]> git.ipfire.org Git - thirdparty/git.git/blob - run-command.c
Merge branch 'ab/pager-exit-log'
[thirdparty/git.git] / run-command.c
1 #include "cache.h"
2 #include "run-command.h"
3 #include "exec-cmd.h"
4 #include "sigchain.h"
5 #include "strvec.h"
6 #include "thread-utils.h"
7 #include "strbuf.h"
8 #include "string-list.h"
9 #include "quote.h"
10 #include "config.h"
11
12 void child_process_init(struct child_process *child)
13 {
14 memset(child, 0, sizeof(*child));
15 strvec_init(&child->args);
16 strvec_init(&child->env_array);
17 }
18
19 void child_process_clear(struct child_process *child)
20 {
21 strvec_clear(&child->args);
22 strvec_clear(&child->env_array);
23 }
24
25 struct child_to_clean {
26 pid_t pid;
27 struct child_process *process;
28 struct child_to_clean *next;
29 };
30 static struct child_to_clean *children_to_clean;
31 static int installed_child_cleanup_handler;
32
33 static void cleanup_children(int sig, int in_signal)
34 {
35 struct child_to_clean *children_to_wait_for = NULL;
36
37 while (children_to_clean) {
38 struct child_to_clean *p = children_to_clean;
39 children_to_clean = p->next;
40
41 if (p->process && !in_signal) {
42 struct child_process *process = p->process;
43 if (process->clean_on_exit_handler) {
44 trace_printf(
45 "trace: run_command: running exit handler for pid %"
46 PRIuMAX, (uintmax_t)p->pid
47 );
48 process->clean_on_exit_handler(process);
49 }
50 }
51
52 kill(p->pid, sig);
53
54 if (p->process && p->process->wait_after_clean) {
55 p->next = children_to_wait_for;
56 children_to_wait_for = p;
57 } else {
58 if (!in_signal)
59 free(p);
60 }
61 }
62
63 while (children_to_wait_for) {
64 struct child_to_clean *p = children_to_wait_for;
65 children_to_wait_for = p->next;
66
67 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
68 ; /* spin waiting for process exit or error */
69
70 if (!in_signal)
71 free(p);
72 }
73 }
74
75 static void cleanup_children_on_signal(int sig)
76 {
77 cleanup_children(sig, 1);
78 sigchain_pop(sig);
79 raise(sig);
80 }
81
82 static void cleanup_children_on_exit(void)
83 {
84 cleanup_children(SIGTERM, 0);
85 }
86
87 static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
88 {
89 struct child_to_clean *p = xmalloc(sizeof(*p));
90 p->pid = pid;
91 p->process = process;
92 p->next = children_to_clean;
93 children_to_clean = p;
94
95 if (!installed_child_cleanup_handler) {
96 atexit(cleanup_children_on_exit);
97 sigchain_push_common(cleanup_children_on_signal);
98 installed_child_cleanup_handler = 1;
99 }
100 }
101
102 static void clear_child_for_cleanup(pid_t pid)
103 {
104 struct child_to_clean **pp;
105
106 for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
107 struct child_to_clean *clean_me = *pp;
108
109 if (clean_me->pid == pid) {
110 *pp = clean_me->next;
111 free(clean_me);
112 return;
113 }
114 }
115 }
116
117 static inline void close_pair(int fd[2])
118 {
119 close(fd[0]);
120 close(fd[1]);
121 }
122
123 int is_executable(const char *name)
124 {
125 struct stat st;
126
127 if (stat(name, &st) || /* stat, not lstat */
128 !S_ISREG(st.st_mode))
129 return 0;
130
131 #if defined(GIT_WINDOWS_NATIVE)
132 /*
133 * On Windows there is no executable bit. The file extension
134 * indicates whether it can be run as an executable, and Git
135 * has special-handling to detect scripts and launch them
136 * through the indicated script interpreter. We test for the
137 * file extension first because virus scanners may make
138 * it quite expensive to open many files.
139 */
140 if (ends_with(name, ".exe"))
141 return S_IXUSR;
142
143 {
144 /*
145 * Now that we know it does not have an executable extension,
146 * peek into the file instead.
147 */
148 char buf[3] = { 0 };
149 int n;
150 int fd = open(name, O_RDONLY);
151 st.st_mode &= ~S_IXUSR;
152 if (fd >= 0) {
153 n = read(fd, buf, 2);
154 if (n == 2)
155 /* look for a she-bang */
156 if (!strcmp(buf, "#!"))
157 st.st_mode |= S_IXUSR;
158 close(fd);
159 }
160 }
161 #endif
162 return st.st_mode & S_IXUSR;
163 }
164
165 /*
166 * Search $PATH for a command. This emulates the path search that
167 * execvp would perform, without actually executing the command so it
168 * can be used before fork() to prepare to run a command using
169 * execve() or after execvp() to diagnose why it failed.
170 *
171 * The caller should ensure that file contains no directory
172 * separators.
173 *
174 * Returns the path to the command, as found in $PATH or NULL if the
175 * command could not be found. The caller inherits ownership of the memory
176 * used to store the resultant path.
177 *
178 * This should not be used on Windows, where the $PATH search rules
179 * are more complicated (e.g., a search for "foo" should find
180 * "foo.exe").
181 */
182 static char *locate_in_PATH(const char *file)
183 {
184 const char *p = getenv("PATH");
185 struct strbuf buf = STRBUF_INIT;
186
187 if (!p || !*p)
188 return NULL;
189
190 while (1) {
191 const char *end = strchrnul(p, ':');
192
193 strbuf_reset(&buf);
194
195 /* POSIX specifies an empty entry as the current directory. */
196 if (end != p) {
197 strbuf_add(&buf, p, end - p);
198 strbuf_addch(&buf, '/');
199 }
200 strbuf_addstr(&buf, file);
201
202 if (is_executable(buf.buf))
203 return strbuf_detach(&buf, NULL);
204
205 if (!*end)
206 break;
207 p = end + 1;
208 }
209
210 strbuf_release(&buf);
211 return NULL;
212 }
213
214 static int exists_in_PATH(const char *file)
215 {
216 char *r = locate_in_PATH(file);
217 int found = r != NULL;
218 free(r);
219 return found;
220 }
221
222 int sane_execvp(const char *file, char * const argv[])
223 {
224 #ifndef GIT_WINDOWS_NATIVE
225 /*
226 * execvp() doesn't return, so we all we can do is tell trace2
227 * what we are about to do and let it leave a hint in the log
228 * (unless of course the execvp() fails).
229 *
230 * we skip this for Windows because the compat layer already
231 * has to emulate the execvp() call anyway.
232 */
233 int exec_id = trace2_exec(file, (const char **)argv);
234 #endif
235
236 if (!execvp(file, argv))
237 return 0; /* cannot happen ;-) */
238
239 #ifndef GIT_WINDOWS_NATIVE
240 {
241 int ec = errno;
242 trace2_exec_result(exec_id, ec);
243 errno = ec;
244 }
245 #endif
246
247 /*
248 * When a command can't be found because one of the directories
249 * listed in $PATH is unsearchable, execvp reports EACCES, but
250 * careful usability testing (read: analysis of occasional bug
251 * reports) reveals that "No such file or directory" is more
252 * intuitive.
