
1981 * characters off the beginning of each refname before passing the
1982 * refname to fn. flags can be DO_FOR_EACH_INCLUDE_BROKEN to include
1983 * broken references in the iteration. If fn ever returns a non-zero
1984 * value, stop the iteration and return that value; otherwise, return
1985 * 0.
1986 */
1987 static int do_for_each_ref(struct ref_cache *refs, const char *base,
1988 each_ref_fn fn, int trim, int flags, void *cb_data)
1989 {
1990 struct ref_entry_cb data;
1991 data.base = base;
1992 data.trim = trim;
1993 data.flags = flags;
1994 data.fn = fn;
1995 data.cb_data = cb_data;
1996
1997 if (ref_paranoia < 0)
1998 ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1999 if (ref_paranoia)
2000 data.flags |= DO_FOR_EACH_INCLUDE_BROKEN;
2001
2002 return do_for_each_entry(refs, base, do_one_ref, &data);
2003 }
2004
2005 static int do_head_ref(const char *submodule, each_ref_fn fn, void *cb_data)
2006 {
2007 unsigned char sha1[20];
2008 int flag;
2009
2010 if (submodule) {
2011 if (resolve_gitlink_ref(submodule, "HEAD", sha1) == 0)
2012 return fn("HEAD", sha1, 0, cb_data);
2013
2014 return 0;
2015 }
2016
2017 if (!read_ref_full("HEAD", RESOLVE_REF_READING, sha1, &flag))
2018 return fn("HEAD", sha1, flag, cb_data);
2019
2020 return 0;
2021 }
2022
2023 int head_ref(each_ref_fn fn, void *cb_data)
2024 {
2025 return do_head_ref(NULL, fn, cb_data);
2026 }
2027
2028 int head_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2029 {
2030 return do_head_ref(submodule, fn, cb_data);
2031 }
2032
2033 int for_each_ref(each_ref_fn fn, void *cb_data)
2034 {
2035 return do_for_each_ref(&ref_cache, "", fn, 0, 0, cb_data);
2036 }
2037
2038 int for_each_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2039 {
2040 return do_for_each_ref(get_ref_cache(submodule), "", fn, 0, 0, cb_data);
2041 }
2042
2043 int for_each_ref_in(const char *prefix, each_ref_fn fn, void *cb_data)
2044 {
2045 return do_for_each_ref(&ref_cache, prefix, fn, strlen(prefix), 0, cb_data);
2046 }
2047
2048 int for_each_ref_in_submodule(const char *submodule, const char *prefix,
2049 each_ref_fn fn, void *cb_data)
2050 {
2051 return do_for_each_ref(get_ref_cache(submodule), prefix, fn, strlen(prefix), 0, cb_data);
2052 }
2053
2054 int for_each_tag_ref(each_ref_fn fn, void *cb_data)
2055 {
2056 return for_each_ref_in("refs/tags/", fn, cb_data);
2057 }
2058
2059 int for_each_tag_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2060 {
2061 return for_each_ref_in_submodule(submodule, "refs/tags/", fn, cb_data);
2062 }
2063
2064 int for_each_branch_ref(each_ref_fn fn, void *cb_data)
2065 {
2066 return for_each_ref_in("refs/heads/", fn, cb_data);
2067 }
2068
2069 int for_each_branch_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2070 {
2071 return for_each_ref_in_submodule(submodule, "refs/heads/", fn, cb_data);
2072 }
2073
2074 int for_each_remote_ref(each_ref_fn fn, void *cb_data)
2075 {
2076 return for_each_ref_in("refs/remotes/", fn, cb_data);
2077 }
2078
2079 int for_each_remote_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2080 {
2081 return for_each_ref_in_submodule(submodule, "refs/remotes/", fn, cb_data);
2082 }
2083
2084 int for_each_replace_ref(each_ref_fn fn, void *cb_data)
2085 {
2086 return do_for_each_ref(&ref_cache, "refs/replace/", fn, 13, 0, cb_data);
2087 }
2088
2089 int head_ref_namespaced(each_ref_fn fn, void *cb_data)
2090 {
2091 struct strbuf buf = STRBUF_INIT;
2092 int ret = 0;
2093 unsigned char sha1[20];
2094 int flag;
2095
2096 strbuf_addf(&buf, "%sHEAD", get_git_namespace());
2097 if (!read_ref_full(buf.buf, RESOLVE_REF_READING, sha1, &flag))
2098 ret = fn(buf.buf, sha1, flag, cb_data);
2099 strbuf_release(&buf);
2100
2101 return ret;
2102 }
2103
2104 int for_each_namespaced_ref(each_ref_fn fn, void *cb_data)
2105 {
2106 struct strbuf buf = STRBUF_INIT;
2107 int ret;
2108 strbuf_addf(&buf, "%srefs/", get_git_namespace());
2109 ret = do_for_each_ref(&ref_cache, buf.buf, fn, 0, 0, cb_data);
2110 strbuf_release(&buf);
2111 return ret;
2112 }
2113
2114 int for_each_glob_ref_in(each_ref_fn fn, const char *pattern,
2115 const char *prefix, void *cb_data)
2116 {
2117 struct strbuf real_pattern = STRBUF_INIT;
2118 struct ref_filter filter;
2119 int ret;
2120
2121 if (!prefix && !starts_with(pattern, "refs/"))
2122 strbuf_addstr(&real_pattern, "refs/");
2123 else if (prefix)
2124 strbuf_addstr(&real_pattern, prefix);
2125 strbuf_addstr(&real_pattern, pattern);
2126
2127 if (!has_glob_specials(pattern)) {
2128 /* Append implied '/' '*' if not present. */
2129 if (real_pattern.buf[real_pattern.len - 1] != '/')
2130 strbuf_addch(&real_pattern, '/');
2131 /* No need to check for '*', there is none. */
2132 strbuf_addch(&real_pattern, '*');
2133 }
2134
2135 filter.pattern = real_pattern.buf;
2136 filter.fn = fn;
2137 filter.cb_data = cb_data;
2138 ret = for_each_ref(filter_refs, &filter);
2139
2140 strbuf_release(&real_pattern);
2141 return ret;
2142 }
2143
2144 int for_each_glob_ref(each_ref_fn fn, const char *pattern, void *cb_data)
2145 {
2146 return for_each_glob_ref_in(fn, pattern, NULL, cb_data);
2147 }
2148
2149 int for_each_rawref(each_ref_fn fn, void *cb_data)
2150 {
2151 return do_for_each_ref(&ref_cache, "", fn, 0,
2152 DO_FOR_EACH_INCLUDE_BROKEN, cb_data);
2153 }
2154
2155 const char *prettify_refname(const char *name)
2156 {
2157 return name + (
2158 starts_with(name, "refs/heads/") ? 11 :
2159 starts_with(name, "refs/tags/") ? 10 :
2160 starts_with(name, "refs/remotes/") ? 13 :
2161 0);
2162 }
2163
2164 static const char *ref_rev_parse_rules[] = {
2165 "%.*s",
2166 "refs/%.*s",
2167 "refs/tags/%.*s",
2168 "refs/heads/%.*s",
2169 "refs/remotes/%.*s",
2170 "refs/remotes/%.*s/HEAD",
2171 NULL
2172 };
2173
2174 int refname_match(const char *abbrev_name, const char *full_name)
2175 {
2176 const char **p;
2177 const int abbrev_name_len = strlen(abbrev_name);
2178
2179 for (p = ref_rev_parse_rules; *p; p++) {
2180 if (!strcmp(full_name, mkpath(*p, abbrev_name_len, abbrev_name))) {
2181 return 1;
2182 }
2183 }
2184
2185 return 0;
2186 }
2187
2188 static void unlock_ref(struct ref_lock *lock)
2189 {
2190 /* Do not free lock->lk -- atexit() still looks at them */
2191 if (lock->lk)
2192 rollback_lock_file(lock->lk);
2193 free(lock->ref_name);
2194 free(lock->orig_ref_name);
2195 free(lock);
2196 }
2197
2198 /* This function should make sure errno is meaningful on error */
2199 static struct ref_lock *verify_lock(struct ref_lock *lock,
2200 const unsigned char *old_sha1, int mustexist)
2201 {
2202 if (read_ref_full(lock->ref_name,
2203 mustexist ? RESOLVE_REF_READING : 0,
2204 lock->old_sha1, NULL)) {
2205 int save_errno = errno;
2206 error("Can't verify ref %s", lock->ref_name);
2207 unlock_ref(lock);
2208 errno = save_errno;
2209 return NULL;
2210 }
2211 if (hashcmp(lock->old_sha1, old_sha1)) {
2212 error("Ref %s is at %s but expected %s", lock->ref_name,
2213 sha1_to_hex(lock->old_sha1), sha1_to_hex(old_sha1));
2214 unlock_ref(lock);
2215 errno = EBUSY;
2216 return NULL;
2217 }
2218 return lock;
2219 }
2220
2221 static int remove_empty_directories(const char *file)
2222 {
2223 /* we want to create a file but there is a directory there;
2224 * if that is an empty directory (or a directory that contains
2225 * only empty directories), remove them.
2226 */
2227 struct strbuf path;
2228 int result, save_errno;
2229
2230 strbuf_init(&path, 20);
2231 strbuf_addstr(&path, file);
2232
2233 result = remove_dir_recursively(&path, REMOVE_DIR_EMPTY_ONLY);
2234 save_errno = errno;
2235
2236 strbuf_release(&path);
2237 errno = save_errno;
2238
2239 return result;
2240 }
2241
2242 /*
2243 * *string and *len will only be substituted, and *string returned (for
2244 * later free()ing) if the string passed in is a magic short-hand form
2245 * to name a branch.
