]> git.ipfire.org Git - thirdparty/git.git/blob - run-command.c
reftable: fix typo in header
[thirdparty/git.git] / run-command.c
1 #include "cache.h"
2 #include "run-command.h"
3 #include "exec-cmd.h"
4 #include "sigchain.h"
5 #include "strvec.h"
6 #include "thread-utils.h"
7 #include "strbuf.h"
8 #include "string-list.h"
9 #include "quote.h"
10 #include "config.h"
11 #include "packfile.h"
12 #include "hook.h"
13
14 void child_process_init(struct child_process *child)
15 {
16 struct child_process blank = CHILD_PROCESS_INIT;
17 memcpy(child, &blank, sizeof(*child));
18 }
19
20 void child_process_clear(struct child_process *child)
21 {
22 strvec_clear(&child->args);
23 strvec_clear(&child->env_array);
24 }
25
26 struct child_to_clean {
27 pid_t pid;
28 struct child_process *process;
29 struct child_to_clean *next;
30 };
31 static struct child_to_clean *children_to_clean;
32 static int installed_child_cleanup_handler;
33
34 static void cleanup_children(int sig, int in_signal)
35 {
36 struct child_to_clean *children_to_wait_for = NULL;
37
38 while (children_to_clean) {
39 struct child_to_clean *p = children_to_clean;
40 children_to_clean = p->next;
41
42 if (p->process && !in_signal) {
43 struct child_process *process = p->process;
44 if (process->clean_on_exit_handler) {
45 trace_printf(
46 "trace: run_command: running exit handler for pid %"
47 PRIuMAX, (uintmax_t)p->pid
48 );
49 process->clean_on_exit_handler(process);
50 }
51 }
52
53 kill(p->pid, sig);
54
55 if (p->process && p->process->wait_after_clean) {
56 p->next = children_to_wait_for;
57 children_to_wait_for = p;
58 } else {
59 if (!in_signal)
60 free(p);
61 }
62 }
63
64 while (children_to_wait_for) {
65 struct child_to_clean *p = children_to_wait_for;
66 children_to_wait_for = p->next;
67
68 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
69 ; /* spin waiting for process exit or error */
70
71 if (!in_signal)
72 free(p);
73 }
74 }
75
76 static void cleanup_children_on_signal(int sig)
77 {
78 cleanup_children(sig, 1);
79 sigchain_pop(sig);
80 raise(sig);
81 }
82
83 static void cleanup_children_on_exit(void)
84 {
85 cleanup_children(SIGTERM, 0);
86 }
87
88 static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
89 {
90 struct child_to_clean *p = xmalloc(sizeof(*p));
91 p->pid = pid;
92 p->process = process;
93 p->next = children_to_clean;
94 children_to_clean = p;
95
96 if (!installed_child_cleanup_handler) {
97 atexit(cleanup_children_on_exit);
98 sigchain_push_common(cleanup_children_on_signal);
99 installed_child_cleanup_handler = 1;
100 }
101 }
102
103 static void clear_child_for_cleanup(pid_t pid)
104 {
105 struct child_to_clean **pp;
106
107 for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
108 struct child_to_clean *clean_me = *pp;
109
110 if (clean_me->pid == pid) {
111 *pp = clean_me->next;
112 free(clean_me);
113 return;
114 }
115 }
116 }
117
118 static inline void close_pair(int fd[2])
119 {
120 close(fd[0]);
121 close(fd[1]);
122 }
123
124 int is_executable(const char *name)
125 {
126 struct stat st;
127
128 if (stat(name, &st) || /* stat, not lstat */
129 !S_ISREG(st.st_mode))
130 return 0;
131
132 #if defined(GIT_WINDOWS_NATIVE)
133 /*
134 * On Windows there is no executable bit. The file extension
135 * indicates whether it can be run as an executable, and Git
136 * has special-handling to detect scripts and launch them
137 * through the indicated script interpreter. We test for the
138 * file extension first because virus scanners may make
139 * it quite expensive to open many files.
140 */
141 if (ends_with(name, ".exe"))
142 return S_IXUSR;
143
144 {
145 /*
146 * Now that we know it does not have an executable extension,
147 * peek into the file instead.
148 */
149 char buf[3] = { 0 };
150 int n;
151 int fd = open(name, O_RDONLY);
152 st.st_mode &= ~S_IXUSR;
153 if (fd >= 0) {
154 n = read(fd, buf, 2);
155 if (n == 2)
156 /* look for a she-bang */
157 if (!strcmp(buf, "#!"))
158 st.st_mode |= S_IXUSR;
159 close(fd);
160 }
161 }
162 #endif
163 return st.st_mode & S_IXUSR;
164 }
165
166 /*
167 * Search $PATH for a command. This emulates the path search that
168 * execvp would perform, without actually executing the command so it
169 * can be used before fork() to prepare to run a command using
170 * execve() or after execvp() to diagnose why it failed.
171 *
172 * The caller should ensure that file contains no directory
173 * separators.
174 *
175 * Returns the path to the command, as found in $PATH or NULL if the
176 * command could not be found. The caller inherits ownership of the memory
177 * used to store the resultant path.
178 *
179 * This should not be used on Windows, where the $PATH search rules
180 * are more complicated (e.g., a search for "foo" should find
181 * "foo.exe").
182 */
183 static char *locate_in_PATH(const char *file)
184 {
185 const char *p = getenv("PATH");
186 struct strbuf buf = STRBUF_INIT;
187
188 if (!p || !*p)
189 return NULL;
190
191 while (1) {
192 const char *end = strchrnul(p, ':');
193
194 strbuf_reset(&buf);
195
196 /* POSIX specifies an empty entry as the current directory. */
197 if (end != p) {
198 strbuf_add(&buf, p, end - p);
199 strbuf_addch(&buf, '/');
200 }
201 strbuf_addstr(&buf, file);
202
203 if (is_executable(buf.buf))
204 return strbuf_detach(&buf, NULL);
205
206 if (!*end)
207 break;
208 p = end + 1;
209 }
210
211 strbuf_release(&buf);
212 return NULL;
213 }
214
215 int exists_in_PATH(const char *command)
216 {
217 char *r = locate_in_PATH(command);
218 int found = r != NULL;
219 free(r);
220 return found;
221 }
222
223 int sane_execvp(const char *file, char * const argv[])
224 {
225 #ifndef GIT_WINDOWS_NATIVE
226 /*
227 * execvp() doesn't return, so we all we can do is tell trace2
228 * what we are about to do and let it leave a hint in the log
229 * (unless of course the execvp() fails).
230 *
231 * we skip this for Windows because the compat layer already
232 * has to emulate the execvp() call anyway.
233 */
234 int exec_id = trace2_exec(file, (const char **)argv);
235 #endif
236
237 if (!execvp(file, argv))
238 return 0; /* cannot happen ;-) */
239
240 #ifndef GIT_WINDOWS_NATIVE
241 {
242 int ec = errno;
243 trace2_exec_result(exec_id, ec);
244 errno = ec;
245 }
246 #endif
247
248 /*
249 * When a command can't be found because one of the directories
250 * listed in $PATH is unsearchable, execvp reports EACCES, but
251 * careful usability testing (read: analysis of occasional bug
252 * reports) reveals that "No such file or directory" is more
253 * intuitive.
254 *
255 * We avoid commands with "/", because execvp will not do $PATH
256 * lookups in that case.
257 *
258 * The reassignment of EACCES to errno looks like a no-op below,
259 * but we need to protect against exists_in_PATH overwriting errno.
