]> git.ipfire.org Git - thirdparty/git.git/blob - refs/packed-backend.c
Sync with 2.16.6
[thirdparty/git.git] / refs / packed-backend.c
1 #include "../cache.h"
2 #include "../config.h"
3 #include "../refs.h"
4 #include "refs-internal.h"
5 #include "packed-backend.h"
6 #include "../iterator.h"
7 #include "../lockfile.h"
8
9 enum mmap_strategy {
10 /*
11 * Don't use mmap() at all for reading `packed-refs`.
12 */
13 MMAP_NONE,
14
15 /*
16 * Can use mmap() for reading `packed-refs`, but the file must
17 * not remain mmapped. This is the usual option on Windows,
18 * where you cannot rename a new version of a file onto a file
19 * that is currently mmapped.
20 */
21 MMAP_TEMPORARY,
22
23 /*
24 * It is OK to leave the `packed-refs` file mmapped while
25 * arbitrary other code is running.
26 */
27 MMAP_OK
28 };
29
30 #if defined(NO_MMAP)
31 static enum mmap_strategy mmap_strategy = MMAP_NONE;
32 #elif defined(MMAP_PREVENTS_DELETE)
33 static enum mmap_strategy mmap_strategy = MMAP_TEMPORARY;
34 #else
35 static enum mmap_strategy mmap_strategy = MMAP_OK;
36 #endif
37
38 struct packed_ref_store;
39
40 /*
41 * A `snapshot` represents one snapshot of a `packed-refs` file.
42 *
43 * Normally, this will be a mmapped view of the contents of the
44 * `packed-refs` file at the time the snapshot was created. However,
45 * if the `packed-refs` file was not sorted, this might point at heap
46 * memory holding the contents of the `packed-refs` file with its
47 * records sorted by refname.
48 *
49 * `snapshot` instances are reference counted (via
50 * `acquire_snapshot()` and `release_snapshot()`). This is to prevent
51 * an instance from disappearing while an iterator is still iterating
52 * over it. Instances are garbage collected when their `referrers`
53 * count goes to zero.
54 *
55 * The most recent `snapshot`, if available, is referenced by the
56 * `packed_ref_store`. Its freshness is checked whenever
57 * `get_snapshot()` is called; if the existing snapshot is obsolete, a
58 * new snapshot is taken.
59 */
60 struct snapshot {
61 /*
62 * A back-pointer to the packed_ref_store with which this
63 * snapshot is associated:
64 */
65 struct packed_ref_store *refs;
66
67 /* Is the `packed-refs` file currently mmapped? */
68 int mmapped;
69
70 /*
71 * The contents of the `packed-refs` file:
72 *
73 * - buf -- a pointer to the start of the memory
74 * - start -- a pointer to the first byte of actual references
75 * (i.e., after the header line, if one is present)
76 * - eof -- a pointer just past the end of the reference
77 * contents
78 *
79 * If the `packed-refs` file was already sorted, `buf` points
80 * at the mmapped contents of the file. If not, it points at
81 * heap-allocated memory containing the contents, sorted. If
82 * there were no contents (e.g., because the file didn't
83 * exist), `buf`, `start`, and `eof` are all NULL.
84 */
85 char *buf, *start, *eof;
86
87 /*
88 * What is the peeled state of the `packed-refs` file that
89 * this snapshot represents? (This is usually determined from
90 * the file's header.)
91 */
92 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled;
93
94 /*
95 * Count of references to this instance, including the pointer
96 * from `packed_ref_store::snapshot`, if any. The instance
97 * will not be freed as long as the reference count is
98 * nonzero.
99 */
100 unsigned int referrers;
101
102 /*
103 * The metadata of the `packed-refs` file from which this
104 * snapshot was created, used to tell if the file has been
105 * replaced since we read it.
106 */
107 struct stat_validity validity;
108 };
109
110 /*
111 * A `ref_store` representing references stored in a `packed-refs`
112 * file. It implements the `ref_store` interface, though it has some
113 * limitations:
114 *
115 * - It cannot store symbolic references.
116 *
117 * - It cannot store reflogs.
118 *
119 * - It does not support reference renaming (though it could).
120 *
121 * On the other hand, it can be locked outside of a reference
122 * transaction. In that case, it remains locked even after the
123 * transaction is done and the new `packed-refs` file is activated.
124 */
125 struct packed_ref_store {
126 struct ref_store base;
127
128 unsigned int store_flags;
129
130 /* The path of the "packed-refs" file: */
131 char *path;
132
133 /*
134 * A snapshot of the values read from the `packed-refs` file,
135 * if it might still be current; otherwise, NULL.
136 */
137 struct snapshot *snapshot;
138
139 /*
140 * Lock used for the "packed-refs" file. Note that this (and
141 * thus the enclosing `packed_ref_store`) must not be freed.
142 */
143 struct lock_file lock;
144
145 /*
146 * Temporary file used when rewriting new contents to the
147 * "packed-refs" file. Note that this (and thus the enclosing
148 * `packed_ref_store`) must not be freed.
149 */
150 struct tempfile *tempfile;
151 };
152
153 /*
154 * Increment the reference count of `*snapshot`.
155 */
156 static void acquire_snapshot(struct snapshot *snapshot)
157 {
158 snapshot->referrers++;
159 }
160
161 /*
162 * If the buffer in `snapshot` is active, then either munmap the
163 * memory and close the file, or free the memory. Then set the buffer
164 * pointers to NULL.
165 */
166 static void clear_snapshot_buffer(struct snapshot *snapshot)
167 {
168 if (snapshot->mmapped) {
169 if (munmap(snapshot->buf, snapshot->eof - snapshot->buf))
170 die_errno("error ummapping packed-refs file %s",
171 snapshot->refs->path);
172 snapshot->mmapped = 0;
173 } else {
174 free(snapshot->buf);
175 }
176 snapshot->buf = snapshot->start = snapshot->eof = NULL;
177 }
178
179 /*
180 * Decrease the reference count of `*snapshot`. If it goes to zero,
181 * free `*snapshot` and return true; otherwise return false.
182 */
183 static int release_snapshot(struct snapshot *snapshot)
184 {
185 if (!--snapshot->referrers) {
186 stat_validity_clear(&snapshot->validity);
187 clear_snapshot_buffer(snapshot);
188 free(snapshot);
189 return 1;
190 } else {
191 return 0;
192 }
193 }
194
195 struct ref_store *packed_ref_store_create(const char *path,
196 unsigned int store_flags)
197 {
198 struct packed_ref_store *refs = xcalloc(1, sizeof(*refs));
199 struct ref_store *ref_store = (struct ref_store *)refs;
200
201 base_ref_store_init(ref_store, &refs_be_packed);
202 refs->store_flags = store_flags;
203
204 refs->path = xstrdup(path);
205 return ref_store;
206 }
207
208 /*
209 * Downcast `ref_store` to `packed_ref_store`. Die if `ref_store` is
210 * not a `packed_ref_store`. Also die if `packed_ref_store` doesn't
211 * support at least the flags specified in `required_flags`. `caller`
212 * is used in any necessary error messages.
