]> git.ipfire.org Git - thirdparty/git.git/blob - refs.c
write_ref_sha1(): move write elision test to callers
[thirdparty/git.git] / refs.c
1 #include "cache.h"
2 #include "lockfile.h"
3 #include "refs.h"
4 #include "object.h"
5 #include "tag.h"
6 #include "dir.h"
7 #include "string-list.h"
8
9 struct ref_lock {
10 char *ref_name;
11 char *orig_ref_name;
12 struct lock_file *lk;
13 unsigned char old_sha1[20];
14 int lock_fd;
15 int force_write;
16 };
17
18 /*
19 * How to handle various characters in refnames:
20 * 0: An acceptable character for refs
21 * 1: End-of-component
22 * 2: ., look for a preceding . to reject .. in refs
23 * 3: {, look for a preceding @ to reject @{ in refs
24 * 4: A bad character: ASCII control characters, "~", "^", ":" or SP
25 */
26 static unsigned char refname_disposition[256] = {
27 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
28 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
29 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 1,
30 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4,
31 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
32 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 4, 0,
33 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
34 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 4, 4
35 };
36
37 /*
38 * Used as a flag to ref_transaction_delete when a loose ref is being
39 * pruned.
40 */
41 #define REF_ISPRUNING 0x0100
42 /*
43 * Try to read one refname component from the front of refname.
44 * Return the length of the component found, or -1 if the component is
45 * not legal. It is legal if it is something reasonable to have under
46 * ".git/refs/"; We do not like it if:
47 *
48 * - any path component of it begins with ".", or
49 * - it has double dots "..", or
50 * - it has ASCII control character, "~", "^", ":" or SP, anywhere, or
51 * - it ends with a "/".
52 * - it ends with ".lock"
53 * - it contains a "\" (backslash)
54 */
55 static int check_refname_component(const char *refname, int flags)
56 {
57 const char *cp;
58 char last = '\0';
59
60 for (cp = refname; ; cp++) {
61 int ch = *cp & 255;
62 unsigned char disp = refname_disposition[ch];
63 switch (disp) {
64 case 1:
65 goto out;
66 case 2:
67 if (last == '.')
68 return -1; /* Refname contains "..". */
69 break;
70 case 3:
71 if (last == '@')
72 return -1; /* Refname contains "@{". */
73 break;
74 case 4:
75 return -1;
76 }
77 last = ch;
78 }
79 out:
80 if (cp == refname)
81 return 0; /* Component has zero length. */
82 if (refname[0] == '.')
83 return -1; /* Component starts with '.'. */
84 if (cp - refname >= LOCK_SUFFIX_LEN &&
85 !memcmp(cp - LOCK_SUFFIX_LEN, LOCK_SUFFIX, LOCK_SUFFIX_LEN))
86 return -1; /* Refname ends with ".lock". */
87 return cp - refname;
88 }
89
90 int check_refname_format(const char *refname, int flags)
91 {
92 int component_len, component_count = 0;
93
94 if (!strcmp(refname, "@"))
95 /* Refname is a single character '@'. */
96 return -1;
97
98 while (1) {
99 /* We are at the start of a path component. */
100 component_len = check_refname_component(refname, flags);
101 if (component_len <= 0) {
102 if ((flags & REFNAME_REFSPEC_PATTERN) &&
103 refname[0] == '*' &&
104 (refname[1] == '\0' || refname[1] == '/')) {
105 /* Accept one wildcard as a full refname component. */
106 flags &= ~REFNAME_REFSPEC_PATTERN;
107 component_len = 1;
108 } else {
109 return -1;
110 }
111 }
112 component_count++;
113 if (refname[component_len] == '\0')
114 break;
115 /* Skip to next component. */
116 refname += component_len + 1;
117 }
118
119 if (refname[component_len - 1] == '.')
120 return -1; /* Refname ends with '.'. */
121 if (!(flags & REFNAME_ALLOW_ONELEVEL) && component_count < 2)
122 return -1; /* Refname has only one component. */
123 return 0;
124 }
125
126 struct ref_entry;
127
128 /*
129 * Information used (along with the information in ref_entry) to
130 * describe a single cached reference. This data structure only
131 * occurs embedded in a union in struct ref_entry, and only when
132 * (ref_entry->flag & REF_DIR) is zero.
133 */
134 struct ref_value {
135 /*
136 * The name of the object to which this reference resolves
137 * (which may be a tag object). If REF_ISBROKEN, this is
138 * null. If REF_ISSYMREF, then this is the name of the object
139 * referred to by the last reference in the symlink chain.
140 */
141 unsigned char sha1[20];
142
143 /*
144 * If REF_KNOWS_PEELED, then this field holds the peeled value
145 * of this reference, or null if the reference is known not to
146 * be peelable. See the documentation for peel_ref() for an
147 * exact definition of "peelable".
148 */
149 unsigned char peeled[20];
150 };
151
152 struct ref_cache;
153
154 /*
155 * Information used (along with the information in ref_entry) to
156 * describe a level in the hierarchy of references. This data
157 * structure only occurs embedded in a union in struct ref_entry, and
158 * only when (ref_entry.flag & REF_DIR) is set. In that case,
159 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
160 * in the directory have already been read:
161 *
162 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
163 * or packed references, already read.
164 *
165 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
166 * references that hasn't been read yet (nor has any of its
167 * subdirectories).
168 *
169 * Entries within a directory are stored within a growable array of
170 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
171 * sorted are sorted by their component name in strcmp() order and the
172 * remaining entries are unsorted.
173 *
174 * Loose references are read lazily, one directory at a time. When a
175 * directory of loose references is read, then all of the references
176 * in that directory are stored, and REF_INCOMPLETE stubs are created
177 * for any subdirectories, but the subdirectories themselves are not
178 * read. The reading is triggered by get_ref_dir().
179 */
180 struct ref_dir {
181 int nr, alloc;
182
183 /*
184 * Entries with index 0 <= i < sorted are sorted by name. New
185 * entries are appended to the list unsorted, and are sorted
186 * only when required; thus we avoid the need to sort the list
187 * after the addition of every reference.
188 */
189 int sorted;
190
191 /* A pointer to the ref_cache that contains this ref_dir. */
192 struct ref_cache *ref_cache;
193
194 struct ref_entry **entries;
195 };
196
197 /*
198 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
199 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
200 * public values; see refs.h.
201 */
202
203 /*
204 * The field ref_entry->u.value.peeled of this value entry contains
205 * the correct peeled value for the reference, which might be
206 * null_sha1 if the reference is not a tag or if it is broken.
207 */
208 #define REF_KNOWS_PEELED 0x10
209
210 /* ref_entry represents a directory of references */
211 #define REF_DIR 0x20
212
213 /*
214 * Entry has not yet been read from disk (used only for REF_DIR
215 * entries representing loose references)
216 */
217 #define REF_INCOMPLETE 0x40
218
219 /*
220 * A ref_entry represents either a reference or a "subdirectory" of
221 * references.
222 *
223 * Each directory in the reference namespace is represented by a
224 * ref_entry with (flags & REF_DIR) set and containing a subdir member
225 * that holds the entries in that directory that have been read so
226 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
227 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
228 * used for loose reference directories.
229 *
230 * References are represented by a ref_entry with (flags & REF_DIR)
231 * unset and a value member that describes the reference's value. The
232 * flag member is at the ref_entry level, but it is also needed to
233 * interpret the contents of the value field (in other words, a
234 * ref_value object is not very much use without the enclosing
235 * ref_entry).
236 *
237 * Reference names cannot end with slash and directories' names are
238 * always stored with a trailing slash (except for the top-level
239 * directory, which is always denoted by ""). This has two nice
240 * consequences: (1) when the entries in each subdir are sorted
241 * lexicographically by name (as they usually are), the references in
242 * a whole tree can be generated in lexicographic order by traversing
243 * the tree in left-to-right, depth-first order; (2) the names of
244 * references and subdirectories cannot conflict, and therefore the
245 * presence of an empty subdirectory does not block the creation of a
246 * similarly-named reference. (The fact that reference names with the
247 * same leading components can conflict *with each other* is a
248 * separate issue that is regulated by is_refname_available().)
249 *
250 * Please note that the name field contains the fully-qualified
251 * reference (or subdirectory) name. Space could be saved by only
252 * storing the relative names. But that would require the full names
253 * to be generated on the fly when iterating in do_for_each_ref(), and
254 * would break callback functions, who have always been able to assume
255 * that the name strings that they are passed will not be freed during
256 * the iteration.
257 */
258 struct ref_entry {
259 unsigned char flag; /* ISSYMREF? ISPACKED? */
260 union {
261 struct ref_value value; /* if not (flags&REF_DIR) */
262 struct ref_dir subdir; /* if (flags&REF_DIR) */
263 } u;
264 /*
265 * The full name of the reference (e.g., "refs/heads/master")
266 * or the full name of the directory with a trailing slash
267 * (e.g., "refs/heads/"):
268 */
269 char name[FLEX_ARRAY];
270 };
271
272 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
273
274 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
275 {
276 struct ref_dir *dir;
277 assert(entry->flag & REF_DIR);
278 dir = &entry->u.subdir;
279 if (entry->flag & REF_INCOMPLETE) {
280 read_loose_refs(entry->name, dir);
281 entry->flag &= ~REF_INCOMPLETE;
282 }
283 return dir;
284 }
285
286 /*
287 * Check if a refname is safe.
288 * For refs that start with "refs/" we consider it safe as long they do
289 * not try to resolve to outside of refs/.
290 *
291 * For all other refs we only consider them safe iff they only contain
292 * upper case characters and '_' (like "HEAD" AND "MERGE_HEAD", and not like
293 * "config").
294 */
295 static int refname_is_safe(const char *refname)
296 {
297 if (starts_with(refname, "refs/")) {
298 char *buf;
299 int result;
300
301 buf = xmalloc(strlen(refname) + 1);
302 /*
303 * Does the refname try to escape refs/?
304 * For example: refs/foo/../bar is safe but refs/foo/../../bar
305 * is not.
306 */
307 result = !normalize_path_copy(buf, refname + strlen("refs/"));
308 free(buf);
309 return result;
310 }
311 while (*refname) {
312 if (!isupper(*refname) && *refname != '_')
313 return 0;
314 refname++;
315 }
316 return 1;
317 }
318
319 static struct ref_entry *create_ref_entry(const char *refname,
320 const unsigned char *sha1, int flag,
321 int check_name)
322 {
323 int len;
324 struct ref_entry *ref;
325
326 if (check_name &&
327 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
328 die("Reference has invalid format: '%s'", refname);
329 if (!check_name && !refname_is_safe(refname))
330 die("Reference has invalid name: '%s'", refname);
331 len = strlen(refname) + 1;
332 ref = xmalloc(sizeof(struct ref_entry) + len);
333 hashcpy(ref->u.value.sha1, sha1);
334 hashclr(ref->u.value.peeled);
335 memcpy(ref->name, refname, len);
336 ref->flag = flag;
337 return ref;
338 }
339
340 static void clear_ref_dir(struct ref_dir *dir);
341
342 static void free_ref_entry(struct ref_entry *entry)
343 {
344 if (entry->flag & REF_DIR) {
345 /*
346 * Do not use get_ref_dir() here, as that might
347 * trigger the reading of loose refs.
348 */
349 clear_ref_dir(&entry->u.subdir);
350 }
351 free(entry);
352 }
353
354 /*
355 * Add a ref_entry to the end of dir (unsorted). Entry is always
356 * stored directly in dir; no recursion into subdirectories is
357 * done.
358 */
359 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
360 {
361 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
362 dir->entries[dir->nr++] = entry;
363 /* optimize for the case that entries are added in order */
364 if (dir->nr == 1 ||
365 (dir->nr == dir->sorted + 1 &&
366 strcmp(dir->entries[dir->nr - 2]->name,
367 dir->entries[dir->nr - 1]->name) < 0))
368 dir->sorted = dir->nr;
369 }
370
371 /*
372 * Clear and free all entries in dir, recursively.
373 */
374 static void clear_ref_dir(struct ref_dir *dir)
375 {
376 int i;
377 for (i = 0; i < dir->nr; i++)
378 free_ref_entry(dir->entries[i]);
379 free(dir->entries);
380 dir->sorted = dir->nr = dir->alloc = 0;
381 dir->entries = NULL;
382 }
383
384 /*
385 * Create a struct ref_entry object for the specified dirname.
386 * dirname is the name of the directory with a trailing slash (e.g.,
387 * "refs/heads/") or "" for the top-level directory.
388 */
389 static struct ref_entry *create_dir_entry(struct ref_cache *ref_cache,
390 const char *dirname, size_t len,
391 int incomplete)
392 {
393 struct ref_entry *direntry;
394 direntry = xcalloc(1, sizeof(struct ref_entry) + len + 1);
395 memcpy(direntry->name, dirname, len);
396 direntry->name[len] = '\0';
397 direntry->u.subdir.ref_cache = ref_cache;
398 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
399 return direntry;
400 }
401
402 static int ref_entry_cmp(const void *a, const void *b)
403 {
404 struct ref_entry *one = *(struct ref_entry **)a;
405 struct ref_entry *two = *(struct ref_entry **)b;
406 return strcmp(one->name, two->name);
407 }
408
409 static void sort_ref_dir(struct ref_dir *dir);
410
411 struct string_slice {
412 size_t len;
413 const char *str;
414 };
415
416 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
417 {
418 const struct string_slice *key = key_;
419 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
420 int cmp = strncmp(key->str, ent->name, key->len);
421 if (cmp)
422 return cmp;
423 return '\0' - (unsigned char)ent->name[key->len];
424 }
425
426 /*
427 * Return the index of the entry with the given refname from the
428 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
429 * no such entry is found. dir must already be complete.
430 */
431 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
432 {
433 struct ref_entry **r;
434 struct string_slice key;
435
436 if (refname == NULL || !dir->nr)
437 return -1;
438
439 sort_ref_dir(dir);
440 key.len = len;
441 key.str = refname;
442 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
443 ref_entry_cmp_sslice);
444
445 if (r == NULL)
446 return -1;
447
448 return r - dir->entries;
449 }
450
451 /*
452 * Search for a directory entry directly within dir (without
453 * recursing). Sort dir if necessary. subdirname must be a directory
454 * name (i.e., end in '/'). If mkdir is set, then create the
455 * directory if it is missing; otherwise, return NULL if the desired
456 * directory cannot be found. dir must already be complete.
457 */
458 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
459 const char *subdirname, size_t len,
460 int mkdir)
461 {
462 int entry_index = search_ref_dir(dir, subdirname, len);
463 struct ref_entry *entry;
464 if (entry_index == -1) {
465 if (!mkdir)
466 return NULL;
467 /*
468 * Since dir is complete, the absence of a subdir
469 * means that the subdir really doesn't exist;
470 * therefore, create an empty record for it but mark
471 * the record complete.
472 */
473 entry = create_dir_entry(dir->ref_cache, subdirname, len, 0);
474 add_entry_to_dir(dir, entry);
475 } else {
476 entry = dir->entries[entry_index];
477 }
478 return get_ref_dir(entry);
479 }
480
481 /*
482 * If refname is a reference name, find the ref_dir within the dir
483 * tree that should hold refname. If refname is a directory name
484 * (i.e., ends in '/'), then return that ref_dir itself. dir must
485 * represent the top-level directory and must already be complete.
486 * Sort ref_dirs and recurse into subdirectories as necessary. If
487 * mkdir is set, then create any missing directories; otherwise,
488 * return NULL if the desired directory cannot be found.
489 */
490 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
491 const char *refname, int mkdir)
492 {
493 const char *slash;
494 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
495 size_t dirnamelen = slash - refname + 1;
496 struct ref_dir *subdir;
497 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
498 if (!subdir) {
499 dir = NULL;
500 break;
501 }
502 dir = subdir;
503 }
504
505 return dir;
506 }
507
508 /*
509 * Find the value entry with the given name in dir, sorting ref_dirs
510 * and recursing into subdirectories as necessary. If the name is not
511 * found or it corresponds to a directory entry, return NULL.
512 */
513 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
514 {
515 int entry_index;
516 struct ref_entry *entry;
517 dir = find_containing_dir(dir, refname, 0);
518 if (!dir)
519 return NULL;
520 entry_index = search_ref_dir(dir, refname, strlen(refname));
521 if (entry_index == -1)
522 return NULL;
523 entry = dir->entries[entry_index];
524 return (entry->flag & REF_DIR) ? NULL : entry;
525 }
526
527 /*
528 * Remove the entry with the given name from dir, recursing into
529 * subdirectories as necessary. If refname is the name of a directory
530 * (i.e., ends with '/'), then remove the directory and its contents.
531 * If the removal was successful, return the number of entries
532 * remaining in the directory entry that contained the deleted entry.
533 * If the name was not found, return -1. Please note that this
534 * function only deletes the entry from the cache; it does not delete
535 * it from the filesystem or ensure that other cache entries (which
536 * might be symbolic references to the removed entry) are updated.
537 * Nor does it remove any containing dir entries that might be made
538 * empty by the removal. dir must represent the top-level directory
539 * and must already be complete.