260 */
261 if (errno == EACCES && !strchr(file, '/'))
262 errno = exists_in_PATH(file) ? EACCES : ENOENT;
263 else if (errno == ENOTDIR && !strchr(file, '/'))
264 errno = ENOENT;
265 return -1;
266 }
267
268 static const char **prepare_shell_cmd(struct strvec *out, const char **argv)
269 {
270 if (!argv[0])
271 BUG("shell command is empty");
272
273 if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
274 #ifndef GIT_WINDOWS_NATIVE
275 strvec_push(out, SHELL_PATH);
276 #else
277 strvec_push(out, "sh");
278 #endif
279 strvec_push(out, "-c");
280
281 /*
282 * If we have no extra arguments, we do not even need to
283 * bother with the "$@" magic.
284 */
285 if (!argv[1])
286 strvec_push(out, argv[0]);
287 else
288 strvec_pushf(out, "%s \"$@\"", argv[0]);
289 }
290
291 strvec_pushv(out, argv);
292 return out->v;
293 }
294
295 #ifndef GIT_WINDOWS_NATIVE
296 static int child_notifier = -1;
297
298 enum child_errcode {
299 CHILD_ERR_CHDIR,
300 CHILD_ERR_DUP2,
301 CHILD_ERR_CLOSE,
302 CHILD_ERR_SIGPROCMASK,
303 CHILD_ERR_ENOENT,
304 CHILD_ERR_SILENT,
305 CHILD_ERR_ERRNO
306 };
307
308 struct child_err {
309 enum child_errcode err;
310 int syserr; /* errno */
311 };
312
313 static void child_die(enum child_errcode err)
314 {
315 struct child_err buf;
316
317 buf.err = err;
318 buf.syserr = errno;
319
320 /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
321 xwrite(child_notifier, &buf, sizeof(buf));
322 _exit(1);
323 }
324
325 static void child_dup2(int fd, int to)
326 {
327 if (dup2(fd, to) < 0)
328 child_die(CHILD_ERR_DUP2);
329 }
330
331 static void child_close(int fd)
332 {
333 if (close(fd))
334 child_die(CHILD_ERR_CLOSE);
335 }
336
337 static void child_close_pair(int fd[2])
338 {
339 child_close(fd[0]);
340 child_close(fd[1]);
341 }
342
343 /*
344 * parent will make it look like the child spewed a fatal error and died
345 * this is needed to prevent changes to t0061.
346 */
347 static void fake_fatal(const char *err, va_list params)
348 {
349 vreportf("fatal: ", err, params);
350 }
351
352 static void child_error_fn(const char *err, va_list params)
353 {
354 const char msg[] = "error() should not be called in child\n";
355 xwrite(2, msg, sizeof(msg) - 1);
356 }
357
358 static void child_warn_fn(const char *err, va_list params)
359 {
360 const char msg[] = "warn() should not be called in child\n";
361 xwrite(2, msg, sizeof(msg) - 1);
362 }
363
364 static void NORETURN child_die_fn(const char *err, va_list params)
365 {
366 const char msg[] = "die() should not be called in child\n";
367 xwrite(2, msg, sizeof(msg) - 1);
368 _exit(2);
369 }
370
371 /* this runs in the parent process */
372 static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
373 {
374 static void (*old_errfn)(const char *err, va_list params);
375
376 old_errfn = get_error_routine();
377 set_error_routine(fake_fatal);
378 errno = cerr->syserr;
379
380 switch (cerr->err) {
381 case CHILD_ERR_CHDIR:
382 error_errno("exec '%s': cd to '%s' failed",
383 cmd->args.v[0], cmd->dir);
384 break;
385 case CHILD_ERR_DUP2:
386 error_errno("dup2() in child failed");
387 break;
388 case CHILD_ERR_CLOSE:
389 error_errno("close() in child failed");
390 break;
391 case CHILD_ERR_SIGPROCMASK:
392 error_errno("sigprocmask failed restoring signals");
393 break;
394 case CHILD_ERR_ENOENT:
395 error_errno("cannot run %s", cmd->args.v[0]);
396 break;
397 case CHILD_ERR_SILENT:
398 break;
399 case CHILD_ERR_ERRNO:
400 error_errno("cannot exec '%s'", cmd->args.v[0]);
401 break;
402 }
403 set_error_routine(old_errfn);
404 }
405
406 static int prepare_cmd(struct strvec *out, const struct child_process *cmd)
407 {
408 if (!cmd->args.v[0])
409 BUG("command is empty");
410
411 /*
412 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
413 * attempt to interpret the command with 'sh'.
414 */
415 strvec_push(out, SHELL_PATH);
416
417 if (cmd->git_cmd) {
418 prepare_git_cmd(out, cmd->args.v);
419 } else if (cmd->use_shell) {
420 prepare_shell_cmd(out, cmd->args.v);
421 } else {
422 strvec_pushv(out, cmd->args.v);
423 }
424
425 /*
426 * If there are no dir separator characters in the command then perform
427 * a path lookup and use the resolved path as the command to exec. If
428 * there are dir separator characters, we have exec attempt to invoke
429 * the command directly.
430 */
431 if (!has_dir_sep(out->v[1])) {
432 char *program = locate_in_PATH(out->v[1]);
433 if (program) {
434 free((char *)out->v[1]);
435 out->v[1] = program;
436 } else {
437 strvec_clear(out);
438 errno = ENOENT;
439 return -1;
440 }
441 }
442
443 return 0;
444 }
445
446 static char **prep_childenv(const char *const *deltaenv)
447 {
448 extern char **environ;
449 char **childenv;
450 struct string_list env = STRING_LIST_INIT_DUP;
451 struct strbuf key = STRBUF_INIT;
452 const char *const *p;
453 int i;
454
455 /* Construct a sorted string list consisting of the current environ */
456 for (p = (const char *const *) environ; p && *p; p++) {
457 const char *equals = strchr(*p, '=');
458
459 if (equals) {
460 strbuf_reset(&key);
461 strbuf_add(&key, *p, equals - *p);
462 string_list_append(&env, key.buf)->util = (void *) *p;
463 } else {
464 string_list_append(&env, *p)->util = (void *) *p;
465 }
466 }
467 string_list_sort(&env);
468
469 /* Merge in 'deltaenv' with the current environ */
470 for (p = deltaenv; p && *p; p++) {
471 const char *equals = strchr(*p, '=');
472
473 if (equals) {
474 /* ('key=value'), insert or replace entry */
475 strbuf_reset(&key);
476 strbuf_add(&key, *p, equals - *p);
477 string_list_insert(&env, key.buf)->util = (void *) *p;
478 } else {
479 /* otherwise ('key') remove existing entry */
480 string_list_remove(&env, *p, 0);
481 }
482 }
483
484 /* Create an array of 'char *' to be used as the childenv */
485 ALLOC_ARRAY(childenv, env.nr + 1);
486 for (i = 0; i < env.nr; i++)
487 childenv[i] = env.items[i].util;
488 childenv[env.nr] = NULL;
489
490 string_list_clear(&env, 0);
491 strbuf_release(&key);
492 return childenv;
493 }
494
495 struct atfork_state {
496 #ifndef NO_PTHREADS
497 int cs;
498 #endif
499 sigset_t old;
500 };
501
502 #define CHECK_BUG(err, msg) \
503 do { \
504 int e = (err); \
505 if (e) \
506 BUG("%s: %s", msg, strerror(e)); \
507 } while(0)
508
509 static void atfork_prepare(struct atfork_state *as)
510 {
511 sigset_t all;
512
513 if (sigfillset(&all))
514 die_errno("sigfillset");
515 #ifdef NO_PTHREADS
516 if (sigprocmask(SIG_SETMASK, &all, &as->old))
517 die_errno("sigprocmask");
518 #else
519 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
520 "blocking all signals");
521 CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
522 "disabling cancellation");
523 #endif
524 }
525
526 static void atfork_parent(struct atfork_state *as)
527 {
528 #ifdef NO_PTHREADS
529 if (sigprocmask(SIG_SETMASK, &as->old, NULL))
530 die_errno("sigprocmask");
531 #else
532 CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
533 "re-enabling cancellation");
534 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
535 "restoring signal mask");
536 #endif
537 }
538 #endif /* GIT_WINDOWS_NATIVE */
539
540 static inline void set_cloexec(int fd)
541 {
542 int flags = fcntl(fd, F_GETFD);
543 if (flags >= 0)
544 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
545 }
546
547 static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
548 {
549 int status, code = -1;
550 pid_t waiting;
551 int failed_errno = 0;
552
553 while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
554 ; /* nothing */
555
556 if (waiting < 0) {
557 failed_errno = errno;
558 if (!in_signal)
559 error_errno("waitpid for %s failed", argv0);
560 } else if (waiting != pid) {
561 if (!in_signal)
562 error("waitpid is confused (%s)", argv0);
563 } else if (WIFSIGNALED(status)) {
564 code = WTERMSIG(status);
565 if (!in_signal && code != SIGINT && code != SIGQUIT && code != SIGPIPE)
566 error("%s died of signal %d", argv0, code);
567 /*
568 * This return value is chosen so that code & 0xff
569 * mimics the exit code that a POSIX shell would report for
570 * a program that died from this signal.