2246 */
2247 static char *substitute_branch_name(const char **string, int *len)
2248 {
2249 struct strbuf buf = STRBUF_INIT;
2250 int ret = interpret_branch_name(*string, *len, &buf);
2251
2252 if (ret == *len) {
2253 size_t size;
2254 *string = strbuf_detach(&buf, &size);
2255 *len = size;
2256 return (char *)*string;
2257 }
2258
2259 return NULL;
2260 }
2261
2262 int dwim_ref(const char *str, int len, unsigned char *sha1, char **ref)
2263 {
2264 char *last_branch = substitute_branch_name(&str, &len);
2265 const char **p, *r;
2266 int refs_found = 0;
2267
2268 *ref = NULL;
2269 for (p = ref_rev_parse_rules; *p; p++) {
2270 char fullref[PATH_MAX];
2271 unsigned char sha1_from_ref[20];
2272 unsigned char *this_result;
2273 int flag;
2274
2275 this_result = refs_found ? sha1_from_ref : sha1;
2276 mksnpath(fullref, sizeof(fullref), *p, len, str);
2277 r = resolve_ref_unsafe(fullref, RESOLVE_REF_READING,
2278 this_result, &flag);
2279 if (r) {
2280 if (!refs_found++)
2281 *ref = xstrdup(r);
2282 if (!warn_ambiguous_refs)
2283 break;
2284 } else if ((flag & REF_ISSYMREF) && strcmp(fullref, "HEAD")) {
2285 warning("ignoring dangling symref %s.", fullref);
2286 } else if ((flag & REF_ISBROKEN) && strchr(fullref, '/')) {
2287 warning("ignoring broken ref %s.", fullref);
2288 }
2289 }
2290 free(last_branch);
2291 return refs_found;
2292 }
2293
2294 int dwim_log(const char *str, int len, unsigned char *sha1, char **log)
2295 {
2296 char *last_branch = substitute_branch_name(&str, &len);
2297 const char **p;
2298 int logs_found = 0;
2299
2300 *log = NULL;
2301 for (p = ref_rev_parse_rules; *p; p++) {
2302 unsigned char hash[20];
2303 char path[PATH_MAX];
2304 const char *ref, *it;
2305
2306 mksnpath(path, sizeof(path), *p, len, str);
2307 ref = resolve_ref_unsafe(path, RESOLVE_REF_READING,
2308 hash, NULL);
2309 if (!ref)
2310 continue;
2311 if (reflog_exists(path))
2312 it = path;
2313 else if (strcmp(ref, path) && reflog_exists(ref))
2314 it = ref;
2315 else
2316 continue;
2317 if (!logs_found++) {
2318 *log = xstrdup(it);
2319 hashcpy(sha1, hash);
2320 }
2321 if (!warn_ambiguous_refs)
2322 break;
2323 }
2324 free(last_branch);
2325 return logs_found;
2326 }
2327
2328 /*
2329 * Locks a ref returning the lock on success and NULL on failure.
2330 * On failure errno is set to something meaningful.
2331 */
2332 static struct ref_lock *lock_ref_sha1_basic(const char *refname,
2333 const unsigned char *old_sha1,
2334 const struct string_list *extras,
2335 const struct string_list *skip,
2336 unsigned int flags, int *type_p,
2337 struct strbuf *err)
2338 {
2339 char *ref_file;
2340 const char *orig_refname = refname;
2341 struct ref_lock *lock;
2342 int last_errno = 0;
2343 int type, lflags;
2344 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2345 int resolve_flags = 0;
2346 int attempts_remaining = 3;
2347
2348 assert(err);
2349
2350 lock = xcalloc(1, sizeof(struct ref_lock));
2351 lock->lock_fd = -1;
2352
2353 if (mustexist)
2354 resolve_flags |= RESOLVE_REF_READING;
2355 if (flags & REF_DELETING) {
2356 resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2357 if (flags & REF_NODEREF)
2358 resolve_flags |= RESOLVE_REF_NO_RECURSE;
2359 }
2360
2361 refname = resolve_ref_unsafe(refname, resolve_flags,
2362 lock->old_sha1, &type);
2363 if (!refname && errno == EISDIR) {
2364 /* we are trying to lock foo but we used to
2365 * have foo/bar which now does not exist;
2366 * it is normal for the empty directory 'foo'
2367 * to remain.
2368 */
2369 ref_file = git_path("%s", orig_refname);
2370 if (remove_empty_directories(ref_file)) {
2371 last_errno = errno;
2372 strbuf_addf(err, "there are still refs under '%s'",
2373 orig_refname);
2374 goto error_return;
2375 }
2376 refname = resolve_ref_unsafe(orig_refname, resolve_flags,
2377 lock->old_sha1, &type);
2378 }
2379 if (type_p)
2380 *type_p = type;
2381 if (!refname) {
2382 last_errno = errno;
2383 strbuf_addf(err, "unable to resolve reference %s: %s",
2384 orig_refname, strerror(errno));
2385 goto error_return;
2386 }
2387 /*
2388 * If the ref did not exist and we are creating it, make sure
2389 * there is no existing packed ref whose name begins with our
2390 * refname, nor a packed ref whose name is a proper prefix of
2391 * our refname.
2392 */
2393 if (is_null_sha1(lock->old_sha1) &&
2394 verify_refname_available(refname, extras, skip,
2395 get_packed_refs(&ref_cache), err)) {
2396 last_errno = ENOTDIR;
2397 goto error_return;
2398 }
2399
2400 lock->lk = xcalloc(1, sizeof(struct lock_file));
2401
2402 lflags = 0;
2403 if (flags & REF_NODEREF) {
2404 refname = orig_refname;
2405 lflags |= LOCK_NO_DEREF;
2406 }
2407 lock->ref_name = xstrdup(refname);
2408 lock->orig_ref_name = xstrdup(orig_refname);
2409 ref_file = git_path("%s", refname);
2410
2411 retry:
2412 switch (safe_create_leading_directories(ref_file)) {
2413 case SCLD_OK:
2414 break; /* success */
2415 case SCLD_VANISHED:
2416 if (--attempts_remaining > 0)
2417 goto retry;
2418 /* fall through */
2419 default:
2420 last_errno = errno;
2421 strbuf_addf(err, "unable to create directory for %s", ref_file);
2422 goto error_return;
2423 }
2424
2425 lock->lock_fd = hold_lock_file_for_update(lock->lk, ref_file, lflags);
2426 if (lock->lock_fd < 0) {
2427 last_errno = errno;
2428 if (errno == ENOENT && --attempts_remaining > 0)
2429 /*
2430 * Maybe somebody just deleted one of the
2431 * directories leading to ref_file. Try
2432 * again:
2433 */
2434 goto retry;
2435 else {
2436 unable_to_lock_message(ref_file, errno, err);
2437 goto error_return;
2438 }
2439 }
2440 return old_sha1 ? verify_lock(lock, old_sha1, mustexist) : lock;
2441
2442 error_return:
2443 unlock_ref(lock);
2444 errno = last_errno;
2445 return NULL;
2446 }
2447
2448 /*
2449 * Write an entry to the packed-refs file for the specified refname.
2450 * If peeled is non-NULL, write it as the entry's peeled value.
2451 */
2452 static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2453 unsigned char *peeled)
2454 {
2455 fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2456 if (peeled)
2457 fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2458 }
2459
2460 /*
2461 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2462 */
2463 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2464 {
2465 enum peel_status peel_status = peel_entry(entry, 0);
2466
2467 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2468 error("internal error: %s is not a valid packed reference!",
2469 entry->name);
2470 write_packed_entry(cb_data, entry->name, entry->u.value.sha1,
2471 peel_status == PEEL_PEELED ?
2472 entry->u.value.peeled : NULL);
2473 return 0;
2474 }
2475
2476 /* This should return a meaningful errno on failure */
2477 int lock_packed_refs(int flags)
2478 {
2479 struct packed_ref_cache *packed_ref_cache;
2480
2481 if (hold_lock_file_for_update(&packlock, git_path("packed-refs"), flags) < 0)
2482 return -1;
2483 /*
2484 * Get the current packed-refs while holding the lock. If the
2485 * packed-refs file has been modified since we last read it,
2486 * this will automatically invalidate the cache and re-read
2487 * the packed-refs file.
2488 */
2489 packed_ref_cache = get_packed_ref_cache(&ref_cache);
2490 packed_ref_cache->lock = &packlock;
2491 /* Increment the reference count to prevent it from being freed: */
2492 acquire_packed_ref_cache(packed_ref_cache);
2493 return 0;
2494 }
2495
2496 /*
2497 * Commit the packed refs changes.
2498 * On error we must make sure that errno contains a meaningful value.
2499 */
2500 int commit_packed_refs(void)
2501 {
2502 struct packed_ref_cache *packed_ref_cache =
2503 get_packed_ref_cache(&ref_cache);
2504 int error = 0;
2505 int save_errno = 0;
2506 FILE *out;
2507
2508 if (!packed_ref_cache->lock)
2509 die("internal error: packed-refs not locked");
2510
2511 out = fdopen_lock_file(packed_ref_cache->lock, "w");
2512 if (!out)
2513 die_errno("unable to fdopen packed-refs descriptor");
2514
2515 fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2516 do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2517 0, write_packed_entry_fn, out);
2518
2519 if (commit_lock_file(packed_ref_cache->lock)) {
2520 save_errno = errno;
2521 error = -1;
2522 }
2523 packed_ref_cache->lock = NULL;
2524 release_packed_ref_cache(packed_ref_cache);
2525 errno = save_errno;
2526 return error;
2527 }
2528
2529 void rollback_packed_refs(void)
2530 {
2531 struct packed_ref_cache *packed_ref_cache =
2532 get_packed_ref_cache(&ref_cache);
2533
2534 if (!packed_ref_cache->lock)
2535 die("internal error: packed-refs not locked");
2536 rollback_lock_file(packed_ref_cache->lock);
2537 packed_ref_cache->lock = NULL;
2538 release_packed_ref_cache(packed_ref_cache);
2539 clear_packed_ref_cache(&ref_cache);
2540 }
2541
2542 struct ref_to_prune {
2543 struct ref_to_prune *next;
2544 unsigned char sha1[20];
2545 char name[FLEX_ARRAY];
2546 };
2547
2548 struct pack_refs_cb_data {
2549 unsigned int flags;
2550 struct ref_dir *packed_refs;
2551 struct ref_to_prune *ref_to_prune;
2552 };
2553
2554 /*
2555 * An each_ref_entry_fn that is run over loose references only. If
2556 * the loose reference can be packed, add an entry in the packed ref
2557 * cache. If the reference should be pruned, also add it to
2558 * ref_to_prune in the pack_refs_cb_data.