213 */
214 static struct packed_ref_store *packed_downcast(struct ref_store *ref_store,
215 unsigned int required_flags,
216 const char *caller)
217 {
218 struct packed_ref_store *refs;
219
220 if (ref_store->be != &refs_be_packed)
221 die("BUG: ref_store is type \"%s\" not \"packed\" in %s",
222 ref_store->be->name, caller);
223
224 refs = (struct packed_ref_store *)ref_store;
225
226 if ((refs->store_flags & required_flags) != required_flags)
227 die("BUG: unallowed operation (%s), requires %x, has %x\n",
228 caller, required_flags, refs->store_flags);
229
230 return refs;
231 }
232
233 static void clear_snapshot(struct packed_ref_store *refs)
234 {
235 if (refs->snapshot) {
236 struct snapshot *snapshot = refs->snapshot;
237
238 refs->snapshot = NULL;
239 release_snapshot(snapshot);
240 }
241 }
242
243 static NORETURN void die_unterminated_line(const char *path,
244 const char *p, size_t len)
245 {
246 if (len < 80)
247 die("unterminated line in %s: %.*s", path, (int)len, p);
248 else
249 die("unterminated line in %s: %.75s...", path, p);
250 }
251
252 static NORETURN void die_invalid_line(const char *path,
253 const char *p, size_t len)
254 {
255 const char *eol = memchr(p, '\n', len);
256
257 if (!eol)
258 die_unterminated_line(path, p, len);
259 else if (eol - p < 80)
260 die("unexpected line in %s: %.*s", path, (int)(eol - p), p);
261 else
262 die("unexpected line in %s: %.75s...", path, p);
263
264 }
265
266 struct snapshot_record {
267 const char *start;
268 size_t len;
269 };
270
271 static int cmp_packed_ref_records(const void *v1, const void *v2)
272 {
273 const struct snapshot_record *e1 = v1, *e2 = v2;
274 const char *r1 = e1->start + GIT_SHA1_HEXSZ + 1;
275 const char *r2 = e2->start + GIT_SHA1_HEXSZ + 1;
276
277 while (1) {
278 if (*r1 == '\n')
279 return *r2 == '\n' ? 0 : -1;
280 if (*r1 != *r2) {
281 if (*r2 == '\n')
282 return 1;
283 else
284 return (unsigned char)*r1 < (unsigned char)*r2 ? -1 : +1;
285 }
286 r1++;
287 r2++;
288 }
289 }
290
291 /*
292 * Compare a snapshot record at `rec` to the specified NUL-terminated
293 * refname.
294 */
295 static int cmp_record_to_refname(const char *rec, const char *refname)
296 {
297 const char *r1 = rec + GIT_SHA1_HEXSZ + 1;
298 const char *r2 = refname;
299
300 while (1) {
301 if (*r1 == '\n')
302 return *r2 ? -1 : 0;
303 if (!*r2)
304 return 1;
305 if (*r1 != *r2)
306 return (unsigned char)*r1 < (unsigned char)*r2 ? -1 : +1;
307 r1++;
308 r2++;
309 }
310 }
311
312 /*
313 * `snapshot->buf` is not known to be sorted. Check whether it is, and
314 * if not, sort it into new memory and munmap/free the old storage.
315 */
316 static void sort_snapshot(struct snapshot *snapshot)
317 {
318 struct snapshot_record *records = NULL;
319 size_t alloc = 0, nr = 0;
320 int sorted = 1;
321 const char *pos, *eof, *eol;
322 size_t len, i;
323 char *new_buffer, *dst;
324
325 pos = snapshot->start;
326 eof = snapshot->eof;
327
328 if (pos == eof)
329 return;
330
331 len = eof - pos;
332
333 /*
334 * Initialize records based on a crude estimate of the number
335 * of references in the file (we'll grow it below if needed):
336 */
337 ALLOC_GROW(records, len / 80 + 20, alloc);
338
339 while (pos < eof) {
340 eol = memchr(pos, '\n', eof - pos);
341 if (!eol)
342 /* The safety check should prevent this. */
343 BUG("unterminated line found in packed-refs");
344 if (eol - pos < GIT_SHA1_HEXSZ + 2)
345 die_invalid_line(snapshot->refs->path,
346 pos, eof - pos);
347 eol++;
348 if (eol < eof && *eol == '^') {
349 /*
350 * Keep any peeled line together with its
351 * reference:
352 */
353 const char *peeled_start = eol;
354
355 eol = memchr(peeled_start, '\n', eof - peeled_start);
356 if (!eol)
357 /* The safety check should prevent this. */
358 BUG("unterminated peeled line found in packed-refs");
359 eol++;
360 }
361
362 ALLOC_GROW(records, nr + 1, alloc);
363 records[nr].start = pos;
364 records[nr].len = eol - pos;
365 nr++;
366
367 if (sorted &&
368 nr > 1 &&
369 cmp_packed_ref_records(&records[nr - 2],
370 &records[nr - 1]) >= 0)
371 sorted = 0;
372
373 pos = eol;
374 }
375
376 if (sorted)
377 goto cleanup;
378
379 /* We need to sort the memory. First we sort the records array: */
380 QSORT(records, nr, cmp_packed_ref_records);
381
382 /*
383 * Allocate a new chunk of memory, and copy the old memory to
384 * the new in the order indicated by `records` (not bothering
385 * with the header line):
386 */
387 new_buffer = xmalloc(len);
388 for (dst = new_buffer, i = 0; i < nr; i++) {
389 memcpy(dst, records[i].start, records[i].len);
390 dst += records[i].len;
391 }
392
393 /*
394 * Now munmap the old buffer and use the sorted buffer in its
395 * place:
396 */
397 clear_snapshot_buffer(snapshot);
398 snapshot->buf = snapshot->start = new_buffer;
399 snapshot->eof = new_buffer + len;
400
401 cleanup:
402 free(records);
403 }
404
405 /*
406 * Return a pointer to the start of the record that contains the
407 * character `*p` (which must be within the buffer). If no other
408 * record start is found, return `buf`.
409 */
410 static const char *find_start_of_record(const char *buf, const char *p)
411 {
412 while (p > buf && (p[-1] != '\n' || p[0] == '^'))
413 p--;
414 return p;
415 }
416
417 /*
418 * Return a pointer to the start of the record following the record
419 * that contains `*p`. If none is found before `end`, return `end`.
420 */
421 static const char *find_end_of_record(const char *p, const char *end)
422 {
423 while (++p < end && (p[-1] != '\n' || p[0] == '^'))
424 ;
425 return p;
426 }
427
428 /*
429 * We want to be able to compare mmapped reference records quickly,
430 * without totally parsing them. We can do so because the records are
431 * LF-terminated, and the refname should start exactly (GIT_SHA1_HEXSZ
432 * + 1) bytes past the beginning of the record.