540 */
541 static int remove_entry(struct ref_dir *dir, const char *refname)
542 {
543 int refname_len = strlen(refname);
544 int entry_index;
545 struct ref_entry *entry;
546 int is_dir = refname[refname_len - 1] == '/';
547 if (is_dir) {
548 /*
549 * refname represents a reference directory. Remove
550 * the trailing slash; otherwise we will get the
551 * directory *representing* refname rather than the
552 * one *containing* it.
553 */
554 char *dirname = xmemdupz(refname, refname_len - 1);
555 dir = find_containing_dir(dir, dirname, 0);
556 free(dirname);
557 } else {
558 dir = find_containing_dir(dir, refname, 0);
559 }
560 if (!dir)
561 return -1;
562 entry_index = search_ref_dir(dir, refname, refname_len);
563 if (entry_index == -1)
564 return -1;
565 entry = dir->entries[entry_index];
566
567 memmove(&dir->entries[entry_index],
568 &dir->entries[entry_index + 1],
569 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
570 );
571 dir->nr--;
572 if (dir->sorted > entry_index)
573 dir->sorted--;
574 free_ref_entry(entry);
575 return dir->nr;
576 }
577
578 /*
579 * Add a ref_entry to the ref_dir (unsorted), recursing into
580 * subdirectories as necessary. dir must represent the top-level
581 * directory. Return 0 on success.
582 */
583 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
584 {
585 dir = find_containing_dir(dir, ref->name, 1);
586 if (!dir)
587 return -1;
588 add_entry_to_dir(dir, ref);
589 return 0;
590 }
591
592 /*
593 * Emit a warning and return true iff ref1 and ref2 have the same name
594 * and the same sha1. Die if they have the same name but different
595 * sha1s.
596 */
597 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
598 {
599 if (strcmp(ref1->name, ref2->name))
600 return 0;
601
602 /* Duplicate name; make sure that they don't conflict: */
603
604 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
605 /* This is impossible by construction */
606 die("Reference directory conflict: %s", ref1->name);
607
608 if (hashcmp(ref1->u.value.sha1, ref2->u.value.sha1))
609 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
610
611 warning("Duplicated ref: %s", ref1->name);
612 return 1;
613 }
614
615 /*
616 * Sort the entries in dir non-recursively (if they are not already
617 * sorted) and remove any duplicate entries.
618 */
619 static void sort_ref_dir(struct ref_dir *dir)
620 {
621 int i, j;
622 struct ref_entry *last = NULL;
623
624 /*
625 * This check also prevents passing a zero-length array to qsort(),
626 * which is a problem on some platforms.
627 */
628 if (dir->sorted == dir->nr)
629 return;
630
631 qsort(dir->entries, dir->nr, sizeof(*dir->entries), ref_entry_cmp);
632
633 /* Remove any duplicates: */
634 for (i = 0, j = 0; j < dir->nr; j++) {
635 struct ref_entry *entry = dir->entries[j];
636 if (last && is_dup_ref(last, entry))
637 free_ref_entry(entry);
638 else
639 last = dir->entries[i++] = entry;
640 }
641 dir->sorted = dir->nr = i;
642 }
643
644 /* Include broken references in a do_for_each_ref*() iteration: */
645 #define DO_FOR_EACH_INCLUDE_BROKEN 0x01
646
647 /*
648 * Return true iff the reference described by entry can be resolved to
649 * an object in the database. Emit a warning if the referred-to
650 * object does not exist.
651 */
652 static int ref_resolves_to_object(struct ref_entry *entry)
653 {
654 if (entry->flag & REF_ISBROKEN)
655 return 0;
656 if (!has_sha1_file(entry->u.value.sha1)) {
657 error("%s does not point to a valid object!", entry->name);
658 return 0;
659 }
660 return 1;
661 }
662
663 /*
664 * current_ref is a performance hack: when iterating over references
665 * using the for_each_ref*() functions, current_ref is set to the
666 * current reference's entry before calling the callback function. If
667 * the callback function calls peel_ref(), then peel_ref() first
668 * checks whether the reference to be peeled is the current reference
669 * (it usually is) and if so, returns that reference's peeled version
670 * if it is available. This avoids a refname lookup in a common case.
671 */
672 static struct ref_entry *current_ref;
673
674 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
675
676 struct ref_entry_cb {
677 const char *base;
678 int trim;
679 int flags;
680 each_ref_fn *fn;
681 void *cb_data;
682 };
683
684 /*
685 * Handle one reference in a do_for_each_ref*()-style iteration,
686 * calling an each_ref_fn for each entry.
687 */
688 static int do_one_ref(struct ref_entry *entry, void *cb_data)
689 {
690 struct ref_entry_cb *data = cb_data;
691 struct ref_entry *old_current_ref;
692 int retval;
693
694 if (!starts_with(entry->name, data->base))
695 return 0;
696
697 if (!(data->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
698 !ref_resolves_to_object(entry))
699 return 0;
700
701 /* Store the old value, in case this is a recursive call: */
702 old_current_ref = current_ref;
703 current_ref = entry;
704 retval = data->fn(entry->name + data->trim, entry->u.value.sha1,
705 entry->flag, data->cb_data);
706 current_ref = old_current_ref;
707 return retval;
708 }
709
710 /*
711 * Call fn for each reference in dir that has index in the range
712 * offset <= index < dir->nr. Recurse into subdirectories that are in
713 * that index range, sorting them before iterating. This function
714 * does not sort dir itself; it should be sorted beforehand. fn is
715 * called for all references, including broken ones.
716 */
717 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
718 each_ref_entry_fn fn, void *cb_data)
719 {
720 int i;
721 assert(dir->sorted == dir->nr);
722 for (i = offset; i < dir->nr; i++) {
723 struct ref_entry *entry = dir->entries[i];
724 int retval;
725 if (entry->flag & REF_DIR) {
726 struct ref_dir *subdir = get_ref_dir(entry);
727 sort_ref_dir(subdir);
728 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
729 } else {
730 retval = fn(entry, cb_data);
731 }
732 if (retval)
733 return retval;
734 }
735 return 0;
736 }
737
738 /*
739 * Call fn for each reference in the union of dir1 and dir2, in order
740 * by refname. Recurse into subdirectories. If a value entry appears
741 * in both dir1 and dir2, then only process the version that is in
742 * dir2. The input dirs must already be sorted, but subdirs will be
743 * sorted as needed. fn is called for all references, including
744 * broken ones.
745 */
746 static int do_for_each_entry_in_dirs(struct ref_dir *dir1,
747 struct ref_dir *dir2,
748 each_ref_entry_fn fn, void *cb_data)
749 {
750 int retval;
751 int i1 = 0, i2 = 0;
752
753 assert(dir1->sorted == dir1->nr);
754 assert(dir2->sorted == dir2->nr);
755 while (1) {
756 struct ref_entry *e1, *e2;
757 int cmp;
758 if (i1 == dir1->nr) {
759 return do_for_each_entry_in_dir(dir2, i2, fn, cb_data);
760 }
761 if (i2 == dir2->nr) {
762 return do_for_each_entry_in_dir(dir1, i1, fn, cb_data);
763 }
764 e1 = dir1->entries[i1];
765 e2 = dir2->entries[i2];
766 cmp = strcmp(e1->name, e2->name);
767 if (cmp == 0) {
768 if ((e1->flag & REF_DIR) && (e2->flag & REF_DIR)) {
769 /* Both are directories; descend them in parallel. */
770 struct ref_dir *subdir1 = get_ref_dir(e1);
771 struct ref_dir *subdir2 = get_ref_dir(e2);
772 sort_ref_dir(subdir1);
773 sort_ref_dir(subdir2);
774 retval = do_for_each_entry_in_dirs(
775 subdir1, subdir2, fn, cb_data);
776 i1++;
777 i2++;
778 } else if (!(e1->flag & REF_DIR) && !(e2->flag & REF_DIR)) {
779 /* Both are references; ignore the one from dir1. */
780 retval = fn(e2, cb_data);
781 i1++;
782 i2++;
783 } else {
784 die("conflict between reference and directory: %s",
785 e1->name);
786 }
787 } else {
788 struct ref_entry *e;
789 if (cmp < 0) {
790 e = e1;
791 i1++;
792 } else {
793 e = e2;
794 i2++;
795 }
796 if (e->flag & REF_DIR) {
797 struct ref_dir *subdir = get_ref_dir(e);
798 sort_ref_dir(subdir);
799 retval = do_for_each_entry_in_dir(
800 subdir, 0, fn, cb_data);
801 } else {
802 retval = fn(e, cb_data);
803 }
804 }
805 if (retval)
806 return retval;
807 }
808 }
809
810 /*
811 * Load all of the refs from the dir into our in-memory cache. The hard work
812 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
813 * through all of the sub-directories. We do not even need to care about
814 * sorting, as traversal order does not matter to us.
815 */
816 static void prime_ref_dir(struct ref_dir *dir)
817 {
818 int i;
819 for (i = 0; i < dir->nr; i++) {
820 struct ref_entry *entry = dir->entries[i];
821 if (entry->flag & REF_DIR)
822 prime_ref_dir(get_ref_dir(entry));
823 }
824 }
825
826 static int entry_matches(struct ref_entry *entry, const struct string_list *list)
827 {
828 return list && string_list_has_string(list, entry->name);
829 }
830
831 struct nonmatching_ref_data {
832 const struct string_list *skip;
833 struct ref_entry *found;
834 };
835
836 static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
837 {
838 struct nonmatching_ref_data *data = vdata;
839
840 if (entry_matches(entry, data->skip))
841 return 0;
842
843 data->found = entry;
844 return 1;
845 }
846
847 static void report_refname_conflict(struct ref_entry *entry,
848 const char *refname)
849 {
850 error("'%s' exists; cannot create '%s'", entry->name, refname);
851 }
852
853 /*
854 * Return true iff a reference named refname could be created without
855 * conflicting with the name of an existing reference in dir. If
856 * skip is non-NULL, ignore potential conflicts with refs in skip
857 * (e.g., because they are scheduled for deletion in the same
858 * operation).
859 *
860 * Two reference names conflict if one of them exactly matches the
861 * leading components of the other; e.g., "foo/bar" conflicts with
862 * both "foo" and with "foo/bar/baz" but not with "foo/bar" or
863 * "foo/barbados".
864 *
865 * skip must be sorted.
866 */
867 static int is_refname_available(const char *refname,
868 const struct string_list *skip,
869 struct ref_dir *dir)
870 {
871 const char *slash;
872 size_t len;
873 int pos;
874 char *dirname;
875
876 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
877 /*
878 * We are still at a leading dir of the refname; we are
879 * looking for a conflict with a leaf entry.
880 *
881 * If we find one, we still must make sure it is
882 * not in "skip".
883 */
884 pos = search_ref_dir(dir, refname, slash - refname);
885 if (pos >= 0) {
886 struct ref_entry *entry = dir->entries[pos];
887 if (entry_matches(entry, skip))
888 return 1;
889 report_refname_conflict(entry, refname);
890 return 0;
891 }
892
893
894 /*
895 * Otherwise, we can try to continue our search with
896 * the next component; if we come up empty, we know
897 * there is nothing under this whole prefix.
898 */
899 pos = search_ref_dir(dir, refname, slash + 1 - refname);
900 if (pos < 0)
901 return 1;
902
903 dir = get_ref_dir(dir->entries[pos]);
904 }
905
906 /*
907 * We are at the leaf of our refname; we want to
908 * make sure there are no directories which match it.
909 */
910 len = strlen(refname);
911 dirname = xmallocz(len + 1);
912 sprintf(dirname, "%s/", refname);
913 pos = search_ref_dir(dir, dirname, len + 1);
914 free(dirname);
915
916 if (pos >= 0) {
917 /*
918 * We found a directory named "refname". It is a
919 * problem iff it contains any ref that is not
920 * in "skip".
921 */
922 struct ref_entry *entry = dir->entries[pos];
923 struct ref_dir *dir = get_ref_dir(entry);
924 struct nonmatching_ref_data data;
925
926 data.skip = skip;
927 sort_ref_dir(dir);
928 if (!do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data))
929 return 1;
930
931 report_refname_conflict(data.found, refname);
932 return 0;
933 }
934
935 /*
936 * There is no point in searching for another leaf
937 * node which matches it; such an entry would be the
938 * ref we are looking for, not a conflict.
939 */
940 return 1;
941 }
942
943 struct packed_ref_cache {
944 struct ref_entry *root;
945
946 /*
947 * Count of references to the data structure in this instance,
948 * including the pointer from ref_cache::packed if any. The
949 * data will not be freed as long as the reference count is
950 * nonzero.
951 */
952 unsigned int referrers;
953
954 /*
955 * Iff the packed-refs file associated with this instance is
956 * currently locked for writing, this points at the associated
957 * lock (which is owned by somebody else). The referrer count
958 * is also incremented when the file is locked and decremented
959 * when it is unlocked.
960 */
961 struct lock_file *lock;
962
963 /* The metadata from when this packed-refs cache was read */
964 struct stat_validity validity;
965 };
966
967 /*
968 * Future: need to be in "struct repository"
969 * when doing a full libification.
970 */
971 static struct ref_cache {
972 struct ref_cache *next;
973 struct ref_entry *loose;
974 struct packed_ref_cache *packed;
975 /*
976 * The submodule name, or "" for the main repo. We allocate
977 * length 1 rather than FLEX_ARRAY so that the main ref_cache
978 * is initialized correctly.
979 */
980 char name[1];
981 } ref_cache, *submodule_ref_caches;
982
983 /* Lock used for the main packed-refs file: */
984 static struct lock_file packlock;
985
986 /*
987 * Increment the reference count of *packed_refs.
988 */
989 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
990 {
991 packed_refs->referrers++;
992 }
993
994 /*
995 * Decrease the reference count of *packed_refs. If it goes to zero,
996 * free *packed_refs and return true; otherwise return false.
997 */
998 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
999 {
1000 if (!--packed_refs->referrers) {
1001 free_ref_entry(packed_refs->root);
1002 stat_validity_clear(&packed_refs->validity);
1003 free(packed_refs);
1004 return 1;
1005 } else {
1006 return 0;
1007 }
1008 }
1009
1010 static void clear_packed_ref_cache(struct ref_cache *refs)
1011 {
1012 if (refs->packed) {
1013 struct packed_ref_cache *packed_refs = refs->packed;
1014
1015 if (packed_refs->lock)
1016 die("internal error: packed-ref cache cleared while locked");
1017 refs->packed = NULL;
1018 release_packed_ref_cache(packed_refs);
1019 }
1020 }
1021
1022 static void clear_loose_ref_cache(struct ref_cache *refs)
1023 {
1024 if (refs->loose) {
1025 free_ref_entry(refs->loose);
1026 refs->loose = NULL;
1027 }
1028 }
1029
1030 static struct ref_cache *create_ref_cache(const char *submodule)
1031 {
1032 int len;
1033 struct ref_cache *refs;
1034 if (!submodule)
1035 submodule = "";
1036 len = strlen(submodule) + 1;
1037 refs = xcalloc(1, sizeof(struct ref_cache) + len);
1038 memcpy(refs->name, submodule, len);
1039 return refs;
1040 }
1041
1042 /*
1043 * Return a pointer to a ref_cache for the specified submodule. For
1044 * the main repository, use submodule==NULL. The returned structure
1045 * will be allocated and initialized but not necessarily populated; it
1046 * should not be freed.
1047 */
1048 static struct ref_cache *get_ref_cache(const char *submodule)
1049 {
1050 struct ref_cache *refs;
1051
1052 if (!submodule || !*submodule)
1053 return &ref_cache;
1054
1055 for (refs = submodule_ref_caches; refs; refs = refs->next)
1056 if (!strcmp(submodule, refs->name))
1057 return refs;
1058
1059 refs = create_ref_cache(submodule);
1060 refs->next = submodule_ref_caches;
1061 submodule_ref_caches = refs;
1062 return refs;
1063 }
1064
1065 /* The length of a peeled reference line in packed-refs, including EOL: */
1066 #define PEELED_LINE_LENGTH 42
1067
1068 /*
1069 * The packed-refs header line that we write out. Perhaps other
1070 * traits will be added later. The trailing space is required.
1071 */
1072 static const char PACKED_REFS_HEADER[] =
1073 "# pack-refs with: peeled fully-peeled \n";
1074
1075 /*
1076 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
1077 * Return a pointer to the refname within the line (null-terminated),
1078 * or NULL if there was a problem.
1079 */
1080 static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1081 {
1082 const char *ref;
1083
1084 /*
1085 * 42: the answer to everything.
1086 *
1087 * In this case, it happens to be the answer to
1088 * 40 (length of sha1 hex representation)
1089 * +1 (space in between hex and name)
1090 * +1 (newline at the end of the line)
1091 */
1092 if (line->len <= 42)
1093 return NULL;
1094
1095 if (get_sha1_hex(line->buf, sha1) < 0)
1096 return NULL;
1097 if (!isspace(line->buf[40]))
1098 return NULL;
1099
1100 ref = line->buf + 41;
1101 if (isspace(*ref))
1102 return NULL;
1103
1104 if (line->buf[line->len - 1] != '\n')
1105 return NULL;
1106 line->buf[--line->len] = 0;
1107
1108 return ref;
1109 }
1110
1111 /*
1112 * Read f, which is a packed-refs file, into dir.
1113 *
1114 * A comment line of the form "# pack-refs with: " may contain zero or
1115 * more traits. We interpret the traits as follows:
1116 *
1117 * No traits:
1118 *
1119 * Probably no references are peeled. But if the file contains a
1120 * peeled value for a reference, we will use it.