2559 */
2560 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2561 {
2562 struct pack_refs_cb_data *cb = cb_data;
2563 enum peel_status peel_status;
2564 struct ref_entry *packed_entry;
2565 int is_tag_ref = starts_with(entry->name, "refs/tags/");
2566
2567 /* ALWAYS pack tags */
2568 if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2569 return 0;
2570
2571 /* Do not pack symbolic or broken refs: */
2572 if ((entry->flag & REF_ISSYMREF) || !ref_resolves_to_object(entry))
2573 return 0;
2574
2575 /* Add a packed ref cache entry equivalent to the loose entry. */
2576 peel_status = peel_entry(entry, 1);
2577 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2578 die("internal error peeling reference %s (%s)",
2579 entry->name, sha1_to_hex(entry->u.value.sha1));
2580 packed_entry = find_ref(cb->packed_refs, entry->name);
2581 if (packed_entry) {
2582 /* Overwrite existing packed entry with info from loose entry */
2583 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2584 hashcpy(packed_entry->u.value.sha1, entry->u.value.sha1);
2585 } else {
2586 packed_entry = create_ref_entry(entry->name, entry->u.value.sha1,
2587 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2588 add_ref(cb->packed_refs, packed_entry);
2589 }
2590 hashcpy(packed_entry->u.value.peeled, entry->u.value.peeled);
2591
2592 /* Schedule the loose reference for pruning if requested. */
2593 if ((cb->flags & PACK_REFS_PRUNE)) {
2594 int namelen = strlen(entry->name) + 1;
2595 struct ref_to_prune *n = xcalloc(1, sizeof(*n) + namelen);
2596 hashcpy(n->sha1, entry->u.value.sha1);
2597 strcpy(n->name, entry->name);
2598 n->next = cb->ref_to_prune;
2599 cb->ref_to_prune = n;
2600 }
2601 return 0;
2602 }
2603
2604 /*
2605 * Remove empty parents, but spare refs/ and immediate subdirs.
2606 * Note: munges *name.
2607 */
2608 static void try_remove_empty_parents(char *name)
2609 {
2610 char *p, *q;
2611 int i;
2612 p = name;
2613 for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2614 while (*p && *p != '/')
2615 p++;
2616 /* tolerate duplicate slashes; see check_refname_format() */
2617 while (*p == '/')
2618 p++;
2619 }
2620 for (q = p; *q; q++)
2621 ;
2622 while (1) {
2623 while (q > p && *q != '/')
2624 q--;
2625 while (q > p && *(q-1) == '/')
2626 q--;
2627 if (q == p)
2628 break;
2629 *q = '\0';
2630 if (rmdir(git_path("%s", name)))
2631 break;
2632 }
2633 }
2634
2635 /* make sure nobody touched the ref, and unlink */
2636 static void prune_ref(struct ref_to_prune *r)
2637 {
2638 struct ref_transaction *transaction;
2639 struct strbuf err = STRBUF_INIT;
2640
2641 if (check_refname_format(r->name, 0))
2642 return;
2643
2644 transaction = ref_transaction_begin(&err);
2645 if (!transaction ||
2646 ref_transaction_delete(transaction, r->name, r->sha1,
2647 REF_ISPRUNING, NULL, &err) ||
2648 ref_transaction_commit(transaction, &err)) {
2649 ref_transaction_free(transaction);
2650 error("%s", err.buf);
2651 strbuf_release(&err);
2652 return;
2653 }
2654 ref_transaction_free(transaction);
2655 strbuf_release(&err);
2656 try_remove_empty_parents(r->name);
2657 }
2658
2659 static void prune_refs(struct ref_to_prune *r)
2660 {
2661 while (r) {
2662 prune_ref(r);
2663 r = r->next;
2664 }
2665 }
2666
2667 int pack_refs(unsigned int flags)
2668 {
2669 struct pack_refs_cb_data cbdata;
2670
2671 memset(&cbdata, 0, sizeof(cbdata));
2672 cbdata.flags = flags;
2673
2674 lock_packed_refs(LOCK_DIE_ON_ERROR);
2675 cbdata.packed_refs = get_packed_refs(&ref_cache);
2676
2677 do_for_each_entry_in_dir(get_loose_refs(&ref_cache), 0,
2678 pack_if_possible_fn, &cbdata);
2679
2680 if (commit_packed_refs())
2681 die_errno("unable to overwrite old ref-pack file");
2682
2683 prune_refs(cbdata.ref_to_prune);
2684 return 0;
2685 }
2686
2687 int repack_without_refs(struct string_list *refnames, struct strbuf *err)
2688 {
2689 struct ref_dir *packed;
2690 struct string_list_item *refname;
2691 int ret, needs_repacking = 0, removed = 0;
2692
2693 assert(err);
2694
2695 /* Look for a packed ref */
2696 for_each_string_list_item(refname, refnames) {
2697 if (get_packed_ref(refname->string)) {
2698 needs_repacking = 1;
2699 break;
2700 }
2701 }
2702
2703 /* Avoid locking if we have nothing to do */
2704 if (!needs_repacking)
2705 return 0; /* no refname exists in packed refs */
2706
2707 if (lock_packed_refs(0)) {
2708 unable_to_lock_message(git_path("packed-refs"), errno, err);
2709 return -1;
2710 }
2711 packed = get_packed_refs(&ref_cache);
2712
2713 /* Remove refnames from the cache */
2714 for_each_string_list_item(refname, refnames)
2715 if (remove_entry(packed, refname->string) != -1)
2716 removed = 1;
2717 if (!removed) {
2718 /*
2719 * All packed entries disappeared while we were
2720 * acquiring the lock.
2721 */
2722 rollback_packed_refs();
2723 return 0;
2724 }
2725
2726 /* Write what remains */
2727 ret = commit_packed_refs();
2728 if (ret)
2729 strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2730 strerror(errno));
2731 return ret;
2732 }
2733
2734 static int delete_ref_loose(struct ref_lock *lock, int flag, struct strbuf *err)
2735 {
2736 assert(err);
2737
2738 if (!(flag & REF_ISPACKED) || flag & REF_ISSYMREF) {
2739 /*
2740 * loose. The loose file name is the same as the
2741 * lockfile name, minus ".lock":
2742 */
2743 char *loose_filename = get_locked_file_path(lock->lk);
2744 int res = unlink_or_msg(loose_filename, err);
2745 free(loose_filename);
2746 if (res)
2747 return 1;
2748 }
2749 return 0;
2750 }
2751
2752 int delete_ref(const char *refname, const unsigned char *sha1, unsigned int flags)
2753 {
2754 struct ref_transaction *transaction;
2755 struct strbuf err = STRBUF_INIT;
2756
2757 transaction = ref_transaction_begin(&err);
2758 if (!transaction ||
2759 ref_transaction_delete(transaction, refname,
2760 (sha1 && !is_null_sha1(sha1)) ? sha1 : NULL,
2761 flags, NULL, &err) ||
2762 ref_transaction_commit(transaction, &err)) {
2763 error("%s", err.buf);
2764 ref_transaction_free(transaction);
2765 strbuf_release(&err);
2766 return 1;
2767 }
2768 ref_transaction_free(transaction);
2769 strbuf_release(&err);
2770 return 0;
2771 }
2772
2773 /*
2774 * People using contrib's git-new-workdir have .git/logs/refs ->
2775 * /some/other/path/.git/logs/refs, and that may live on another device.
2776 *
2777 * IOW, to avoid cross device rename errors, the temporary renamed log must
2778 * live into logs/refs.
2779 */
2780 #define TMP_RENAMED_LOG "logs/refs/.tmp-renamed-log"
2781
2782 static int rename_tmp_log(const char *newrefname)
2783 {
2784 int attempts_remaining = 4;
2785
2786 retry:
2787 switch (safe_create_leading_directories(git_path("logs/%s", newrefname))) {
2788 case SCLD_OK:
2789 break; /* success */
2790 case SCLD_VANISHED:
2791 if (--attempts_remaining > 0)
2792 goto retry;
2793 /* fall through */
2794 default:
2795 error("unable to create directory for %s", newrefname);
2796 return -1;
2797 }
2798
2799 if (rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", newrefname))) {
2800 if ((errno==EISDIR || errno==ENOTDIR) && --attempts_remaining > 0) {
2801 /*
2802 * rename(a, b) when b is an existing
2803 * directory ought to result in ISDIR, but
2804 * Solaris 5.8 gives ENOTDIR. Sheesh.
2805 */
2806 if (remove_empty_directories(git_path("logs/%s", newrefname))) {
2807 error("Directory not empty: logs/%s", newrefname);
2808 return -1;
2809 }
2810 goto retry;
2811 } else if (errno == ENOENT && --attempts_remaining > 0) {
2812 /*
2813 * Maybe another process just deleted one of
2814 * the directories in the path to newrefname.
2815 * Try again from the beginning.