253 *
254 * We avoid commands with "/", because execvp will not do $PATH
255 * lookups in that case.
256 *
257 * The reassignment of EACCES to errno looks like a no-op below,
258 * but we need to protect against exists_in_PATH overwriting errno.
259 */
260 if (errno == EACCES && !strchr(file, '/'))
261 errno = exists_in_PATH(file) ? EACCES : ENOENT;
262 else if (errno == ENOTDIR && !strchr(file, '/'))
263 errno = ENOENT;
264 return -1;
265 }
266
267 static const char **prepare_shell_cmd(struct strvec *out, const char **argv)
268 {
269 if (!argv[0])
270 BUG("shell command is empty");
271
272 if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
273 #ifndef GIT_WINDOWS_NATIVE
274 strvec_push(out, SHELL_PATH);
275 #else
276 strvec_push(out, "sh");
277 #endif
278 strvec_push(out, "-c");
279
280 /*
281 * If we have no extra arguments, we do not even need to
282 * bother with the "$@" magic.
283 */
284 if (!argv[1])
285 strvec_push(out, argv[0]);
286 else
287 strvec_pushf(out, "%s \"$@\"", argv[0]);
288 }
289
290 strvec_pushv(out, argv);
291 return out->v;
292 }
293
294 #ifndef GIT_WINDOWS_NATIVE
295 static int child_notifier = -1;
296
297 enum child_errcode {
298 CHILD_ERR_CHDIR,
299 CHILD_ERR_DUP2,
300 CHILD_ERR_CLOSE,
301 CHILD_ERR_SIGPROCMASK,
302 CHILD_ERR_ENOENT,
303 CHILD_ERR_SILENT,
304 CHILD_ERR_ERRNO
305 };
306
307 struct child_err {
308 enum child_errcode err;
309 int syserr; /* errno */
310 };
311
312 static void child_die(enum child_errcode err)
313 {
314 struct child_err buf;
315
316 buf.err = err;
317 buf.syserr = errno;
318
319 /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
320 xwrite(child_notifier, &buf, sizeof(buf));
321 _exit(1);
322 }
323
324 static void child_dup2(int fd, int to)
325 {
326 if (dup2(fd, to) < 0)
327 child_die(CHILD_ERR_DUP2);
328 }
329
330 static void child_close(int fd)
331 {
332 if (close(fd))
333 child_die(CHILD_ERR_CLOSE);
334 }
335
336 static void child_close_pair(int fd[2])
337 {
338 child_close(fd[0]);
339 child_close(fd[1]);
340 }
341
342 /*
343 * parent will make it look like the child spewed a fatal error and died
344 * this is needed to prevent changes to t0061.
345 */
346 static void fake_fatal(const char *err, va_list params)
347 {
348 vreportf("fatal: ", err, params);
349 }
350
351 static void child_error_fn(const char *err, va_list params)
352 {
353 const char msg[] = "error() should not be called in child\n";
354 xwrite(2, msg, sizeof(msg) - 1);
355 }
356
357 static void child_warn_fn(const char *err, va_list params)
358 {
359 const char msg[] = "warn() should not be called in child\n";
360 xwrite(2, msg, sizeof(msg) - 1);
361 }
362
363 static void NORETURN child_die_fn(const char *err, va_list params)
364 {
365 const char msg[] = "die() should not be called in child\n";
366 xwrite(2, msg, sizeof(msg) - 1);
367 _exit(2);
368 }
369
370 /* this runs in the parent process */
371 static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
372 {
373 static void (*old_errfn)(const char *err, va_list params);
374
375 old_errfn = get_error_routine();
376 set_error_routine(fake_fatal);
377 errno = cerr->syserr;
378
379 switch (cerr->err) {
380 case CHILD_ERR_CHDIR:
381 error_errno("exec '%s': cd to '%s' failed",
382 cmd->argv[0], cmd->dir);
383 break;
384 case CHILD_ERR_DUP2:
385 error_errno("dup2() in child failed");
386 break;
387 case CHILD_ERR_CLOSE:
388 error_errno("close() in child failed");
389 break;
390 case CHILD_ERR_SIGPROCMASK:
391 error_errno("sigprocmask failed restoring signals");
392 break;
393 case CHILD_ERR_ENOENT:
394 error_errno("cannot run %s", cmd->argv[0]);
395 break;
396 case CHILD_ERR_SILENT:
397 break;
398 case CHILD_ERR_ERRNO:
399 error_errno("cannot exec '%s'", cmd->argv[0]);
400 break;
401 }
402 set_error_routine(old_errfn);
403 }
404
405 static int prepare_cmd(struct strvec *out, const struct child_process *cmd)
406 {
407 if (!cmd->argv[0])
408 BUG("command is empty");
409
410 /*
411 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
412 * attempt to interpret the command with 'sh'.
413 */
414 strvec_push(out, SHELL_PATH);
415
416 if (cmd->git_cmd) {
417 prepare_git_cmd(out, cmd->argv);
418 } else if (cmd->use_shell) {
419 prepare_shell_cmd(out, cmd->argv);
420 } else {
421 strvec_pushv(out, cmd->argv);
422 }
423
424 /*
425 * If there are no dir separator characters in the command then perform
426 * a path lookup and use the resolved path as the command to exec. If
427 * there are dir separator characters, we have exec attempt to invoke
428 * the command directly.