433 *
434 * But what if the `packed-refs` file contains garbage? We're willing
435 * to tolerate not detecting the problem, as long as we don't produce
436 * totally garbled output (we can't afford to check the integrity of
437 * the whole file during every Git invocation). But we do want to be
438 * sure that we never read past the end of the buffer in memory and
439 * perform an illegal memory access.
440 *
441 * Guarantee that minimum level of safety by verifying that the last
442 * record in the file is LF-terminated, and that it has at least
443 * (GIT_SHA1_HEXSZ + 1) characters before the LF. Die if either of
444 * these checks fails.
445 */
446 static void verify_buffer_safe(struct snapshot *snapshot)
447 {
448 const char *start = snapshot->start;
449 const char *eof = snapshot->eof;
450 const char *last_line;
451
452 if (start == eof)
453 return;
454
455 last_line = find_start_of_record(start, eof - 1);
456 if (*(eof - 1) != '\n' || eof - last_line < GIT_SHA1_HEXSZ + 2)
457 die_invalid_line(snapshot->refs->path,
458 last_line, eof - last_line);
459 }
460
461 #define SMALL_FILE_SIZE (32*1024)
462
463 /*
464 * Depending on `mmap_strategy`, either mmap or read the contents of
465 * the `packed-refs` file into the snapshot. Return 1 if the file
466 * existed and was read, or 0 if the file was absent or empty. Die on
467 * errors.
468 */
469 static int load_contents(struct snapshot *snapshot)
470 {
471 int fd;
472 struct stat st;
473 size_t size;
474 ssize_t bytes_read;
475
476 fd = open(snapshot->refs->path, O_RDONLY);
477 if (fd < 0) {
478 if (errno == ENOENT) {
479 /*
480 * This is OK; it just means that no
481 * "packed-refs" file has been written yet,
482 * which is equivalent to it being empty,
483 * which is its state when initialized with
484 * zeros.
485 */
486 return 0;
487 } else {
488 die_errno("couldn't read %s", snapshot->refs->path);
489 }
490 }
491
492 stat_validity_update(&snapshot->validity, fd);
493
494 if (fstat(fd, &st) < 0)
495 die_errno("couldn't stat %s", snapshot->refs->path);
496 size = xsize_t(st.st_size);
497
498 if (!size) {
499 return 0;
500 } else if (mmap_strategy == MMAP_NONE || size <= SMALL_FILE_SIZE) {
501 snapshot->buf = xmalloc(size);
502 bytes_read = read_in_full(fd, snapshot->buf, size);
503 if (bytes_read < 0 || bytes_read != size)
504 die_errno("couldn't read %s", snapshot->refs->path);
505 snapshot->mmapped = 0;
506 } else {
507 snapshot->buf = xmmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, 0);
508 snapshot->mmapped = 1;
509 }
510 close(fd);
511
512 snapshot->start = snapshot->buf;
513 snapshot->eof = snapshot->buf + size;
514
515 return 1;
516 }
517
518 /*
519 * Find the place in `snapshot->buf` where the start of the record for
520 * `refname` starts. If `mustexist` is true and the reference doesn't
521 * exist, then return NULL. If `mustexist` is false and the reference
522 * doesn't exist, then return the point where that reference would be
523 * inserted, or `snapshot->eof` (which might be NULL) if it would be
524 * inserted at the end of the file. In the latter mode, `refname`
525 * doesn't have to be a proper reference name; for example, one could
526 * search for "refs/replace/" to find the start of any replace
527 * references.
528 *
529 * The record is sought using a binary search, so `snapshot->buf` must
530 * be sorted.
531 */
532 static const char *find_reference_location(struct snapshot *snapshot,
533 const char *refname, int mustexist)
534 {
535 /*
536 * This is not *quite* a garden-variety binary search, because
537 * the data we're searching is made up of records, and we
538 * always need to find the beginning of a record to do a
539 * comparison. A "record" here is one line for the reference
540 * itself and zero or one peel lines that start with '^'. Our
541 * loop invariant is described in the next two comments.
542 */
543
544 /*
545 * A pointer to the character at the start of a record whose
546 * preceding records all have reference names that come
547 * *before* `refname`.
548 */
549 const char *lo = snapshot->start;
550
551 /*
552 * A pointer to a the first character of a record whose
553 * reference name comes *after* `refname`.
554 */
555 const char *hi = snapshot->eof;
556
557 while (lo != hi) {
558 const char *mid, *rec;
559 int cmp;
560
561 mid = lo + (hi - lo) / 2;
562 rec = find_start_of_record(lo, mid);
563 cmp = cmp_record_to_refname(rec, refname);
564 if (cmp < 0) {
565 lo = find_end_of_record(mid, hi);
566 } else if (cmp > 0) {
567 hi = rec;
568 } else {
569 return rec;
570 }
571 }
572
573 if (mustexist)
574 return NULL;
575 else
576 return lo;
577 }
578
579 /*
580 * Create a newly-allocated `snapshot` of the `packed-refs` file in
581 * its current state and return it. The return value will already have
582 * its reference count incremented.
583 *
584 * A comment line of the form "# pack-refs with: " may contain zero or
585 * more traits. We interpret the traits as follows:
586 *
587 * Neither `peeled` nor `fully-peeled`:
588 *
589 * Probably no references are peeled. But if the file contains a
590 * peeled value for a reference, we will use it.
591 *
592 * `peeled`:
593 *
594 * References under "refs/tags/", if they *can* be peeled, *are*
595 * peeled in this file. References outside of "refs/tags/" are
596 * probably not peeled even if they could have been, but if we find
597 * a peeled value for such a reference we will use it.
598 *
599 * `fully-peeled`:
600 *
601 * All references in the file that can be peeled are peeled.
602 * Inversely (and this is more important), any references in the
603 * file for which no peeled value is recorded is not peelable. This
604 * trait should typically be written alongside "peeled" for
605 * compatibility with older clients, but we do not require it
606 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
607 *
608 * `sorted`:
609 *
610 * The references in this file are known to be sorted by refname.