2816 */
2817 goto retry;
2818 } else {
2819 error("unable to move logfile "TMP_RENAMED_LOG" to logs/%s: %s",
2820 newrefname, strerror(errno));
2821 return -1;
2822 }
2823 }
2824 return 0;
2825 }
2826
2827 static int rename_ref_available(const char *oldname, const char *newname)
2828 {
2829 struct string_list skip = STRING_LIST_INIT_NODUP;
2830 struct strbuf err = STRBUF_INIT;
2831 int ret;
2832
2833 string_list_insert(&skip, oldname);
2834 ret = !verify_refname_available(newname, NULL, &skip,
2835 get_packed_refs(&ref_cache), &err)
2836 && !verify_refname_available(newname, NULL, &skip,
2837 get_loose_refs(&ref_cache), &err);
2838 if (!ret)
2839 error("%s", err.buf);
2840
2841 string_list_clear(&skip, 0);
2842 strbuf_release(&err);
2843 return ret;
2844 }
2845
2846 static int write_ref_sha1(struct ref_lock *lock, const unsigned char *sha1,
2847 const char *logmsg);
2848
2849 int rename_ref(const char *oldrefname, const char *newrefname, const char *logmsg)
2850 {
2851 unsigned char sha1[20], orig_sha1[20];
2852 int flag = 0, logmoved = 0;
2853 struct ref_lock *lock;
2854 struct stat loginfo;
2855 int log = !lstat(git_path("logs/%s", oldrefname), &loginfo);
2856 const char *symref = NULL;
2857 struct strbuf err = STRBUF_INIT;
2858
2859 if (log && S_ISLNK(loginfo.st_mode))
2860 return error("reflog for %s is a symlink", oldrefname);
2861
2862 symref = resolve_ref_unsafe(oldrefname, RESOLVE_REF_READING,
2863 orig_sha1, &flag);
2864 if (flag & REF_ISSYMREF)
2865 return error("refname %s is a symbolic ref, renaming it is not supported",
2866 oldrefname);
2867 if (!symref)
2868 return error("refname %s not found", oldrefname);
2869
2870 if (!rename_ref_available(oldrefname, newrefname))
2871 return 1;
2872
2873 if (log && rename(git_path("logs/%s", oldrefname), git_path(TMP_RENAMED_LOG)))
2874 return error("unable to move logfile logs/%s to "TMP_RENAMED_LOG": %s",
2875 oldrefname, strerror(errno));
2876
2877 if (delete_ref(oldrefname, orig_sha1, REF_NODEREF)) {
2878 error("unable to delete old %s", oldrefname);
2879 goto rollback;
2880 }
2881
2882 if (!read_ref_full(newrefname, RESOLVE_REF_READING, sha1, NULL) &&
2883 delete_ref(newrefname, sha1, REF_NODEREF)) {
2884 if (errno==EISDIR) {
2885 if (remove_empty_directories(git_path("%s", newrefname))) {
2886 error("Directory not empty: %s", newrefname);
2887 goto rollback;
2888 }
2889 } else {
2890 error("unable to delete existing %s", newrefname);
2891 goto rollback;
2892 }
2893 }
2894
2895 if (log && rename_tmp_log(newrefname))
2896 goto rollback;
2897
2898 logmoved = log;
2899
2900 lock = lock_ref_sha1_basic(newrefname, NULL, NULL, NULL, 0, NULL, &err);
2901 if (!lock) {
2902 error("%s", err.buf);
2903 strbuf_release(&err);
2904 error("unable to lock %s for update", newrefname);
2905 goto rollback;
2906 }
2907 hashcpy(lock->old_sha1, orig_sha1);
2908 if (write_ref_sha1(lock, orig_sha1, logmsg)) {
2909 error("unable to write current sha1 into %s", newrefname);
2910 goto rollback;
2911 }
2912
2913 return 0;
2914
2915 rollback:
2916 lock = lock_ref_sha1_basic(oldrefname, NULL, NULL, NULL, 0, NULL, &err);
2917 if (!lock) {
2918 error("%s", err.buf);
2919 strbuf_release(&err);
2920 error("unable to lock %s for rollback", oldrefname);
2921 goto rollbacklog;
2922 }
2923
2924 flag = log_all_ref_updates;
2925 log_all_ref_updates = 0;
2926 if (write_ref_sha1(lock, orig_sha1, NULL))
2927 error("unable to write current sha1 into %s", oldrefname);
2928 log_all_ref_updates = flag;
2929
2930 rollbacklog:
2931 if (logmoved && rename(git_path("logs/%s", newrefname), git_path("logs/%s", oldrefname)))
2932 error("unable to restore logfile %s from %s: %s",
2933 oldrefname, newrefname, strerror(errno));
2934 if (!logmoved && log &&
2935 rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", oldrefname)))
2936 error("unable to restore logfile %s from "TMP_RENAMED_LOG": %s",
2937 oldrefname, strerror(errno));
2938
2939 return 1;
2940 }
2941
2942 static int close_ref(struct ref_lock *lock)
2943 {
2944 if (close_lock_file(lock->lk))
2945 return -1;
2946 lock->lock_fd = -1;
2947 return 0;
2948 }
2949
2950 static int commit_ref(struct ref_lock *lock)
2951 {
2952 if (commit_lock_file(lock->lk))
2953 return -1;
2954 lock->lock_fd = -1;
2955 return 0;
2956 }
2957
2958 /*
2959 * copy the reflog message msg to buf, which has been allocated sufficiently
2960 * large, while cleaning up the whitespaces. Especially, convert LF to space,
2961 * because reflog file is one line per entry.
2962 */
2963 static int copy_msg(char *buf, const char *msg)
2964 {
2965 char *cp = buf;
2966 char c;
2967 int wasspace = 1;
2968
2969 *cp++ = '\t';
2970 while ((c = *msg++)) {
2971 if (wasspace && isspace(c))
2972 continue;
2973 wasspace = isspace(c);
2974 if (wasspace)
2975 c = ' ';
2976 *cp++ = c;
2977 }
2978 while (buf < cp && isspace(cp[-1]))
2979 cp--;
2980 *cp++ = '\n';
2981 return cp - buf;
2982 }
2983
2984 /* This function must set a meaningful errno on failure */
2985 int log_ref_setup(const char *refname, char *logfile, int bufsize)
2986 {
2987 int logfd, oflags = O_APPEND | O_WRONLY;
2988
2989 git_snpath(logfile, bufsize, "logs/%s", refname);
2990 if (log_all_ref_updates &&
2991 (starts_with(refname, "refs/heads/") ||
2992 starts_with(refname, "refs/remotes/") ||
2993 starts_with(refname, "refs/notes/") ||
2994 !strcmp(refname, "HEAD"))) {
2995 if (safe_create_leading_directories(logfile) < 0) {
2996 int save_errno = errno;
2997 error("unable to create directory for %s", logfile);
2998 errno = save_errno;
2999 return -1;
3000 }
3001 oflags |= O_CREAT;
3002 }
3003
3004 logfd = open(logfile, oflags, 0666);
3005 if (logfd < 0) {
3006 if (!(oflags & O_CREAT) && (errno == ENOENT || errno == EISDIR))
3007 return 0;
3008
3009 if (errno == EISDIR) {
3010 if (remove_empty_directories(logfile)) {
3011 int save_errno = errno;
3012 error("There are still logs under '%s'",
3013 logfile);
3014 errno = save_errno;
3015 return -1;
3016 }
3017 logfd = open(logfile, oflags, 0666);
3018 }
3019
3020 if (logfd < 0) {
3021 int save_errno = errno;
3022 error("Unable to append to %s: %s", logfile,
3023 strerror(errno));
3024 errno = save_errno;
3025 return -1;
3026 }
3027 }
3028
3029 adjust_shared_perm(logfile);
3030 close(logfd);
3031 return 0;
3032 }
3033
3034 static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
3035 const unsigned char *new_sha1,
3036 const char *committer, const char *msg)
3037 {
3038 int msglen, written;
3039 unsigned maxlen, len;
3040 char *logrec;
3041
3042 msglen = msg ? strlen(msg) : 0;
3043 maxlen = strlen(committer) + msglen + 100;
3044 logrec = xmalloc(maxlen);
3045 len = sprintf(logrec, "%s %s %s\n",
3046 sha1_to_hex(old_sha1),
3047 sha1_to_hex(new_sha1),
3048 committer);
3049 if (msglen)
3050 len += copy_msg(logrec + len - 1, msg) - 1;
3051
3052 written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
3053 free(logrec);
3054 if (written != len)
3055 return -1;
3056
3057 return 0;
3058 }
3059
3060 static int log_ref_write(const char *refname, const unsigned char *old_sha1,
3061 const unsigned char *new_sha1, const char *msg)
3062 {
3063 int logfd, result, oflags = O_APPEND | O_WRONLY;
3064 char log_file[PATH_MAX];
3065
3066 if (log_all_ref_updates < 0)
3067 log_all_ref_updates = !is_bare_repository();
3068
3069 result = log_ref_setup(refname, log_file, sizeof(log_file));
3070 if (result)
3071 return result;
3072
3073 logfd = open(log_file, oflags);
3074 if (logfd < 0)
3075 return 0;
3076 result = log_ref_write_fd(logfd, old_sha1, new_sha1,
3077 git_committer_info(0), msg);
3078 if (result) {
3079 int save_errno = errno;
3080 close(logfd);
3081 error("Unable to append to %s", log_file);
3082 errno = save_errno;
3083 return -1;
3084 }
3085 if (close(logfd)) {
3086 int save_errno = errno;
3087 error("Unable to append to %s", log_file);
3088 errno = save_errno;
3089 return -1;
3090 }
3091 return 0;
3092 }
3093
3094 int is_branch(const char *refname)
3095 {
3096 return !strcmp(refname, "HEAD") || starts_with(refname, "refs/heads/");
3097 }
3098
3099 /*
3100 * Write sha1 into the ref specified by the lock. Make sure that errno
3101 * is sane on error.