429 */
430 if (!has_dir_sep(out->v[1])) {
431 char *program = locate_in_PATH(out->v[1]);
432 if (program) {
433 free((char *)out->v[1]);
434 out->v[1] = program;
435 } else {
436 strvec_clear(out);
437 errno = ENOENT;
438 return -1;
439 }
440 }
441
442 return 0;
443 }
444
445 static char **prep_childenv(const char *const *deltaenv)
446 {
447 extern char **environ;
448 char **childenv;
449 struct string_list env = STRING_LIST_INIT_DUP;
450 struct strbuf key = STRBUF_INIT;
451 const char *const *p;
452 int i;
453
454 /* Construct a sorted string list consisting of the current environ */
455 for (p = (const char *const *) environ; p && *p; p++) {
456 const char *equals = strchr(*p, '=');
457
458 if (equals) {
459 strbuf_reset(&key);
460 strbuf_add(&key, *p, equals - *p);
461 string_list_append(&env, key.buf)->util = (void *) *p;
462 } else {
463 string_list_append(&env, *p)->util = (void *) *p;
464 }
465 }
466 string_list_sort(&env);
467
468 /* Merge in 'deltaenv' with the current environ */
469 for (p = deltaenv; p && *p; p++) {
470 const char *equals = strchr(*p, '=');
471
472 if (equals) {
473 /* ('key=value'), insert or replace entry */
474 strbuf_reset(&key);
475 strbuf_add(&key, *p, equals - *p);
476 string_list_insert(&env, key.buf)->util = (void *) *p;
477 } else {
478 /* otherwise ('key') remove existing entry */
479 string_list_remove(&env, *p, 0);
480 }
481 }
482
483 /* Create an array of 'char *' to be used as the childenv */
484 ALLOC_ARRAY(childenv, env.nr + 1);
485 for (i = 0; i < env.nr; i++)
486 childenv[i] = env.items[i].util;
487 childenv[env.nr] = NULL;
488
489 string_list_clear(&env, 0);
490 strbuf_release(&key);
491 return childenv;
492 }
493
494 struct atfork_state {
495 #ifndef NO_PTHREADS
496 int cs;
497 #endif
498 sigset_t old;
499 };
500
501 #define CHECK_BUG(err, msg) \
502 do { \
503 int e = (err); \
504 if (e) \
505 BUG("%s: %s", msg, strerror(e)); \
506 } while(0)
507
508 static void atfork_prepare(struct atfork_state *as)
509 {
510 sigset_t all;
511
512 if (sigfillset(&all))
513 die_errno("sigfillset");
514 #ifdef NO_PTHREADS
515 if (sigprocmask(SIG_SETMASK, &all, &as->old))
516 die_errno("sigprocmask");
517 #else
518 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
519 "blocking all signals");
520 CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
521 "disabling cancellation");
522 #endif
523 }
524
525 static void atfork_parent(struct atfork_state *as)
526 {
527 #ifdef NO_PTHREADS
528 if (sigprocmask(SIG_SETMASK, &as->old, NULL))
529 die_errno("sigprocmask");
530 #else
531 CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
532 "re-enabling cancellation");
533 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
534 "restoring signal mask");
535 #endif
536 }
537 #endif /* GIT_WINDOWS_NATIVE */
538
539 static inline void set_cloexec(int fd)
540 {
541 int flags = fcntl(fd, F_GETFD);
542 if (flags >= 0)
543 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
544 }
545
546 static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
547 {
548 int status, code = -1;
549 pid_t waiting;
550 int failed_errno = 0;
551
552 while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
553 ; /* nothing */
554 if (in_signal) {
555 if (WIFEXITED(status))
556 code = WEXITSTATUS(status);
557 return code;
558 }
559
560 if (waiting < 0) {
561 failed_errno = errno;
562 error_errno("waitpid for %s failed", argv0);
563 } else if (waiting != pid) {
564 error("waitpid is confused (%s)", argv0);
565 } else if (WIFSIGNALED(status)) {
566 code = WTERMSIG(status);
567 if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
568 error("%s died of signal %d", argv0, code);
569 /*
570 * This return value is chosen so that code & 0xff
571 * mimics the exit code that a POSIX shell would report for
572 * a program that died from this signal.
573 */
574 code += 128;
575 } else if (WIFEXITED(status)) {
576 code = WEXITSTATUS(status);
577 } else {
578 error("waitpid is confused (%s)", argv0);
579 }
580
581 clear_child_for_cleanup(pid);
582
583 errno = failed_errno;
584 return code;
585 }
586
587 static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
588 {
589 struct string_list envs = STRING_LIST_INIT_DUP;
590 const char *const *e;
591 int i;
592 int printed_unset = 0;
593
594 /* Last one wins, see run-command.c:prep_childenv() for context */
595 for (e = deltaenv; e && *e; e++) {
596 struct strbuf key = STRBUF_INIT;
597 char *equals = strchr(*e, '=');
598
599 if (equals) {
600 strbuf_add(&key, *e, equals - *e);
601 string_list_insert(&envs, key.buf)->util = equals + 1;
602 } else {
603 string_list_insert(&envs, *e)->util = NULL;
604 }
605 strbuf_release(&key);
606 }
607
608 /* "unset X Y...;" */
609 for (i = 0; i < envs.nr; i++) {
610 const char *var = envs.items[i].string;
611 const char *val = envs.items[i].util;
612
613 if (val || !getenv(var))
614 continue;
615
616 if (!printed_unset) {
617 strbuf_addstr(dst, " unset");
618 printed_unset = 1;
619 }
620 strbuf_addf(dst, " %s", var);
621 }
622 if (printed_unset)
623 strbuf_addch(dst, ';');
624
625 /* ... followed by "A=B C=D ..." */
626 for (i = 0; i < envs.nr; i++) {
627 const char *var = envs.items[i].string;
628 const char *val = envs.items[i].util;
629 const char *oldval;
630
631 if (!val)
632 continue;
633
634 oldval = getenv(var);
635 if (oldval && !strcmp(val, oldval))
636 continue;
637
638 strbuf_addf(dst, " %s=", var);
639 sq_quote_buf_pretty(dst, val);
640 }
641 string_list_clear(&envs, 0);
642 }
643
644 static void trace_run_command(const struct child_process *cp)
645 {
646 struct strbuf buf = STRBUF_INIT;
647
648 if (!trace_want(&trace_default_key))
649 return;
650
651 strbuf_addstr(&buf, "trace: run_command:");
652 if (cp->dir) {
653 strbuf_addstr(&buf, " cd ");
654 sq_quote_buf_pretty(&buf, cp->dir);
655 strbuf_addch(&buf, ';');
656 }
657 /*
658 * The caller is responsible for initializing cp->env from
659 * cp->env_array if needed. We only check one place.
660 */
661 if (cp->env)
662 trace_add_env(&buf, cp->env);
663 if (cp->git_cmd)
664 strbuf_addstr(&buf, " git");
665 sq_quote_argv_pretty(&buf, cp->argv);
666
667 trace_printf("%s", buf.buf);
668 strbuf_release(&buf);
669 }
670
671 int start_command(struct child_process *cmd)
672 {
673 int need_in, need_out, need_err;
674 int fdin[2], fdout[2], fderr[2];
675 int failed_errno;
676 char *str;
677
678 if (!cmd->argv)
679 cmd->argv = cmd->args.v;
680 if (!cmd->env)
681 cmd->env = cmd->env_array.v;
682
683 /*
684 * In case of errors we must keep the promise to close FDs
685 * that have been passed in via ->in and ->out.