611 */
612 static struct snapshot *create_snapshot(struct packed_ref_store *refs)
613 {
614 struct snapshot *snapshot = xcalloc(1, sizeof(*snapshot));
615 int sorted = 0;
616
617 snapshot->refs = refs;
618 acquire_snapshot(snapshot);
619 snapshot->peeled = PEELED_NONE;
620
621 if (!load_contents(snapshot))
622 return snapshot;
623
624 /* If the file has a header line, process it: */
625 if (snapshot->buf < snapshot->eof && *snapshot->buf == '#') {
626 char *tmp, *p, *eol;
627 struct string_list traits = STRING_LIST_INIT_NODUP;
628
629 eol = memchr(snapshot->buf, '\n',
630 snapshot->eof - snapshot->buf);
631 if (!eol)
632 die_unterminated_line(refs->path,
633 snapshot->buf,
634 snapshot->eof - snapshot->buf);
635
636 tmp = xmemdupz(snapshot->buf, eol - snapshot->buf);
637
638 if (!skip_prefix(tmp, "# pack-refs with:", (const char **)&p))
639 die_invalid_line(refs->path,
640 snapshot->buf,
641 snapshot->eof - snapshot->buf);
642
643 string_list_split_in_place(&traits, p, ' ', -1);
644
645 if (unsorted_string_list_has_string(&traits, "fully-peeled"))
646 snapshot->peeled = PEELED_FULLY;
647 else if (unsorted_string_list_has_string(&traits, "peeled"))
648 snapshot->peeled = PEELED_TAGS;
649
650 sorted = unsorted_string_list_has_string(&traits, "sorted");
651
652 /* perhaps other traits later as well */
653
654 /* The "+ 1" is for the LF character. */
655 snapshot->start = eol + 1;
656
657 string_list_clear(&traits, 0);
658 free(tmp);
659 }
660
661 verify_buffer_safe(snapshot);
662
663 if (!sorted) {
664 sort_snapshot(snapshot);
665
666 /*
667 * Reordering the records might have moved a short one
668 * to the end of the buffer, so verify the buffer's
669 * safety again:
670 */
671 verify_buffer_safe(snapshot);
672 }
673
674 if (mmap_strategy != MMAP_OK && snapshot->mmapped) {
675 /*
676 * We don't want to leave the file mmapped, so we are
677 * forced to make a copy now:
678 */
679 size_t size = snapshot->eof - snapshot->start;
680 char *buf_copy = xmalloc(size);
681
682 memcpy(buf_copy, snapshot->start, size);
683 clear_snapshot_buffer(snapshot);
684 snapshot->buf = snapshot->start = buf_copy;
685 snapshot->eof = buf_copy + size;
686 }
687
688 return snapshot;
689 }
690
691 /*
692 * Check that `refs->snapshot` (if present) still reflects the
693 * contents of the `packed-refs` file. If not, clear the snapshot.
694 */
695 static void validate_snapshot(struct packed_ref_store *refs)
696 {
697 if (refs->snapshot &&
698 !stat_validity_check(&refs->snapshot->validity, refs->path))
699 clear_snapshot(refs);
700 }
701
702 /*
703 * Get the `snapshot` for the specified packed_ref_store, creating and
704 * populating it if it hasn't been read before or if the file has been
705 * changed (according to its `validity` field) since it was last read.
706 * On the other hand, if we hold the lock, then assume that the file
707 * hasn't been changed out from under us, so skip the extra `stat()`
708 * call in `stat_validity_check()`. This function does *not* increase
709 * the snapshot's reference count on behalf of the caller.
710 */
711 static struct snapshot *get_snapshot(struct packed_ref_store *refs)
712 {
713 if (!is_lock_file_locked(&refs->lock))
714 validate_snapshot(refs);
715
716 if (!refs->snapshot)
717 refs->snapshot = create_snapshot(refs);
718
719 return refs->snapshot;
720 }
721
722 static int packed_read_raw_ref(struct ref_store *ref_store,
723 const char *refname, struct object_id *oid,
724 struct strbuf *referent, unsigned int *type)
725 {
726 struct packed_ref_store *refs =
727 packed_downcast(ref_store, REF_STORE_READ, "read_raw_ref");
728 struct snapshot *snapshot = get_snapshot(refs);
729 const char *rec;
730
731 *type = 0;
732
733 rec = find_reference_location(snapshot, refname, 1);
734
735 if (!rec) {
736 /* refname is not a packed reference. */
737 errno = ENOENT;
738 return -1;
739 }
740
741 if (get_oid_hex(rec, oid))
742 die_invalid_line(refs->path, rec, snapshot->eof - rec);
743
744 *type = REF_ISPACKED;
745 return 0;
746 }
747
748 /*
749 * This value is set in `base.flags` if the peeled value of the
750 * current reference is known. In that case, `peeled` contains the
751 * correct peeled value for the reference, which might be `null_oid`
752 * if the reference is not a tag or if it is broken.
753 */
754 #define REF_KNOWS_PEELED 0x40
755
756 /*
757 * An iterator over a snapshot of a `packed-refs` file.
758 */
759 struct packed_ref_iterator {
760 struct ref_iterator base;
761
762 struct snapshot *snapshot;
763
764 /* The current position in the snapshot's buffer: */
765 const char *pos;
766
767 /* The end of the part of the buffer that will be iterated over: */
768 const char *eof;
769
770 /* Scratch space for current values: */
771 struct object_id oid, peeled;
772 struct strbuf refname_buf;
773
774 unsigned int flags;
775 };
776
777 /*
778 * Move the iterator to the next record in the snapshot, without
779 * respect for whether the record is actually required by the current
780 * iteration. Adjust the fields in `iter` and return `ITER_OK` or
781 * `ITER_DONE`. This function does not free the iterator in the case
782 * of `ITER_DONE`.
783 */
784 static int next_record(struct packed_ref_iterator *iter)
785 {
786 const char *p = iter->pos, *eol;
787
788 strbuf_reset(&iter->refname_buf);
789
790 if (iter->pos == iter->eof)
791 return ITER_DONE;
792
793 iter->base.flags = REF_ISPACKED;
794
795 if (iter->eof - p < GIT_SHA1_HEXSZ + 2 ||
796 parse_oid_hex(p, &iter->oid, &p) ||
797 !isspace(*p++))
798 die_invalid_line(iter->snapshot->refs->path,
799 iter->pos, iter->eof - iter->pos);
800
801 eol = memchr(p, '\n', iter->eof - p);
802 if (!eol)
803 die_unterminated_line(iter->snapshot->refs->path,
804 iter->pos, iter->eof - iter->pos);
805
806 strbuf_add(&iter->refname_buf, p, eol - p);
807 iter->base.refname = iter->refname_buf.buf;
808
809 if (check_refname_format(iter->base.refname, REFNAME_ALLOW_ONELEVEL)) {
810 if (!refname_is_safe(iter->base.refname))
811 die("packed refname is dangerous: %s",
812 iter->base.refname);
813 oidclr(&iter->oid);
814 iter->base.flags |= REF_BAD_NAME | REF_ISBROKEN;
815 }
816 if (iter->snapshot->peeled == PEELED_FULLY ||
817 (iter->snapshot->peeled == PEELED_TAGS &&
818 starts_with(iter->base.refname, "refs/tags/")))
819 iter->base.flags |= REF_KNOWS_PEELED;
820
821 iter->pos = eol + 1;
822
823 if (iter->pos < iter->eof && *iter->pos == '^') {
824 p = iter->pos + 1;
825 if (iter->eof - p < GIT_SHA1_HEXSZ + 1 ||
826 parse_oid_hex(p, &iter->peeled, &p) ||
827 *p++ != '\n')
828 die_invalid_line(iter->snapshot->refs->path,