571 */
572 code += 128;
573 } else if (WIFEXITED(status)) {
574 code = WEXITSTATUS(status);
575 } else {
576 if (!in_signal)
577 error("waitpid is confused (%s)", argv0);
578 }
579
580 if (!in_signal)
581 clear_child_for_cleanup(pid);
582
583 errno = failed_errno;
584 return code;
585 }
586
587 static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
588 {
589 struct string_list envs = STRING_LIST_INIT_DUP;
590 const char *const *e;
591 int i;
592 int printed_unset = 0;
593
594 /* Last one wins, see run-command.c:prep_childenv() for context */
595 for (e = deltaenv; e && *e; e++) {
596 struct strbuf key = STRBUF_INIT;
597 char *equals = strchr(*e, '=');
598
599 if (equals) {
600 strbuf_add(&key, *e, equals - *e);
601 string_list_insert(&envs, key.buf)->util = equals + 1;
602 } else {
603 string_list_insert(&envs, *e)->util = NULL;
604 }
605 strbuf_release(&key);
606 }
607
608 /* "unset X Y...;" */
609 for (i = 0; i < envs.nr; i++) {
610 const char *var = envs.items[i].string;
611 const char *val = envs.items[i].util;
612
613 if (val || !getenv(var))
614 continue;
615
616 if (!printed_unset) {
617 strbuf_addstr(dst, " unset");
618 printed_unset = 1;
619 }
620 strbuf_addf(dst, " %s", var);
621 }
622 if (printed_unset)
623 strbuf_addch(dst, ';');
624
625 /* ... followed by "A=B C=D ..." */
626 for (i = 0; i < envs.nr; i++) {
627 const char *var = envs.items[i].string;
628 const char *val = envs.items[i].util;
629 const char *oldval;
630
631 if (!val)
632 continue;
633
634 oldval = getenv(var);
635 if (oldval && !strcmp(val, oldval))
636 continue;
637
638 strbuf_addf(dst, " %s=", var);
639 sq_quote_buf_pretty(dst, val);
640 }
641 string_list_clear(&envs, 0);
642 }
643
644 static void trace_run_command(const struct child_process *cp)
645 {
646 struct strbuf buf = STRBUF_INIT;
647
648 if (!trace_want(&trace_default_key))
649 return;
650
651 strbuf_addstr(&buf, "trace: run_command:");
652 if (cp->dir) {
653 strbuf_addstr(&buf, " cd ");
654 sq_quote_buf_pretty(&buf, cp->dir);
655 strbuf_addch(&buf, ';');
656 }
657 trace_add_env(&buf, cp->env_array.v);
658 if (cp->git_cmd)
659 strbuf_addstr(&buf, " git");
660 sq_quote_argv_pretty(&buf, cp->args.v);
661
662 trace_printf("%s", buf.buf);
663 strbuf_release(&buf);
664 }
665
666 int start_command(struct child_process *cmd)
667 {
668 int need_in, need_out, need_err;
669 int fdin[2], fdout[2], fderr[2];
670 int failed_errno;
671 char *str;
672
673 /*
674 * In case of errors we must keep the promise to close FDs
675 * that have been passed in via ->in and ->out.
676 */
677
678 need_in = !cmd->no_stdin && cmd->in < 0;
679 if (need_in) {
680 if (pipe(fdin) < 0) {
681 failed_errno = errno;
682 if (cmd->out > 0)
683 close(cmd->out);
684 str = "standard input";
685 goto fail_pipe;
686 }
687 cmd->in = fdin[1];
688 }
689
690 need_out = !cmd->no_stdout
691 && !cmd->stdout_to_stderr
692 && cmd->out < 0;
693 if (need_out) {
694 if (pipe(fdout) < 0) {
695 failed_errno = errno;
696 if (need_in)
697 close_pair(fdin);
698 else if (cmd->in)
699 close(cmd->in);
700 str = "standard output";
701 goto fail_pipe;
702 }
703 cmd->out = fdout[0];
704 }
705
706 need_err = !cmd->no_stderr && cmd->err < 0;
707 if (need_err) {
708 if (pipe(fderr) < 0) {
709 failed_errno = errno;
710 if (need_in)
711 close_pair(fdin);
712 else if (cmd->in)
713 close(cmd->in);
714 if (need_out)
715 close_pair(fdout);
716 else if (cmd->out)
717 close(cmd->out);
718 str = "standard error";
719 fail_pipe:
720 error("cannot create %s pipe for %s: %s",
721 str, cmd->args.v[0], strerror(failed_errno));
722 child_process_clear(cmd);
723 errno = failed_errno;
724 return -1;
725 }
726 cmd->err = fderr[0];
727 }
728
729 trace2_child_start(cmd);
730 trace_run_command(cmd);
731
732 fflush(NULL);
733
734 if (cmd->close_object_store)
735 close_object_store(the_repository->objects);
736
737 #ifndef GIT_WINDOWS_NATIVE
738 {
739 int notify_pipe[2];
740 int null_fd = -1;
741 char **childenv;
742 struct strvec argv = STRVEC_INIT;
743 struct child_err cerr;
744 struct atfork_state as;
745
746 if (prepare_cmd(&argv, cmd) < 0) {
747 failed_errno = errno;
748 cmd->pid = -1;
749 if (!cmd->silent_exec_failure)
750 error_errno("cannot run %s", cmd->args.v[0]);
751 goto end_of_spawn;
752 }
753
754 if (pipe(notify_pipe))
755 notify_pipe[0] = notify_pipe[1] = -1;
756
757 if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
758 null_fd = xopen("/dev/null", O_RDWR | O_CLOEXEC);
759 set_cloexec(null_fd);
760 }
761
762 childenv = prep_childenv(cmd->env_array.v);
763 atfork_prepare(&as);
764
765 /*
766 * NOTE: In order to prevent deadlocking when using threads special
767 * care should be taken with the function calls made in between the
768 * fork() and exec() calls. No calls should be made to functions which
769 * require acquiring a lock (e.g. malloc) as the lock could have been
770 * held by another thread at the time of forking, causing the lock to
771 * never be released in the child process. This means only
772 * Async-Signal-Safe functions are permitted in the child.