686 */
687
688 need_in = !cmd->no_stdin && cmd->in < 0;
689 if (need_in) {
690 if (pipe(fdin) < 0) {
691 failed_errno = errno;
692 if (cmd->out > 0)
693 close(cmd->out);
694 str = "standard input";
695 goto fail_pipe;
696 }
697 cmd->in = fdin[1];
698 }
699
700 need_out = !cmd->no_stdout
701 && !cmd->stdout_to_stderr
702 && cmd->out < 0;
703 if (need_out) {
704 if (pipe(fdout) < 0) {
705 failed_errno = errno;
706 if (need_in)
707 close_pair(fdin);
708 else if (cmd->in)
709 close(cmd->in);
710 str = "standard output";
711 goto fail_pipe;
712 }
713 cmd->out = fdout[0];
714 }
715
716 need_err = !cmd->no_stderr && cmd->err < 0;
717 if (need_err) {
718 if (pipe(fderr) < 0) {
719 failed_errno = errno;
720 if (need_in)
721 close_pair(fdin);
722 else if (cmd->in)
723 close(cmd->in);
724 if (need_out)
725 close_pair(fdout);
726 else if (cmd->out)
727 close(cmd->out);
728 str = "standard error";
729 fail_pipe:
730 error("cannot create %s pipe for %s: %s",
731 str, cmd->argv[0], strerror(failed_errno));
732 child_process_clear(cmd);
733 errno = failed_errno;
734 return -1;
735 }
736 cmd->err = fderr[0];
737 }
738
739 trace2_child_start(cmd);
740 trace_run_command(cmd);
741
742 fflush(NULL);
743
744 #ifndef GIT_WINDOWS_NATIVE
745 {
746 int notify_pipe[2];
747 int null_fd = -1;
748 char **childenv;
749 struct strvec argv = STRVEC_INIT;
750 struct child_err cerr;
751 struct atfork_state as;
752
753 if (prepare_cmd(&argv, cmd) < 0) {
754 failed_errno = errno;
755 cmd->pid = -1;
756 if (!cmd->silent_exec_failure)
757 error_errno("cannot run %s", cmd->argv[0]);
758 goto end_of_spawn;
759 }
760
761 if (pipe(notify_pipe))
762 notify_pipe[0] = notify_pipe[1] = -1;
763
764 if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
765 null_fd = open("/dev/null", O_RDWR | O_CLOEXEC);
766 if (null_fd < 0)
767 die_errno(_("open /dev/null failed"));
768 set_cloexec(null_fd);
769 }
770
771 childenv = prep_childenv(cmd->env);
772 atfork_prepare(&as);
773
774 /*
775 * NOTE: In order to prevent deadlocking when using threads special
776 * care should be taken with the function calls made in between the
777 * fork() and exec() calls. No calls should be made to functions which
778 * require acquiring a lock (e.g. malloc) as the lock could have been
779 * held by another thread at the time of forking, causing the lock to
780 * never be released in the child process. This means only
781 * Async-Signal-Safe functions are permitted in the child.
782 */
783 cmd->pid = fork();
784 failed_errno = errno;
785 if (!cmd->pid) {
786 int sig;
787 /*
788 * Ensure the default die/error/warn routines do not get
789 * called, they can take stdio locks and malloc.
790 */
791 set_die_routine(child_die_fn);
792 set_error_routine(child_error_fn);
793 set_warn_routine(child_warn_fn);
794
795 close(notify_pipe[0]);
796 set_cloexec(notify_pipe[1]);
797 child_notifier = notify_pipe[1];
798
799 if (cmd->no_stdin)
800 child_dup2(null_fd, 0);
801 else if (need_in) {
802 child_dup2(fdin[0], 0);
803 child_close_pair(fdin);
804 } else if (cmd->in) {
805 child_dup2(cmd->in, 0);
806 child_close(cmd->in);
807 }
808
809 if (cmd->no_stderr)
810 child_dup2(null_fd, 2);
811 else if (need_err) {
812 child_dup2(fderr[1], 2);
813 child_close_pair(fderr);
814 } else if (cmd->err > 1) {
815 child_dup2(cmd->err, 2);
816 child_close(cmd->err);
817 }
818
819 if (cmd->no_stdout)
820 child_dup2(null_fd, 1);
821 else if (cmd->stdout_to_stderr)
822 child_dup2(2, 1);
823 else if (need_out) {
824 child_dup2(fdout[1], 1);
825 child_close_pair(fdout);
826 } else if (cmd->out > 1) {
827 child_dup2(cmd->out, 1);
828 child_close(cmd->out);
829 }
830
831 if (cmd->dir && chdir(cmd->dir))
832 child_die(CHILD_ERR_CHDIR);
833
834 /*
835 * restore default signal handlers here, in case
836 * we catch a signal right before execve below
837 */
838 for (sig = 1; sig < NSIG; sig++) {
839 /* ignored signals get reset to SIG_DFL on execve */
840 if (signal(sig, SIG_DFL) == SIG_IGN)
841 signal(sig, SIG_IGN);
842 }
843
844 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
845 child_die(CHILD_ERR_SIGPROCMASK);
846
847 /*
848 * Attempt to exec using the command and arguments starting at
849 * argv.argv[1]. argv.argv[0] contains SHELL_PATH which will
850 * be used in the event exec failed with ENOEXEC at which point
851 * we will try to interpret the command using 'sh'.
852 */
853 execve(argv.v[1], (char *const *) argv.v + 1,
854 (char *const *) childenv);
855 if (errno == ENOEXEC)
856 execve(argv.v[0], (char *const *) argv.v,
857 (char *const *) childenv);
858
859 if (errno == ENOENT) {
860 if (cmd->silent_exec_failure)
861 child_die(CHILD_ERR_SILENT);
862 child_die(CHILD_ERR_ENOENT);
863 } else {
864 child_die(CHILD_ERR_ERRNO);
865 }
866 }
867 atfork_parent(&as);
868 if (cmd->pid < 0)
869 error_errno("cannot fork() for %s", cmd->argv[0]);
870 else if (cmd->clean_on_exit)
871 mark_child_for_cleanup(cmd->pid, cmd);
872
873 /*
874 * Wait for child's exec. If the exec succeeds (or if fork()
875 * failed), EOF is seen immediately by the parent. Otherwise, the
876 * child process sends a child_err struct.
877 * Note that use of this infrastructure is completely advisory,
878 * therefore, we keep error checks minimal.
879 */
880 close(notify_pipe[1]);
881 if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
882 /*
883 * At this point we know that fork() succeeded, but exec()
884 * failed. Errors have been reported to our stderr.