829 iter->pos, iter->eof - iter->pos);
830 iter->pos = p;
831
832 /*
833 * Regardless of what the file header said, we
834 * definitely know the value of *this* reference. But
835 * we suppress it if the reference is broken:
836 */
837 if ((iter->base.flags & REF_ISBROKEN)) {
838 oidclr(&iter->peeled);
839 iter->base.flags &= ~REF_KNOWS_PEELED;
840 } else {
841 iter->base.flags |= REF_KNOWS_PEELED;
842 }
843 } else {
844 oidclr(&iter->peeled);
845 }
846
847 return ITER_OK;
848 }
849
850 static int packed_ref_iterator_advance(struct ref_iterator *ref_iterator)
851 {
852 struct packed_ref_iterator *iter =
853 (struct packed_ref_iterator *)ref_iterator;
854 int ok;
855
856 while ((ok = next_record(iter)) == ITER_OK) {
857 if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY &&
858 ref_type(iter->base.refname) != REF_TYPE_PER_WORKTREE)
859 continue;
860
861 if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
862 !ref_resolves_to_object(iter->base.refname, &iter->oid,
863 iter->flags))
864 continue;
865
866 return ITER_OK;
867 }
868
869 if (ref_iterator_abort(ref_iterator) != ITER_DONE)
870 ok = ITER_ERROR;
871
872 return ok;
873 }
874
875 static int packed_ref_iterator_peel(struct ref_iterator *ref_iterator,
876 struct object_id *peeled)
877 {
878 struct packed_ref_iterator *iter =
879 (struct packed_ref_iterator *)ref_iterator;
880
881 if ((iter->base.flags & REF_KNOWS_PEELED)) {
882 oidcpy(peeled, &iter->peeled);
883 return is_null_oid(&iter->peeled) ? -1 : 0;
884 } else if ((iter->base.flags & (REF_ISBROKEN | REF_ISSYMREF))) {
885 return -1;
886 } else {
887 return !!peel_object(&iter->oid, peeled);
888 }
889 }
890
891 static int packed_ref_iterator_abort(struct ref_iterator *ref_iterator)
892 {
893 struct packed_ref_iterator *iter =
894 (struct packed_ref_iterator *)ref_iterator;
895 int ok = ITER_DONE;
896
897 strbuf_release(&iter->refname_buf);
898 release_snapshot(iter->snapshot);
899 base_ref_iterator_free(ref_iterator);
900 return ok;
901 }
902
903 static struct ref_iterator_vtable packed_ref_iterator_vtable = {
904 packed_ref_iterator_advance,
905 packed_ref_iterator_peel,
906 packed_ref_iterator_abort
907 };
908
909 static struct ref_iterator *packed_ref_iterator_begin(
910 struct ref_store *ref_store,
911 const char *prefix, unsigned int flags)
912 {
913 struct packed_ref_store *refs;
914 struct snapshot *snapshot;
915 const char *start;
916 struct packed_ref_iterator *iter;
917 struct ref_iterator *ref_iterator;
918 unsigned int required_flags = REF_STORE_READ;
919
920 if (!(flags & DO_FOR_EACH_INCLUDE_BROKEN))
921 required_flags |= REF_STORE_ODB;
922 refs = packed_downcast(ref_store, required_flags, "ref_iterator_begin");
923
924 /*
925 * Note that `get_snapshot()` internally checks whether the
926 * snapshot is up to date with what is on disk, and re-reads
927 * it if not.
928 */
929 snapshot = get_snapshot(refs);
930
931 if (prefix && *prefix)
932 start = find_reference_location(snapshot, prefix, 0);
933 else
934 start = snapshot->start;
935
936 if (start == snapshot->eof)
937 return empty_ref_iterator_begin();
938
939 iter = xcalloc(1, sizeof(*iter));
940 ref_iterator = &iter->base;
941 base_ref_iterator_init(ref_iterator, &packed_ref_iterator_vtable, 1);
942
943 iter->snapshot = snapshot;
944 acquire_snapshot(snapshot);
945
946 iter->pos = start;
947 iter->eof = snapshot->eof;
948 strbuf_init(&iter->refname_buf, 0);
949
950 iter->base.oid = &iter->oid;
951
952 iter->flags = flags;
953
954 if (prefix && *prefix)
955 /* Stop iteration after we've gone *past* prefix: */
956 ref_iterator = prefix_ref_iterator_begin(ref_iterator, prefix, 0);
957
958 return ref_iterator;
959 }
960
961 /*
962 * Write an entry to the packed-refs file for the specified refname.
963 * If peeled is non-NULL, write it as the entry's peeled value. On
964 * error, return a nonzero value and leave errno set at the value left
965 * by the failing call to `fprintf()`.
966 */
967 static int write_packed_entry(FILE *fh, const char *refname,
968 const struct object_id *oid,
969 const struct object_id *peeled)
970 {
971 if (fprintf(fh, "%s %s\n", oid_to_hex(oid), refname) < 0 ||
972 (peeled && fprintf(fh, "^%s\n", oid_to_hex(peeled)) < 0))
973 return -1;
974
975 return 0;
976 }
977
978 int packed_refs_lock(struct ref_store *ref_store, int flags, struct strbuf *err)
979 {
980 struct packed_ref_store *refs =
981 packed_downcast(ref_store, REF_STORE_WRITE | REF_STORE_MAIN,
982 "packed_refs_lock");
983 static int timeout_configured = 0;
984 static int timeout_value = 1000;
985
986 if (!timeout_configured) {
987 git_config_get_int("core.packedrefstimeout", &timeout_value);
988 timeout_configured = 1;
989 }
990
991 /*
992 * Note that we close the lockfile immediately because we
993 * don't write new content to it, but rather to a separate
994 * tempfile.
995 */
996 if (hold_lock_file_for_update_timeout(
997 &refs->lock,
998 refs->path,
999 flags, timeout_value) < 0) {
1000 unable_to_lock_message(refs->path, errno, err);
1001 return -1;
1002 }
1003
1004 if (close_lock_file_gently(&refs->lock)) {
1005 strbuf_addf(err, "unable to close %s: %s", refs->path, strerror(errno));
1006 rollback_lock_file(&refs->lock);
1007 return -1;
1008 }
1009
1010 /*
1011 * Now that we hold the `packed-refs` lock, make sure that our
1012 * snapshot matches the current version of the file. Normally
1013 * `get_snapshot()` does that for us, but that function
1014 * assumes that when the file is locked, any existing snapshot
1015 * is still valid. We've just locked the file, but it might
1016 * have changed the moment *before* we locked it.
1017 */
1018 validate_snapshot(refs);
1019
1020 /*
1021 * Now make sure that the packed-refs file as it exists in the
1022 * locked state is loaded into the snapshot:
1023 */
1024 get_snapshot(refs);
1025 return 0;
1026 }
1027
1028 void packed_refs_unlock(struct ref_store *ref_store)
1029 {
1030 struct packed_ref_store *refs = packed_downcast(
1031 ref_store,
1032 REF_STORE_READ | REF_STORE_WRITE,
1033 "packed_refs_unlock");
1034
1035 if (!is_lock_file_locked(&refs->lock))
1036 die("BUG: packed_refs_unlock() called when not locked");
1037 rollback_lock_file(&refs->lock);
1038 }
1039
1040 int packed_refs_is_locked(struct ref_store *ref_store)
1041 {
1042 struct packed_ref_store *refs = packed_downcast(
1043 ref_store,
1044 REF_STORE_READ | REF_STORE_WRITE,
1045 "packed_refs_is_locked");
1046
1047 return is_lock_file_locked(&refs->lock);
1048 }
1049
1050 /*
1051 * The packed-refs header line that we write out. Perhaps other traits
1052 * will be added later.