3102 */
3103 static int write_ref_sha1(struct ref_lock *lock,
3104 const unsigned char *sha1, const char *logmsg)
3105 {
3106 static char term = '\n';
3107 struct object *o;
3108
3109 o = parse_object(sha1);
3110 if (!o) {
3111 error("Trying to write ref %s with nonexistent object %s",
3112 lock->ref_name, sha1_to_hex(sha1));
3113 unlock_ref(lock);
3114 errno = EINVAL;
3115 return -1;
3116 }
3117 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
3118 error("Trying to write non-commit object %s to branch %s",
3119 sha1_to_hex(sha1), lock->ref_name);
3120 unlock_ref(lock);
3121 errno = EINVAL;
3122 return -1;
3123 }
3124 if (write_in_full(lock->lock_fd, sha1_to_hex(sha1), 40) != 40 ||
3125 write_in_full(lock->lock_fd, &term, 1) != 1 ||
3126 close_ref(lock) < 0) {
3127 int save_errno = errno;
3128 error("Couldn't write %s", lock->lk->filename.buf);
3129 unlock_ref(lock);
3130 errno = save_errno;
3131 return -1;
3132 }
3133 clear_loose_ref_cache(&ref_cache);
3134 if (log_ref_write(lock->ref_name, lock->old_sha1, sha1, logmsg) < 0 ||
3135 (strcmp(lock->ref_name, lock->orig_ref_name) &&
3136 log_ref_write(lock->orig_ref_name, lock->old_sha1, sha1, logmsg) < 0)) {
3137 unlock_ref(lock);
3138 return -1;
3139 }
3140 if (strcmp(lock->orig_ref_name, "HEAD") != 0) {
3141 /*
3142 * Special hack: If a branch is updated directly and HEAD
3143 * points to it (may happen on the remote side of a push
3144 * for example) then logically the HEAD reflog should be
3145 * updated too.
3146 * A generic solution implies reverse symref information,
3147 * but finding all symrefs pointing to the given branch
3148 * would be rather costly for this rare event (the direct
3149 * update of a branch) to be worth it. So let's cheat and
3150 * check with HEAD only which should cover 99% of all usage
3151 * scenarios (even 100% of the default ones).
3152 */
3153 unsigned char head_sha1[20];
3154 int head_flag;
3155 const char *head_ref;
3156 head_ref = resolve_ref_unsafe("HEAD", RESOLVE_REF_READING,
3157 head_sha1, &head_flag);
3158 if (head_ref && (head_flag & REF_ISSYMREF) &&
3159 !strcmp(head_ref, lock->ref_name))
3160 log_ref_write("HEAD", lock->old_sha1, sha1, logmsg);
3161 }
3162 if (commit_ref(lock)) {
3163 error("Couldn't set %s", lock->ref_name);
3164 unlock_ref(lock);
3165 return -1;
3166 }
3167 unlock_ref(lock);
3168 return 0;
3169 }
3170
3171 int create_symref(const char *ref_target, const char *refs_heads_master,
3172 const char *logmsg)
3173 {
3174 const char *lockpath;
3175 char ref[1000];
3176 int fd, len, written;
3177 char *git_HEAD = git_pathdup("%s", ref_target);
3178 unsigned char old_sha1[20], new_sha1[20];
3179
3180 if (logmsg && read_ref(ref_target, old_sha1))
3181 hashclr(old_sha1);
3182
3183 if (safe_create_leading_directories(git_HEAD) < 0)
3184 return error("unable to create directory for %s", git_HEAD);
3185
3186 #ifndef NO_SYMLINK_HEAD
3187 if (prefer_symlink_refs) {
3188 unlink(git_HEAD);
3189 if (!symlink(refs_heads_master, git_HEAD))
3190 goto done;
3191 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3192 }
3193 #endif
3194
3195 len = snprintf(ref, sizeof(ref), "ref: %s\n", refs_heads_master);
3196 if (sizeof(ref) <= len) {
3197 error("refname too long: %s", refs_heads_master);
3198 goto error_free_return;
3199 }
3200 lockpath = mkpath("%s.lock", git_HEAD);
3201 fd = open(lockpath, O_CREAT | O_EXCL | O_WRONLY, 0666);
3202 if (fd < 0) {
3203 error("Unable to open %s for writing", lockpath);
3204 goto error_free_return;
3205 }
3206 written = write_in_full(fd, ref, len);
3207 if (close(fd) != 0 || written != len) {
3208 error("Unable to write to %s", lockpath);
3209 goto error_unlink_return;
3210 }
3211 if (rename(lockpath, git_HEAD) < 0) {
3212 error("Unable to create %s", git_HEAD);
3213 goto error_unlink_return;
3214 }
3215 if (adjust_shared_perm(git_HEAD)) {
3216 error("Unable to fix permissions on %s", lockpath);
3217 error_unlink_return:
3218 unlink_or_warn(lockpath);
3219 error_free_return:
3220 free(git_HEAD);
3221 return -1;
3222 }
3223
3224 #ifndef NO_SYMLINK_HEAD
3225 done:
3226 #endif
3227 if (logmsg && !read_ref(refs_heads_master, new_sha1))
3228 log_ref_write(ref_target, old_sha1, new_sha1, logmsg);
3229
3230 free(git_HEAD);
3231 return 0;
3232 }
3233
3234 struct read_ref_at_cb {
3235 const char *refname;
3236 unsigned long at_time;
3237 int cnt;
3238 int reccnt;
3239 unsigned char *sha1;
3240 int found_it;
3241
3242 unsigned char osha1[20];
3243 unsigned char nsha1[20];
3244 int tz;
3245 unsigned long date;
3246 char **msg;
3247 unsigned long *cutoff_time;
3248 int *cutoff_tz;
3249 int *cutoff_cnt;
3250 };
3251
3252 static int read_ref_at_ent(unsigned char *osha1, unsigned char *nsha1,
3253 const char *email, unsigned long timestamp, int tz,
3254 const char *message, void *cb_data)
3255 {
3256 struct read_ref_at_cb *cb = cb_data;
3257
3258 cb->reccnt++;
3259 cb->tz = tz;
3260 cb->date = timestamp;
3261
3262 if (timestamp <= cb->at_time || cb->cnt == 0) {
3263 if (cb->msg)
3264 *cb->msg = xstrdup(message);
3265 if (cb->cutoff_time)
3266 *cb->cutoff_time = timestamp;
3267 if (cb->cutoff_tz)
3268 *cb->cutoff_tz = tz;
3269 if (cb->cutoff_cnt)
3270 *cb->cutoff_cnt = cb->reccnt - 1;
3271 /*
3272 * we have not yet updated cb->[n|o]sha1 so they still
3273 * hold the values for the previous record.
3274 */
3275 if (!is_null_sha1(cb->osha1)) {
3276 hashcpy(cb->sha1, nsha1);
3277 if (hashcmp(cb->osha1, nsha1))
3278 warning("Log for ref %s has gap after %s.",
3279 cb->refname, show_date(cb->date, cb->tz, DATE_RFC2822));
3280 }
3281 else if (cb->date == cb->at_time)
3282 hashcpy(cb->sha1, nsha1);
3283 else if (hashcmp(nsha1, cb->sha1))
3284 warning("Log for ref %s unexpectedly ended on %s.",
3285 cb->refname, show_date(cb->date, cb->tz,
3286 DATE_RFC2822));
3287 hashcpy(cb->osha1, osha1);
3288 hashcpy(cb->nsha1, nsha1);
3289 cb->found_it = 1;
3290 return 1;
3291 }
3292 hashcpy(cb->osha1, osha1);
3293 hashcpy(cb->nsha1, nsha1);
3294 if (cb->cnt > 0)
3295 cb->cnt--;
3296 return 0;
3297 }
3298
3299 static int read_ref_at_ent_oldest(unsigned char *osha1, unsigned char *nsha1,
3300 const char *email, unsigned long timestamp,
3301 int tz, const char *message, void *cb_data)
3302 {
3303 struct read_ref_at_cb *cb = cb_data;
3304
3305 if (cb->msg)
3306 *cb->msg = xstrdup(message);
3307 if (cb->cutoff_time)
3308 *cb->cutoff_time = timestamp;
3309 if (cb->cutoff_tz)
3310 *cb->cutoff_tz = tz;
3311 if (cb->cutoff_cnt)
3312 *cb->cutoff_cnt = cb->reccnt;
3313 hashcpy(cb->sha1, osha1);
3314 if (is_null_sha1(cb->sha1))
3315 hashcpy(cb->sha1, nsha1);
3316 /* We just want the first entry */
3317 return 1;
3318 }
3319
3320 int read_ref_at(const char *refname, unsigned int flags, unsigned long at_time, int cnt,
3321 unsigned char *sha1, char **msg,
3322 unsigned long *cutoff_time, int *cutoff_tz, int *cutoff_cnt)
3323 {
3324 struct read_ref_at_cb cb;
3325
3326 memset(&cb, 0, sizeof(cb));
3327 cb.refname = refname;
3328 cb.at_time = at_time;
3329 cb.cnt = cnt;
3330 cb.msg = msg;
3331 cb.cutoff_time = cutoff_time;
3332 cb.cutoff_tz = cutoff_tz;
3333 cb.cutoff_cnt = cutoff_cnt;
3334 cb.sha1 = sha1;
3335
3336 for_each_reflog_ent_reverse(refname, read_ref_at_ent, &cb);
3337
3338 if (!cb.reccnt) {
3339 if (flags & GET_SHA1_QUIETLY)
3340 exit(128);
3341 else
3342 die("Log for %s is empty.", refname);
3343 }
3344 if (cb.found_it)
3345 return 0;
3346
3347 for_each_reflog_ent(refname, read_ref_at_ent_oldest, &cb);
3348
3349 return 1;
3350 }
3351
3352 int reflog_exists(const char *refname)
3353 {
3354 struct stat st;
3355
3356 return !lstat(git_path("logs/%s", refname), &st) &&
3357 S_ISREG(st.st_mode);
3358 }
3359
3360 int delete_reflog(const char *refname)
3361 {
3362 return remove_path(git_path("logs/%s", refname));
3363 }
3364
3365 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3366 {
3367 unsigned char osha1[20], nsha1[20];
3368 char *email_end, *message;
3369 unsigned long timestamp;
3370 int tz;
3371
3372 /* old SP new SP name <email> SP time TAB msg LF */
3373 if (sb->len < 83 || sb->buf[sb->len - 1] != '\n' ||
3374 get_sha1_hex(sb->buf, osha1) || sb->buf[40] != ' ' ||
3375 get_sha1_hex(sb->buf + 41, nsha1) || sb->buf[81] != ' ' ||
3376 !(email_end = strchr(sb->buf + 82, '>')) ||
3377 email_end[1] != ' ' ||
3378 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3379 !message || message[0] != ' ' ||
3380 (message[1] != '+' && message[1] != '-') ||
3381 !isdigit(message[2]) || !isdigit(message[3]) ||
3382 !isdigit(message[4]) || !isdigit(message[5]))
3383 return 0; /* corrupt? */
3384 email_end[1] = '\0';
3385 tz = strtol(message + 1, NULL, 10);
3386 if (message[6] != '\t')
3387 message += 6;
3388 else
3389 message += 7;
3390 return fn(osha1, nsha1, sb->buf + 82, timestamp, tz, message, cb_data);
3391 }
3392
3393 static char *find_beginning_of_line(char *bob, char *scan)
3394 {
3395 while (bob < scan && *(--scan) != '\n')
3396 ; /* keep scanning backwards */
3397 /*
3398 * Return either beginning of the buffer, or LF at the end of
3399 * the previous line.