1121 *
1122 * peeled:
1123 *
1124 * References under "refs/tags/", if they *can* be peeled, *are*
1125 * peeled in this file. References outside of "refs/tags/" are
1126 * probably not peeled even if they could have been, but if we find
1127 * a peeled value for such a reference we will use it.
1128 *
1129 * fully-peeled:
1130 *
1131 * All references in the file that can be peeled are peeled.
1132 * Inversely (and this is more important), any references in the
1133 * file for which no peeled value is recorded is not peelable. This
1134 * trait should typically be written alongside "peeled" for
1135 * compatibility with older clients, but we do not require it
1136 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
1137 */
1138 static void read_packed_refs(FILE *f, struct ref_dir *dir)
1139 {
1140 struct ref_entry *last = NULL;
1141 struct strbuf line = STRBUF_INIT;
1142 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1143
1144 while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1145 unsigned char sha1[20];
1146 const char *refname;
1147 const char *traits;
1148
1149 if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1150 if (strstr(traits, " fully-peeled "))
1151 peeled = PEELED_FULLY;
1152 else if (strstr(traits, " peeled "))
1153 peeled = PEELED_TAGS;
1154 /* perhaps other traits later as well */
1155 continue;
1156 }
1157
1158 refname = parse_ref_line(&line, sha1);
1159 if (refname) {
1160 int flag = REF_ISPACKED;
1161
1162 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1163 hashclr(sha1);
1164 flag |= REF_BAD_NAME | REF_ISBROKEN;
1165 }
1166 last = create_ref_entry(refname, sha1, flag, 0);
1167 if (peeled == PEELED_FULLY ||
1168 (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1169 last->flag |= REF_KNOWS_PEELED;
1170 add_ref(dir, last);
1171 continue;
1172 }
1173 if (last &&
1174 line.buf[0] == '^' &&
1175 line.len == PEELED_LINE_LENGTH &&
1176 line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1177 !get_sha1_hex(line.buf + 1, sha1)) {
1178 hashcpy(last->u.value.peeled, sha1);
1179 /*
1180 * Regardless of what the file header said,
1181 * we definitely know the value of *this*
1182 * reference:
1183 */
1184 last->flag |= REF_KNOWS_PEELED;
1185 }
1186 }
1187
1188 strbuf_release(&line);
1189 }
1190
1191 /*
1192 * Get the packed_ref_cache for the specified ref_cache, creating it
1193 * if necessary.
1194 */
1195 static struct packed_ref_cache *get_packed_ref_cache(struct ref_cache *refs)
1196 {
1197 const char *packed_refs_file;
1198
1199 if (*refs->name)
1200 packed_refs_file = git_path_submodule(refs->name, "packed-refs");
1201 else
1202 packed_refs_file = git_path("packed-refs");
1203
1204 if (refs->packed &&
1205 !stat_validity_check(&refs->packed->validity, packed_refs_file))
1206 clear_packed_ref_cache(refs);
1207
1208 if (!refs->packed) {
1209 FILE *f;
1210
1211 refs->packed = xcalloc(1, sizeof(*refs->packed));
1212 acquire_packed_ref_cache(refs->packed);
1213 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1214 f = fopen(packed_refs_file, "r");
1215 if (f) {
1216 stat_validity_update(&refs->packed->validity, fileno(f));
1217 read_packed_refs(f, get_ref_dir(refs->packed->root));
1218 fclose(f);
1219 }
1220 }
1221 return refs->packed;
1222 }
1223
1224 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1225 {
1226 return get_ref_dir(packed_ref_cache->root);
1227 }
1228
1229 static struct ref_dir *get_packed_refs(struct ref_cache *refs)
1230 {
1231 return get_packed_ref_dir(get_packed_ref_cache(refs));
1232 }
1233
1234 void add_packed_ref(const char *refname, const unsigned char *sha1)
1235 {
1236 struct packed_ref_cache *packed_ref_cache =
1237 get_packed_ref_cache(&ref_cache);
1238
1239 if (!packed_ref_cache->lock)
1240 die("internal error: packed refs not locked");
1241 add_ref(get_packed_ref_dir(packed_ref_cache),
1242 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1243 }
1244
1245 /*
1246 * Read the loose references from the namespace dirname into dir
1247 * (without recursing). dirname must end with '/'. dir must be the
1248 * directory entry corresponding to dirname.
1249 */
1250 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1251 {
1252 struct ref_cache *refs = dir->ref_cache;
1253 DIR *d;
1254 const char *path;
1255 struct dirent *de;
1256 int dirnamelen = strlen(dirname);
1257 struct strbuf refname;
1258
1259 if (*refs->name)
1260 path = git_path_submodule(refs->name, "%s", dirname);
1261 else
1262 path = git_path("%s", dirname);
1263
1264 d = opendir(path);
1265 if (!d)
1266 return;
1267
1268 strbuf_init(&refname, dirnamelen + 257);
1269 strbuf_add(&refname, dirname, dirnamelen);
1270
1271 while ((de = readdir(d)) != NULL) {
1272 unsigned char sha1[20];
1273 struct stat st;
1274 int flag;
1275 const char *refdir;
1276
1277 if (de->d_name[0] == '.')
1278 continue;
1279 if (ends_with(de->d_name, ".lock"))
1280 continue;
1281 strbuf_addstr(&refname, de->d_name);
1282 refdir = *refs->name
1283 ? git_path_submodule(refs->name, "%s", refname.buf)
1284 : git_path("%s", refname.buf);
1285 if (stat(refdir, &st) < 0) {
1286 ; /* silently ignore */
1287 } else if (S_ISDIR(st.st_mode)) {
1288 strbuf_addch(&refname, '/');
1289 add_entry_to_dir(dir,
1290 create_dir_entry(refs, refname.buf,
1291 refname.len, 1));
1292 } else {
1293 if (*refs->name) {
1294 hashclr(sha1);
1295 flag = 0;
1296 if (resolve_gitlink_ref(refs->name, refname.buf, sha1) < 0) {
1297 hashclr(sha1);
1298 flag |= REF_ISBROKEN;
1299 }
1300 } else if (read_ref_full(refname.buf,
1301 RESOLVE_REF_READING,
1302 sha1, &flag)) {
1303 hashclr(sha1);
1304 flag |= REF_ISBROKEN;
1305 }
1306 if (check_refname_format(refname.buf,
1307 REFNAME_ALLOW_ONELEVEL)) {
1308 hashclr(sha1);
1309 flag |= REF_BAD_NAME | REF_ISBROKEN;
1310 }
1311 add_entry_to_dir(dir,
1312 create_ref_entry(refname.buf, sha1, flag, 0));
1313 }
1314 strbuf_setlen(&refname, dirnamelen);
1315 }
1316 strbuf_release(&refname);
1317 closedir(d);
1318 }
1319
1320 static struct ref_dir *get_loose_refs(struct ref_cache *refs)
1321 {
1322 if (!refs->loose) {
1323 /*
1324 * Mark the top-level directory complete because we
1325 * are about to read the only subdirectory that can
1326 * hold references:
1327 */
1328 refs->loose = create_dir_entry(refs, "", 0, 0);
1329 /*
1330 * Create an incomplete entry for "refs/":
1331 */
1332 add_entry_to_dir(get_ref_dir(refs->loose),
1333 create_dir_entry(refs, "refs/", 5, 1));
1334 }
1335 return get_ref_dir(refs->loose);
1336 }
1337
1338 /* We allow "recursive" symbolic refs. Only within reason, though */
1339 #define MAXDEPTH 5
1340 #define MAXREFLEN (1024)
1341
1342 /*
1343 * Called by resolve_gitlink_ref_recursive() after it failed to read
1344 * from the loose refs in ref_cache refs. Find <refname> in the
1345 * packed-refs file for the submodule.
1346 */
1347 static int resolve_gitlink_packed_ref(struct ref_cache *refs,
1348 const char *refname, unsigned char *sha1)
1349 {
1350 struct ref_entry *ref;
1351 struct ref_dir *dir = get_packed_refs(refs);
1352
1353 ref = find_ref(dir, refname);
1354 if (ref == NULL)
1355 return -1;
1356
1357 hashcpy(sha1, ref->u.value.sha1);
1358 return 0;
1359 }
1360
1361 static int resolve_gitlink_ref_recursive(struct ref_cache *refs,
1362 const char *refname, unsigned char *sha1,
1363 int recursion)
1364 {
1365 int fd, len;
1366 char buffer[128], *p;
1367 char *path;
1368
1369 if (recursion > MAXDEPTH || strlen(refname) > MAXREFLEN)
1370 return -1;
1371 path = *refs->name
1372 ? git_path_submodule(refs->name, "%s", refname)
1373 : git_path("%s", refname);
1374 fd = open(path, O_RDONLY);
1375 if (fd < 0)
1376 return resolve_gitlink_packed_ref(refs, refname, sha1);
1377
1378 len = read(fd, buffer, sizeof(buffer)-1);
1379 close(fd);
1380 if (len < 0)
1381 return -1;
1382 while (len && isspace(buffer[len-1]))
1383 len--;
1384 buffer[len] = 0;
1385
1386 /* Was it a detached head or an old-fashioned symlink? */
1387 if (!get_sha1_hex(buffer, sha1))
1388 return 0;
1389
1390 /* Symref? */
1391 if (strncmp(buffer, "ref:", 4))
1392 return -1;
1393 p = buffer + 4;
1394 while (isspace(*p))
1395 p++;
1396
1397 return resolve_gitlink_ref_recursive(refs, p, sha1, recursion+1);
1398 }
1399
1400 int resolve_gitlink_ref(const char *path, const char *refname, unsigned char *sha1)
1401 {
1402 int len = strlen(path), retval;
1403 char *submodule;
1404 struct ref_cache *refs;
1405
1406 while (len && path[len-1] == '/')
1407 len--;
1408 if (!len)
1409 return -1;
1410 submodule = xstrndup(path, len);
1411 refs = get_ref_cache(submodule);
1412 free(submodule);
1413
1414 retval = resolve_gitlink_ref_recursive(refs, refname, sha1, 0);
1415 return retval;
1416 }
1417
1418 /*
1419 * Return the ref_entry for the given refname from the packed
1420 * references. If it does not exist, return NULL.
1421 */
1422 static struct ref_entry *get_packed_ref(const char *refname)
1423 {
1424 return find_ref(get_packed_refs(&ref_cache), refname);
1425 }
1426
1427 /*
1428 * A loose ref file doesn't exist; check for a packed ref. The
1429 * options are forwarded from resolve_safe_unsafe().
1430 */
1431 static int resolve_missing_loose_ref(const char *refname,
1432 int resolve_flags,
1433 unsigned char *sha1,
1434 int *flags)
1435 {
1436 struct ref_entry *entry;
1437
1438 /*
1439 * The loose reference file does not exist; check for a packed
1440 * reference.
1441 */
1442 entry = get_packed_ref(refname);
1443 if (entry) {
1444 hashcpy(sha1, entry->u.value.sha1);
1445 if (flags)
1446 *flags |= REF_ISPACKED;
1447 return 0;
1448 }
1449 /* The reference is not a packed reference, either. */
1450 if (resolve_flags & RESOLVE_REF_READING) {
1451 errno = ENOENT;
1452 return -1;
1453 } else {
1454 hashclr(sha1);
1455 return 0;
1456 }
1457 }
1458
1459 /* This function needs to return a meaningful errno on failure */
1460 const char *resolve_ref_unsafe(const char *refname, int resolve_flags, unsigned char *sha1, int *flags)
1461 {
1462 int depth = MAXDEPTH;
1463 ssize_t len;
1464 char buffer[256];
1465 static char refname_buffer[256];
1466 int bad_name = 0;
1467
1468 if (flags)
1469 *flags = 0;
1470
1471 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1472 if (flags)
1473 *flags |= REF_BAD_NAME;
1474
1475 if (!(resolve_flags & RESOLVE_REF_ALLOW_BAD_NAME) ||
1476 !refname_is_safe(refname)) {
1477 errno = EINVAL;
1478 return NULL;
1479 }
1480 /*
1481 * dwim_ref() uses REF_ISBROKEN to distinguish between
1482 * missing refs and refs that were present but invalid,
1483 * to complain about the latter to stderr.
1484 *
1485 * We don't know whether the ref exists, so don't set
1486 * REF_ISBROKEN yet.
1487 */
1488 bad_name = 1;
1489 }
1490 for (;;) {
1491 char path[PATH_MAX];
1492 struct stat st;
1493 char *buf;
1494 int fd;
1495
1496 if (--depth < 0) {
1497 errno = ELOOP;
1498 return NULL;
1499 }
1500
1501 git_snpath(path, sizeof(path), "%s", refname);
1502
1503 /*
1504 * We might have to loop back here to avoid a race
1505 * condition: first we lstat() the file, then we try
1506 * to read it as a link or as a file. But if somebody
1507 * changes the type of the file (file <-> directory
1508 * <-> symlink) between the lstat() and reading, then
1509 * we don't want to report that as an error but rather
1510 * try again starting with the lstat().
1511 */
1512 stat_ref:
1513 if (lstat(path, &st) < 0) {
1514 if (errno != ENOENT)
1515 return NULL;
1516 if (resolve_missing_loose_ref(refname, resolve_flags,
1517 sha1, flags))
1518 return NULL;
1519 if (bad_name) {
1520 hashclr(sha1);
1521 if (flags)
1522 *flags |= REF_ISBROKEN;
1523 }
1524 return refname;
1525 }
1526
1527 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1528 if (S_ISLNK(st.st_mode)) {
1529 len = readlink(path, buffer, sizeof(buffer)-1);
1530 if (len < 0) {
1531 if (errno == ENOENT || errno == EINVAL)
1532 /* inconsistent with lstat; retry */
1533 goto stat_ref;
1534 else
1535 return NULL;
1536 }
1537 buffer[len] = 0;
1538 if (starts_with(buffer, "refs/") &&
1539 !check_refname_format(buffer, 0)) {
1540 strcpy(refname_buffer, buffer);
1541 refname = refname_buffer;
1542 if (flags)
1543 *flags |= REF_ISSYMREF;
1544 if (resolve_flags & RESOLVE_REF_NO_RECURSE) {
1545 hashclr(sha1);
1546 return refname;
1547 }
1548 continue;
1549 }
1550 }
1551
1552 /* Is it a directory? */
1553 if (S_ISDIR(st.st_mode)) {
1554 errno = EISDIR;
1555 return NULL;
1556 }
1557
1558 /*
1559 * Anything else, just open it and try to use it as
1560 * a ref
1561 */
1562 fd = open(path, O_RDONLY);
1563 if (fd < 0) {
1564 if (errno == ENOENT)
1565 /* inconsistent with lstat; retry */
1566 goto stat_ref;
1567 else
1568 return NULL;
1569 }
1570 len = read_in_full(fd, buffer, sizeof(buffer)-1);
1571 if (len < 0) {
1572 int save_errno = errno;
1573 close(fd);
1574 errno = save_errno;
1575 return NULL;
1576 }
1577 close(fd);
1578 while (len && isspace(buffer[len-1]))
1579 len--;
1580 buffer[len] = '\0';
1581
1582 /*
1583 * Is it a symbolic ref?
1584 */
1585 if (!starts_with(buffer, "ref:")) {
1586 /*
1587 * Please note that FETCH_HEAD has a second
1588 * line containing other data.
1589 */
1590 if (get_sha1_hex(buffer, sha1) ||
1591 (buffer[40] != '\0' && !isspace(buffer[40]))) {
1592 if (flags)
1593 *flags |= REF_ISBROKEN;
1594 errno = EINVAL;
1595 return NULL;
1596 }
1597 if (bad_name) {
1598 hashclr(sha1);
1599 if (flags)
1600 *flags |= REF_ISBROKEN;
1601 }
1602 return refname;
1603 }
1604 if (flags)
1605 *flags |= REF_ISSYMREF;
1606 buf = buffer + 4;
1607 while (isspace(*buf))
1608 buf++;
1609 refname = strcpy(refname_buffer, buf);
1610 if (resolve_flags & RESOLVE_REF_NO_RECURSE) {
1611 hashclr(sha1);
1612 return refname;
1613 }
1614 if (check_refname_format(buf, REFNAME_ALLOW_ONELEVEL)) {
1615 if (flags)
1616 *flags |= REF_ISBROKEN;
1617
1618 if (!(resolve_flags & RESOLVE_REF_ALLOW_BAD_NAME) ||
1619 !refname_is_safe(buf)) {
1620 errno = EINVAL;
1621 return NULL;
1622 }
1623 bad_name = 1;
1624 }
1625 }
1626 }
1627
1628 char *resolve_refdup(const char *ref, int resolve_flags, unsigned char *sha1, int *flags)
1629 {
1630 const char *ret = resolve_ref_unsafe(ref, resolve_flags, sha1, flags);
1631 return ret ? xstrdup(ret) : NULL;
1632 }
1633
1634 /* The argument to filter_refs */
1635 struct ref_filter {
1636 const char *pattern;
1637 each_ref_fn *fn;
1638 void *cb_data;
1639 };
1640
1641 int read_ref_full(const char *refname, int resolve_flags, unsigned char *sha1, int *flags)
1642 {
1643 if (resolve_ref_unsafe(refname, resolve_flags, sha1, flags))
1644 return 0;
1645 return -1;
1646 }
1647
1648 int read_ref(const char *refname, unsigned char *sha1)
1649 {
1650 return read_ref_full(refname, RESOLVE_REF_READING, sha1, NULL);
1651 }
1652
1653 int ref_exists(const char *refname)
1654 {
1655 unsigned char sha1[20];
1656 return !!resolve_ref_unsafe(refname, RESOLVE_REF_READING, sha1, NULL);
1657 }
1658
1659 static int filter_refs(const char *refname, const unsigned char *sha1, int flags,
1660 void *data)
1661 {
1662 struct ref_filter *filter = (struct ref_filter *)data;
1663 if (wildmatch(filter->pattern, refname, 0, NULL))
1664 return 0;
1665 return filter->fn(refname, sha1, flags, filter->cb_data);
1666 }
1667
1668 enum peel_status {
1669 /* object was peeled successfully: */
1670 PEEL_PEELED = 0,
1671
1672 /*
1673 * object cannot be peeled because the named object (or an
1674 * object referred to by a tag in the peel chain), does not
1675 * exist.