1053 *
1054 * Note that earlier versions of Git used to parse these traits by
1055 * looking for " trait " in the line. For this reason, the space after
1056 * the colon and the trailing space are required.
1057 */
1058 static const char PACKED_REFS_HEADER[] =
1059 "# pack-refs with: peeled fully-peeled sorted \n";
1060
1061 static int packed_init_db(struct ref_store *ref_store, struct strbuf *err)
1062 {
1063 /* Nothing to do. */
1064 return 0;
1065 }
1066
1067 /*
1068 * Write the packed refs from the current snapshot to the packed-refs
1069 * tempfile, incorporating any changes from `updates`. `updates` must
1070 * be a sorted string list whose keys are the refnames and whose util
1071 * values are `struct ref_update *`. On error, rollback the tempfile,
1072 * write an error message to `err`, and return a nonzero value.
1073 *
1074 * The packfile must be locked before calling this function and will
1075 * remain locked when it is done.
1076 */
1077 static int write_with_updates(struct packed_ref_store *refs,
1078 struct string_list *updates,
1079 struct strbuf *err)
1080 {
1081 struct ref_iterator *iter = NULL;
1082 size_t i;
1083 int ok;
1084 FILE *out;
1085 struct strbuf sb = STRBUF_INIT;
1086 char *packed_refs_path;
1087
1088 if (!is_lock_file_locked(&refs->lock))
1089 die("BUG: write_with_updates() called while unlocked");
1090
1091 /*
1092 * If packed-refs is a symlink, we want to overwrite the
1093 * symlinked-to file, not the symlink itself. Also, put the
1094 * staging file next to it:
1095 */
1096 packed_refs_path = get_locked_file_path(&refs->lock);
1097 strbuf_addf(&sb, "%s.new", packed_refs_path);
1098 free(packed_refs_path);
1099 refs->tempfile = create_tempfile(sb.buf);
1100 if (!refs->tempfile) {
1101 strbuf_addf(err, "unable to create file %s: %s",
1102 sb.buf, strerror(errno));
1103 strbuf_release(&sb);
1104 return -1;
1105 }
1106 strbuf_release(&sb);
1107
1108 out = fdopen_tempfile(refs->tempfile, "w");
1109 if (!out) {
1110 strbuf_addf(err, "unable to fdopen packed-refs tempfile: %s",
1111 strerror(errno));
1112 goto error;
1113 }
1114
1115 if (fprintf(out, "%s", PACKED_REFS_HEADER) < 0)
1116 goto write_error;
1117
1118 /*
1119 * We iterate in parallel through the current list of refs and
1120 * the list of updates, processing an entry from at least one
1121 * of the lists each time through the loop. When the current
1122 * list of refs is exhausted, set iter to NULL. When the list
1123 * of updates is exhausted, leave i set to updates->nr.
1124 */
1125 iter = packed_ref_iterator_begin(&refs->base, "",
1126 DO_FOR_EACH_INCLUDE_BROKEN);
1127 if ((ok = ref_iterator_advance(iter)) != ITER_OK)
1128 iter = NULL;
1129
1130 i = 0;
1131
1132 while (iter || i < updates->nr) {
1133 struct ref_update *update = NULL;
1134 int cmp;
1135
1136 if (i >= updates->nr) {
1137 cmp = -1;
1138 } else {
1139 update = updates->items[i].util;
1140
1141 if (!iter)
1142 cmp = +1;
1143 else
1144 cmp = strcmp(iter->refname, update->refname);
1145 }
1146
1147 if (!cmp) {
1148 /*
1149 * There is both an old value and an update
1150 * for this reference. Check the old value if
1151 * necessary:
1152 */
1153 if ((update->flags & REF_HAVE_OLD)) {
1154 if (is_null_oid(&update->old_oid)) {
1155 strbuf_addf(err, "cannot update ref '%s': "
1156 "reference already exists",
1157 update->refname);
1158 goto error;
1159 } else if (oidcmp(&update->old_oid, iter->oid)) {
1160 strbuf_addf(err, "cannot update ref '%s': "
1161 "is at %s but expected %s",
1162 update->refname,
1163 oid_to_hex(iter->oid),
1164 oid_to_hex(&update->old_oid));
1165 goto error;
1166 }
1167 }
1168
1169 /* Now figure out what to use for the new value: */
1170 if ((update->flags & REF_HAVE_NEW)) {
1171 /*
1172 * The update takes precedence. Skip
1173 * the iterator over the unneeded
1174 * value.
1175 */
1176 if ((ok = ref_iterator_advance(iter)) != ITER_OK)
1177 iter = NULL;
1178 cmp = +1;
1179 } else {
1180 /*
1181 * The update doesn't actually want to
1182 * change anything. We're done with it.
1183 */
1184 i++;
1185 cmp = -1;
1186 }
1187 } else if (cmp > 0) {
1188 /*
1189 * There is no old value but there is an
1190 * update for this reference. Make sure that
1191 * the update didn't expect an existing value:
1192 */
1193 if ((update->flags & REF_HAVE_OLD) &&
1194 !is_null_oid(&update->old_oid)) {
1195 strbuf_addf(err, "cannot update ref '%s': "
1196 "reference is missing but expected %s",
1197 update->refname,
1198 oid_to_hex(&update->old_oid));
1199 goto error;
1200 }
1201 }
1202
1203 if (cmp < 0) {
1204 /* Pass the old reference through. */
1205
1206 struct object_id peeled;
1207 int peel_error = ref_iterator_peel(iter, &peeled);
1208
1209 if (write_packed_entry(out, iter->refname,
1210 iter->oid,
1211 peel_error ? NULL : &peeled))
1212 goto write_error;
1213
1214 if ((ok = ref_iterator_advance(iter)) != ITER_OK)
1215 iter = NULL;
1216 } else if (is_null_oid(&update->new_oid)) {
1217 /*
1218 * The update wants to delete the reference,
1219 * and the reference either didn't exist or we
1220 * have already skipped it. So we're done with
1221 * the update (and don't have to write
1222 * anything).