885 */
886 wait_or_whine(cmd->pid, cmd->argv[0], 0);
887 child_err_spew(cmd, &cerr);
888 failed_errno = errno;
889 cmd->pid = -1;
890 }
891 close(notify_pipe[0]);
892
893 if (null_fd >= 0)
894 close(null_fd);
895 strvec_clear(&argv);
896 free(childenv);
897 }
898 end_of_spawn:
899
900 #else
901 {
902 int fhin = 0, fhout = 1, fherr = 2;
903 const char **sargv = cmd->argv;
904 struct strvec nargv = STRVEC_INIT;
905
906 if (cmd->no_stdin)
907 fhin = open("/dev/null", O_RDWR);
908 else if (need_in)
909 fhin = dup(fdin[0]);
910 else if (cmd->in)
911 fhin = dup(cmd->in);
912
913 if (cmd->no_stderr)
914 fherr = open("/dev/null", O_RDWR);
915 else if (need_err)
916 fherr = dup(fderr[1]);
917 else if (cmd->err > 2)
918 fherr = dup(cmd->err);
919
920 if (cmd->no_stdout)
921 fhout = open("/dev/null", O_RDWR);
922 else if (cmd->stdout_to_stderr)
923 fhout = dup(fherr);
924 else if (need_out)
925 fhout = dup(fdout[1]);
926 else if (cmd->out > 1)
927 fhout = dup(cmd->out);
928
929 if (cmd->git_cmd)
930 cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
931 else if (cmd->use_shell)
932 cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
933
934 cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
935 cmd->dir, fhin, fhout, fherr);
936 failed_errno = errno;
937 if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
938 error_errno("cannot spawn %s", cmd->argv[0]);
939 if (cmd->clean_on_exit && cmd->pid >= 0)
940 mark_child_for_cleanup(cmd->pid, cmd);
941
942 strvec_clear(&nargv);
943 cmd->argv = sargv;
944 if (fhin != 0)
945 close(fhin);
946 if (fhout != 1)
947 close(fhout);
948 if (fherr != 2)
949 close(fherr);
950 }
951 #endif
952
953 if (cmd->pid < 0) {
954 trace2_child_exit(cmd, -1);
955
956 if (need_in)
957 close_pair(fdin);
958 else if (cmd->in)
959 close(cmd->in);
960 if (need_out)
961 close_pair(fdout);
962 else if (cmd->out)
963 close(cmd->out);
964 if (need_err)
965 close_pair(fderr);
966 else if (cmd->err)
967 close(cmd->err);
968 child_process_clear(cmd);
969 errno = failed_errno;
970 return -1;
971 }
972
973 if (need_in)
974 close(fdin[0]);
975 else if (cmd->in)
976 close(cmd->in);
977
978 if (need_out)
979 close(fdout[1]);
980 else if (cmd->out)
981 close(cmd->out);
982
983 if (need_err)
984 close(fderr[1]);
985 else if (cmd->err)
986 close(cmd->err);
987
988 return 0;
989 }
990
991 int finish_command(struct child_process *cmd)
992 {
993 int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
994 trace2_child_exit(cmd, ret);
995 child_process_clear(cmd);
996 return ret;
997 }
998
999 int finish_command_in_signal(struct child_process *cmd)
1000 {
1001 int ret = wait_or_whine(cmd->pid, cmd->argv[0], 1);
1002 trace2_child_exit(cmd, ret);
1003 return ret;
1004 }
1005
1006
1007 int run_command(struct child_process *cmd)
1008 {
1009 int code;
1010
1011 if (cmd->out < 0 || cmd->err < 0)
1012 BUG("run_command with a pipe can cause deadlock");
1013
1014 code = start_command(cmd);
1015 if (code)
1016 return code;
1017 return finish_command(cmd);
1018 }
1019
1020 int run_command_v_opt(const char **argv, int opt)
1021 {
1022 return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
1023 }
1024
1025 int run_command_v_opt_tr2(const char **argv, int opt, const char *tr2_class)
1026 {
1027 return run_command_v_opt_cd_env_tr2(argv, opt, NULL, NULL, tr2_class);
1028 }
1029
1030 int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
1031 {
1032 return run_command_v_opt_cd_env_tr2(argv, opt, dir, env, NULL);
1033 }
1034
1035 int run_command_v_opt_cd_env_tr2(const char **argv, int opt, const char *dir,
1036 const char *const *env, const char *tr2_class)
1037 {
1038 struct child_process cmd = CHILD_PROCESS_INIT;
1039 cmd.argv = argv;
1040 cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
1041 cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
1042 cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
1043 cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
1044 cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
1045 cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
1046 cmd.wait_after_clean = opt & RUN_WAIT_AFTER_CLEAN ? 1 : 0;
1047 cmd.dir = dir;
1048 cmd.env = env;
1049 cmd.trace2_child_class = tr2_class;
1050 return run_command(&cmd);
1051 }
1052
1053 #ifndef NO_PTHREADS
1054 static pthread_t main_thread;
1055 static int main_thread_set;
1056 static pthread_key_t async_key;
1057 static pthread_key_t async_die_counter;
1058
1059 static void *run_thread(void *data)
1060 {
1061 struct async *async = data;
1062 intptr_t ret;
1063
1064 if (async->isolate_sigpipe) {
1065 sigset_t mask;
1066 sigemptyset(&mask);
1067 sigaddset(&mask, SIGPIPE);
1068 if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
1069 ret = error("unable to block SIGPIPE in async thread");
1070 return (void *)ret;
1071 }
1072 }
1073
1074 pthread_setspecific(async_key, async);
1075 ret = async->proc(async->proc_in, async->proc_out, async->data);
1076 return (void *)ret;
1077 }
1078
1079 static NORETURN void die_async(const char *err, va_list params)
1080 {
1081 vreportf("fatal: ", err, params);
1082
1083 if (in_async()) {
1084 struct async *async = pthread_getspecific(async_key);
1085 if (async->proc_in >= 0)
1086 close(async->proc_in);
1087 if (async->proc_out >= 0)
1088 close(async->proc_out);
1089 pthread_exit((void *)128);
1090 }
1091
1092 exit(128);
1093 }
1094
1095 static int async_die_is_recursing(void)
1096 {
1097 void *ret = pthread_getspecific(async_die_counter);
1098 pthread_setspecific(async_die_counter, (void *)1);
1099 return ret != NULL;
1100 }
1101
1102 int in_async(void)
1103 {
1104 if (!main_thread_set)
1105 return 0; /* no asyncs started yet */
1106 return !pthread_equal(main_thread, pthread_self());
1107 }
1108
1109 static void NORETURN async_exit(int code)
1110 {
1111 pthread_exit((void *)(intptr_t)code);
1112 }
1113
1114 #else
1115
1116 static struct {