1676 */
1677 PEEL_INVALID = -1,
1678
1679 /* object cannot be peeled because it is not a tag: */
1680 PEEL_NON_TAG = -2,
1681
1682 /* ref_entry contains no peeled value because it is a symref: */
1683 PEEL_IS_SYMREF = -3,
1684
1685 /*
1686 * ref_entry cannot be peeled because it is broken (i.e., the
1687 * symbolic reference cannot even be resolved to an object
1688 * name):
1689 */
1690 PEEL_BROKEN = -4
1691 };
1692
1693 /*
1694 * Peel the named object; i.e., if the object is a tag, resolve the
1695 * tag recursively until a non-tag is found. If successful, store the
1696 * result to sha1 and return PEEL_PEELED. If the object is not a tag
1697 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
1698 * and leave sha1 unchanged.
1699 */
1700 static enum peel_status peel_object(const unsigned char *name, unsigned char *sha1)
1701 {
1702 struct object *o = lookup_unknown_object(name);
1703
1704 if (o->type == OBJ_NONE) {
1705 int type = sha1_object_info(name, NULL);
1706 if (type < 0 || !object_as_type(o, type, 0))
1707 return PEEL_INVALID;
1708 }
1709
1710 if (o->type != OBJ_TAG)
1711 return PEEL_NON_TAG;
1712
1713 o = deref_tag_noverify(o);
1714 if (!o)
1715 return PEEL_INVALID;
1716
1717 hashcpy(sha1, o->sha1);
1718 return PEEL_PEELED;
1719 }
1720
1721 /*
1722 * Peel the entry (if possible) and return its new peel_status. If
1723 * repeel is true, re-peel the entry even if there is an old peeled
1724 * value that is already stored in it.
1725 *
1726 * It is OK to call this function with a packed reference entry that
1727 * might be stale and might even refer to an object that has since
1728 * been garbage-collected. In such a case, if the entry has
1729 * REF_KNOWS_PEELED then leave the status unchanged and return
1730 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1731 */
1732 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1733 {
1734 enum peel_status status;
1735
1736 if (entry->flag & REF_KNOWS_PEELED) {
1737 if (repeel) {
1738 entry->flag &= ~REF_KNOWS_PEELED;
1739 hashclr(entry->u.value.peeled);
1740 } else {
1741 return is_null_sha1(entry->u.value.peeled) ?
1742 PEEL_NON_TAG : PEEL_PEELED;
1743 }
1744 }
1745 if (entry->flag & REF_ISBROKEN)
1746 return PEEL_BROKEN;
1747 if (entry->flag & REF_ISSYMREF)
1748 return PEEL_IS_SYMREF;
1749
1750 status = peel_object(entry->u.value.sha1, entry->u.value.peeled);
1751 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1752 entry->flag |= REF_KNOWS_PEELED;
1753 return status;
1754 }
1755
1756 int peel_ref(const char *refname, unsigned char *sha1)
1757 {
1758 int flag;
1759 unsigned char base[20];
1760
1761 if (current_ref && (current_ref->name == refname
1762 || !strcmp(current_ref->name, refname))) {
1763 if (peel_entry(current_ref, 0))
1764 return -1;
1765 hashcpy(sha1, current_ref->u.value.peeled);
1766 return 0;
1767 }
1768
1769 if (read_ref_full(refname, RESOLVE_REF_READING, base, &flag))
1770 return -1;
1771
1772 /*
1773 * If the reference is packed, read its ref_entry from the
1774 * cache in the hope that we already know its peeled value.
1775 * We only try this optimization on packed references because
1776 * (a) forcing the filling of the loose reference cache could
1777 * be expensive and (b) loose references anyway usually do not
1778 * have REF_KNOWS_PEELED.
1779 */
1780 if (flag & REF_ISPACKED) {
1781 struct ref_entry *r = get_packed_ref(refname);
1782 if (r) {
1783 if (peel_entry(r, 0))
1784 return -1;
1785 hashcpy(sha1, r->u.value.peeled);
1786 return 0;
1787 }
1788 }
1789
1790 return peel_object(base, sha1);
1791 }
1792
1793 struct warn_if_dangling_data {
1794 FILE *fp;
1795 const char *refname;
1796 const struct string_list *refnames;
1797 const char *msg_fmt;
1798 };
1799
1800 static int warn_if_dangling_symref(const char *refname, const unsigned char *sha1,
1801 int flags, void *cb_data)
1802 {
1803 struct warn_if_dangling_data *d = cb_data;
1804 const char *resolves_to;
1805 unsigned char junk[20];
1806
1807 if (!(flags & REF_ISSYMREF))
1808 return 0;
1809
1810 resolves_to = resolve_ref_unsafe(refname, 0, junk, NULL);
1811 if (!resolves_to
1812 || (d->refname
1813 ? strcmp(resolves_to, d->refname)
1814 : !string_list_has_string(d->refnames, resolves_to))) {
1815 return 0;
1816 }
1817
1818 fprintf(d->fp, d->msg_fmt, refname);
1819 fputc('\n', d->fp);
1820 return 0;
1821 }
1822
1823 void warn_dangling_symref(FILE *fp, const char *msg_fmt, const char *refname)
1824 {
1825 struct warn_if_dangling_data data;
1826
1827 data.fp = fp;
1828 data.refname = refname;
1829 data.refnames = NULL;
1830 data.msg_fmt = msg_fmt;
1831 for_each_rawref(warn_if_dangling_symref, &data);
1832 }
1833
1834 void warn_dangling_symrefs(FILE *fp, const char *msg_fmt, const struct string_list *refnames)
1835 {
1836 struct warn_if_dangling_data data;
1837
1838 data.fp = fp;
1839 data.refname = NULL;
1840 data.refnames = refnames;
1841 data.msg_fmt = msg_fmt;
1842 for_each_rawref(warn_if_dangling_symref, &data);
1843 }
1844
1845 /*
1846 * Call fn for each reference in the specified ref_cache, omitting
1847 * references not in the containing_dir of base. fn is called for all
1848 * references, including broken ones. If fn ever returns a non-zero
1849 * value, stop the iteration and return that value; otherwise, return
1850 * 0.
1851 */
1852 static int do_for_each_entry(struct ref_cache *refs, const char *base,
1853 each_ref_entry_fn fn, void *cb_data)
1854 {
1855 struct packed_ref_cache *packed_ref_cache;
1856 struct ref_dir *loose_dir;
1857 struct ref_dir *packed_dir;
1858 int retval = 0;
1859
1860 /*
1861 * We must make sure that all loose refs are read before accessing the
1862 * packed-refs file; this avoids a race condition in which loose refs
1863 * are migrated to the packed-refs file by a simultaneous process, but
1864 * our in-memory view is from before the migration. get_packed_ref_cache()
1865 * takes care of making sure our view is up to date with what is on
1866 * disk.
1867 */
1868 loose_dir = get_loose_refs(refs);
1869 if (base && *base) {
1870 loose_dir = find_containing_dir(loose_dir, base, 0);
1871 }
1872 if (loose_dir)
1873 prime_ref_dir(loose_dir);
1874
1875 packed_ref_cache = get_packed_ref_cache(refs);
1876 acquire_packed_ref_cache(packed_ref_cache);
1877 packed_dir = get_packed_ref_dir(packed_ref_cache);
1878 if (base && *base) {
1879 packed_dir = find_containing_dir(packed_dir, base, 0);
1880 }
1881
1882 if (packed_dir && loose_dir) {
1883 sort_ref_dir(packed_dir);
1884 sort_ref_dir(loose_dir);
1885 retval = do_for_each_entry_in_dirs(
1886 packed_dir, loose_dir, fn, cb_data);
1887 } else if (packed_dir) {
1888 sort_ref_dir(packed_dir);
1889 retval = do_for_each_entry_in_dir(
1890 packed_dir, 0, fn, cb_data);
1891 } else if (loose_dir) {
1892 sort_ref_dir(loose_dir);
1893 retval = do_for_each_entry_in_dir(
1894 loose_dir, 0, fn, cb_data);
1895 }
1896
1897 release_packed_ref_cache(packed_ref_cache);
1898 return retval;
1899 }
1900
1901 /*
1902 * Call fn for each reference in the specified ref_cache for which the
1903 * refname begins with base. If trim is non-zero, then trim that many
1904 * characters off the beginning of each refname before passing the
1905 * refname to fn. flags can be DO_FOR_EACH_INCLUDE_BROKEN to include
1906 * broken references in the iteration. If fn ever returns a non-zero
1907 * value, stop the iteration and return that value; otherwise, return
1908 * 0.
1909 */
1910 static int do_for_each_ref(struct ref_cache *refs, const char *base,
1911 each_ref_fn fn, int trim, int flags, void *cb_data)
1912 {
1913 struct ref_entry_cb data;
1914 data.base = base;
1915 data.trim = trim;
1916 data.flags = flags;
1917 data.fn = fn;
1918 data.cb_data = cb_data;
1919
1920 return do_for_each_entry(refs, base, do_one_ref, &data);
1921 }
1922
1923 static int do_head_ref(const char *submodule, each_ref_fn fn, void *cb_data)
1924 {
1925 unsigned char sha1[20];
1926 int flag;
1927
1928 if (submodule) {
1929 if (resolve_gitlink_ref(submodule, "HEAD", sha1) == 0)
1930 return fn("HEAD", sha1, 0, cb_data);
1931
1932 return 0;
1933 }
1934
1935 if (!read_ref_full("HEAD", RESOLVE_REF_READING, sha1, &flag))
1936 return fn("HEAD", sha1, flag, cb_data);
1937
1938 return 0;
1939 }
1940
1941 int head_ref(each_ref_fn fn, void *cb_data)
1942 {
1943 return do_head_ref(NULL, fn, cb_data);
1944 }
1945
1946 int head_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1947 {
1948 return do_head_ref(submodule, fn, cb_data);
1949 }
1950
1951 int for_each_ref(each_ref_fn fn, void *cb_data)
1952 {
1953 return do_for_each_ref(&ref_cache, "", fn, 0, 0, cb_data);
1954 }
1955
1956 int for_each_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1957 {
1958 return do_for_each_ref(get_ref_cache(submodule), "", fn, 0, 0, cb_data);
1959 }
1960
1961 int for_each_ref_in(const char *prefix, each_ref_fn fn, void *cb_data)
1962 {
1963 return do_for_each_ref(&ref_cache, prefix, fn, strlen(prefix), 0, cb_data);
1964 }
1965
1966 int for_each_ref_in_submodule(const char *submodule, const char *prefix,
1967 each_ref_fn fn, void *cb_data)
1968 {
1969 return do_for_each_ref(get_ref_cache(submodule), prefix, fn, strlen(prefix), 0, cb_data);
1970 }
1971
1972 int for_each_tag_ref(each_ref_fn fn, void *cb_data)
1973 {
1974 return for_each_ref_in("refs/tags/", fn, cb_data);
1975 }
1976
1977 int for_each_tag_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1978 {
1979 return for_each_ref_in_submodule(submodule, "refs/tags/", fn, cb_data);
1980 }
1981
1982 int for_each_branch_ref(each_ref_fn fn, void *cb_data)
1983 {
1984 return for_each_ref_in("refs/heads/", fn, cb_data);
1985 }
1986
1987 int for_each_branch_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1988 {
1989 return for_each_ref_in_submodule(submodule, "refs/heads/", fn, cb_data);
1990 }
1991
1992 int for_each_remote_ref(each_ref_fn fn, void *cb_data)
1993 {
1994 return for_each_ref_in("refs/remotes/", fn, cb_data);
1995 }
1996
1997 int for_each_remote_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1998 {
1999 return for_each_ref_in_submodule(submodule, "refs/remotes/", fn, cb_data);
2000 }
2001
2002 int for_each_replace_ref(each_ref_fn fn, void *cb_data)
2003 {
2004 return do_for_each_ref(&ref_cache, "refs/replace/", fn, 13, 0, cb_data);
2005 }
2006
2007 int head_ref_namespaced(each_ref_fn fn, void *cb_data)
2008 {
2009 struct strbuf buf = STRBUF_INIT;
2010 int ret = 0;
2011 unsigned char sha1[20];
2012 int flag;
2013
2014 strbuf_addf(&buf, "%sHEAD", get_git_namespace());
2015 if (!read_ref_full(buf.buf, RESOLVE_REF_READING, sha1, &flag))
2016 ret = fn(buf.buf, sha1, flag, cb_data);
2017 strbuf_release(&buf);
2018
2019 return ret;
2020 }
2021
2022 int for_each_namespaced_ref(each_ref_fn fn, void *cb_data)
2023 {
2024 struct strbuf buf = STRBUF_INIT;
2025 int ret;
2026 strbuf_addf(&buf, "%srefs/", get_git_namespace());
2027 ret = do_for_each_ref(&ref_cache, buf.buf, fn, 0, 0, cb_data);
2028 strbuf_release(&buf);
2029 return ret;
2030 }
2031
2032 int for_each_glob_ref_in(each_ref_fn fn, const char *pattern,
2033 const char *prefix, void *cb_data)
2034 {
2035 struct strbuf real_pattern = STRBUF_INIT;
2036 struct ref_filter filter;
2037 int ret;
2038
2039 if (!prefix && !starts_with(pattern, "refs/"))
2040 strbuf_addstr(&real_pattern, "refs/");
2041 else if (prefix)
2042 strbuf_addstr(&real_pattern, prefix);
2043 strbuf_addstr(&real_pattern, pattern);
2044
2045 if (!has_glob_specials(pattern)) {
2046 /* Append implied '/' '*' if not present. */
2047 if (real_pattern.buf[real_pattern.len - 1] != '/')
2048 strbuf_addch(&real_pattern, '/');
2049 /* No need to check for '*', there is none. */
2050 strbuf_addch(&real_pattern, '*');
2051 }
2052
2053 filter.pattern = real_pattern.buf;
2054 filter.fn = fn;
2055 filter.cb_data = cb_data;
2056 ret = for_each_ref(filter_refs, &filter);
2057
2058 strbuf_release(&real_pattern);
2059 return ret;
2060 }
2061
2062 int for_each_glob_ref(each_ref_fn fn, const char *pattern, void *cb_data)
2063 {
2064 return for_each_glob_ref_in(fn, pattern, NULL, cb_data);
2065 }
2066
2067 int for_each_rawref(each_ref_fn fn, void *cb_data)
2068 {
2069 return do_for_each_ref(&ref_cache, "", fn, 0,
2070 DO_FOR_EACH_INCLUDE_BROKEN, cb_data);
2071 }
2072
2073 const char *prettify_refname(const char *name)
2074 {
2075 return name + (
2076 starts_with(name, "refs/heads/") ? 11 :
2077 starts_with(name, "refs/tags/") ? 10 :
2078 starts_with(name, "refs/remotes/") ? 13 :
2079 0);
2080 }
2081
2082 static const char *ref_rev_parse_rules[] = {
2083 "%.*s",
2084 "refs/%.*s",
2085 "refs/tags/%.*s",
2086 "refs/heads/%.*s",
2087 "refs/remotes/%.*s",
2088 "refs/remotes/%.*s/HEAD",
2089 NULL
2090 };
2091
2092 int refname_match(const char *abbrev_name, const char *full_name)
2093 {
2094 const char **p;
2095 const int abbrev_name_len = strlen(abbrev_name);
2096
2097 for (p = ref_rev_parse_rules; *p; p++) {
2098 if (!strcmp(full_name, mkpath(*p, abbrev_name_len, abbrev_name))) {
2099 return 1;
2100 }
2101 }
2102
2103 return 0;
2104 }
2105
2106 static void unlock_ref(struct ref_lock *lock)
2107 {
2108 /* Do not free lock->lk -- atexit() still looks at them */
2109 if (lock->lk)
2110 rollback_lock_file(lock->lk);
2111 free(lock->ref_name);
2112 free(lock->orig_ref_name);
2113 free(lock);
2114 }
2115
2116 /* This function should make sure errno is meaningful on error */
2117 static struct ref_lock *verify_lock(struct ref_lock *lock,
2118 const unsigned char *old_sha1, int mustexist)
2119 {
2120 if (read_ref_full(lock->ref_name,
2121 mustexist ? RESOLVE_REF_READING : 0,
2122 lock->old_sha1, NULL)) {
2123 int save_errno = errno;
2124 error("Can't verify ref %s", lock->ref_name);
2125 unlock_ref(lock);
2126 errno = save_errno;
2127 return NULL;
2128 }
2129 if (hashcmp(lock->old_sha1, old_sha1)) {
2130 error("Ref %s is at %s but expected %s", lock->ref_name,
2131 sha1_to_hex(lock->old_sha1), sha1_to_hex(old_sha1));
2132 unlock_ref(lock);
2133 errno = EBUSY;
2134 return NULL;
2135 }
2136 return lock;
2137 }
2138
2139 static int remove_empty_directories(const char *file)
2140 {
2141 /* we want to create a file but there is a directory there;
2142 * if that is an empty directory (or a directory that contains
2143 * only empty directories), remove them.