3400 */
3401 return scan;
3402 }
3403
3404 int for_each_reflog_ent_reverse(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3405 {
3406 struct strbuf sb = STRBUF_INIT;
3407 FILE *logfp;
3408 long pos;
3409 int ret = 0, at_tail = 1;
3410
3411 logfp = fopen(git_path("logs/%s", refname), "r");
3412 if (!logfp)
3413 return -1;
3414
3415 /* Jump to the end */
3416 if (fseek(logfp, 0, SEEK_END) < 0)
3417 return error("cannot seek back reflog for %s: %s",
3418 refname, strerror(errno));
3419 pos = ftell(logfp);
3420 while (!ret && 0 < pos) {
3421 int cnt;
3422 size_t nread;
3423 char buf[BUFSIZ];
3424 char *endp, *scanp;
3425
3426 /* Fill next block from the end */
3427 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3428 if (fseek(logfp, pos - cnt, SEEK_SET))
3429 return error("cannot seek back reflog for %s: %s",
3430 refname, strerror(errno));
3431 nread = fread(buf, cnt, 1, logfp);
3432 if (nread != 1)
3433 return error("cannot read %d bytes from reflog for %s: %s",
3434 cnt, refname, strerror(errno));
3435 pos -= cnt;
3436
3437 scanp = endp = buf + cnt;
3438 if (at_tail && scanp[-1] == '\n')
3439 /* Looking at the final LF at the end of the file */
3440 scanp--;
3441 at_tail = 0;
3442
3443 while (buf < scanp) {
3444 /*
3445 * terminating LF of the previous line, or the beginning
3446 * of the buffer.
3447 */
3448 char *bp;
3449
3450 bp = find_beginning_of_line(buf, scanp);
3451
3452 if (*bp == '\n') {
3453 /*
3454 * The newline is the end of the previous line,
3455 * so we know we have complete line starting
3456 * at (bp + 1). Prefix it onto any prior data
3457 * we collected for the line and process it.
3458 */
3459 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3460 scanp = bp;
3461 endp = bp + 1;
3462 ret = show_one_reflog_ent(&sb, fn, cb_data);
3463 strbuf_reset(&sb);
3464 if (ret)
3465 break;
3466 } else if (!pos) {
3467 /*
3468 * We are at the start of the buffer, and the
3469 * start of the file; there is no previous
3470 * line, and we have everything for this one.
3471 * Process it, and we can end the loop.
3472 */
3473 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3474 ret = show_one_reflog_ent(&sb, fn, cb_data);
3475 strbuf_reset(&sb);
3476 break;
3477 }
3478
3479 if (bp == buf) {
3480 /*
3481 * We are at the start of the buffer, and there
3482 * is more file to read backwards. Which means
3483 * we are in the middle of a line. Note that we
3484 * may get here even if *bp was a newline; that
3485 * just means we are at the exact end of the
3486 * previous line, rather than some spot in the
3487 * middle.
3488 *
3489 * Save away what we have to be combined with
3490 * the data from the next read.
3491 */
3492 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3493 break;
3494 }
3495 }
3496
3497 }
3498 if (!ret && sb.len)
3499 die("BUG: reverse reflog parser had leftover data");
3500
3501 fclose(logfp);
3502 strbuf_release(&sb);
3503 return ret;
3504 }
3505
3506 int for_each_reflog_ent(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3507 {
3508 FILE *logfp;
3509 struct strbuf sb = STRBUF_INIT;
3510 int ret = 0;
3511
3512 logfp = fopen(git_path("logs/%s", refname), "r");
3513 if (!logfp)
3514 return -1;
3515
3516 while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3517 ret = show_one_reflog_ent(&sb, fn, cb_data);
3518 fclose(logfp);
3519 strbuf_release(&sb);
3520 return ret;
3521 }
3522 /*
3523 * Call fn for each reflog in the namespace indicated by name. name
3524 * must be empty or end with '/'. Name will be used as a scratch
3525 * space, but its contents will be restored before return.
3526 */
3527 static int do_for_each_reflog(struct strbuf *name, each_ref_fn fn, void *cb_data)
3528 {
3529 DIR *d = opendir(git_path("logs/%s", name->buf));
3530 int retval = 0;
3531 struct dirent *de;
3532 int oldlen = name->len;
3533
3534 if (!d)
3535 return name->len ? errno : 0;
3536
3537 while ((de = readdir(d)) != NULL) {
3538 struct stat st;
3539
3540 if (de->d_name[0] == '.')
3541 continue;
3542 if (ends_with(de->d_name, ".lock"))
3543 continue;
3544 strbuf_addstr(name, de->d_name);
3545 if (stat(git_path("logs/%s", name->buf), &st) < 0) {
3546 ; /* silently ignore */
3547 } else {
3548 if (S_ISDIR(st.st_mode)) {
3549 strbuf_addch(name, '/');
3550 retval = do_for_each_reflog(name, fn, cb_data);
3551 } else {
3552 unsigned char sha1[20];
3553 if (read_ref_full(name->buf, 0, sha1, NULL))
3554 retval = error("bad ref for %s", name->buf);
3555 else
3556 retval = fn(name->buf, sha1, 0, cb_data);
3557 }
3558 if (retval)
3559 break;
3560 }
3561 strbuf_setlen(name, oldlen);
3562 }
3563 closedir(d);
3564 return retval;
3565 }
3566
3567 int for_each_reflog(each_ref_fn fn, void *cb_data)
3568 {
3569 int retval;
3570 struct strbuf name;
3571 strbuf_init(&name, PATH_MAX);
3572 retval = do_for_each_reflog(&name, fn, cb_data);
3573 strbuf_release(&name);
3574 return retval;
3575 }
3576
3577 /**
3578 * Information needed for a single ref update. Set new_sha1 to the new
3579 * value or to null_sha1 to delete the ref. To check the old value
3580 * while the ref is locked, set (flags & REF_HAVE_OLD) and set
3581 * old_sha1 to the old value, or to null_sha1 to ensure the ref does
3582 * not exist before update.
3583 */
3584 struct ref_update {
3585 /*
3586 * If (flags & REF_HAVE_NEW), set the reference to this value:
3587 */
3588 unsigned char new_sha1[20];
3589 /*
3590 * If (flags & REF_HAVE_OLD), check that the reference
3591 * previously had this value:
3592 */
3593 unsigned char old_sha1[20];
3594 /*
3595 * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF,
3596 * REF_DELETING, and REF_ISPRUNING:
3597 */
3598 unsigned int flags;
3599 struct ref_lock *lock;
3600 int type;
3601 char *msg;
3602 const char refname[FLEX_ARRAY];
3603 };
3604
3605 /*
3606 * Transaction states.
3607 * OPEN: The transaction is in a valid state and can accept new updates.
3608 * An OPEN transaction can be committed.
3609 * CLOSED: A closed transaction is no longer active and no other operations
3610 * than free can be used on it in this state.
3611 * A transaction can either become closed by successfully committing
3612 * an active transaction or if there is a failure while building
3613 * the transaction thus rendering it failed/inactive.
3614 */
3615 enum ref_transaction_state {
3616 REF_TRANSACTION_OPEN = 0,
3617 REF_TRANSACTION_CLOSED = 1
3618 };
3619
3620 /*
3621 * Data structure for holding a reference transaction, which can
3622 * consist of checks and updates to multiple references, carried out
3623 * as atomically as possible. This structure is opaque to callers.