773 */
774 cmd->pid = fork();
775 failed_errno = errno;
776 if (!cmd->pid) {
777 int sig;
778 /*
779 * Ensure the default die/error/warn routines do not get
780 * called, they can take stdio locks and malloc.
781 */
782 set_die_routine(child_die_fn);
783 set_error_routine(child_error_fn);
784 set_warn_routine(child_warn_fn);
785
786 close(notify_pipe[0]);
787 set_cloexec(notify_pipe[1]);
788 child_notifier = notify_pipe[1];
789
790 if (cmd->no_stdin)
791 child_dup2(null_fd, 0);
792 else if (need_in) {
793 child_dup2(fdin[0], 0);
794 child_close_pair(fdin);
795 } else if (cmd->in) {
796 child_dup2(cmd->in, 0);
797 child_close(cmd->in);
798 }
799
800 if (cmd->no_stderr)
801 child_dup2(null_fd, 2);
802 else if (need_err) {
803 child_dup2(fderr[1], 2);
804 child_close_pair(fderr);
805 } else if (cmd->err > 1) {
806 child_dup2(cmd->err, 2);
807 child_close(cmd->err);
808 }
809
810 if (cmd->no_stdout)
811 child_dup2(null_fd, 1);
812 else if (cmd->stdout_to_stderr)
813 child_dup2(2, 1);
814 else if (need_out) {
815 child_dup2(fdout[1], 1);
816 child_close_pair(fdout);
817 } else if (cmd->out > 1) {
818 child_dup2(cmd->out, 1);
819 child_close(cmd->out);
820 }
821
822 if (cmd->dir && chdir(cmd->dir))
823 child_die(CHILD_ERR_CHDIR);
824
825 /*
826 * restore default signal handlers here, in case
827 * we catch a signal right before execve below
828 */
829 for (sig = 1; sig < NSIG; sig++) {
830 /* ignored signals get reset to SIG_DFL on execve */
831 if (signal(sig, SIG_DFL) == SIG_IGN)
832 signal(sig, SIG_IGN);
833 }
834
835 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
836 child_die(CHILD_ERR_SIGPROCMASK);
837
838 /*
839 * Attempt to exec using the command and arguments starting at
840 * argv.argv[1]. argv.argv[0] contains SHELL_PATH which will
841 * be used in the event exec failed with ENOEXEC at which point
842 * we will try to interpret the command using 'sh'.
843 */
844 execve(argv.v[1], (char *const *) argv.v + 1,
845 (char *const *) childenv);
846 if (errno == ENOEXEC)
847 execve(argv.v[0], (char *const *) argv.v,
848 (char *const *) childenv);
849
850 if (errno == ENOENT) {
851 if (cmd->silent_exec_failure)
852 child_die(CHILD_ERR_SILENT);
853 child_die(CHILD_ERR_ENOENT);
854 } else {
855 child_die(CHILD_ERR_ERRNO);
856 }
857 }
858 atfork_parent(&as);
859 if (cmd->pid < 0)
860 error_errno("cannot fork() for %s", cmd->args.v[0]);
861 else if (cmd->clean_on_exit)
862 mark_child_for_cleanup(cmd->pid, cmd);
863
864 /*
865 * Wait for child's exec. If the exec succeeds (or if fork()
866 * failed), EOF is seen immediately by the parent. Otherwise, the
867 * child process sends a child_err struct.
868 * Note that use of this infrastructure is completely advisory,
869 * therefore, we keep error checks minimal.
870 */
871 close(notify_pipe[1]);
872 if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
873 /*
874 * At this point we know that fork() succeeded, but exec()
875 * failed. Errors have been reported to our stderr.
876 */
877 wait_or_whine(cmd->pid, cmd->args.v[0], 0);
878 child_err_spew(cmd, &cerr);
879 failed_errno = errno;
880 cmd->pid = -1;
881 }
882 close(notify_pipe[0]);
883
884 if (null_fd >= 0)
885 close(null_fd);
886 strvec_clear(&argv);
887 free(childenv);
888 }
889 end_of_spawn:
890
891 #else
892 {
893 int fhin = 0, fhout = 1, fherr = 2;
894 const char **sargv = cmd->args.v;
895 struct strvec nargv = STRVEC_INIT;
896
897 if (cmd->no_stdin)
898 fhin = open("/dev/null", O_RDWR);
899 else if (need_in)
900 fhin = dup(fdin[0]);
901 else if (cmd->in)
902 fhin = dup(cmd->in);
903
904 if (cmd->no_stderr)
905 fherr = open("/dev/null", O_RDWR);
906 else if (need_err)
907 fherr = dup(fderr[1]);
908 else if (cmd->err > 2)
909 fherr = dup(cmd->err);
910
911 if (cmd->no_stdout)
912 fhout = open("/dev/null", O_RDWR);
913 else if (cmd->stdout_to_stderr)
914 fhout = dup(fherr);
915 else if (need_out)
916 fhout = dup(fdout[1]);
917 else if (cmd->out > 1)
918 fhout = dup(cmd->out);
919
920 if (cmd->git_cmd)
921 cmd->args.v = prepare_git_cmd(&nargv, sargv);
922 else if (cmd->use_shell)
923 cmd->args.v = prepare_shell_cmd(&nargv, sargv);
924
925 cmd->pid = mingw_spawnvpe(cmd->args.v[0], cmd->args.v, (char**) cmd->env_array.v,
926 cmd->dir, fhin, fhout, fherr);
927 failed_errno = errno;
928 if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
929 error_errno("cannot spawn %s", cmd->args.v[0]);
930 if (cmd->clean_on_exit && cmd->pid >= 0)
931 mark_child_for_cleanup(cmd->pid, cmd);
932
933 strvec_clear(&nargv);
934 cmd->args.v = sargv;
935 if (fhin != 0)
936 close(fhin);
937 if (fhout != 1)
938 close(fhout);
939 if (fherr != 2)
940 close(fherr);
941 }
942 #endif
943
944 if (cmd->pid < 0) {
945 trace2_child_exit(cmd, -1);
946
947 if (need_in)
948 close_pair(fdin);
949 else if (cmd->in)
950 close(cmd->in);
951 if (need_out)
952 close_pair(fdout);
953 else if (cmd->out)
954 close(cmd->out);
955 if (need_err)
956 close_pair(fderr);
957 else if (cmd->err)
958 close(cmd->err);
959 child_process_clear(cmd);
960 errno = failed_errno;
961 return -1;
962 }
963
964 if (need_in)
965 close(fdin[0]);
966 else if (cmd->in)
967 close(cmd->in);
968
969 if (need_out)
970 close(fdout[1]);
971 else if (cmd->out)
972 close(cmd->out);
973
974 if (need_err)
975 close(fderr[1]);
976 else if (cmd->err)
977 close(cmd->err);
978
979 return 0;
980 }
981
982 int finish_command(struct child_process *cmd)
983 {
984 int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 0);
985 trace2_child_exit(cmd, ret);
986 child_process_clear(cmd);
987 invalidate_lstat_cache();
988 return ret;
989 }
990
991 int finish_command_in_signal(struct child_process *cmd)
992 {
993 int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 1);
994 trace2_child_exit(cmd, ret);
995 return ret;
996 }
997
998
999 int run_command(struct child_process *cmd)
1000 {
1001 int code;
1002
1003 if (cmd->out < 0 || cmd->err < 0)
1004 BUG("run_command with a pipe can cause deadlock");
1005
1006 code = start_command(cmd);
1007 if (code)
1008 return code;
1009 return finish_command(cmd);
1010 }
1011