1117 void (**handlers)(void);
1118 size_t nr;
1119 size_t alloc;
1120 } git_atexit_hdlrs;
1121
1122 static int git_atexit_installed;
1123
1124 static void git_atexit_dispatch(void)
1125 {
1126 size_t i;
1127
1128 for (i=git_atexit_hdlrs.nr ; i ; i--)
1129 git_atexit_hdlrs.handlers[i-1]();
1130 }
1131
1132 static void git_atexit_clear(void)
1133 {
1134 free(git_atexit_hdlrs.handlers);
1135 memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1136 git_atexit_installed = 0;
1137 }
1138
1139 #undef atexit
1140 int git_atexit(void (*handler)(void))
1141 {
1142 ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1143 git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1144 if (!git_atexit_installed) {
1145 if (atexit(&git_atexit_dispatch))
1146 return -1;
1147 git_atexit_installed = 1;
1148 }
1149 return 0;
1150 }
1151 #define atexit git_atexit
1152
1153 static int process_is_async;
1154 int in_async(void)
1155 {
1156 return process_is_async;
1157 }
1158
1159 static void NORETURN async_exit(int code)
1160 {
1161 exit(code);
1162 }
1163
1164 #endif
1165
1166 void check_pipe(int err)
1167 {
1168 if (err == EPIPE) {
1169 if (in_async())
1170 async_exit(141);
1171
1172 signal(SIGPIPE, SIG_DFL);
1173 raise(SIGPIPE);
1174 /* Should never happen, but just in case... */
1175 exit(141);
1176 }
1177 }
1178
1179 int start_async(struct async *async)
1180 {
1181 int need_in, need_out;
1182 int fdin[2], fdout[2];
1183 int proc_in, proc_out;
1184
1185 need_in = async->in < 0;
1186 if (need_in) {
1187 if (pipe(fdin) < 0) {
1188 if (async->out > 0)
1189 close(async->out);
1190 return error_errno("cannot create pipe");
1191 }
1192 async->in = fdin[1];
1193 }
1194
1195 need_out = async->out < 0;
1196 if (need_out) {
1197 if (pipe(fdout) < 0) {
1198 if (need_in)
1199 close_pair(fdin);
1200 else if (async->in)
1201 close(async->in);
1202 return error_errno("cannot create pipe");
1203 }
1204 async->out = fdout[0];
1205 }
1206
1207 if (need_in)
1208 proc_in = fdin[0];
1209 else if (async->in)
1210 proc_in = async->in;
1211 else
1212 proc_in = -1;
1213
1214 if (need_out)
1215 proc_out = fdout[1];
1216 else if (async->out)
1217 proc_out = async->out;
1218 else
1219 proc_out = -1;
1220
1221 #ifdef NO_PTHREADS
1222 /* Flush stdio before fork() to avoid cloning buffers */
1223 fflush(NULL);
1224
1225 async->pid = fork();
1226 if (async->pid < 0) {
1227 error_errno("fork (async) failed");
1228 goto error;
1229 }
1230 if (!async->pid) {
1231 if (need_in)
1232 close(fdin[1]);
1233 if (need_out)
1234 close(fdout[0]);
1235 git_atexit_clear();
1236 process_is_async = 1;
1237 exit(!!async->proc(proc_in, proc_out, async->data));
1238 }
1239
1240 mark_child_for_cleanup(async->pid, NULL);
1241
1242 if (need_in)
1243 close(fdin[0]);
1244 else if (async->in)
1245 close(async->in);
1246
1247 if (need_out)
1248 close(fdout[1]);
1249 else if (async->out)
1250 close(async->out);
1251 #else
1252 if (!main_thread_set) {
1253 /*
1254 * We assume that the first time that start_async is called
1255 * it is from the main thread.
1256 */
1257 main_thread_set = 1;
1258 main_thread = pthread_self();
1259 pthread_key_create(&async_key, NULL);
1260 pthread_key_create(&async_die_counter, NULL);
1261 set_die_routine(die_async);
1262 set_die_is_recursing_routine(async_die_is_recursing);
1263 }
1264
1265 if (proc_in >= 0)
1266 set_cloexec(proc_in);
1267 if (proc_out >= 0)
1268 set_cloexec(proc_out);
1269 async->proc_in = proc_in;
1270 async->proc_out = proc_out;
1271 {
1272 int err = pthread_create(&async->tid, NULL, run_thread, async);
1273 if (err) {
1274 error(_("cannot create async thread: %s"), strerror(err));
1275 goto error;
1276 }
1277 }
1278 #endif
1279 return 0;
1280
1281 error:
1282 if (need_in)
1283 close_pair(fdin);
1284 else if (async->in)
1285 close(async->in);
1286
1287 if (need_out)
1288 close_pair(fdout);
1289 else if (async->out)
1290 close(async->out);
1291 return -1;
1292 }
1293
1294 int finish_async(struct async *async)
1295 {
1296 #ifdef NO_PTHREADS
1297 return wait_or_whine(async->pid, "child process", 0);
1298 #else
1299 void *ret = (void *)(intptr_t)(-1);
1300
1301 if (pthread_join(async->tid, &ret))
1302 error("pthread_join failed");
1303 return (int)(intptr_t)ret;
1304 #endif
1305 }
1306
1307 int async_with_fork(void)
1308 {
1309 #ifdef NO_PTHREADS
1310 return 1;
1311 #else
1312 return 0;
1313 #endif
1314 }
1315
1316 const char *find_hook(const char *name)
1317 {
1318 static struct strbuf path = STRBUF_INIT;
1319
1320 strbuf_reset(&path);
1321 strbuf_git_path(&path, "hooks/%s", name);
1322 if (access(path.buf, X_OK) < 0) {
1323 int err = errno;
1324
1325 #ifdef STRIP_EXTENSION
1326 strbuf_addstr(&path, STRIP_EXTENSION);
1327 if (access(path.buf, X_OK) >= 0)
1328 return path.buf;
1329 if (errno == EACCES)
1330 err = errno;
1331 #endif
1332
1333 if (err == EACCES && advice_ignored_hook) {
1334 static struct string_list advise_given = STRING_LIST_INIT_DUP;
1335
1336 if (!string_list_lookup(&advise_given, name)) {
1337 string_list_insert(&advise_given, name);
1338 advise(_("The '%s' hook was ignored because "
1339 "it's not set as executable.\n"
1340 "You can disable this warning with "
1341 "`git config advice.ignoredHook false`."),
1342 path.buf);
1343 }
1344 }
1345 return NULL;
1346 }
1347 return path.buf;
1348 }
1349
1350 int run_hook_ve(const char *const *env, const char *name, va_list args)
1351 {
1352 struct child_process hook = CHILD_PROCESS_INIT;
1353 const char *p;
1354
1355 p = find_hook(name);
1356 if (!p)
1357 return 0;
1358
1359 strvec_push(&hook.args, p);
1360 while ((p = va_arg(args, const char *)))
1361 strvec_push(&hook.args, p);
1362 hook.env = env;
1363 hook.no_stdin = 1;
1364 hook.stdout_to_stderr = 1;
1365 hook.trace2_hook_name = name;
1366
1367 return run_command(&hook);
1368 }
1369
1370 int run_hook_le(const char *const *env, const char *name, ...)