3624 */
3625 struct ref_transaction {
3626 struct ref_update **updates;
3627 size_t alloc;
3628 size_t nr;
3629 enum ref_transaction_state state;
3630 };
3631
3632 struct ref_transaction *ref_transaction_begin(struct strbuf *err)
3633 {
3634 assert(err);
3635
3636 return xcalloc(1, sizeof(struct ref_transaction));
3637 }
3638
3639 void ref_transaction_free(struct ref_transaction *transaction)
3640 {
3641 int i;
3642
3643 if (!transaction)
3644 return;
3645
3646 for (i = 0; i < transaction->nr; i++) {
3647 free(transaction->updates[i]->msg);
3648 free(transaction->updates[i]);
3649 }
3650 free(transaction->updates);
3651 free(transaction);
3652 }
3653
3654 static struct ref_update *add_update(struct ref_transaction *transaction,
3655 const char *refname)
3656 {
3657 size_t len = strlen(refname);
3658 struct ref_update *update = xcalloc(1, sizeof(*update) + len + 1);
3659
3660 strcpy((char *)update->refname, refname);
3661 ALLOC_GROW(transaction->updates, transaction->nr + 1, transaction->alloc);
3662 transaction->updates[transaction->nr++] = update;
3663 return update;
3664 }
3665
3666 int ref_transaction_update(struct ref_transaction *transaction,
3667 const char *refname,
3668 const unsigned char *new_sha1,
3669 const unsigned char *old_sha1,
3670 unsigned int flags, const char *msg,
3671 struct strbuf *err)
3672 {
3673 struct ref_update *update;
3674
3675 assert(err);
3676
3677 if (transaction->state != REF_TRANSACTION_OPEN)
3678 die("BUG: update called for transaction that is not open");
3679
3680 if (new_sha1 && !is_null_sha1(new_sha1) &&
3681 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
3682 strbuf_addf(err, "refusing to update ref with bad name %s",
3683 refname);
3684 return -1;
3685 }
3686
3687 update = add_update(transaction, refname);
3688 if (new_sha1) {
3689 hashcpy(update->new_sha1, new_sha1);
3690 flags |= REF_HAVE_NEW;
3691 }
3692 if (old_sha1) {
3693 hashcpy(update->old_sha1, old_sha1);
3694 flags |= REF_HAVE_OLD;
3695 }
3696 update->flags = flags;
3697 if (msg)
3698 update->msg = xstrdup(msg);
3699 return 0;
3700 }
3701
3702 int ref_transaction_create(struct ref_transaction *transaction,
3703 const char *refname,
3704 const unsigned char *new_sha1,
3705 unsigned int flags, const char *msg,
3706 struct strbuf *err)
3707 {
3708 if (!new_sha1 || is_null_sha1(new_sha1))
3709 die("BUG: create called without valid new_sha1");
3710 return ref_transaction_update(transaction, refname, new_sha1,
3711 null_sha1, flags, msg, err);
3712 }
3713
3714 int ref_transaction_delete(struct ref_transaction *transaction,
3715 const char *refname,
3716 const unsigned char *old_sha1,
3717 unsigned int flags, const char *msg,
3718 struct strbuf *err)
3719 {
3720 if (old_sha1 && is_null_sha1(old_sha1))
3721 die("BUG: delete called with old_sha1 set to zeros");
3722 return ref_transaction_update(transaction, refname,
3723 null_sha1, old_sha1,
3724 flags, msg, err);
3725 }
3726
3727 int ref_transaction_verify(struct ref_transaction *transaction,
3728 const char *refname,
3729 const unsigned char *old_sha1,
3730 unsigned int flags,
3731 struct strbuf *err)
3732 {
3733 if (!old_sha1)
3734 die("BUG: verify called with old_sha1 set to NULL");
3735 return ref_transaction_update(transaction, refname,
3736 NULL, old_sha1,
3737 flags, NULL, err);
3738 }
3739
3740 int update_ref(const char *msg, const char *refname,
3741 const unsigned char *new_sha1, const unsigned char *old_sha1,
3742 unsigned int flags, enum action_on_err onerr)
3743 {
3744 struct ref_transaction *t;
3745 struct strbuf err = STRBUF_INIT;
3746
3747 t = ref_transaction_begin(&err);
3748 if (!t ||
3749 ref_transaction_update(t, refname, new_sha1, old_sha1,
3750 flags, msg, &err) ||
3751 ref_transaction_commit(t, &err)) {
3752 const char *str = "update_ref failed for ref '%s': %s";
3753
3754 ref_transaction_free(t);
3755 switch (onerr) {
3756 case UPDATE_REFS_MSG_ON_ERR:
3757 error(str, refname, err.buf);
3758 break;
3759 case UPDATE_REFS_DIE_ON_ERR:
3760 die(str, refname, err.buf);
3761 break;
3762 case UPDATE_REFS_QUIET_ON_ERR:
3763 break;
3764 }
3765 strbuf_release(&err);
3766 return 1;
3767 }
3768 strbuf_release(&err);
3769 ref_transaction_free(t);
3770 return 0;
3771 }
3772
3773 static int ref_update_reject_duplicates(struct string_list *refnames,
3774 struct strbuf *err)
3775 {
3776 int i, n = refnames->nr;
3777
3778 assert(err);
3779
3780 for (i = 1; i < n; i++)
3781 if (!strcmp(refnames->items[i - 1].string, refnames->items[i].string)) {
3782 strbuf_addf(err,
3783 "Multiple updates for ref '%s' not allowed.",
3784 refnames->items[i].string);
3785 return 1;
3786 }
3787 return 0;
3788 }
3789
3790 int ref_transaction_commit(struct ref_transaction *transaction,
3791 struct strbuf *err)
3792 {
3793 int ret = 0, i;
3794 int n = transaction->nr;
3795 struct ref_update **updates = transaction->updates;
3796 struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3797 struct string_list_item *ref_to_delete;
3798 struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3799
3800 assert(err);
3801
3802 if (transaction->state != REF_TRANSACTION_OPEN)
3803 die("BUG: commit called for transaction that is not open");
3804
3805 if (!n) {
3806 transaction->state = REF_TRANSACTION_CLOSED;
3807 return 0;
3808 }
3809
3810 /* Fail if a refname appears more than once in the transaction: */
3811 for (i = 0; i < n; i++)
3812 string_list_append(&affected_refnames, updates[i]->refname);
3813 string_list_sort(&affected_refnames);
3814 if (ref_update_reject_duplicates(&affected_refnames, err)) {
3815 ret = TRANSACTION_GENERIC_ERROR;
3816 goto cleanup;
3817 }
3818
3819 /* Acquire all locks while verifying old values */
3820 for (i = 0; i < n; i++) {
3821 struct ref_update *update = updates[i];
3822 unsigned int flags = update->flags;
3823
3824 if ((flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1))
3825 flags |= REF_DELETING;
3826 update->lock = lock_ref_sha1_basic(
3827 update->refname,
3828 ((update->flags & REF_HAVE_OLD) ?
3829 update->old_sha1 : NULL),
3830 &affected_refnames, NULL,
3831 flags,
3832 &update->type,
3833 err);
3834 if (!update->lock) {
3835 ret = (errno == ENOTDIR)
3836 ? TRANSACTION_NAME_CONFLICT
3837 : TRANSACTION_GENERIC_ERROR;
3838 error("%s", err->buf);
3839 strbuf_reset(err);
3840 strbuf_addf(err, "Cannot lock the ref '%s'.",
3841 update->refname);
3842 goto cleanup;
3843 }
3844 }
3845
3846 /* Perform updates first so live commits remain referenced */
3847 for (i = 0; i < n; i++) {
3848 struct ref_update *update = updates[i];
3849 int flags = update->flags;
3850
3851 if ((flags & REF_HAVE_NEW) && !is_null_sha1(update->new_sha1)) {
3852 int overwriting_symref = ((update->type & REF_ISSYMREF) &&
3853 (update->flags & REF_NODEREF));
3854
3855 if (!overwriting_symref
3856 && !hashcmp(update->lock->old_sha1, update->new_sha1)) {
3857 /*
3858 * The reference already has the desired
3859 * value, so we don't need to write it.
3860 */
3861 unlock_ref(update->lock);
3862 update->lock = NULL;
3863 } else if (write_ref_sha1(update->lock, update->new_sha1,
3864 update->msg)) {
3865 update->lock = NULL; /* freed by write_ref_sha1 */
3866 strbuf_addf(err, "Cannot update the ref '%s'.",
3867 update->refname);
3868 ret = TRANSACTION_GENERIC_ERROR;
3869 goto cleanup;
3870 } else {
3871 /* freed by write_ref_sha1(): */
3872 update->lock = NULL;
3873 }
3874 }
3875 }
3876
3877 /* Perform deletes now that updates are safely completed */
3878 for (i = 0; i < n; i++) {
3879 struct ref_update *update = updates[i];
3880 int flags = update->flags;
3881
3882 if ((flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1)) {
3883 if (delete_ref_loose(update->lock, update->type, err)) {
3884 ret = TRANSACTION_GENERIC_ERROR;
3885 goto cleanup;
3886 }
3887
3888 if (!(flags & REF_ISPRUNING))
3889 string_list_append(&refs_to_delete,
3890 update->lock->ref_name);
3891 }
3892 }
3893
3894 if (repack_without_refs(&refs_to_delete, err)) {
3895 ret = TRANSACTION_GENERIC_ERROR;
3896 goto cleanup;
3897 }
3898 for_each_string_list_item(ref_to_delete, &refs_to_delete)
3899 unlink_or_warn(git_path("logs/%s", ref_to_delete->string));
3900 clear_loose_ref_cache(&ref_cache);
3901
3902 cleanup:
3903 transaction->state = REF_TRANSACTION_CLOSED;
3904
3905 for (i = 0; i < n; i++)
3906 if (updates[i]->lock)
3907 unlock_ref(updates[i]->lock);
3908 string_list_clear(&refs_to_delete, 0);
3909 string_list_clear(&affected_refnames, 0);
3910 return ret;
3911 }
3912
3913 char *shorten_unambiguous_ref(const char *refname, int strict)
3914 {
3915 int i;
3916 static char **scanf_fmts;
3917 static int nr_rules;
3918 char *short_name;
3919
3920 if (!nr_rules) {
3921 /*
3922 * Pre-generate scanf formats from ref_rev_parse_rules[].