1012 int run_command_v_opt(const char **argv, int opt)
1013 {
1014 return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
1015 }
1016
1017 int run_command_v_opt_tr2(const char **argv, int opt, const char *tr2_class)
1018 {
1019 return run_command_v_opt_cd_env_tr2(argv, opt, NULL, NULL, tr2_class);
1020 }
1021
1022 int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
1023 {
1024 return run_command_v_opt_cd_env_tr2(argv, opt, dir, env, NULL);
1025 }
1026
1027 int run_command_v_opt_cd_env_tr2(const char **argv, int opt, const char *dir,
1028 const char *const *env, const char *tr2_class)
1029 {
1030 struct child_process cmd = CHILD_PROCESS_INIT;
1031 strvec_pushv(&cmd.args, argv);
1032 cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
1033 cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
1034 cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
1035 cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
1036 cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
1037 cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
1038 cmd.wait_after_clean = opt & RUN_WAIT_AFTER_CLEAN ? 1 : 0;
1039 cmd.close_object_store = opt & RUN_CLOSE_OBJECT_STORE ? 1 : 0;
1040 cmd.dir = dir;
1041 if (env)
1042 strvec_pushv(&cmd.env_array, (const char **)env);
1043 cmd.trace2_child_class = tr2_class;
1044 return run_command(&cmd);
1045 }
1046
1047 #ifndef NO_PTHREADS
1048 static pthread_t main_thread;
1049 static int main_thread_set;
1050 static pthread_key_t async_key;
1051 static pthread_key_t async_die_counter;
1052
1053 static void *run_thread(void *data)
1054 {
1055 struct async *async = data;
1056 intptr_t ret;
1057
1058 if (async->isolate_sigpipe) {
1059 sigset_t mask;
1060 sigemptyset(&mask);
1061 sigaddset(&mask, SIGPIPE);
1062 if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
1063 ret = error("unable to block SIGPIPE in async thread");
1064 return (void *)ret;
1065 }
1066 }
1067
1068 pthread_setspecific(async_key, async);
1069 ret = async->proc(async->proc_in, async->proc_out, async->data);
1070 return (void *)ret;
1071 }
1072
1073 static NORETURN void die_async(const char *err, va_list params)
1074 {
1075 vreportf("fatal: ", err, params);
1076
1077 if (in_async()) {
1078 struct async *async = pthread_getspecific(async_key);
1079 if (async->proc_in >= 0)
1080 close(async->proc_in);
1081 if (async->proc_out >= 0)
1082 close(async->proc_out);
1083 pthread_exit((void *)128);
1084 }
1085
1086 exit(128);
1087 }
1088
1089 static int async_die_is_recursing(void)
1090 {
1091 void *ret = pthread_getspecific(async_die_counter);
1092 pthread_setspecific(async_die_counter, &async_die_counter); /* set to any non-NULL valid pointer */
1093 return ret != NULL;
1094 }
1095
1096 int in_async(void)
1097 {
1098 if (!main_thread_set)
1099 return 0; /* no asyncs started yet */
1100 return !pthread_equal(main_thread, pthread_self());
1101 }
1102
1103 static void NORETURN async_exit(int code)
1104 {
1105 pthread_exit((void *)(intptr_t)code);
1106 }
1107
1108 #else
1109
1110 static struct {
1111 void (**handlers)(void);
1112 size_t nr;
1113 size_t alloc;
1114 } git_atexit_hdlrs;
1115
1116 static int git_atexit_installed;
1117
1118 static void git_atexit_dispatch(void)
1119 {
1120 size_t i;
1121
1122 for (i=git_atexit_hdlrs.nr ; i ; i--)
1123 git_atexit_hdlrs.handlers[i-1]();
1124 }
1125
1126 static void git_atexit_clear(void)
1127 {
1128 free(git_atexit_hdlrs.handlers);
1129 memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1130 git_atexit_installed = 0;
1131 }
1132
1133 #undef atexit
1134 int git_atexit(void (*handler)(void))
1135 {
1136 ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1137 git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1138 if (!git_atexit_installed) {
1139 if (atexit(&git_atexit_dispatch))
1140 return -1;
1141 git_atexit_installed = 1;
1142 }
1143 return 0;
1144 }
1145 #define atexit git_atexit
1146
1147 static int process_is_async;
1148 int in_async(void)
1149 {
1150 return process_is_async;
1151 }
1152
1153 static void NORETURN async_exit(int code)
1154 {
1155 exit(code);
1156 }
1157
1158 #endif
1159
1160 void check_pipe(int err)
1161 {
1162 if (err == EPIPE) {
1163 if (in_async())
1164 async_exit(141);
1165
1166 signal(SIGPIPE, SIG_DFL);
1167 raise(SIGPIPE);
1168 /* Should never happen, but just in case... */
1169 exit(141);
1170 }
1171 }
1172
1173 int start_async(struct async *async)
1174 {
1175 int need_in, need_out;
1176 int fdin[2], fdout[2];
1177 int proc_in, proc_out;
1178
1179 need_in = async->in < 0;
1180 if (need_in) {
1181 if (pipe(fdin) < 0) {
1182 if (async->out > 0)
1183 close(async->out);
1184 return error_errno("cannot create pipe");
1185 }
1186 async->in = fdin[1];
1187 }
1188
1189 need_out = async->out < 0;
1190 if (need_out) {
1191 if (pipe(fdout) < 0) {
1192 if (need_in)
1193 close_pair(fdin);
1194 else if (async->in)
1195 close(async->in);
1196 return error_errno("cannot create pipe");
1197 }
1198 async->out = fdout[0];
1199 }
1200
1201 if (need_in)
1202 proc_in = fdin[0];
1203 else if (async->in)
1204 proc_in = async->in;
1205 else
1206 proc_in = -1;
1207
1208 if (need_out)
1209 proc_out = fdout[1];
1210 else if (async->out)
1211 proc_out = async->out;
1212 else
1213 proc_out = -1;
1214
1215 #ifdef NO_PTHREADS
1216 /* Flush stdio before fork() to avoid cloning buffers */
1217 fflush(NULL);
1218
1219 async->pid = fork();
1220 if (async->pid < 0) {
1221 error_errno("fork (async) failed");
1222 goto error;
1223 }
1224 if (!async->pid) {
1225 if (need_in)
1226 close(fdin[1]);
1227 if (need_out)
1228 close(fdout[0]);
1229 git_atexit_clear();
1230 process_is_async = 1;
1231 exit(!!async->proc(proc_in, proc_out, async->data));
1232 }
1233
1234 mark_child_for_cleanup(async->pid, NULL);
1235
1236 if (need_in)
1237 close(fdin[0]);
1238 else if (async->in)
1239 close(async->in);
1240
1241 if (need_out)
1242 close(fdout[1]);
1243 else if (async->out)
1244 close(async->out);
1245 #else
1246 if (!main_thread_set) {
1247 /*
1248 * We assume that the first time that start_async is called
1249 * it is from the main thread.