2144 */
2145 struct strbuf path;
2146 int result, save_errno;
2147
2148 strbuf_init(&path, 20);
2149 strbuf_addstr(&path, file);
2150
2151 result = remove_dir_recursively(&path, REMOVE_DIR_EMPTY_ONLY);
2152 save_errno = errno;
2153
2154 strbuf_release(&path);
2155 errno = save_errno;
2156
2157 return result;
2158 }
2159
2160 /*
2161 * *string and *len will only be substituted, and *string returned (for
2162 * later free()ing) if the string passed in is a magic short-hand form
2163 * to name a branch.
2164 */
2165 static char *substitute_branch_name(const char **string, int *len)
2166 {
2167 struct strbuf buf = STRBUF_INIT;
2168 int ret = interpret_branch_name(*string, *len, &buf);
2169
2170 if (ret == *len) {
2171 size_t size;
2172 *string = strbuf_detach(&buf, &size);
2173 *len = size;
2174 return (char *)*string;
2175 }
2176
2177 return NULL;
2178 }
2179
2180 int dwim_ref(const char *str, int len, unsigned char *sha1, char **ref)
2181 {
2182 char *last_branch = substitute_branch_name(&str, &len);
2183 const char **p, *r;
2184 int refs_found = 0;
2185
2186 *ref = NULL;
2187 for (p = ref_rev_parse_rules; *p; p++) {
2188 char fullref[PATH_MAX];
2189 unsigned char sha1_from_ref[20];
2190 unsigned char *this_result;
2191 int flag;
2192
2193 this_result = refs_found ? sha1_from_ref : sha1;
2194 mksnpath(fullref, sizeof(fullref), *p, len, str);
2195 r = resolve_ref_unsafe(fullref, RESOLVE_REF_READING,
2196 this_result, &flag);
2197 if (r) {
2198 if (!refs_found++)
2199 *ref = xstrdup(r);
2200 if (!warn_ambiguous_refs)
2201 break;
2202 } else if ((flag & REF_ISSYMREF) && strcmp(fullref, "HEAD")) {
2203 warning("ignoring dangling symref %s.", fullref);
2204 } else if ((flag & REF_ISBROKEN) && strchr(fullref, '/')) {
2205 warning("ignoring broken ref %s.", fullref);
2206 }
2207 }
2208 free(last_branch);
2209 return refs_found;
2210 }
2211
2212 int dwim_log(const char *str, int len, unsigned char *sha1, char **log)
2213 {
2214 char *last_branch = substitute_branch_name(&str, &len);
2215 const char **p;
2216 int logs_found = 0;
2217
2218 *log = NULL;
2219 for (p = ref_rev_parse_rules; *p; p++) {
2220 unsigned char hash[20];
2221 char path[PATH_MAX];
2222 const char *ref, *it;
2223
2224 mksnpath(path, sizeof(path), *p, len, str);
2225 ref = resolve_ref_unsafe(path, RESOLVE_REF_READING,
2226 hash, NULL);
2227 if (!ref)
2228 continue;
2229 if (reflog_exists(path))
2230 it = path;
2231 else if (strcmp(ref, path) && reflog_exists(ref))
2232 it = ref;
2233 else
2234 continue;
2235 if (!logs_found++) {
2236 *log = xstrdup(it);
2237 hashcpy(sha1, hash);
2238 }
2239 if (!warn_ambiguous_refs)
2240 break;
2241 }
2242 free(last_branch);
2243 return logs_found;
2244 }
2245
2246 /*
2247 * Locks a ref returning the lock on success and NULL on failure.
2248 * On failure errno is set to something meaningful.
2249 */
2250 static struct ref_lock *lock_ref_sha1_basic(const char *refname,
2251 const unsigned char *old_sha1,
2252 const struct string_list *skip,
2253 int flags, int *type_p)
2254 {
2255 char *ref_file;
2256 const char *orig_refname = refname;
2257 struct ref_lock *lock;
2258 int last_errno = 0;
2259 int type, lflags;
2260 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2261 int resolve_flags = 0;
2262 int missing = 0;
2263 int attempts_remaining = 3;
2264
2265 lock = xcalloc(1, sizeof(struct ref_lock));
2266 lock->lock_fd = -1;
2267
2268 if (mustexist)
2269 resolve_flags |= RESOLVE_REF_READING;
2270 if (flags & REF_DELETING) {
2271 resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2272 if (flags & REF_NODEREF)
2273 resolve_flags |= RESOLVE_REF_NO_RECURSE;
2274 }
2275
2276 refname = resolve_ref_unsafe(refname, resolve_flags,
2277 lock->old_sha1, &type);
2278 if (!refname && errno == EISDIR) {
2279 /* we are trying to lock foo but we used to
2280 * have foo/bar which now does not exist;
2281 * it is normal for the empty directory 'foo'
2282 * to remain.
2283 */
2284 ref_file = git_path("%s", orig_refname);
2285 if (remove_empty_directories(ref_file)) {
2286 last_errno = errno;
2287 error("there are still refs under '%s'", orig_refname);
2288 goto error_return;
2289 }
2290 refname = resolve_ref_unsafe(orig_refname, resolve_flags,
2291 lock->old_sha1, &type);
2292 }
2293 if (type_p)
2294 *type_p = type;
2295 if (!refname) {
2296 last_errno = errno;
2297 error("unable to resolve reference %s: %s",
2298 orig_refname, strerror(errno));
2299 goto error_return;
2300 }
2301 missing = is_null_sha1(lock->old_sha1);
2302 /* When the ref did not exist and we are creating it,
2303 * make sure there is no existing ref that is packed
2304 * whose name begins with our refname, nor a ref whose
2305 * name is a proper prefix of our refname.
2306 */
2307 if (missing &&
2308 !is_refname_available(refname, skip, get_packed_refs(&ref_cache))) {
2309 last_errno = ENOTDIR;
2310 goto error_return;
2311 }
2312
2313 lock->lk = xcalloc(1, sizeof(struct lock_file));
2314
2315 lflags = 0;
2316 if (flags & REF_NODEREF) {
2317 refname = orig_refname;
2318 lflags |= LOCK_NO_DEREF;
2319 }
2320 lock->ref_name = xstrdup(refname);
2321 lock->orig_ref_name = xstrdup(orig_refname);
2322 ref_file = git_path("%s", refname);
2323 if (missing)
2324 lock->force_write = 1;
2325 if ((flags & REF_NODEREF) && (type & REF_ISSYMREF))
2326 lock->force_write = 1;
2327
2328 retry:
2329 switch (safe_create_leading_directories(ref_file)) {
2330 case SCLD_OK:
2331 break; /* success */
2332 case SCLD_VANISHED:
2333 if (--attempts_remaining > 0)
2334 goto retry;
2335 /* fall through */
2336 default:
2337 last_errno = errno;
2338 error("unable to create directory for %s", ref_file);
2339 goto error_return;
2340 }
2341
2342 lock->lock_fd = hold_lock_file_for_update(lock->lk, ref_file, lflags);
2343 if (lock->lock_fd < 0) {
2344 last_errno = errno;
2345 if (errno == ENOENT && --attempts_remaining > 0)
2346 /*
2347 * Maybe somebody just deleted one of the
2348 * directories leading to ref_file. Try
2349 * again:
2350 */
2351 goto retry;
2352 else {
2353 struct strbuf err = STRBUF_INIT;
2354 unable_to_lock_message(ref_file, errno, &err);
2355 error("%s", err.buf);
2356 strbuf_release(&err);
2357 goto error_return;
2358 }
2359 }
2360 return old_sha1 ? verify_lock(lock, old_sha1, mustexist) : lock;
2361
2362 error_return:
2363 unlock_ref(lock);
2364 errno = last_errno;
2365 return NULL;
2366 }
2367
2368 /*
2369 * Write an entry to the packed-refs file for the specified refname.
2370 * If peeled is non-NULL, write it as the entry's peeled value.
2371 */
2372 static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2373 unsigned char *peeled)
2374 {
2375 fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2376 if (peeled)
2377 fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2378 }
2379
2380 /*
2381 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2382 */
2383 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2384 {
2385 enum peel_status peel_status = peel_entry(entry, 0);
2386
2387 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2388 error("internal error: %s is not a valid packed reference!",
2389 entry->name);
2390 write_packed_entry(cb_data, entry->name, entry->u.value.sha1,
2391 peel_status == PEEL_PEELED ?
2392 entry->u.value.peeled : NULL);
2393 return 0;
2394 }
2395
2396 /* This should return a meaningful errno on failure */
2397 int lock_packed_refs(int flags)
2398 {
2399 struct packed_ref_cache *packed_ref_cache;
2400
2401 if (hold_lock_file_for_update(&packlock, git_path("packed-refs"), flags) < 0)
2402 return -1;
2403 /*
2404 * Get the current packed-refs while holding the lock. If the
2405 * packed-refs file has been modified since we last read it,
2406 * this will automatically invalidate the cache and re-read
2407 * the packed-refs file.
2408 */
2409 packed_ref_cache = get_packed_ref_cache(&ref_cache);
2410 packed_ref_cache->lock = &packlock;
2411 /* Increment the reference count to prevent it from being freed: */
2412 acquire_packed_ref_cache(packed_ref_cache);
2413 return 0;
2414 }
2415
2416 /*
2417 * Commit the packed refs changes.
2418 * On error we must make sure that errno contains a meaningful value.
2419 */
2420 int commit_packed_refs(void)
2421 {
2422 struct packed_ref_cache *packed_ref_cache =
2423 get_packed_ref_cache(&ref_cache);
2424 int error = 0;
2425 int save_errno = 0;
2426 FILE *out;
2427
2428 if (!packed_ref_cache->lock)
2429 die("internal error: packed-refs not locked");
2430
2431 out = fdopen_lock_file(packed_ref_cache->lock, "w");
2432 if (!out)
2433 die_errno("unable to fdopen packed-refs descriptor");
2434
2435 fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2436 do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2437 0, write_packed_entry_fn, out);
2438
2439 if (commit_lock_file(packed_ref_cache->lock)) {
2440 save_errno = errno;
2441 error = -1;
2442 }
2443 packed_ref_cache->lock = NULL;
2444 release_packed_ref_cache(packed_ref_cache);
2445 errno = save_errno;
2446 return error;
2447 }
2448
2449 void rollback_packed_refs(void)
2450 {
2451 struct packed_ref_cache *packed_ref_cache =
2452 get_packed_ref_cache(&ref_cache);
2453
2454 if (!packed_ref_cache->lock)
2455 die("internal error: packed-refs not locked");
2456 rollback_lock_file(packed_ref_cache->lock);
2457 packed_ref_cache->lock = NULL;
2458 release_packed_ref_cache(packed_ref_cache);
2459 clear_packed_ref_cache(&ref_cache);
2460 }
2461
2462 struct ref_to_prune {
2463 struct ref_to_prune *next;
2464 unsigned char sha1[20];
2465 char name[FLEX_ARRAY];
2466 };
2467
2468 struct pack_refs_cb_data {
2469 unsigned int flags;
2470 struct ref_dir *packed_refs;
2471 struct ref_to_prune *ref_to_prune;
2472 };
2473
2474 /*
2475 * An each_ref_entry_fn that is run over loose references only. If
2476 * the loose reference can be packed, add an entry in the packed ref
2477 * cache. If the reference should be pruned, also add it to
2478 * ref_to_prune in the pack_refs_cb_data.
2479 */
2480 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2481 {
2482 struct pack_refs_cb_data *cb = cb_data;
2483 enum peel_status peel_status;
2484 struct ref_entry *packed_entry;
2485 int is_tag_ref = starts_with(entry->name, "refs/tags/");
2486
2487 /* ALWAYS pack tags */
2488 if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2489 return 0;
2490
2491 /* Do not pack symbolic or broken refs: */
2492 if ((entry->flag & REF_ISSYMREF) || !ref_resolves_to_object(entry))
2493 return 0;
2494
2495 /* Add a packed ref cache entry equivalent to the loose entry. */
2496 peel_status = peel_entry(entry, 1);
2497 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2498 die("internal error peeling reference %s (%s)",
2499 entry->name, sha1_to_hex(entry->u.value.sha1));
2500 packed_entry = find_ref(cb->packed_refs, entry->name);
2501 if (packed_entry) {
2502 /* Overwrite existing packed entry with info from loose entry */
2503 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2504 hashcpy(packed_entry->u.value.sha1, entry->u.value.sha1);
2505 } else {
2506 packed_entry = create_ref_entry(entry->name, entry->u.value.sha1,
2507 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2508 add_ref(cb->packed_refs, packed_entry);
2509 }
2510 hashcpy(packed_entry->u.value.peeled, entry->u.value.peeled);
2511
2512 /* Schedule the loose reference for pruning if requested. */
2513 if ((cb->flags & PACK_REFS_PRUNE)) {
2514 int namelen = strlen(entry->name) + 1;
2515 struct ref_to_prune *n = xcalloc(1, sizeof(*n) + namelen);
2516 hashcpy(n->sha1, entry->u.value.sha1);
2517 strcpy(n->name, entry->name);
2518 n->next = cb->ref_to_prune;
2519 cb->ref_to_prune = n;
2520 }
2521 return 0;
2522 }
2523
2524 /*
2525 * Remove empty parents, but spare refs/ and immediate subdirs.
2526 * Note: munges *name.
2527 */
2528 static void try_remove_empty_parents(char *name)
2529 {
2530 char *p, *q;
2531 int i;
2532 p = name;
2533 for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2534 while (*p && *p != '/')
2535 p++;
2536 /* tolerate duplicate slashes; see check_refname_format() */
2537 while (*p == '/')
2538 p++;
2539 }
2540 for (q = p; *q; q++)
2541 ;
2542 while (1) {
2543 while (q > p && *q != '/')
2544 q--;
2545 while (q > p && *(q-1) == '/')
2546 q--;
2547 if (q == p)
2548 break;
2549 *q = '\0';
2550 if (rmdir(git_path("%s", name)))
2551 break;
2552 }
2553 }
2554
2555 /* make sure nobody touched the ref, and unlink */
2556 static void prune_ref(struct ref_to_prune *r)
2557 {
2558 struct ref_transaction *transaction;
2559 struct strbuf err = STRBUF_INIT;
2560
2561 if (check_refname_format(r->name, 0))
2562 return;
2563
2564 transaction = ref_transaction_begin(&err);
2565 if (!transaction ||
2566 ref_transaction_delete(transaction, r->name, r->sha1,
2567 REF_ISPRUNING, 1, NULL, &err) ||
2568 ref_transaction_commit(transaction, &err)) {
2569 ref_transaction_free(transaction);
2570 error("%s", err.buf);
2571 strbuf_release(&err);
2572 return;
2573 }
2574 ref_transaction_free(transaction);
2575 strbuf_release(&err);
2576 try_remove_empty_parents(r->name);
2577 }
2578
2579 static void prune_refs(struct ref_to_prune *r)
2580 {
2581 while (r) {
2582 prune_ref(r);
2583 r = r->next;
2584 }
2585 }
2586
2587 int pack_refs(unsigned int flags)
2588 {
2589 struct pack_refs_cb_data cbdata;
2590
2591 memset(&cbdata, 0, sizeof(cbdata));
2592 cbdata.flags = flags;
2593
2594 lock_packed_refs(LOCK_DIE_ON_ERROR);
2595 cbdata.packed_refs = get_packed_refs(&ref_cache);
2596
2597 do_for_each_entry_in_dir(get_loose_refs(&ref_cache), 0,
2598 pack_if_possible_fn, &cbdata);
2599
2600 if (commit_packed_refs())
2601 die_errno("unable to overwrite old ref-pack file");
2602
2603 prune_refs(cbdata.ref_to_prune);
2604 return 0;
2605 }
2606
2607 /*
2608 * If entry is no longer needed in packed-refs, add it to the string
2609 * list pointed to by cb_data. Reasons for deleting entries:
2610 *
2611 * - Entry is broken.
2612 * - Entry is overridden by a loose ref.
2613 * - Entry does not point at a valid object.
2614 *
2615 * In the first and third cases, also emit an error message because these
2616 * are indications of repository corruption.