3923 * Generate a format suitable for scanf from a
3924 * ref_rev_parse_rules rule by interpolating "%s" at the
3925 * location of the "%.*s".
3926 */
3927 size_t total_len = 0;
3928 size_t offset = 0;
3929
3930 /* the rule list is NULL terminated, count them first */
3931 for (nr_rules = 0; ref_rev_parse_rules[nr_rules]; nr_rules++)
3932 /* -2 for strlen("%.*s") - strlen("%s"); +1 for NUL */
3933 total_len += strlen(ref_rev_parse_rules[nr_rules]) - 2 + 1;
3934
3935 scanf_fmts = xmalloc(nr_rules * sizeof(char *) + total_len);
3936
3937 offset = 0;
3938 for (i = 0; i < nr_rules; i++) {
3939 assert(offset < total_len);
3940 scanf_fmts[i] = (char *)&scanf_fmts[nr_rules] + offset;
3941 offset += snprintf(scanf_fmts[i], total_len - offset,
3942 ref_rev_parse_rules[i], 2, "%s") + 1;
3943 }
3944 }
3945
3946 /* bail out if there are no rules */
3947 if (!nr_rules)
3948 return xstrdup(refname);
3949
3950 /* buffer for scanf result, at most refname must fit */
3951 short_name = xstrdup(refname);
3952
3953 /* skip first rule, it will always match */
3954 for (i = nr_rules - 1; i > 0 ; --i) {
3955 int j;
3956 int rules_to_fail = i;
3957 int short_name_len;
3958
3959 if (1 != sscanf(refname, scanf_fmts[i], short_name))
3960 continue;
3961
3962 short_name_len = strlen(short_name);
3963
3964 /*
3965 * in strict mode, all (except the matched one) rules
3966 * must fail to resolve to a valid non-ambiguous ref
3967 */
3968 if (strict)
3969 rules_to_fail = nr_rules;
3970
3971 /*
3972 * check if the short name resolves to a valid ref,
3973 * but use only rules prior to the matched one
3974 */
3975 for (j = 0; j < rules_to_fail; j++) {
3976 const char *rule = ref_rev_parse_rules[j];
3977 char refname[PATH_MAX];
3978
3979 /* skip matched rule */
3980 if (i == j)
3981 continue;
3982
3983 /*
3984 * the short name is ambiguous, if it resolves
3985 * (with this previous rule) to a valid ref
3986 * read_ref() returns 0 on success
3987 */
3988 mksnpath(refname, sizeof(refname),
3989 rule, short_name_len, short_name);
3990 if (ref_exists(refname))
3991 break;
3992 }
3993
3994 /*
3995 * short name is non-ambiguous if all previous rules
3996 * haven't resolved to a valid ref
3997 */
3998 if (j == rules_to_fail)
3999 return short_name;
4000 }
4001
4002 free(short_name);
4003 return xstrdup(refname);
4004 }
4005
4006 static struct string_list *hide_refs;
4007
4008 int parse_hide_refs_config(const char *var, const char *value, const char *section)
4009 {
4010 if (!strcmp("transfer.hiderefs", var) ||
4011 /* NEEDSWORK: use parse_config_key() once both are merged */
4012 (starts_with(var, section) && var[strlen(section)] == '.' &&
4013 !strcmp(var + strlen(section), ".hiderefs"))) {
4014 char *ref;
4015 int len;
4016
4017 if (!value)
4018 return config_error_nonbool(var);
4019 ref = xstrdup(value);
4020 len = strlen(ref);
4021 while (len && ref[len - 1] == '/')
4022 ref[--len] = '\0';
4023 if (!hide_refs) {
4024 hide_refs = xcalloc(1, sizeof(*hide_refs));
4025 hide_refs->strdup_strings = 1;
4026 }
4027 string_list_append(hide_refs, ref);
4028 }
4029 return 0;
4030 }
4031
4032 int ref_is_hidden(const char *refname)
4033 {
4034 struct string_list_item *item;
4035
4036 if (!hide_refs)
4037 return 0;
4038 for_each_string_list_item(item, hide_refs) {
4039 int len;
4040 if (!starts_with(refname, item->string))
4041 continue;
4042 len = strlen(item->string);
4043 if (!refname[len] || refname[len] == '/')
4044 return 1;
4045 }
4046 return 0;
4047 }
4048
4049 struct expire_reflog_cb {
4050 unsigned int flags;
4051 reflog_expiry_should_prune_fn *should_prune_fn;
4052 void *policy_cb;
4053 FILE *newlog;
4054 unsigned char last_kept_sha1[20];
4055 };
4056
4057 static int expire_reflog_ent(unsigned char *osha1, unsigned char *nsha1,
4058 const char *email, unsigned long timestamp, int tz,
4059 const char *message, void *cb_data)
4060 {
4061 struct expire_reflog_cb *cb = cb_data;
4062 struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
4063
4064 if (cb->flags & EXPIRE_REFLOGS_REWRITE)
4065 osha1 = cb->last_kept_sha1;
4066
4067 if ((*cb->should_prune_fn)(osha1, nsha1, email, timestamp, tz,
4068 message, policy_cb)) {
4069 if (!cb->newlog)
4070 printf("would prune %s", message);
4071 else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4072 printf("prune %s", message);
4073 } else {
4074 if (cb->newlog) {
4075 fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
4076 sha1_to_hex(osha1), sha1_to_hex(nsha1),
4077 email, timestamp, tz, message);
4078 hashcpy(cb->last_kept_sha1, nsha1);
4079 }
4080 if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4081 printf("keep %s", message);
4082 }
4083 return 0;
4084 }
4085
4086 int reflog_expire(const char *refname, const unsigned char *sha1,
4087 unsigned int flags,
4088 reflog_expiry_prepare_fn prepare_fn,
4089 reflog_expiry_should_prune_fn should_prune_fn,
4090 reflog_expiry_cleanup_fn cleanup_fn,
4091 void *policy_cb_data)
4092 {
4093 static struct lock_file reflog_lock;
4094 struct expire_reflog_cb cb;
4095 struct ref_lock *lock;
4096 char *log_file;
4097 int status = 0;
4098 int type;
4099 struct strbuf err = STRBUF_INIT;
4100
4101 memset(&cb, 0, sizeof(cb));
4102 cb.flags = flags;
4103 cb.policy_cb = policy_cb_data;
4104 cb.should_prune_fn = should_prune_fn;
4105
4106 /*
4107 * The reflog file is locked by holding the lock on the
4108 * reference itself, plus we might need to update the
4109 * reference if --updateref was specified:
4110 */
4111 lock = lock_ref_sha1_basic(refname, sha1, NULL, NULL, 0, &type, &err);
4112 if (!lock) {
4113 error("%s", err.buf);
4114 strbuf_release(&err);
4115 return error("cannot lock ref '%s'", refname);
4116 }
4117 if (!reflog_exists(refname)) {
4118 unlock_ref(lock);
4119 return 0;
4120 }
4121
4122 log_file = git_pathdup("logs/%s", refname);
4123 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4124 /*
4125 * Even though holding $GIT_DIR/logs/$reflog.lock has
4126 * no locking implications, we use the lock_file
4127 * machinery here anyway because it does a lot of the
4128 * work we need, including cleaning up if the program
4129 * exits unexpectedly.
4130 */
4131 if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4132 struct strbuf err = STRBUF_INIT;
4133 unable_to_lock_message(log_file, errno, &err);
4134 error("%s", err.buf);
4135 strbuf_release(&err);
4136 goto failure;
4137 }
4138 cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4139 if (!cb.newlog) {
4140 error("cannot fdopen %s (%s)",
4141 reflog_lock.filename.buf, strerror(errno));
4142 goto failure;
4143 }
4144 }
4145
4146 (*prepare_fn)(refname, sha1, cb.policy_cb);
4147 for_each_reflog_ent(refname, expire_reflog_ent, &cb);
4148 (*cleanup_fn)(cb.policy_cb);
4149
4150 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4151 /*
4152 * It doesn't make sense to adjust a reference pointed
4153 * to by a symbolic ref based on expiring entries in
4154 * the symbolic reference's reflog. Nor can we update
4155 * a reference if there are no remaining reflog
4156 * entries.
4157 */
4158 int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4159 !(type & REF_ISSYMREF) &&
4160 !is_null_sha1(cb.last_kept_sha1);
4161
4162 if (close_lock_file(&reflog_lock)) {
4163 status |= error("couldn't write %s: %s", log_file,
4164 strerror(errno));
4165 } else if (update &&
4166 (write_in_full(lock->lock_fd,
4167 sha1_to_hex(cb.last_kept_sha1), 40) != 40 ||
4168 write_str_in_full(lock->lock_fd, "\n") != 1 ||
4169 close_ref(lock) < 0)) {
4170 status |= error("couldn't write %s",
4171 lock->lk->filename.buf);
4172 rollback_lock_file(&reflog_lock);
4173 } else if (commit_lock_file(&reflog_lock)) {
4174 status |= error("unable to commit reflog '%s' (%s)",
4175 log_file, strerror(errno));
4176 } else if (update && commit_ref(lock)) {
4177 status |= error("couldn't set %s", lock->ref_name);
4178 }
4179 }
4180 free(log_file);
4181 unlock_ref(lock);
4182 return status;
4183
4184 failure:
4185 rollback_lock_file(&reflog_lock);
4186 free(log_file);
4187 unlock_ref(lock);
4188 return -1;
4189 }