1250 */
1251 main_thread_set = 1;
1252 main_thread = pthread_self();
1253 pthread_key_create(&async_key, NULL);
1254 pthread_key_create(&async_die_counter, NULL);
1255 set_die_routine(die_async);
1256 set_die_is_recursing_routine(async_die_is_recursing);
1257 }
1258
1259 if (proc_in >= 0)
1260 set_cloexec(proc_in);
1261 if (proc_out >= 0)
1262 set_cloexec(proc_out);
1263 async->proc_in = proc_in;
1264 async->proc_out = proc_out;
1265 {
1266 int err = pthread_create(&async->tid, NULL, run_thread, async);
1267 if (err) {
1268 error(_("cannot create async thread: %s"), strerror(err));
1269 goto error;
1270 }
1271 }
1272 #endif
1273 return 0;
1274
1275 error:
1276 if (need_in)
1277 close_pair(fdin);
1278 else if (async->in)
1279 close(async->in);
1280
1281 if (need_out)
1282 close_pair(fdout);
1283 else if (async->out)
1284 close(async->out);
1285 return -1;
1286 }
1287
1288 int finish_async(struct async *async)
1289 {
1290 #ifdef NO_PTHREADS
1291 int ret = wait_or_whine(async->pid, "child process", 0);
1292
1293 invalidate_lstat_cache();
1294
1295 return ret;
1296 #else
1297 void *ret = (void *)(intptr_t)(-1);
1298
1299 if (pthread_join(async->tid, &ret))
1300 error("pthread_join failed");
1301 invalidate_lstat_cache();
1302 return (int)(intptr_t)ret;
1303
1304 #endif
1305 }
1306
1307 int async_with_fork(void)
1308 {
1309 #ifdef NO_PTHREADS
1310 return 1;
1311 #else
1312 return 0;
1313 #endif
1314 }
1315
1316 int run_hook_ve(const char *const *env, const char *name, va_list args)
1317 {
1318 struct child_process hook = CHILD_PROCESS_INIT;
1319 const char *p;
1320
1321 p = find_hook(name);
1322 if (!p)
1323 return 0;
1324
1325 strvec_push(&hook.args, p);
1326 while ((p = va_arg(args, const char *)))
1327 strvec_push(&hook.args, p);
1328 if (env)
1329 strvec_pushv(&hook.env_array, (const char **)env);
1330 hook.no_stdin = 1;
1331 hook.stdout_to_stderr = 1;
1332 hook.trace2_hook_name = name;
1333
1334 return run_command(&hook);
1335 }
1336
1337 int run_hook_le(const char *const *env, const char *name, ...)
1338 {
1339 va_list args;
1340 int ret;
1341
1342 va_start(args, name);
1343 ret = run_hook_ve(env, name, args);
1344 va_end(args);
1345
1346 return ret;
1347 }
1348
1349 struct io_pump {
1350 /* initialized by caller */
1351 int fd;
1352 int type; /* POLLOUT or POLLIN */
1353 union {
1354 struct {
1355 const char *buf;
1356 size_t len;
1357 } out;
1358 struct {
1359 struct strbuf *buf;
1360 size_t hint;
1361 } in;
1362 } u;
1363
1364 /* returned by pump_io */
1365 int error; /* 0 for success, otherwise errno */
1366
1367 /* internal use */
1368 struct pollfd *pfd;
1369 };
1370
1371 static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1372 {
1373 int pollsize = 0;
1374 int i;
1375
1376 for (i = 0; i < nr; i++) {
1377 struct io_pump *io = &slots[i];
1378 if (io->fd < 0)
1379 continue;
1380 pfd[pollsize].fd = io->fd;
1381 pfd[pollsize].events = io->type;
1382 io->pfd = &pfd[pollsize++];
1383 }
1384
1385 if (!pollsize)
1386 return 0;
1387
1388 if (poll(pfd, pollsize, -1) < 0) {
1389 if (errno == EINTR)
1390 return 1;
1391 die_errno("poll failed");
1392 }
1393
1394 for (i = 0; i < nr; i++) {
1395 struct io_pump *io = &slots[i];
1396
1397 if (io->fd < 0)
1398 continue;
1399
1400 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1401 continue;
1402
1403 if (io->type == POLLOUT) {
1404 ssize_t len = xwrite(io->fd,
1405 io->u.out.buf, io->u.out.len);
1406 if (len < 0) {
1407 io->error = errno;
1408 close(io->fd);
1409 io->fd = -1;
1410 } else {
1411 io->u.out.buf += len;
1412 io->u.out.len -= len;
1413 if (!io->u.out.len) {
1414 close(io->fd);
1415 io->fd = -1;
1416 }
1417 }
1418 }
1419
1420 if (io->type == POLLIN) {
1421 ssize_t len = strbuf_read_once(io->u.in.buf,
1422 io->fd, io->u.in.hint);
1423 if (len < 0)
1424 io->error = errno;
1425 if (len <= 0) {
1426 close(io->fd);
1427 io->fd = -1;
1428 }
1429 }
1430 }
1431
1432 return 1;
1433 }
1434
1435 static int pump_io(struct io_pump *slots, int nr)
1436 {
1437 struct pollfd *pfd;
1438 int i;
1439
1440 for (i = 0; i < nr; i++)
1441 slots[i].error = 0;
1442
1443 ALLOC_ARRAY(pfd, nr);
1444 while (pump_io_round(slots, nr, pfd))
1445 ; /* nothing */
1446 free(pfd);
1447
1448 /* There may be multiple errno values, so just pick the first. */
1449 for (i = 0; i < nr; i++) {
1450 if (slots[i].error) {
1451 errno = slots[i].error;
1452 return -1;
1453 }
1454 }
1455 return 0;
1456 }
1457
1458
1459 int pipe_command(struct child_process *cmd,
1460 const char *in, size_t in_len,
1461 struct strbuf *out, size_t out_hint,
1462 struct strbuf *err, size_t err_hint)
1463 {
1464 struct io_pump io[3];
1465 int nr = 0;
1466
1467 if (in)
1468 cmd->in = -1;
1469 if (out)
1470 cmd->out = -1;
1471 if (err)
1472 cmd->err = -1;
1473
1474 if (start_command(cmd) < 0)
1475 return -1;
1476
1477 if (in) {
1478 io[nr].fd = cmd->in;
1479 io[nr].type = POLLOUT;
1480 io[nr].u.out.buf = in;
1481 io[nr].u.out.len = in_len;
1482 nr++;
1483 }
1484 if (out) {
1485 io[nr].fd = cmd->out;
1486 io[nr].type = POLLIN;
1487 io[nr].u.in.buf = out;
1488 io[nr].u.in.hint = out_hint;
1489 nr++;
1490 }
1491 if (err) {
1492 io[nr].fd = cmd->err;
1493 io[nr].type = POLLIN;
1494 io[nr].u.in.buf = err;
1495 io[nr].u.in.hint = err_hint;
1496 nr++;
1497 }
1498
1499 if (pump_io(io, nr) < 0) {
1500 finish_command(cmd); /* throw away exit code */
1501 return -1;
1502 }
1503
1504 return finish_command(cmd);
1505 }
1506
1507 enum child_state {
1508 GIT_CP_FREE,
1509 GIT_CP_WORKING,
1510 GIT_CP_WAIT_CLEANUP,
1511 };
1512
1513 struct parallel_processes {
1514 void *data;
1515
1516 int max_processes;
1517 int nr_processes;
1518
1519 get_next_task_fn get_next_task;
1520 start_failure_fn start_failure;
1521 task_finished_fn task_finished;
1522
1523 struct {
1524 enum child_state state;
1525 struct child_process process;
1526 struct strbuf err;
1527 void *data;
1528 } *children;
1529 /*
1530 * The struct pollfd is logically part of *children,
1531 * but the system call expects it as its own array.