1371 {
1372 va_list args;
1373 int ret;
1374
1375 va_start(args, name);
1376 ret = run_hook_ve(env, name, args);
1377 va_end(args);
1378
1379 return ret;
1380 }
1381
1382 struct io_pump {
1383 /* initialized by caller */
1384 int fd;
1385 int type; /* POLLOUT or POLLIN */
1386 union {
1387 struct {
1388 const char *buf;
1389 size_t len;
1390 } out;
1391 struct {
1392 struct strbuf *buf;
1393 size_t hint;
1394 } in;
1395 } u;
1396
1397 /* returned by pump_io */
1398 int error; /* 0 for success, otherwise errno */
1399
1400 /* internal use */
1401 struct pollfd *pfd;
1402 };
1403
1404 static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1405 {
1406 int pollsize = 0;
1407 int i;
1408
1409 for (i = 0; i < nr; i++) {
1410 struct io_pump *io = &slots[i];
1411 if (io->fd < 0)
1412 continue;
1413 pfd[pollsize].fd = io->fd;
1414 pfd[pollsize].events = io->type;
1415 io->pfd = &pfd[pollsize++];
1416 }
1417
1418 if (!pollsize)
1419 return 0;
1420
1421 if (poll(pfd, pollsize, -1) < 0) {
1422 if (errno == EINTR)
1423 return 1;
1424 die_errno("poll failed");
1425 }
1426
1427 for (i = 0; i < nr; i++) {
1428 struct io_pump *io = &slots[i];
1429
1430 if (io->fd < 0)
1431 continue;
1432
1433 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1434 continue;
1435
1436 if (io->type == POLLOUT) {
1437 ssize_t len = xwrite(io->fd,
1438 io->u.out.buf, io->u.out.len);
1439 if (len < 0) {
1440 io->error = errno;
1441 close(io->fd);
1442 io->fd = -1;
1443 } else {
1444 io->u.out.buf += len;
1445 io->u.out.len -= len;
1446 if (!io->u.out.len) {
1447 close(io->fd);
1448 io->fd = -1;
1449 }
1450 }
1451 }
1452
1453 if (io->type == POLLIN) {
1454 ssize_t len = strbuf_read_once(io->u.in.buf,
1455 io->fd, io->u.in.hint);
1456 if (len < 0)
1457 io->error = errno;
1458 if (len <= 0) {
1459 close(io->fd);
1460 io->fd = -1;
1461 }
1462 }
1463 }
1464
1465 return 1;
1466 }
1467
1468 static int pump_io(struct io_pump *slots, int nr)
1469 {
1470 struct pollfd *pfd;
1471 int i;
1472
1473 for (i = 0; i < nr; i++)
1474 slots[i].error = 0;
1475
1476 ALLOC_ARRAY(pfd, nr);
1477 while (pump_io_round(slots, nr, pfd))
1478 ; /* nothing */
1479 free(pfd);
1480
1481 /* There may be multiple errno values, so just pick the first. */
1482 for (i = 0; i < nr; i++) {
1483 if (slots[i].error) {
1484 errno = slots[i].error;
1485 return -1;
1486 }
1487 }
1488 return 0;
1489 }
1490
1491
1492 int pipe_command(struct child_process *cmd,
1493 const char *in, size_t in_len,
1494 struct strbuf *out, size_t out_hint,
1495 struct strbuf *err, size_t err_hint)
1496 {
1497 struct io_pump io[3];
1498 int nr = 0;
1499
1500 if (in)
1501 cmd->in = -1;
1502 if (out)
1503 cmd->out = -1;
1504 if (err)
1505 cmd->err = -1;
1506
1507 if (start_command(cmd) < 0)
1508 return -1;
1509
1510 if (in) {
1511 io[nr].fd = cmd->in;
1512 io[nr].type = POLLOUT;
1513 io[nr].u.out.buf = in;
1514 io[nr].u.out.len = in_len;
1515 nr++;
1516 }
1517 if (out) {
1518 io[nr].fd = cmd->out;
1519 io[nr].type = POLLIN;
1520 io[nr].u.in.buf = out;
1521 io[nr].u.in.hint = out_hint;
1522 nr++;
1523 }
1524 if (err) {
1525 io[nr].fd = cmd->err;
1526 io[nr].type = POLLIN;
1527 io[nr].u.in.buf = err;
1528 io[nr].u.in.hint = err_hint;
1529 nr++;
1530 }
1531
1532 if (pump_io(io, nr) < 0) {
1533 finish_command(cmd); /* throw away exit code */
1534 return -1;
1535 }
1536
1537 return finish_command(cmd);
1538 }
1539
1540 enum child_state {
1541 GIT_CP_FREE,
1542 GIT_CP_WORKING,
1543 GIT_CP_WAIT_CLEANUP,
1544 };
1545
1546 struct parallel_processes {
1547 void *data;
1548
1549 int max_processes;
1550 int nr_processes;
1551
1552 get_next_task_fn get_next_task;
1553 start_failure_fn start_failure;
1554 task_finished_fn task_finished;
1555
1556 struct {
1557 enum child_state state;
1558 struct child_process process;
1559 struct strbuf err;
1560 void *data;
1561 } *children;
1562 /*
1563 * The struct pollfd is logically part of *children,
1564 * but the system call expects it as its own array.
1565 */
1566 struct pollfd *pfd;
1567
1568 unsigned shutdown : 1;
1569
1570 int output_owner;
1571 struct strbuf buffered_output; /* of finished children */
1572 };
1573
1574 static int default_start_failure(struct strbuf *out,
1575 void *pp_cb,
1576 void *pp_task_cb)
1577 {
1578 return 0;
1579 }
1580
1581 static int default_task_finished(int result,
1582 struct strbuf *out,
1583 void *pp_cb,
1584 void *pp_task_cb)
1585 {
1586 return 0;
1587 }
1588
1589 static void kill_children(struct parallel_processes *pp, int signo)
1590 {
1591 int i, n = pp->max_processes;
1592
1593 for (i = 0; i < n; i++)
1594 if (pp->children[i].state == GIT_CP_WORKING)
1595 kill(pp->children[i].process.pid, signo);
1596 }
1597
1598 static struct parallel_processes *pp_for_signal;
1599
1600 static void handle_children_on_signal(int signo)
1601 {
1602 kill_children(pp_for_signal, signo);
1603 sigchain_pop(signo);
1604 raise(signo);
1605 }
1606
1607 static void pp_init(struct parallel_processes *pp,
1608 int n,
1609 get_next_task_fn get_next_task,
1610 start_failure_fn start_failure,
1611 task_finished_fn task_finished,
1612 void *data)
1613 {
1614 int i;
1615
1616 if (n < 1)
1617 n = online_cpus();
1618
1619 pp->max_processes = n;
1620
1621 trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1622
1623 pp->data = data;
1624 if (!get_next_task)
1625 BUG("you need to specify a get_next_task function");
1626 pp->get_next_task = get_next_task;
1627
1628 pp->start_failure = start_failure ? start_failure : default_start_failure;
1629 pp->task_finished = task_finished ? task_finished : default_task_finished;
1630
1631 pp->nr_processes = 0;
1632 pp->output_owner = 0;
1633 pp->shutdown = 0;
1634 pp->children = xcalloc(n, sizeof(*pp->children));
1635 pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1636 strbuf_init(&pp->buffered_output, 0);
1637
1638 for (i = 0; i < n; i++) {
1639 strbuf_init(&pp->children[i].err, 0);
1640 child_process_init(&pp->children[i].process);
1641 pp->pfd[i].events = POLLIN | POLLHUP;
1642 pp->pfd[i].fd = -1;
1643 }
1644
1645 pp_for_signal = pp;
1646 sigchain_push_common(handle_children_on_signal);
1647 }
1648
1649 static void pp_cleanup(struct parallel_processes *pp)
1650 {
1651 int i;
1652
1653 trace_printf("run_processes_parallel: done");
1654 for (i = 0; i < pp->max_processes; i++) {
1655 strbuf_release(&pp->children[i].err);
1656 child_process_clear(&pp->children[i].process);
1657 }
1658
1659 free(pp->children);
1660 free(pp->pfd);
1661
1662 /*
1663 * When get_next_task added messages to the buffer in its last
1664 * iteration, the buffered output is non empty.