2617 */
2618 static int curate_packed_ref_fn(struct ref_entry *entry, void *cb_data)
2619 {
2620 struct string_list *refs_to_delete = cb_data;
2621
2622 if (entry->flag & REF_ISBROKEN) {
2623 /* This shouldn't happen to packed refs. */
2624 error("%s is broken!", entry->name);
2625 string_list_append(refs_to_delete, entry->name);
2626 return 0;
2627 }
2628 if (!has_sha1_file(entry->u.value.sha1)) {
2629 unsigned char sha1[20];
2630 int flags;
2631
2632 if (read_ref_full(entry->name, 0, sha1, &flags))
2633 /* We should at least have found the packed ref. */
2634 die("Internal error");
2635 if ((flags & REF_ISSYMREF) || !(flags & REF_ISPACKED)) {
2636 /*
2637 * This packed reference is overridden by a
2638 * loose reference, so it is OK that its value
2639 * is no longer valid; for example, it might
2640 * refer to an object that has been garbage
2641 * collected. For this purpose we don't even
2642 * care whether the loose reference itself is
2643 * invalid, broken, symbolic, etc. Silently
2644 * remove the packed reference.
2645 */
2646 string_list_append(refs_to_delete, entry->name);
2647 return 0;
2648 }
2649 /*
2650 * There is no overriding loose reference, so the fact
2651 * that this reference doesn't refer to a valid object
2652 * indicates some kind of repository corruption.
2653 * Report the problem, then omit the reference from
2654 * the output.
2655 */
2656 error("%s does not point to a valid object!", entry->name);
2657 string_list_append(refs_to_delete, entry->name);
2658 return 0;
2659 }
2660
2661 return 0;
2662 }
2663
2664 int repack_without_refs(struct string_list *refnames, struct strbuf *err)
2665 {
2666 struct ref_dir *packed;
2667 struct string_list refs_to_delete = STRING_LIST_INIT_DUP;
2668 struct string_list_item *refname, *ref_to_delete;
2669 int ret, needs_repacking = 0, removed = 0;
2670
2671 assert(err);
2672
2673 /* Look for a packed ref */
2674 for_each_string_list_item(refname, refnames) {
2675 if (get_packed_ref(refname->string)) {
2676 needs_repacking = 1;
2677 break;
2678 }
2679 }
2680
2681 /* Avoid locking if we have nothing to do */
2682 if (!needs_repacking)
2683 return 0; /* no refname exists in packed refs */
2684
2685 if (lock_packed_refs(0)) {
2686 unable_to_lock_message(git_path("packed-refs"), errno, err);
2687 return -1;
2688 }
2689 packed = get_packed_refs(&ref_cache);
2690
2691 /* Remove refnames from the cache */
2692 for_each_string_list_item(refname, refnames)
2693 if (remove_entry(packed, refname->string) != -1)
2694 removed = 1;
2695 if (!removed) {
2696 /*
2697 * All packed entries disappeared while we were
2698 * acquiring the lock.
2699 */
2700 rollback_packed_refs();
2701 return 0;
2702 }
2703
2704 /* Remove any other accumulated cruft */
2705 do_for_each_entry_in_dir(packed, 0, curate_packed_ref_fn, &refs_to_delete);
2706 for_each_string_list_item(ref_to_delete, &refs_to_delete) {
2707 if (remove_entry(packed, ref_to_delete->string) == -1)
2708 die("internal error");
2709 }
2710
2711 /* Write what remains */
2712 ret = commit_packed_refs();
2713 if (ret)
2714 strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2715 strerror(errno));
2716 return ret;
2717 }
2718
2719 static int delete_ref_loose(struct ref_lock *lock, int flag, struct strbuf *err)
2720 {
2721 assert(err);
2722
2723 if (!(flag & REF_ISPACKED) || flag & REF_ISSYMREF) {
2724 /*
2725 * loose. The loose file name is the same as the
2726 * lockfile name, minus ".lock":
2727 */
2728 char *loose_filename = get_locked_file_path(lock->lk);
2729 int res = unlink_or_msg(loose_filename, err);
2730 free(loose_filename);
2731 if (res)
2732 return 1;
2733 }
2734 return 0;
2735 }
2736
2737 int delete_ref(const char *refname, const unsigned char *sha1, int delopt)
2738 {
2739 struct ref_transaction *transaction;
2740 struct strbuf err = STRBUF_INIT;
2741
2742 transaction = ref_transaction_begin(&err);
2743 if (!transaction ||
2744 ref_transaction_delete(transaction, refname, sha1, delopt,
2745 sha1 && !is_null_sha1(sha1), NULL, &err) ||
2746 ref_transaction_commit(transaction, &err)) {
2747 error("%s", err.buf);
2748 ref_transaction_free(transaction);
2749 strbuf_release(&err);
2750 return 1;
2751 }
2752 ref_transaction_free(transaction);
2753 strbuf_release(&err);
2754 return 0;
2755 }
2756
2757 /*
2758 * People using contrib's git-new-workdir have .git/logs/refs ->
2759 * /some/other/path/.git/logs/refs, and that may live on another device.
2760 *
2761 * IOW, to avoid cross device rename errors, the temporary renamed log must
2762 * live into logs/refs.
2763 */
2764 #define TMP_RENAMED_LOG "logs/refs/.tmp-renamed-log"
2765
2766 static int rename_tmp_log(const char *newrefname)
2767 {
2768 int attempts_remaining = 4;
2769
2770 retry:
2771 switch (safe_create_leading_directories(git_path("logs/%s", newrefname))) {
2772 case SCLD_OK:
2773 break; /* success */
2774 case SCLD_VANISHED:
2775 if (--attempts_remaining > 0)
2776 goto retry;
2777 /* fall through */
2778 default:
2779 error("unable to create directory for %s", newrefname);
2780 return -1;
2781 }
2782
2783 if (rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", newrefname))) {
2784 if ((errno==EISDIR || errno==ENOTDIR) && --attempts_remaining > 0) {
2785 /*
2786 * rename(a, b) when b is an existing
2787 * directory ought to result in ISDIR, but
2788 * Solaris 5.8 gives ENOTDIR. Sheesh.
2789 */
2790 if (remove_empty_directories(git_path("logs/%s", newrefname))) {
2791 error("Directory not empty: logs/%s", newrefname);
2792 return -1;
2793 }
2794 goto retry;
2795 } else if (errno == ENOENT && --attempts_remaining > 0) {
2796 /*
2797 * Maybe another process just deleted one of
2798 * the directories in the path to newrefname.
2799 * Try again from the beginning.
2800 */
2801 goto retry;
2802 } else {
2803 error("unable to move logfile "TMP_RENAMED_LOG" to logs/%s: %s",
2804 newrefname, strerror(errno));
2805 return -1;
2806 }
2807 }
2808 return 0;
2809 }
2810
2811 static int rename_ref_available(const char *oldname, const char *newname)
2812 {
2813 struct string_list skip = STRING_LIST_INIT_NODUP;
2814 int ret;
2815
2816 string_list_insert(&skip, oldname);
2817 ret = is_refname_available(newname, &skip, get_packed_refs(&ref_cache))
2818 && is_refname_available(newname, &skip, get_loose_refs(&ref_cache));
2819 string_list_clear(&skip, 0);
2820 return ret;
2821 }
2822
2823 static int write_ref_sha1(struct ref_lock *lock, const unsigned char *sha1,
2824 const char *logmsg);
2825
2826 int rename_ref(const char *oldrefname, const char *newrefname, const char *logmsg)
2827 {
2828 unsigned char sha1[20], orig_sha1[20];
2829 int flag = 0, logmoved = 0;
2830 struct ref_lock *lock;
2831 struct stat loginfo;
2832 int log = !lstat(git_path("logs/%s", oldrefname), &loginfo);
2833 const char *symref = NULL;
2834
2835 if (log && S_ISLNK(loginfo.st_mode))
2836 return error("reflog for %s is a symlink", oldrefname);
2837
2838 symref = resolve_ref_unsafe(oldrefname, RESOLVE_REF_READING,
2839 orig_sha1, &flag);
2840 if (flag & REF_ISSYMREF)
2841 return error("refname %s is a symbolic ref, renaming it is not supported",
2842 oldrefname);
2843 if (!symref)
2844 return error("refname %s not found", oldrefname);
2845
2846 if (!rename_ref_available(oldrefname, newrefname))
2847 return 1;
2848
2849 if (log && rename(git_path("logs/%s", oldrefname), git_path(TMP_RENAMED_LOG)))
2850 return error("unable to move logfile logs/%s to "TMP_RENAMED_LOG": %s",
2851 oldrefname, strerror(errno));
2852
2853 if (delete_ref(oldrefname, orig_sha1, REF_NODEREF)) {
2854 error("unable to delete old %s", oldrefname);
2855 goto rollback;
2856 }
2857
2858 if (!read_ref_full(newrefname, RESOLVE_REF_READING, sha1, NULL) &&
2859 delete_ref(newrefname, sha1, REF_NODEREF)) {
2860 if (errno==EISDIR) {
2861 if (remove_empty_directories(git_path("%s", newrefname))) {
2862 error("Directory not empty: %s", newrefname);
2863 goto rollback;
2864 }
2865 } else {
2866 error("unable to delete existing %s", newrefname);
2867 goto rollback;
2868 }
2869 }
2870
2871 if (log && rename_tmp_log(newrefname))
2872 goto rollback;
2873
2874 logmoved = log;
2875
2876 lock = lock_ref_sha1_basic(newrefname, NULL, NULL, 0, NULL);
2877 if (!lock) {
2878 error("unable to lock %s for update", newrefname);
2879 goto rollback;
2880 }
2881 hashcpy(lock->old_sha1, orig_sha1);
2882 if (write_ref_sha1(lock, orig_sha1, logmsg)) {
2883 error("unable to write current sha1 into %s", newrefname);
2884 goto rollback;
2885 }
2886
2887 return 0;
2888
2889 rollback:
2890 lock = lock_ref_sha1_basic(oldrefname, NULL, NULL, 0, NULL);
2891 if (!lock) {
2892 error("unable to lock %s for rollback", oldrefname);
2893 goto rollbacklog;
2894 }
2895
2896 flag = log_all_ref_updates;
2897 log_all_ref_updates = 0;
2898 if (write_ref_sha1(lock, orig_sha1, NULL))
2899 error("unable to write current sha1 into %s", oldrefname);
2900 log_all_ref_updates = flag;
2901
2902 rollbacklog:
2903 if (logmoved && rename(git_path("logs/%s", newrefname), git_path("logs/%s", oldrefname)))
2904 error("unable to restore logfile %s from %s: %s",
2905 oldrefname, newrefname, strerror(errno));
2906 if (!logmoved && log &&
2907 rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", oldrefname)))
2908 error("unable to restore logfile %s from "TMP_RENAMED_LOG": %s",
2909 oldrefname, strerror(errno));
2910
2911 return 1;
2912 }
2913
2914 static int close_ref(struct ref_lock *lock)
2915 {
2916 if (close_lock_file(lock->lk))
2917 return -1;
2918 lock->lock_fd = -1;
2919 return 0;
2920 }
2921
2922 static int commit_ref(struct ref_lock *lock)
2923 {
2924 if (commit_lock_file(lock->lk))
2925 return -1;
2926 lock->lock_fd = -1;
2927 return 0;
2928 }
2929
2930 /*
2931 * copy the reflog message msg to buf, which has been allocated sufficiently
2932 * large, while cleaning up the whitespaces. Especially, convert LF to space,
2933 * because reflog file is one line per entry.
2934 */
2935 static int copy_msg(char *buf, const char *msg)
2936 {
2937 char *cp = buf;
2938 char c;
2939 int wasspace = 1;
2940
2941 *cp++ = '\t';
2942 while ((c = *msg++)) {
2943 if (wasspace && isspace(c))
2944 continue;
2945 wasspace = isspace(c);
2946 if (wasspace)
2947 c = ' ';
2948 *cp++ = c;
2949 }
2950 while (buf < cp && isspace(cp[-1]))
2951 cp--;
2952 *cp++ = '\n';
2953 return cp - buf;
2954 }
2955
2956 /* This function must set a meaningful errno on failure */
2957 int log_ref_setup(const char *refname, char *logfile, int bufsize)
2958 {
2959 int logfd, oflags = O_APPEND | O_WRONLY;
2960
2961 git_snpath(logfile, bufsize, "logs/%s", refname);
2962 if (log_all_ref_updates &&
2963 (starts_with(refname, "refs/heads/") ||
2964 starts_with(refname, "refs/remotes/") ||
2965 starts_with(refname, "refs/notes/") ||
2966 !strcmp(refname, "HEAD"))) {
2967 if (safe_create_leading_directories(logfile) < 0) {
2968 int save_errno = errno;
2969 error("unable to create directory for %s", logfile);
2970 errno = save_errno;
2971 return -1;
2972 }
2973 oflags |= O_CREAT;
2974 }
2975
2976 logfd = open(logfile, oflags, 0666);
2977 if (logfd < 0) {
2978 if (!(oflags & O_CREAT) && (errno == ENOENT || errno == EISDIR))
2979 return 0;
2980
2981 if (errno == EISDIR) {
2982 if (remove_empty_directories(logfile)) {
2983 int save_errno = errno;
2984 error("There are still logs under '%s'",
2985 logfile);
2986 errno = save_errno;
2987 return -1;
2988 }
2989 logfd = open(logfile, oflags, 0666);
2990 }
2991
2992 if (logfd < 0) {
2993 int save_errno = errno;
2994 error("Unable to append to %s: %s", logfile,
2995 strerror(errno));
2996 errno = save_errno;
2997 return -1;
2998 }
2999 }
3000
3001 adjust_shared_perm(logfile);
3002 close(logfd);
3003 return 0;
3004 }
3005
3006 static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
3007 const unsigned char *new_sha1,
3008 const char *committer, const char *msg)
3009 {
3010 int msglen, written;
3011 unsigned maxlen, len;
3012 char *logrec;
3013
3014 msglen = msg ? strlen(msg) : 0;
3015 maxlen = strlen(committer) + msglen + 100;
3016 logrec = xmalloc(maxlen);
3017 len = sprintf(logrec, "%s %s %s\n",
3018 sha1_to_hex(old_sha1),
3019 sha1_to_hex(new_sha1),
3020 committer);
3021 if (msglen)
3022 len += copy_msg(logrec + len - 1, msg) - 1;
3023
3024 written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
3025 free(logrec);
3026 if (written != len)
3027 return -1;
3028
3029 return 0;
3030 }
3031
3032 static int log_ref_write(const char *refname, const unsigned char *old_sha1,
3033 const unsigned char *new_sha1, const char *msg)
3034 {
3035 int logfd, result, oflags = O_APPEND | O_WRONLY;
3036 char log_file[PATH_MAX];
3037
3038 if (log_all_ref_updates < 0)
3039 log_all_ref_updates = !is_bare_repository();
3040
3041 result = log_ref_setup(refname, log_file, sizeof(log_file));
3042 if (result)
3043 return result;
3044
3045 logfd = open(log_file, oflags);
3046 if (logfd < 0)
3047 return 0;
3048 result = log_ref_write_fd(logfd, old_sha1, new_sha1,
3049 git_committer_info(0), msg);
3050 if (result) {
3051 int save_errno = errno;
3052 close(logfd);
3053 error("Unable to append to %s", log_file);
3054 errno = save_errno;
3055 return -1;
3056 }
3057 if (close(logfd)) {
3058 int save_errno = errno;
3059 error("Unable to append to %s", log_file);
3060 errno = save_errno;
3061 return -1;
3062 }
3063 return 0;
3064 }
3065
3066 int is_branch(const char *refname)
3067 {
3068 return !strcmp(refname, "HEAD") || starts_with(refname, "refs/heads/");
3069 }
3070
3071 /*
3072 * Write sha1 into the ref specified by the lock. Make sure that errno
3073 * is sane on error.
3074 */
3075 static int write_ref_sha1(struct ref_lock *lock,
3076 const unsigned char *sha1, const char *logmsg)
3077 {
3078 static char term = '\n';
3079 struct object *o;
3080
3081 o = parse_object(sha1);
3082 if (!o) {
3083 error("Trying to write ref %s with nonexistent object %s",
3084 lock->ref_name, sha1_to_hex(sha1));
3085 unlock_ref(lock);
3086 errno = EINVAL;
3087 return -1;
3088 }
3089 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
3090 error("Trying to write non-commit object %s to branch %s",
3091 sha1_to_hex(sha1), lock->ref_name);
3092 unlock_ref(lock);
3093 errno = EINVAL;
3094 return -1;
3095 }
3096 if (write_in_full(lock->lock_fd, sha1_to_hex(sha1), 40) != 40 ||
3097 write_in_full(lock->lock_fd, &term, 1) != 1 ||
3098 close_ref(lock) < 0) {
3099 int save_errno = errno;
3100 error("Couldn't write %s", lock->lk->filename.buf);
3101 unlock_ref(lock);
3102 errno = save_errno;
3103 return -1;
3104 }
3105 clear_loose_ref_cache(&ref_cache);
3106 if (log_ref_write(lock->ref_name, lock->old_sha1, sha1, logmsg) < 0 ||
3107 (strcmp(lock->ref_name, lock->orig_ref_name) &&
3108 log_ref_write(lock->orig_ref_name, lock->old_sha1, sha1, logmsg) < 0)) {
3109 unlock_ref(lock);
3110 return -1;
3111 }
3112 if (strcmp(lock->orig_ref_name, "HEAD") != 0) {
3113 /*
3114 * Special hack: If a branch is updated directly and HEAD
3115 * points to it (may happen on the remote side of a push
3116 * for example) then logically the HEAD reflog should be
3117 * updated too.