1223 */
1224 i++;
1225 } else {
1226 struct object_id peeled;
1227 int peel_error = peel_object(&update->new_oid,
1228 &peeled);
1229
1230 if (write_packed_entry(out, update->refname,
1231 &update->new_oid,
1232 peel_error ? NULL : &peeled))
1233 goto write_error;
1234
1235 i++;
1236 }
1237 }
1238
1239 if (ok != ITER_DONE) {
1240 strbuf_addstr(err, "unable to write packed-refs file: "
1241 "error iterating over old contents");
1242 goto error;
1243 }
1244
1245 if (close_tempfile_gently(refs->tempfile)) {
1246 strbuf_addf(err, "error closing file %s: %s",
1247 get_tempfile_path(refs->tempfile),
1248 strerror(errno));
1249 strbuf_release(&sb);
1250 delete_tempfile(&refs->tempfile);
1251 return -1;
1252 }
1253
1254 return 0;
1255
1256 write_error:
1257 strbuf_addf(err, "error writing to %s: %s",
1258 get_tempfile_path(refs->tempfile), strerror(errno));
1259
1260 error:
1261 if (iter)
1262 ref_iterator_abort(iter);
1263
1264 delete_tempfile(&refs->tempfile);
1265 return -1;
1266 }
1267
1268 int is_packed_transaction_needed(struct ref_store *ref_store,
1269 struct ref_transaction *transaction)
1270 {
1271 struct packed_ref_store *refs = packed_downcast(
1272 ref_store,
1273 REF_STORE_READ,
1274 "is_packed_transaction_needed");
1275 struct strbuf referent = STRBUF_INIT;
1276 size_t i;
1277 int ret;
1278
1279 if (!is_lock_file_locked(&refs->lock))
1280 BUG("is_packed_transaction_needed() called while unlocked");
1281
1282 /*
1283 * We're only going to bother returning false for the common,
1284 * trivial case that references are only being deleted, their
1285 * old values are not being checked, and the old `packed-refs`
1286 * file doesn't contain any of those reference(s). This gives
1287 * false positives for some other cases that could
1288 * theoretically be optimized away:
1289 *
1290 * 1. It could be that the old value is being verified without
1291 * setting a new value. In this case, we could verify the
1292 * old value here and skip the update if it agrees. If it
1293 * disagrees, we could either let the update go through
1294 * (the actual commit would re-detect and report the
1295 * problem), or come up with a way of reporting such an
1296 * error to *our* caller.
1297 *
1298 * 2. It could be that a new value is being set, but that it
1299 * is identical to the current packed value of the
1300 * reference.
1301 *
1302 * Neither of these cases will come up in the current code,
1303 * because the only caller of this function passes to it a
1304 * transaction that only includes `delete` updates with no
1305 * `old_id`. Even if that ever changes, false positives only
1306 * cause an optimization to be missed; they do not affect
1307 * correctness.
1308 */
1309
1310 /*
1311 * Start with the cheap checks that don't require old
1312 * reference values to be read:
1313 */
1314 for (i = 0; i < transaction->nr; i++) {
1315 struct ref_update *update = transaction->updates[i];
1316
1317 if (update->flags & REF_HAVE_OLD)
1318 /* Have to check the old value -> needed. */
1319 return 1;
1320
1321 if ((update->flags & REF_HAVE_NEW) && !is_null_oid(&update->new_oid))
1322 /* Have to set a new value -> needed. */
1323 return 1;
1324 }
1325
1326 /*
1327 * The transaction isn't checking any old values nor is it
1328 * setting any nonzero new values, so it still might be able
1329 * to be skipped. Now do the more expensive check: the update
1330 * is needed if any of the updates is a delete, and the old
1331 * `packed-refs` file contains a value for that reference.
1332 */
1333 ret = 0;
1334 for (i = 0; i < transaction->nr; i++) {
1335 struct ref_update *update = transaction->updates[i];
1336 unsigned int type;
1337 struct object_id oid;
1338
1339 if (!(update->flags & REF_HAVE_NEW))
1340 /*
1341 * This reference isn't being deleted -> not
1342 * needed.
1343 */
1344 continue;
1345
1346 if (!refs_read_raw_ref(ref_store, update->refname,
1347 &oid, &referent, &type) ||
1348 errno != ENOENT) {
1349 /*
1350 * We have to actually delete that reference
1351 * -> this transaction is needed.
1352 */
1353 ret = 1;
1354 break;
1355 }
1356 }
1357
1358 strbuf_release(&referent);
1359 return ret;
1360 }
1361
1362 struct packed_transaction_backend_data {
1363 /* True iff the transaction owns the packed-refs lock. */
1364 int own_lock;
1365
1366 struct string_list updates;
1367 };
1368
1369 static void packed_transaction_cleanup(struct packed_ref_store *refs,
1370 struct ref_transaction *transaction)
1371 {
1372 struct packed_transaction_backend_data *data = transaction->backend_data;
1373
1374 if (data) {
1375 string_list_clear(&data->updates, 0);
1376
1377 if (is_tempfile_active(refs->tempfile))
1378 delete_tempfile(&refs->tempfile);
1379
1380 if (data->own_lock && is_lock_file_locked(&refs->lock)) {
1381 packed_refs_unlock(&refs->base);
1382 data->own_lock = 0;
1383 }
1384
1385 free(data);
1386 transaction->backend_data = NULL;
1387 }
1388
1389 transaction->state = REF_TRANSACTION_CLOSED;
1390 }
1391
1392 static int packed_transaction_prepare(struct ref_store *ref_store,
1393 struct ref_transaction *transaction,
1394 struct strbuf *err)
1395 {
1396 struct packed_ref_store *refs = packed_downcast(
1397 ref_store,
1398 REF_STORE_READ | REF_STORE_WRITE | REF_STORE_ODB,
1399 "ref_transaction_prepare");
1400 struct packed_transaction_backend_data *data;
1401 size_t i;
1402 int ret = TRANSACTION_GENERIC_ERROR;
1403
1404 /*
1405 * Note that we *don't* skip transactions with zero updates,
1406 * because such a transaction might be executed for the side
1407 * effect of ensuring that all of the references are peeled or
1408 * ensuring that the `packed-refs` file is sorted. If the
1409 * caller wants to optimize away empty transactions, it should
1410 * do so itself.