1532 */
1533 struct pollfd *pfd;
1534
1535 unsigned shutdown : 1;
1536
1537 int output_owner;
1538 struct strbuf buffered_output; /* of finished children */
1539 };
1540
1541 static int default_start_failure(struct strbuf *out,
1542 void *pp_cb,
1543 void *pp_task_cb)
1544 {
1545 return 0;
1546 }
1547
1548 static int default_task_finished(int result,
1549 struct strbuf *out,
1550 void *pp_cb,
1551 void *pp_task_cb)
1552 {
1553 return 0;
1554 }
1555
1556 static void kill_children(struct parallel_processes *pp, int signo)
1557 {
1558 int i, n = pp->max_processes;
1559
1560 for (i = 0; i < n; i++)
1561 if (pp->children[i].state == GIT_CP_WORKING)
1562 kill(pp->children[i].process.pid, signo);
1563 }
1564
1565 static struct parallel_processes *pp_for_signal;
1566
1567 static void handle_children_on_signal(int signo)
1568 {
1569 kill_children(pp_for_signal, signo);
1570 sigchain_pop(signo);
1571 raise(signo);
1572 }
1573
1574 static void pp_init(struct parallel_processes *pp,
1575 int n,
1576 get_next_task_fn get_next_task,
1577 start_failure_fn start_failure,
1578 task_finished_fn task_finished,
1579 void *data)
1580 {
1581 int i;
1582
1583 if (n < 1)
1584 n = online_cpus();
1585
1586 pp->max_processes = n;
1587
1588 trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1589
1590 pp->data = data;
1591 if (!get_next_task)
1592 BUG("you need to specify a get_next_task function");
1593 pp->get_next_task = get_next_task;
1594
1595 pp->start_failure = start_failure ? start_failure : default_start_failure;
1596 pp->task_finished = task_finished ? task_finished : default_task_finished;
1597
1598 pp->nr_processes = 0;
1599 pp->output_owner = 0;
1600 pp->shutdown = 0;
1601 CALLOC_ARRAY(pp->children, n);
1602 CALLOC_ARRAY(pp->pfd, n);
1603 strbuf_init(&pp->buffered_output, 0);
1604
1605 for (i = 0; i < n; i++) {
1606 strbuf_init(&pp->children[i].err, 0);
1607 child_process_init(&pp->children[i].process);
1608 pp->pfd[i].events = POLLIN | POLLHUP;
1609 pp->pfd[i].fd = -1;
1610 }
1611
1612 pp_for_signal = pp;
1613 sigchain_push_common(handle_children_on_signal);
1614 }
1615
1616 static void pp_cleanup(struct parallel_processes *pp)
1617 {
1618 int i;
1619
1620 trace_printf("run_processes_parallel: done");
1621 for (i = 0; i < pp->max_processes; i++) {
1622 strbuf_release(&pp->children[i].err);
1623 child_process_clear(&pp->children[i].process);
1624 }
1625
1626 free(pp->children);
1627 free(pp->pfd);
1628
1629 /*
1630 * When get_next_task added messages to the buffer in its last
1631 * iteration, the buffered output is non empty.
1632 */
1633 strbuf_write(&pp->buffered_output, stderr);
1634 strbuf_release(&pp->buffered_output);
1635
1636 sigchain_pop_common();
1637 }
1638
1639 /* returns
1640 * 0 if a new task was started.
1641 * 1 if no new jobs was started (get_next_task ran out of work, non critical
1642 * problem with starting a new command)
1643 * <0 no new job was started, user wishes to shutdown early. Use negative code
1644 * to signal the children.
1645 */
1646 static int pp_start_one(struct parallel_processes *pp)
1647 {
1648 int i, code;
1649
1650 for (i = 0; i < pp->max_processes; i++)
1651 if (pp->children[i].state == GIT_CP_FREE)
1652 break;
1653 if (i == pp->max_processes)
1654 BUG("bookkeeping is hard");
1655
1656 code = pp->get_next_task(&pp->children[i].process,
1657 &pp->children[i].err,
1658 pp->data,
1659 &pp->children[i].data);
1660 if (!code) {
1661 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1662 strbuf_reset(&pp->children[i].err);
1663 return 1;
1664 }
1665 pp->children[i].process.err = -1;
1666 pp->children[i].process.stdout_to_stderr = 1;
1667 pp->children[i].process.no_stdin = 1;
1668
1669 if (start_command(&pp->children[i].process)) {
1670 code = pp->start_failure(&pp->children[i].err,
1671 pp->data,
1672 pp->children[i].data);
1673 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1674 strbuf_reset(&pp->children[i].err);
1675 if (code)
1676 pp->shutdown = 1;
1677 return code;
1678 }
1679
1680 pp->nr_processes++;
1681 pp->children[i].state = GIT_CP_WORKING;
1682 pp->pfd[i].fd = pp->children[i].process.err;
1683 return 0;
1684 }
1685
1686 static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1687 {
1688 int i;
1689
1690 while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1691 if (errno == EINTR)
1692 continue;
1693 pp_cleanup(pp);
1694 die_errno("poll");
1695 }
1696
1697 /* Buffer output from all pipes. */
1698 for (i = 0; i < pp->max_processes; i++) {
1699 if (pp->children[i].state == GIT_CP_WORKING &&
1700 pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1701 int n = strbuf_read_once(&pp->children[i].err,
1702 pp->children[i].process.err, 0);
1703 if (n == 0) {
1704 close(pp->children[i].process.err);
1705 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1706 } else if (n < 0)
1707 if (errno != EAGAIN)
1708 die_errno("read");
1709 }
1710 }
1711 }
1712
1713 static void pp_output(struct parallel_processes *pp)
1714 {
1715 int i = pp->output_owner;
1716 if (pp->children[i].state == GIT_CP_WORKING &&
1717 pp->children[i].err.len) {
1718 strbuf_write(&pp->children[i].err, stderr);
1719 strbuf_reset(&pp->children[i].err);
1720 }
1721 }
1722
1723 static int pp_collect_finished(struct parallel_processes *pp)
1724 {
1725 int i, code;
1726 int n = pp->max_processes;
1727 int result = 0;
1728
1729 while (pp->nr_processes > 0) {
1730 for (i = 0; i < pp->max_processes; i++)
1731 if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1732 break;
1733 if (i == pp->max_processes)
1734 break;
1735
1736 code = finish_command(&pp->children[i].process);
1737
1738 code = pp->task_finished(code,
1739 &pp->children[i].err, pp->data,
1740 pp->children[i].data);
1741
1742 if (code)
1743 result = code;
1744 if (code < 0)
1745 break;
1746
1747 pp->nr_processes--;
1748 pp->children[i].state = GIT_CP_FREE;
1749 pp->pfd[i].fd = -1;
1750 child_process_init(&pp->children[i].process);
1751
1752 if (i != pp->output_owner) {
1753 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1754 strbuf_reset(&pp->children[i].err);
1755 } else {
1756 strbuf_write(&pp->children[i].err, stderr);
1757 strbuf_reset(&pp->children[i].err);
1758
1759 /* Output all other finished child processes */
1760 strbuf_write(&pp->buffered_output, stderr);
1761 strbuf_reset(&pp->buffered_output);
1762
1763 /*
1764 * Pick next process to output live.