3118 * A generic solution implies reverse symref information,
3119 * but finding all symrefs pointing to the given branch
3120 * would be rather costly for this rare event (the direct
3121 * update of a branch) to be worth it. So let's cheat and
3122 * check with HEAD only which should cover 99% of all usage
3123 * scenarios (even 100% of the default ones).
3124 */
3125 unsigned char head_sha1[20];
3126 int head_flag;
3127 const char *head_ref;
3128 head_ref = resolve_ref_unsafe("HEAD", RESOLVE_REF_READING,
3129 head_sha1, &head_flag);
3130 if (head_ref && (head_flag & REF_ISSYMREF) &&
3131 !strcmp(head_ref, lock->ref_name))
3132 log_ref_write("HEAD", lock->old_sha1, sha1, logmsg);
3133 }
3134 if (commit_ref(lock)) {
3135 error("Couldn't set %s", lock->ref_name);
3136 unlock_ref(lock);
3137 return -1;
3138 }
3139 unlock_ref(lock);
3140 return 0;
3141 }
3142
3143 int create_symref(const char *ref_target, const char *refs_heads_master,
3144 const char *logmsg)
3145 {
3146 const char *lockpath;
3147 char ref[1000];
3148 int fd, len, written;
3149 char *git_HEAD = git_pathdup("%s", ref_target);
3150 unsigned char old_sha1[20], new_sha1[20];
3151
3152 if (logmsg && read_ref(ref_target, old_sha1))
3153 hashclr(old_sha1);
3154
3155 if (safe_create_leading_directories(git_HEAD) < 0)
3156 return error("unable to create directory for %s", git_HEAD);
3157
3158 #ifndef NO_SYMLINK_HEAD
3159 if (prefer_symlink_refs) {
3160 unlink(git_HEAD);
3161 if (!symlink(refs_heads_master, git_HEAD))
3162 goto done;
3163 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3164 }
3165 #endif
3166
3167 len = snprintf(ref, sizeof(ref), "ref: %s\n", refs_heads_master);
3168 if (sizeof(ref) <= len) {
3169 error("refname too long: %s", refs_heads_master);
3170 goto error_free_return;
3171 }
3172 lockpath = mkpath("%s.lock", git_HEAD);
3173 fd = open(lockpath, O_CREAT | O_EXCL | O_WRONLY, 0666);
3174 if (fd < 0) {
3175 error("Unable to open %s for writing", lockpath);
3176 goto error_free_return;
3177 }
3178 written = write_in_full(fd, ref, len);
3179 if (close(fd) != 0 || written != len) {
3180 error("Unable to write to %s", lockpath);
3181 goto error_unlink_return;
3182 }
3183 if (rename(lockpath, git_HEAD) < 0) {
3184 error("Unable to create %s", git_HEAD);
3185 goto error_unlink_return;
3186 }
3187 if (adjust_shared_perm(git_HEAD)) {
3188 error("Unable to fix permissions on %s", lockpath);
3189 error_unlink_return:
3190 unlink_or_warn(lockpath);
3191 error_free_return:
3192 free(git_HEAD);
3193 return -1;
3194 }
3195
3196 #ifndef NO_SYMLINK_HEAD
3197 done:
3198 #endif
3199 if (logmsg && !read_ref(refs_heads_master, new_sha1))
3200 log_ref_write(ref_target, old_sha1, new_sha1, logmsg);
3201
3202 free(git_HEAD);
3203 return 0;
3204 }
3205
3206 struct read_ref_at_cb {
3207 const char *refname;
3208 unsigned long at_time;
3209 int cnt;
3210 int reccnt;
3211 unsigned char *sha1;
3212 int found_it;
3213
3214 unsigned char osha1[20];
3215 unsigned char nsha1[20];
3216 int tz;
3217 unsigned long date;
3218 char **msg;
3219 unsigned long *cutoff_time;
3220 int *cutoff_tz;
3221 int *cutoff_cnt;
3222 };
3223
3224 static int read_ref_at_ent(unsigned char *osha1, unsigned char *nsha1,
3225 const char *email, unsigned long timestamp, int tz,
3226 const char *message, void *cb_data)
3227 {
3228 struct read_ref_at_cb *cb = cb_data;
3229
3230 cb->reccnt++;
3231 cb->tz = tz;
3232 cb->date = timestamp;
3233
3234 if (timestamp <= cb->at_time || cb->cnt == 0) {
3235 if (cb->msg)
3236 *cb->msg = xstrdup(message);
3237 if (cb->cutoff_time)
3238 *cb->cutoff_time = timestamp;
3239 if (cb->cutoff_tz)
3240 *cb->cutoff_tz = tz;
3241 if (cb->cutoff_cnt)
3242 *cb->cutoff_cnt = cb->reccnt - 1;
3243 /*
3244 * we have not yet updated cb->[n|o]sha1 so they still
3245 * hold the values for the previous record.
3246 */
3247 if (!is_null_sha1(cb->osha1)) {
3248 hashcpy(cb->sha1, nsha1);
3249 if (hashcmp(cb->osha1, nsha1))
3250 warning("Log for ref %s has gap after %s.",
3251 cb->refname, show_date(cb->date, cb->tz, DATE_RFC2822));
3252 }
3253 else if (cb->date == cb->at_time)
3254 hashcpy(cb->sha1, nsha1);
3255 else if (hashcmp(nsha1, cb->sha1))
3256 warning("Log for ref %s unexpectedly ended on %s.",
3257 cb->refname, show_date(cb->date, cb->tz,
3258 DATE_RFC2822));
3259 hashcpy(cb->osha1, osha1);
3260 hashcpy(cb->nsha1, nsha1);
3261 cb->found_it = 1;
3262 return 1;
3263 }
3264 hashcpy(cb->osha1, osha1);
3265 hashcpy(cb->nsha1, nsha1);
3266 if (cb->cnt > 0)
3267 cb->cnt--;
3268 return 0;
3269 }
3270
3271 static int read_ref_at_ent_oldest(unsigned char *osha1, unsigned char *nsha1,
3272 const char *email, unsigned long timestamp,
3273 int tz, const char *message, void *cb_data)
3274 {
3275 struct read_ref_at_cb *cb = cb_data;
3276
3277 if (cb->msg)
3278 *cb->msg = xstrdup(message);
3279 if (cb->cutoff_time)
3280 *cb->cutoff_time = timestamp;
3281 if (cb->cutoff_tz)
3282 *cb->cutoff_tz = tz;
3283 if (cb->cutoff_cnt)
3284 *cb->cutoff_cnt = cb->reccnt;
3285 hashcpy(cb->sha1, osha1);
3286 if (is_null_sha1(cb->sha1))
3287 hashcpy(cb->sha1, nsha1);
3288 /* We just want the first entry */
3289 return 1;
3290 }
3291
3292 int read_ref_at(const char *refname, unsigned int flags, unsigned long at_time, int cnt,
3293 unsigned char *sha1, char **msg,
3294 unsigned long *cutoff_time, int *cutoff_tz, int *cutoff_cnt)
3295 {
3296 struct read_ref_at_cb cb;
3297
3298 memset(&cb, 0, sizeof(cb));
3299 cb.refname = refname;
3300 cb.at_time = at_time;
3301 cb.cnt = cnt;
3302 cb.msg = msg;
3303 cb.cutoff_time = cutoff_time;
3304 cb.cutoff_tz = cutoff_tz;
3305 cb.cutoff_cnt = cutoff_cnt;
3306 cb.sha1 = sha1;
3307
3308 for_each_reflog_ent_reverse(refname, read_ref_at_ent, &cb);
3309
3310 if (!cb.reccnt) {
3311 if (flags & GET_SHA1_QUIETLY)
3312 exit(128);
3313 else
3314 die("Log for %s is empty.", refname);
3315 }
3316 if (cb.found_it)
3317 return 0;
3318
3319 for_each_reflog_ent(refname, read_ref_at_ent_oldest, &cb);
3320
3321 return 1;
3322 }
3323
3324 int reflog_exists(const char *refname)
3325 {
3326 struct stat st;
3327
3328 return !lstat(git_path("logs/%s", refname), &st) &&
3329 S_ISREG(st.st_mode);
3330 }
3331
3332 int delete_reflog(const char *refname)
3333 {
3334 return remove_path(git_path("logs/%s", refname));
3335 }
3336
3337 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3338 {
3339 unsigned char osha1[20], nsha1[20];
3340 char *email_end, *message;
3341 unsigned long timestamp;
3342 int tz;
3343
3344 /* old SP new SP name <email> SP time TAB msg LF */
3345 if (sb->len < 83 || sb->buf[sb->len - 1] != '\n' ||
3346 get_sha1_hex(sb->buf, osha1) || sb->buf[40] != ' ' ||
3347 get_sha1_hex(sb->buf + 41, nsha1) || sb->buf[81] != ' ' ||
3348 !(email_end = strchr(sb->buf + 82, '>')) ||
3349 email_end[1] != ' ' ||
3350 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3351 !message || message[0] != ' ' ||
3352 (message[1] != '+' && message[1] != '-') ||
3353 !isdigit(message[2]) || !isdigit(message[3]) ||
3354 !isdigit(message[4]) || !isdigit(message[5]))
3355 return 0; /* corrupt? */
3356 email_end[1] = '\0';
3357 tz = strtol(message + 1, NULL, 10);
3358 if (message[6] != '\t')
3359 message += 6;
3360 else
3361 message += 7;
3362 return fn(osha1, nsha1, sb->buf + 82, timestamp, tz, message, cb_data);
3363 }
3364
3365 static char *find_beginning_of_line(char *bob, char *scan)
3366 {
3367 while (bob < scan && *(--scan) != '\n')
3368 ; /* keep scanning backwards */
3369 /*
3370 * Return either beginning of the buffer, or LF at the end of
3371 * the previous line.
3372 */
3373 return scan;
3374 }
3375
3376 int for_each_reflog_ent_reverse(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3377 {
3378 struct strbuf sb = STRBUF_INIT;
3379 FILE *logfp;
3380 long pos;
3381 int ret = 0, at_tail = 1;
3382
3383 logfp = fopen(git_path("logs/%s", refname), "r");
3384 if (!logfp)
3385 return -1;
3386
3387 /* Jump to the end */
3388 if (fseek(logfp, 0, SEEK_END) < 0)
3389 return error("cannot seek back reflog for %s: %s",
3390 refname, strerror(errno));
3391 pos = ftell(logfp);
3392 while (!ret && 0 < pos) {
3393 int cnt;
3394 size_t nread;
3395 char buf[BUFSIZ];
3396 char *endp, *scanp;
3397
3398 /* Fill next block from the end */
3399 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3400 if (fseek(logfp, pos - cnt, SEEK_SET))
3401 return error("cannot seek back reflog for %s: %s",
3402 refname, strerror(errno));
3403 nread = fread(buf, cnt, 1, logfp);
3404 if (nread != 1)
3405 return error("cannot read %d bytes from reflog for %s: %s",
3406 cnt, refname, strerror(errno));
3407 pos -= cnt;
3408
3409 scanp = endp = buf + cnt;
3410 if (at_tail && scanp[-1] == '\n')
3411 /* Looking at the final LF at the end of the file */
3412 scanp--;
3413 at_tail = 0;
3414
3415 while (buf < scanp) {
3416 /*
3417 * terminating LF of the previous line, or the beginning
3418 * of the buffer.
3419 */
3420 char *bp;
3421
3422 bp = find_beginning_of_line(buf, scanp);
3423
3424 if (*bp == '\n') {
3425 /*
3426 * The newline is the end of the previous line,
3427 * so we know we have complete line starting
3428 * at (bp + 1). Prefix it onto any prior data
3429 * we collected for the line and process it.
3430 */
3431 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3432 scanp = bp;
3433 endp = bp + 1;
3434 ret = show_one_reflog_ent(&sb, fn, cb_data);
3435 strbuf_reset(&sb);
3436 if (ret)
3437 break;
3438 } else if (!pos) {
3439 /*
3440 * We are at the start of the buffer, and the
3441 * start of the file; there is no previous
3442 * line, and we have everything for this one.
3443 * Process it, and we can end the loop.
3444 */
3445 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3446 ret = show_one_reflog_ent(&sb, fn, cb_data);
3447 strbuf_reset(&sb);
3448 break;
3449 }
3450
3451 if (bp == buf) {
3452 /*
3453 * We are at the start of the buffer, and there
3454 * is more file to read backwards. Which means
3455 * we are in the middle of a line. Note that we
3456 * may get here even if *bp was a newline; that
3457 * just means we are at the exact end of the
3458 * previous line, rather than some spot in the
3459 * middle.
3460 *
3461 * Save away what we have to be combined with
3462 * the data from the next read.
3463 */
3464 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3465 break;
3466 }
3467 }
3468
3469 }
3470 if (!ret && sb.len)
3471 die("BUG: reverse reflog parser had leftover data");
3472
3473 fclose(logfp);
3474 strbuf_release(&sb);
3475 return ret;
3476 }
3477
3478 int for_each_reflog_ent(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3479 {
3480 FILE *logfp;
3481 struct strbuf sb = STRBUF_INIT;
3482 int ret = 0;
3483
3484 logfp = fopen(git_path("logs/%s", refname), "r");
3485 if (!logfp)
3486 return -1;
3487
3488 while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3489 ret = show_one_reflog_ent(&sb, fn, cb_data);
3490 fclose(logfp);
3491 strbuf_release(&sb);
3492 return ret;
3493 }
3494 /*
3495 * Call fn for each reflog in the namespace indicated by name. name
3496 * must be empty or end with '/'. Name will be used as a scratch
3497 * space, but its contents will be restored before return.
3498 */
3499 static int do_for_each_reflog(struct strbuf *name, each_ref_fn fn, void *cb_data)
3500 {
3501 DIR *d = opendir(git_path("logs/%s", name->buf));
3502 int retval = 0;
3503 struct dirent *de;
3504 int oldlen = name->len;
3505
3506 if (!d)
3507 return name->len ? errno : 0;
3508
3509 while ((de = readdir(d)) != NULL) {
3510 struct stat st;
3511
3512 if (de->d_name[0] == '.')
3513 continue;
3514 if (ends_with(de->d_name, ".lock"))
3515 continue;
3516 strbuf_addstr(name, de->d_name);
3517 if (stat(git_path("logs/%s", name->buf), &st) < 0) {
3518 ; /* silently ignore */
3519 } else {
3520 if (S_ISDIR(st.st_mode)) {
3521 strbuf_addch(name, '/');
3522 retval = do_for_each_reflog(name, fn, cb_data);
3523 } else {
3524 unsigned char sha1[20];
3525 if (read_ref_full(name->buf, 0, sha1, NULL))
3526 retval = error("bad ref for %s", name->buf);
3527 else
3528 retval = fn(name->buf, sha1, 0, cb_data);
3529 }
3530 if (retval)
3531 break;
3532 }
3533 strbuf_setlen(name, oldlen);
3534 }
3535 closedir(d);
3536 return retval;
3537 }
3538
3539 int for_each_reflog(each_ref_fn fn, void *cb_data)
3540 {
3541 int retval;
3542 struct strbuf name;
3543 strbuf_init(&name, PATH_MAX);
3544 retval = do_for_each_reflog(&name, fn, cb_data);
3545 strbuf_release(&name);
3546 return retval;
3547 }
3548
3549 /**
3550 * Information needed for a single ref update. Set new_sha1 to the
3551 * new value or to zero to delete the ref. To check the old value
3552 * while locking the ref, set have_old to 1 and set old_sha1 to the
3553 * value or to zero to ensure the ref does not exist before update.
3554 */
3555 struct ref_update {
3556 unsigned char new_sha1[20];
3557 unsigned char old_sha1[20];
3558 int flags; /* REF_NODEREF? */
3559 int have_old; /* 1 if old_sha1 is valid, 0 otherwise */
3560 struct ref_lock *lock;
3561 int type;
3562 char *msg;
3563 const char refname[FLEX_ARRAY];
3564 };
3565
3566 /*
3567 * Transaction states.
3568 * OPEN: The transaction is in a valid state and can accept new updates.
3569 * An OPEN transaction can be committed.
3570 * CLOSED: A closed transaction is no longer active and no other operations
3571 * than free can be used on it in this state.
3572 * A transaction can either become closed by successfully committing
3573 * an active transaction or if there is a failure while building
3574 * the transaction thus rendering it failed/inactive.
3575 */
3576 enum ref_transaction_state {
3577 REF_TRANSACTION_OPEN = 0,
3578 REF_TRANSACTION_CLOSED = 1
3579 };
3580
3581 /*
3582 * Data structure for holding a reference transaction, which can
3583 * consist of checks and updates to multiple references, carried out
3584 * as atomically as possible. This structure is opaque to callers.