1411 */
1412
1413 data = xcalloc(1, sizeof(*data));
1414 string_list_init(&data->updates, 0);
1415
1416 transaction->backend_data = data;
1417
1418 /*
1419 * Stick the updates in a string list by refname so that we
1420 * can sort them:
1421 */
1422 for (i = 0; i < transaction->nr; i++) {
1423 struct ref_update *update = transaction->updates[i];
1424 struct string_list_item *item =
1425 string_list_append(&data->updates, update->refname);
1426
1427 /* Store a pointer to update in item->util: */
1428 item->util = update;
1429 }
1430 string_list_sort(&data->updates);
1431
1432 if (ref_update_reject_duplicates(&data->updates, err))
1433 goto failure;
1434
1435 if (!is_lock_file_locked(&refs->lock)) {
1436 if (packed_refs_lock(ref_store, 0, err))
1437 goto failure;
1438 data->own_lock = 1;
1439 }
1440
1441 if (write_with_updates(refs, &data->updates, err))
1442 goto failure;
1443
1444 transaction->state = REF_TRANSACTION_PREPARED;
1445 return 0;
1446
1447 failure:
1448 packed_transaction_cleanup(refs, transaction);
1449 return ret;
1450 }
1451
1452 static int packed_transaction_abort(struct ref_store *ref_store,
1453 struct ref_transaction *transaction,
1454 struct strbuf *err)
1455 {
1456 struct packed_ref_store *refs = packed_downcast(
1457 ref_store,
1458 REF_STORE_READ | REF_STORE_WRITE | REF_STORE_ODB,
1459 "ref_transaction_abort");
1460
1461 packed_transaction_cleanup(refs, transaction);
1462 return 0;
1463 }
1464
1465 static int packed_transaction_finish(struct ref_store *ref_store,
1466 struct ref_transaction *transaction,
1467 struct strbuf *err)
1468 {
1469 struct packed_ref_store *refs = packed_downcast(
1470 ref_store,
1471 REF_STORE_READ | REF_STORE_WRITE | REF_STORE_ODB,
1472 "ref_transaction_finish");
1473 int ret = TRANSACTION_GENERIC_ERROR;
1474 char *packed_refs_path;
1475
1476 clear_snapshot(refs);
1477
1478 packed_refs_path = get_locked_file_path(&refs->lock);
1479 if (rename_tempfile(&refs->tempfile, packed_refs_path)) {
1480 strbuf_addf(err, "error replacing %s: %s",
1481 refs->path, strerror(errno));
1482 goto cleanup;
1483 }
1484
1485 ret = 0;
1486
1487 cleanup:
1488 free(packed_refs_path);
1489 packed_transaction_cleanup(refs, transaction);
1490 return ret;
1491 }
1492
1493 static int packed_initial_transaction_commit(struct ref_store *ref_store,
1494 struct ref_transaction *transaction,
1495 struct strbuf *err)
1496 {
1497 return ref_transaction_commit(transaction, err);
1498 }
1499
1500 static int packed_delete_refs(struct ref_store *ref_store, const char *msg,
1501 struct string_list *refnames, unsigned int flags)
1502 {
1503 struct packed_ref_store *refs =
1504 packed_downcast(ref_store, REF_STORE_WRITE, "delete_refs");
1505 struct strbuf err = STRBUF_INIT;
1506 struct ref_transaction *transaction;
1507 struct string_list_item *item;
1508 int ret;
1509
1510 (void)refs; /* We need the check above, but don't use the variable */
1511
1512 if (!refnames->nr)
1513 return 0;
1514
1515 /*
1516 * Since we don't check the references' old_oids, the
1517 * individual updates can't fail, so we can pack all of the
1518 * updates into a single transaction.
1519 */
1520
1521 transaction = ref_store_transaction_begin(ref_store, &err);
1522 if (!transaction)
1523 return -1;
1524
1525 for_each_string_list_item(item, refnames) {
1526 if (ref_transaction_delete(transaction, item->string, NULL,
1527 flags, msg, &err)) {
1528 warning(_("could not delete reference %s: %s"),
1529 item->string, err.buf);
1530 strbuf_reset(&err);
1531 }
1532 }
1533
1534 ret = ref_transaction_commit(transaction, &err);
1535
1536 if (ret) {
1537 if (refnames->nr == 1)
1538 error(_("could not delete reference %s: %s"),
1539 refnames->items[0].string, err.buf);
1540 else
1541 error(_("could not delete references: %s"), err.buf);
1542 }
1543
1544 ref_transaction_free(transaction);
1545 strbuf_release(&err);
1546 return ret;
1547 }
1548
1549 static int packed_pack_refs(struct ref_store *ref_store, unsigned int flags)
1550 {
1551 /*
1552 * Packed refs are already packed. It might be that loose refs
1553 * are packed *into* a packed refs store, but that is done by
1554 * updating the packed references via a transaction.
1555 */
1556 return 0;
1557 }
1558
1559 static int packed_create_symref(struct ref_store *ref_store,
1560 const char *refname, const char *target,
1561 const char *logmsg)
1562 {
1563 die("BUG: packed reference store does not support symrefs");
1564 }
1565
1566 static int packed_rename_ref(struct ref_store *ref_store,
1567 const char *oldrefname, const char *newrefname,
1568 const char *logmsg)
1569 {
1570 die("BUG: packed reference store does not support renaming references");
1571 }
1572
1573 static int packed_copy_ref(struct ref_store *ref_store,
1574 const char *oldrefname, const char *newrefname,
1575 const char *logmsg)
1576 {
1577 die("BUG: packed reference store does not support copying references");
1578 }
1579
1580 static struct ref_iterator *packed_reflog_iterator_begin(struct ref_store *ref_store)
1581 {
1582 return empty_ref_iterator_begin();
1583 }
1584
1585 static int packed_for_each_reflog_ent(struct ref_store *ref_store,
1586 const char *refname,
1587 each_reflog_ent_fn fn, void *cb_data)
1588 {
1589 return 0;
1590 }
1591
1592 static int packed_for_each_reflog_ent_reverse(struct ref_store *ref_store,
1593 const char *refname,
1594 each_reflog_ent_fn fn,
1595 void *cb_data)
1596 {
1597 return 0;
1598 }
1599
1600 static int packed_reflog_exists(struct ref_store *ref_store,
1601 const char *refname)
1602 {
1603 return 0;
1604 }
1605
1606 static int packed_create_reflog(struct ref_store *ref_store,
1607 const char *refname, int force_create,
1608 struct strbuf *err)
1609 {
1610 die("BUG: packed reference store does not support reflogs");
1611 }
1612
1613 static int packed_delete_reflog(struct ref_store *ref_store,
1614 const char *refname)
1615 {
1616 return 0;
1617 }
1618
1619 static int packed_reflog_expire(struct ref_store *ref_store,
1620 const char *refname, const struct object_id *oid,
1621 unsigned int flags,
1622 reflog_expiry_prepare_fn prepare_fn,
1623 reflog_expiry_should_prune_fn should_prune_fn,
1624 reflog_expiry_cleanup_fn cleanup_fn,
1625 void *policy_cb_data)
1626 {
1627 return 0;
1628 }
1629
1630 struct ref_storage_be refs_be_packed = {
1631 NULL,
1632 "packed",
1633 packed_ref_store_create,
1634 packed_init_db,
1635 packed_transaction_prepare,
1636 packed_transaction_finish,
1637 packed_transaction_abort,
1638 packed_initial_transaction_commit,
1639
1640 packed_pack_refs,
1641 packed_create_symref,
1642 packed_delete_refs,
1643 packed_rename_ref,
1644 packed_copy_ref,
1645
1646 packed_ref_iterator_begin,
1647 packed_read_raw_ref,
1648
1649 packed_reflog_iterator_begin,
1650 packed_for_each_reflog_ent,
1651 packed_for_each_reflog_ent_reverse,
1652 packed_reflog_exists,
1653 packed_create_reflog,
1654 packed_delete_reflog,
1655 packed_reflog_expire
1656 };