1665 */
1666 strbuf_write(&pp->buffered_output, stderr);
1667 strbuf_release(&pp->buffered_output);
1668
1669 sigchain_pop_common();
1670 }
1671
1672 /* returns
1673 * 0 if a new task was started.
1674 * 1 if no new jobs was started (get_next_task ran out of work, non critical
1675 * problem with starting a new command)
1676 * <0 no new job was started, user wishes to shutdown early. Use negative code
1677 * to signal the children.
1678 */
1679 static int pp_start_one(struct parallel_processes *pp)
1680 {
1681 int i, code;
1682
1683 for (i = 0; i < pp->max_processes; i++)
1684 if (pp->children[i].state == GIT_CP_FREE)
1685 break;
1686 if (i == pp->max_processes)
1687 BUG("bookkeeping is hard");
1688
1689 code = pp->get_next_task(&pp->children[i].process,
1690 &pp->children[i].err,
1691 pp->data,
1692 &pp->children[i].data);
1693 if (!code) {
1694 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1695 strbuf_reset(&pp->children[i].err);
1696 return 1;
1697 }
1698 pp->children[i].process.err = -1;
1699 pp->children[i].process.stdout_to_stderr = 1;
1700 pp->children[i].process.no_stdin = 1;
1701
1702 if (start_command(&pp->children[i].process)) {
1703 code = pp->start_failure(&pp->children[i].err,
1704 pp->data,
1705 pp->children[i].data);
1706 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1707 strbuf_reset(&pp->children[i].err);
1708 if (code)
1709 pp->shutdown = 1;
1710 return code;
1711 }
1712
1713 pp->nr_processes++;
1714 pp->children[i].state = GIT_CP_WORKING;
1715 pp->pfd[i].fd = pp->children[i].process.err;
1716 return 0;
1717 }
1718
1719 static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1720 {
1721 int i;
1722
1723 while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1724 if (errno == EINTR)
1725 continue;
1726 pp_cleanup(pp);
1727 die_errno("poll");
1728 }
1729
1730 /* Buffer output from all pipes. */
1731 for (i = 0; i < pp->max_processes; i++) {
1732 if (pp->children[i].state == GIT_CP_WORKING &&
1733 pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1734 int n = strbuf_read_once(&pp->children[i].err,
1735 pp->children[i].process.err, 0);
1736 if (n == 0) {
1737 close(pp->children[i].process.err);
1738 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1739 } else if (n < 0)
1740 if (errno != EAGAIN)
1741 die_errno("read");
1742 }
1743 }
1744 }
1745
1746 static void pp_output(struct parallel_processes *pp)
1747 {
1748 int i = pp->output_owner;
1749 if (pp->children[i].state == GIT_CP_WORKING &&
1750 pp->children[i].err.len) {
1751 strbuf_write(&pp->children[i].err, stderr);
1752 strbuf_reset(&pp->children[i].err);
1753 }
1754 }
1755
1756 static int pp_collect_finished(struct parallel_processes *pp)
1757 {
1758 int i, code;
1759 int n = pp->max_processes;
1760 int result = 0;
1761
1762 while (pp->nr_processes > 0) {
1763 for (i = 0; i < pp->max_processes; i++)
1764 if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1765 break;
1766 if (i == pp->max_processes)
1767 break;
1768
1769 code = finish_command(&pp->children[i].process);
1770
1771 code = pp->task_finished(code,
1772 &pp->children[i].err, pp->data,
1773 pp->children[i].data);
1774
1775 if (code)
1776 result = code;
1777 if (code < 0)
1778 break;
1779
1780 pp->nr_processes--;
1781 pp->children[i].state = GIT_CP_FREE;
1782 pp->pfd[i].fd = -1;
1783 child_process_init(&pp->children[i].process);
1784
1785 if (i != pp->output_owner) {
1786 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1787 strbuf_reset(&pp->children[i].err);
1788 } else {
1789 strbuf_write(&pp->children[i].err, stderr);
1790 strbuf_reset(&pp->children[i].err);
1791
1792 /* Output all other finished child processes */
1793 strbuf_write(&pp->buffered_output, stderr);
1794 strbuf_reset(&pp->buffered_output);
1795
1796 /*
1797 * Pick next process to output live.
1798 * NEEDSWORK:
1799 * For now we pick it randomly by doing a round
1800 * robin. Later we may want to pick the one with
1801 * the most output or the longest or shortest
1802 * running process time.
1803 */
1804 for (i = 0; i < n; i++)
1805 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1806 break;
1807 pp->output_owner = (pp->output_owner + i) % n;
1808 }
1809 }
1810 return result;
1811 }
1812
1813 int run_processes_parallel(int n,
1814 get_next_task_fn get_next_task,
1815 start_failure_fn start_failure,
1816 task_finished_fn task_finished,
1817 void *pp_cb)
1818 {
1819 int i, code;
1820 int output_timeout = 100;
1821 int spawn_cap = 4;
1822 struct parallel_processes pp;
1823
1824 pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1825 while (1) {
1826 for (i = 0;
1827 i < spawn_cap && !pp.shutdown &&
1828 pp.nr_processes < pp.max_processes;
1829 i++) {
1830 code = pp_start_one(&pp);
1831 if (!code)
1832 continue;
1833 if (code < 0) {
1834 pp.shutdown = 1;
1835 kill_children(&pp, -code);
1836 }
1837 break;
1838 }
1839 if (!pp.nr_processes)
1840 break;
1841 pp_buffer_stderr(&pp, output_timeout);
1842 pp_output(&pp);
1843 code = pp_collect_finished(&pp);
1844 if (code) {
1845 pp.shutdown = 1;
1846 if (code < 0)
1847 kill_children(&pp, -code);
1848 }
1849 }
1850
1851 pp_cleanup(&pp);
1852 return 0;
1853 }
1854
1855 int run_processes_parallel_tr2(int n, get_next_task_fn get_next_task,
1856 start_failure_fn start_failure,
1857 task_finished_fn task_finished, void *pp_cb,
1858 const char *tr2_category, const char *tr2_label)
1859 {
1860 int result;
1861
1862 trace2_region_enter_printf(tr2_category, tr2_label, NULL, "max:%d",
1863 ((n < 1) ? online_cpus() : n));
1864
1865 result = run_processes_parallel(n, get_next_task, start_failure,
1866 task_finished, pp_cb);
1867
1868 trace2_region_leave(tr2_category, tr2_label, NULL);
1869
1870 return result;
1871 }
1872
1873 int run_auto_maintenance(int quiet)
1874 {
1875 int enabled;
1876 struct child_process maint = CHILD_PROCESS_INIT;
1877
1878 if (!git_config_get_bool("maintenance.auto", &enabled) &&
1879 !enabled)
1880 return 0;
1881
1882 maint.git_cmd = 1;
1883 strvec_pushl(&maint.args, "maintenance", "run", "--auto", NULL);
1884 strvec_push(&maint.args, quiet ? "--quiet" : "--no-quiet");
1885
1886 return run_command(&maint);
1887 }