3585 */
3586 struct ref_transaction {
3587 struct ref_update **updates;
3588 size_t alloc;
3589 size_t nr;
3590 enum ref_transaction_state state;
3591 };
3592
3593 struct ref_transaction *ref_transaction_begin(struct strbuf *err)
3594 {
3595 assert(err);
3596
3597 return xcalloc(1, sizeof(struct ref_transaction));
3598 }
3599
3600 void ref_transaction_free(struct ref_transaction *transaction)
3601 {
3602 int i;
3603
3604 if (!transaction)
3605 return;
3606
3607 for (i = 0; i < transaction->nr; i++) {
3608 free(transaction->updates[i]->msg);
3609 free(transaction->updates[i]);
3610 }
3611 free(transaction->updates);
3612 free(transaction);
3613 }
3614
3615 static struct ref_update *add_update(struct ref_transaction *transaction,
3616 const char *refname)
3617 {
3618 size_t len = strlen(refname);
3619 struct ref_update *update = xcalloc(1, sizeof(*update) + len + 1);
3620
3621 strcpy((char *)update->refname, refname);
3622 ALLOC_GROW(transaction->updates, transaction->nr + 1, transaction->alloc);
3623 transaction->updates[transaction->nr++] = update;
3624 return update;
3625 }
3626
3627 int ref_transaction_update(struct ref_transaction *transaction,
3628 const char *refname,
3629 const unsigned char *new_sha1,
3630 const unsigned char *old_sha1,
3631 int flags, int have_old, const char *msg,
3632 struct strbuf *err)
3633 {
3634 struct ref_update *update;
3635
3636 assert(err);
3637
3638 if (transaction->state != REF_TRANSACTION_OPEN)
3639 die("BUG: update called for transaction that is not open");
3640
3641 if (have_old && !old_sha1)
3642 die("BUG: have_old is true but old_sha1 is NULL");
3643
3644 if (!is_null_sha1(new_sha1) &&
3645 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
3646 strbuf_addf(err, "refusing to update ref with bad name %s",
3647 refname);
3648 return -1;
3649 }
3650
3651 update = add_update(transaction, refname);
3652 hashcpy(update->new_sha1, new_sha1);
3653 update->flags = flags;
3654 update->have_old = have_old;
3655 if (have_old)
3656 hashcpy(update->old_sha1, old_sha1);
3657 if (msg)
3658 update->msg = xstrdup(msg);
3659 return 0;
3660 }
3661
3662 int ref_transaction_create(struct ref_transaction *transaction,
3663 const char *refname,
3664 const unsigned char *new_sha1,
3665 int flags, const char *msg,
3666 struct strbuf *err)
3667 {
3668 return ref_transaction_update(transaction, refname, new_sha1,
3669 null_sha1, flags, 1, msg, err);
3670 }
3671
3672 int ref_transaction_delete(struct ref_transaction *transaction,
3673 const char *refname,
3674 const unsigned char *old_sha1,
3675 int flags, int have_old, const char *msg,
3676 struct strbuf *err)
3677 {
3678 return ref_transaction_update(transaction, refname, null_sha1,
3679 old_sha1, flags, have_old, msg, err);
3680 }
3681
3682 int update_ref(const char *action, const char *refname,
3683 const unsigned char *sha1, const unsigned char *oldval,
3684 int flags, enum action_on_err onerr)
3685 {
3686 struct ref_transaction *t;
3687 struct strbuf err = STRBUF_INIT;
3688
3689 t = ref_transaction_begin(&err);
3690 if (!t ||
3691 ref_transaction_update(t, refname, sha1, oldval, flags,
3692 !!oldval, action, &err) ||
3693 ref_transaction_commit(t, &err)) {
3694 const char *str = "update_ref failed for ref '%s': %s";
3695
3696 ref_transaction_free(t);
3697 switch (onerr) {
3698 case UPDATE_REFS_MSG_ON_ERR:
3699 error(str, refname, err.buf);
3700 break;
3701 case UPDATE_REFS_DIE_ON_ERR:
3702 die(str, refname, err.buf);
3703 break;
3704 case UPDATE_REFS_QUIET_ON_ERR:
3705 break;
3706 }
3707 strbuf_release(&err);
3708 return 1;
3709 }
3710 strbuf_release(&err);
3711 ref_transaction_free(t);
3712 return 0;
3713 }
3714
3715 static int ref_update_compare(const void *r1, const void *r2)
3716 {
3717 const struct ref_update * const *u1 = r1;
3718 const struct ref_update * const *u2 = r2;
3719 return strcmp((*u1)->refname, (*u2)->refname);
3720 }
3721
3722 static int ref_update_reject_duplicates(struct ref_update **updates, int n,
3723 struct strbuf *err)
3724 {
3725 int i;
3726
3727 assert(err);
3728
3729 for (i = 1; i < n; i++)
3730 if (!strcmp(updates[i - 1]->refname, updates[i]->refname)) {
3731 strbuf_addf(err,
3732 "Multiple updates for ref '%s' not allowed.",
3733 updates[i]->refname);
3734 return 1;
3735 }
3736 return 0;
3737 }
3738
3739 int ref_transaction_commit(struct ref_transaction *transaction,
3740 struct strbuf *err)
3741 {
3742 int ret = 0, i;
3743 int n = transaction->nr;
3744 struct ref_update **updates = transaction->updates;
3745 struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3746 struct string_list_item *ref_to_delete;
3747
3748 assert(err);
3749
3750 if (transaction->state != REF_TRANSACTION_OPEN)
3751 die("BUG: commit called for transaction that is not open");
3752
3753 if (!n) {
3754 transaction->state = REF_TRANSACTION_CLOSED;
3755 return 0;
3756 }
3757
3758 /* Copy, sort, and reject duplicate refs */
3759 qsort(updates, n, sizeof(*updates), ref_update_compare);
3760 if (ref_update_reject_duplicates(updates, n, err)) {
3761 ret = TRANSACTION_GENERIC_ERROR;
3762 goto cleanup;
3763 }
3764
3765 /* Acquire all locks while verifying old values */
3766 for (i = 0; i < n; i++) {
3767 struct ref_update *update = updates[i];
3768 int flags = update->flags;
3769
3770 if (is_null_sha1(update->new_sha1))
3771 flags |= REF_DELETING;
3772 update->lock = lock_ref_sha1_basic(update->refname,
3773 (update->have_old ?
3774 update->old_sha1 :
3775 NULL),
3776 NULL,
3777 flags,
3778 &update->type);
3779 if (!update->lock) {
3780 ret = (errno == ENOTDIR)
3781 ? TRANSACTION_NAME_CONFLICT
3782 : TRANSACTION_GENERIC_ERROR;
3783 strbuf_addf(err, "Cannot lock the ref '%s'.",
3784 update->refname);
3785 goto cleanup;
3786 }
3787 }
3788
3789 /* Perform updates first so live commits remain referenced */
3790 for (i = 0; i < n; i++) {
3791 struct ref_update *update = updates[i];
3792
3793 if (!is_null_sha1(update->new_sha1)) {
3794 if (!update->lock->force_write &&
3795 !hashcmp(update->lock->old_sha1, update->new_sha1)) {
3796 unlock_ref(update->lock);
3797 update->lock = NULL;
3798 } else if (write_ref_sha1(update->lock, update->new_sha1,
3799 update->msg)) {
3800 update->lock = NULL; /* freed by write_ref_sha1 */
3801 strbuf_addf(err, "Cannot update the ref '%s'.",
3802 update->refname);
3803 ret = TRANSACTION_GENERIC_ERROR;
3804 goto cleanup;
3805 } else {
3806 /* freed by write_ref_sha1(): */
3807 update->lock = NULL;
3808 }
3809 }
3810 }
3811
3812 /* Perform deletes now that updates are safely completed */
3813 for (i = 0; i < n; i++) {
3814 struct ref_update *update = updates[i];
3815
3816 if (update->lock) {
3817 if (delete_ref_loose(update->lock, update->type, err)) {
3818 ret = TRANSACTION_GENERIC_ERROR;
3819 goto cleanup;
3820 }
3821
3822 if (!(update->flags & REF_ISPRUNING))
3823 string_list_append(&refs_to_delete,
3824 update->lock->ref_name);
3825 }
3826 }
3827
3828 if (repack_without_refs(&refs_to_delete, err)) {
3829 ret = TRANSACTION_GENERIC_ERROR;
3830 goto cleanup;
3831 }
3832 for_each_string_list_item(ref_to_delete, &refs_to_delete)
3833 unlink_or_warn(git_path("logs/%s", ref_to_delete->string));
3834 clear_loose_ref_cache(&ref_cache);
3835
3836 cleanup:
3837 transaction->state = REF_TRANSACTION_CLOSED;
3838
3839 for (i = 0; i < n; i++)
3840 if (updates[i]->lock)
3841 unlock_ref(updates[i]->lock);
3842 string_list_clear(&refs_to_delete, 0);
3843 return ret;
3844 }
3845
3846 char *shorten_unambiguous_ref(const char *refname, int strict)
3847 {
3848 int i;
3849 static char **scanf_fmts;
3850 static int nr_rules;
3851 char *short_name;
3852
3853 if (!nr_rules) {
3854 /*
3855 * Pre-generate scanf formats from ref_rev_parse_rules[].
3856 * Generate a format suitable for scanf from a
3857 * ref_rev_parse_rules rule by interpolating "%s" at the
3858 * location of the "%.*s".
3859 */
3860 size_t total_len = 0;
3861 size_t offset = 0;
3862
3863 /* the rule list is NULL terminated, count them first */
3864 for (nr_rules = 0; ref_rev_parse_rules[nr_rules]; nr_rules++)
3865 /* -2 for strlen("%.*s") - strlen("%s"); +1 for NUL */
3866 total_len += strlen(ref_rev_parse_rules[nr_rules]) - 2 + 1;
3867
3868 scanf_fmts = xmalloc(nr_rules * sizeof(char *) + total_len);
3869
3870 offset = 0;
3871 for (i = 0; i < nr_rules; i++) {
3872 assert(offset < total_len);
3873 scanf_fmts[i] = (char *)&scanf_fmts[nr_rules] + offset;
3874 offset += snprintf(scanf_fmts[i], total_len - offset,
3875 ref_rev_parse_rules[i], 2, "%s") + 1;
3876 }
3877 }
3878
3879 /* bail out if there are no rules */
3880 if (!nr_rules)
3881 return xstrdup(refname);
3882
3883 /* buffer for scanf result, at most refname must fit */
3884 short_name = xstrdup(refname);
3885
3886 /* skip first rule, it will always match */
3887 for (i = nr_rules - 1; i > 0 ; --i) {
3888 int j;
3889 int rules_to_fail = i;
3890 int short_name_len;
3891
3892 if (1 != sscanf(refname, scanf_fmts[i], short_name))
3893 continue;
3894
3895 short_name_len = strlen(short_name);
3896
3897 /*
3898 * in strict mode, all (except the matched one) rules
3899 * must fail to resolve to a valid non-ambiguous ref
3900 */
3901 if (strict)
3902 rules_to_fail = nr_rules;
3903
3904 /*
3905 * check if the short name resolves to a valid ref,
3906 * but use only rules prior to the matched one
3907 */
3908 for (j = 0; j < rules_to_fail; j++) {
3909 const char *rule = ref_rev_parse_rules[j];
3910 char refname[PATH_MAX];
3911
3912 /* skip matched rule */
3913 if (i == j)
3914 continue;
3915
3916 /*
3917 * the short name is ambiguous, if it resolves
3918 * (with this previous rule) to a valid ref
3919 * read_ref() returns 0 on success
3920 */
3921 mksnpath(refname, sizeof(refname),
3922 rule, short_name_len, short_name);
3923 if (ref_exists(refname))
3924 break;
3925 }
3926
3927 /*
3928 * short name is non-ambiguous if all previous rules
3929 * haven't resolved to a valid ref
3930 */
3931 if (j == rules_to_fail)
3932 return short_name;
3933 }
3934
3935 free(short_name);
3936 return xstrdup(refname);
3937 }
3938
3939 static struct string_list *hide_refs;
3940
3941 int parse_hide_refs_config(const char *var, const char *value, const char *section)
3942 {
3943 if (!strcmp("transfer.hiderefs", var) ||
3944 /* NEEDSWORK: use parse_config_key() once both are merged */
3945 (starts_with(var, section) && var[strlen(section)] == '.' &&
3946 !strcmp(var + strlen(section), ".hiderefs"))) {
3947 char *ref;
3948 int len;
3949
3950 if (!value)
3951 return config_error_nonbool(var);
3952 ref = xstrdup(value);
3953 len = strlen(ref);
3954 while (len && ref[len - 1] == '/')
3955 ref[--len] = '\0';
3956 if (!hide_refs) {
3957 hide_refs = xcalloc(1, sizeof(*hide_refs));
3958 hide_refs->strdup_strings = 1;
3959 }
3960 string_list_append(hide_refs, ref);
3961 }
3962 return 0;
3963 }
3964
3965 int ref_is_hidden(const char *refname)
3966 {
3967 struct string_list_item *item;
3968
3969 if (!hide_refs)
3970 return 0;
3971 for_each_string_list_item(item, hide_refs) {
3972 int len;
3973 if (!starts_with(refname, item->string))
3974 continue;
3975 len = strlen(item->string);
3976 if (!refname[len] || refname[len] == '/')
3977 return 1;
3978 }
3979 return 0;
3980 }
3981
3982 struct expire_reflog_cb {
3983 unsigned int flags;
3984 reflog_expiry_should_prune_fn *should_prune_fn;
3985 void *policy_cb;
3986 FILE *newlog;
3987 unsigned char last_kept_sha1[20];
3988 };
3989
3990 static int expire_reflog_ent(unsigned char *osha1, unsigned char *nsha1,
3991 const char *email, unsigned long timestamp, int tz,
3992 const char *message, void *cb_data)
3993 {
3994 struct expire_reflog_cb *cb = cb_data;
3995 struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
3996
3997 if (cb->flags & EXPIRE_REFLOGS_REWRITE)
3998 osha1 = cb->last_kept_sha1;
3999
4000 if ((*cb->should_prune_fn)(osha1, nsha1, email, timestamp, tz,
4001 message, policy_cb)) {
4002 if (!cb->newlog)
4003 printf("would prune %s", message);
4004 else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4005 printf("prune %s", message);
4006 } else {
4007 if (cb->newlog) {
4008 fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
4009 sha1_to_hex(osha1), sha1_to_hex(nsha1),
4010 email, timestamp, tz, message);
4011 hashcpy(cb->last_kept_sha1, nsha1);
4012 }
4013 if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4014 printf("keep %s", message);
4015 }
4016 return 0;
4017 }
4018
4019 int reflog_expire(const char *refname, const unsigned char *sha1,
4020 unsigned int flags,
4021 reflog_expiry_prepare_fn prepare_fn,
4022 reflog_expiry_should_prune_fn should_prune_fn,
4023 reflog_expiry_cleanup_fn cleanup_fn,
4024 void *policy_cb_data)
4025 {
4026 static struct lock_file reflog_lock;
4027 struct expire_reflog_cb cb;
4028 struct ref_lock *lock;
4029 char *log_file;
4030 int status = 0;
4031
4032 memset(&cb, 0, sizeof(cb));
4033 cb.flags = flags;
4034 cb.policy_cb = policy_cb_data;
4035 cb.should_prune_fn = should_prune_fn;
4036
4037 /*
4038 * The reflog file is locked by holding the lock on the
4039 * reference itself, plus we might need to update the
4040 * reference if --updateref was specified:
4041 */
4042 lock = lock_ref_sha1_basic(refname, sha1, NULL, 0, NULL);
4043 if (!lock)
4044 return error("cannot lock ref '%s'", refname);
4045 if (!reflog_exists(refname)) {
4046 unlock_ref(lock);
4047 return 0;
4048 }
4049
4050 log_file = git_pathdup("logs/%s", refname);
4051 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4052 /*
4053 * Even though holding $GIT_DIR/logs/$reflog.lock has
4054 * no locking implications, we use the lock_file
4055 * machinery here anyway because it does a lot of the
4056 * work we need, including cleaning up if the program
4057 * exits unexpectedly.
4058 */
4059 if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4060 struct strbuf err = STRBUF_INIT;
4061 unable_to_lock_message(log_file, errno, &err);
4062 error("%s", err.buf);
4063 strbuf_release(&err);
4064 goto failure;
4065 }
4066 cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4067 if (!cb.newlog) {
4068 error("cannot fdopen %s (%s)",
4069 reflog_lock.filename.buf, strerror(errno));
4070 goto failure;
4071 }
4072 }
4073
4074 (*prepare_fn)(refname, sha1, cb.policy_cb);
4075 for_each_reflog_ent(refname, expire_reflog_ent, &cb);
4076 (*cleanup_fn)(cb.policy_cb);
4077
4078 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4079 if (close_lock_file(&reflog_lock)) {
4080 status |= error("couldn't write %s: %s", log_file,
4081 strerror(errno));
4082 } else if ((flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4083 (write_in_full(lock->lock_fd,
4084 sha1_to_hex(cb.last_kept_sha1), 40) != 40 ||
4085 write_str_in_full(lock->lock_fd, "\n") != 1 ||
4086 close_ref(lock) < 0)) {
4087 status |= error("couldn't write %s",
4088 lock->lk->filename.buf);
4089 rollback_lock_file(&reflog_lock);
4090 } else if (commit_lock_file(&reflog_lock)) {
4091 status |= error("unable to commit reflog '%s' (%s)",
4092 log_file, strerror(errno));
4093 } else if ((flags & EXPIRE_REFLOGS_UPDATE_REF) && commit_ref(lock)) {
4094 status |= error("couldn't set %s", lock->ref_name);
4095 }
4096 }
4097 free(log_file);
4098 unlock_ref(lock);
4099 return status;
4100
4101 failure:
4102 rollback_lock_file(&reflog_lock);
4103 free(log_file);
4104 unlock_ref(lock);
4105 return -1;
4106 }