1765 * NEEDSWORK:
1766 * For now we pick it randomly by doing a round
1767 * robin. Later we may want to pick the one with
1768 * the most output or the longest or shortest
1769 * running process time.
1770 */
1771 for (i = 0; i < n; i++)
1772 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1773 break;
1774 pp->output_owner = (pp->output_owner + i) % n;
1775 }
1776 }
1777 return result;
1778 }
1779
1780 int run_processes_parallel(int n,
1781 get_next_task_fn get_next_task,
1782 start_failure_fn start_failure,
1783 task_finished_fn task_finished,
1784 void *pp_cb)
1785 {
1786 int i, code;
1787 int output_timeout = 100;
1788 int spawn_cap = 4;
1789 struct parallel_processes pp;
1790
1791 pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1792 while (1) {
1793 for (i = 0;
1794 i < spawn_cap && !pp.shutdown &&
1795 pp.nr_processes < pp.max_processes;
1796 i++) {
1797 code = pp_start_one(&pp);
1798 if (!code)
1799 continue;
1800 if (code < 0) {
1801 pp.shutdown = 1;
1802 kill_children(&pp, -code);
1803 }
1804 break;
1805 }
1806 if (!pp.nr_processes)
1807 break;
1808 pp_buffer_stderr(&pp, output_timeout);
1809 pp_output(&pp);
1810 code = pp_collect_finished(&pp);
1811 if (code) {
1812 pp.shutdown = 1;
1813 if (code < 0)
1814 kill_children(&pp, -code);
1815 }
1816 }
1817
1818 pp_cleanup(&pp);
1819 return 0;
1820 }
1821
1822 int run_processes_parallel_tr2(int n, get_next_task_fn get_next_task,
1823 start_failure_fn start_failure,
1824 task_finished_fn task_finished, void *pp_cb,
1825 const char *tr2_category, const char *tr2_label)
1826 {
1827 int result;
1828
1829 trace2_region_enter_printf(tr2_category, tr2_label, NULL, "max:%d",
1830 ((n < 1) ? online_cpus() : n));
1831
1832 result = run_processes_parallel(n, get_next_task, start_failure,
1833 task_finished, pp_cb);
1834
1835 trace2_region_leave(tr2_category, tr2_label, NULL);
1836
1837 return result;
1838 }
1839
1840 int run_auto_maintenance(int quiet)
1841 {
1842 int enabled;
1843 struct child_process maint = CHILD_PROCESS_INIT;
1844
1845 if (!git_config_get_bool("maintenance.auto", &enabled) &&
1846 !enabled)
1847 return 0;
1848
1849 maint.git_cmd = 1;
1850 maint.close_object_store = 1;
1851 strvec_pushl(&maint.args, "maintenance", "run", "--auto", NULL);
1852 strvec_push(&maint.args, quiet ? "--quiet" : "--no-quiet");
1853
1854 return run_command(&maint);
1855 }
1856
1857 void prepare_other_repo_env(struct strvec *env_array, const char *new_git_dir)
1858 {
1859 const char * const *var;
1860
1861 for (var = local_repo_env; *var; var++) {
1862 if (strcmp(*var, CONFIG_DATA_ENVIRONMENT) &&
1863 strcmp(*var, CONFIG_COUNT_ENVIRONMENT))
1864 strvec_push(env_array, *var);
1865 }
1866 strvec_pushf(env_array, "%s=%s", GIT_DIR_ENVIRONMENT, new_git_dir);
1867 }
1868
1869 enum start_bg_result start_bg_command(struct child_process *cmd,
1870 start_bg_wait_cb *wait_cb,
1871 void *cb_data,
1872 unsigned int timeout_sec)
1873 {
1874 enum start_bg_result sbgr = SBGR_ERROR;
1875 int ret;
1876 int wait_status;
1877 pid_t pid_seen;
1878 time_t time_limit;
1879
1880 /*
1881 * We do not allow clean-on-exit because the child process
1882 * should persist in the background and possibly/probably
1883 * after this process exits. So we don't want to kill the
1884 * child during our atexit routine.
1885 */
1886 if (cmd->clean_on_exit)
1887 BUG("start_bg_command() does not allow non-zero clean_on_exit");
1888
1889 if (!cmd->trace2_child_class)
1890 cmd->trace2_child_class = "background";
1891
1892 ret = start_command(cmd);
1893 if (ret) {
1894 /*
1895 * We assume that if `start_command()` fails, we
1896 * either get a complete `trace2_child_start() /
1897 * trace2_child_exit()` pair or it fails before the
1898 * `trace2_child_start()` is emitted, so we do not
1899 * need to worry about it here.
1900 *
1901 * We also assume that `start_command()` does not add
1902 * us to the cleanup list. And that it calls
1903 * calls `child_process_clear()`.
1904 */
1905 sbgr = SBGR_ERROR;
1906 goto done;
1907 }
1908
1909 time(&time_limit);
1910 time_limit += timeout_sec;
1911
1912 wait:
1913 pid_seen = waitpid(cmd->pid, &wait_status, WNOHANG);
1914
1915 if (!pid_seen) {
1916 /*
1917 * The child is currently running. Ask the callback
1918 * if the child is ready to do work or whether we
1919 * should keep waiting for it to boot up.
1920 */
1921 ret = (*wait_cb)(cmd, cb_data);
1922 if (!ret) {
1923 /*
1924 * The child is running and "ready".
1925 */
1926 trace2_child_ready(cmd, "ready");
1927 sbgr = SBGR_READY;
1928 goto done;
1929 } else if (ret > 0) {
1930 /*
1931 * The callback said to give it more time to boot up
1932 * (subject to our timeout limit).
1933 */
1934 time_t now;
1935
1936 time(&now);
1937 if (now < time_limit)
1938 goto wait;
1939
1940 /*
1941 * Our timeout has expired. We don't try to
1942 * kill the child, but rather let it continue
1943 * (hopefully) trying to startup.
1944 */
1945 trace2_child_ready(cmd, "timeout");
1946 sbgr = SBGR_TIMEOUT;
1947 goto done;
1948 } else {
1949 /*
1950 * The cb gave up on this child. It is still running,
1951 * but our cb got an error trying to probe it.
1952 */
1953 trace2_child_ready(cmd, "error");
1954 sbgr = SBGR_CB_ERROR;
1955 goto done;
1956 }
1957 }
1958
1959 else if (pid_seen == cmd->pid) {
1960 int child_code = -1;
1961
1962 /*
1963 * The child started, but exited or was terminated
1964 * before becoming "ready".
1965 *
1966 * We try to match the behavior of `wait_or_whine()`
1967 * WRT the handling of WIFSIGNALED() and WIFEXITED()
1968 * and convert the child's status to a return code for
1969 * tracing purposes and emit the `trace2_child_exit()`
1970 * event.
1971 *
1972 * We do not want the wait_or_whine() error message
1973 * because we will be called by client-side library
1974 * routines.
1975 */
1976 if (WIFEXITED(wait_status))
1977 child_code = WEXITSTATUS(wait_status);
1978 else if (WIFSIGNALED(wait_status))
1979 child_code = WTERMSIG(wait_status) + 128;
1980 trace2_child_exit(cmd, child_code);
1981
1982 sbgr = SBGR_DIED;
1983 goto done;
1984 }
1985
1986 else if (pid_seen < 0 && errno == EINTR)
1987 goto wait;
1988
1989 trace2_child_exit(cmd, -1);
1990 sbgr = SBGR_ERROR;
1991
1992 done:
1993 child_process_clear(cmd);
1994 invalidate_lstat_cache();
1995 return sbgr;
1996 }