]> git.ipfire.org Git - thirdparty/git.git/blob - run-command.c
artifacts-tar: when including `.dll` files, don't forget the unit-tests
[thirdparty/git.git] / run-command.c
1 #include "cache.h"
2 #include "run-command.h"
3 #include "environment.h"
4 #include "exec-cmd.h"
5 #include "gettext.h"
6 #include "sigchain.h"
7 #include "strvec.h"
8 #include "symlinks.h"
9 #include "thread-utils.h"
10 #include "strbuf.h"
11 #include "string-list.h"
12 #include "trace.h"
13 #include "trace2.h"
14 #include "quote.h"
15 #include "config.h"
16 #include "packfile.h"
17 #include "hook.h"
18 #include "compat/nonblock.h"
19 #include "alloc.h"
20
21 void child_process_init(struct child_process *child)
22 {
23 struct child_process blank = CHILD_PROCESS_INIT;
24 memcpy(child, &blank, sizeof(*child));
25 }
26
27 void child_process_clear(struct child_process *child)
28 {
29 strvec_clear(&child->args);
30 strvec_clear(&child->env);
31 }
32
33 struct child_to_clean {
34 pid_t pid;
35 struct child_process *process;
36 struct child_to_clean *next;
37 };
38 static struct child_to_clean *children_to_clean;
39 static int installed_child_cleanup_handler;
40
41 static void cleanup_children(int sig, int in_signal)
42 {
43 struct child_to_clean *children_to_wait_for = NULL;
44
45 while (children_to_clean) {
46 struct child_to_clean *p = children_to_clean;
47 children_to_clean = p->next;
48
49 if (p->process && !in_signal) {
50 struct child_process *process = p->process;
51 if (process->clean_on_exit_handler) {
52 trace_printf(
53 "trace: run_command: running exit handler for pid %"
54 PRIuMAX, (uintmax_t)p->pid
55 );
56 process->clean_on_exit_handler(process);
57 }
58 }
59
60 kill(p->pid, sig);
61
62 if (p->process && p->process->wait_after_clean) {
63 p->next = children_to_wait_for;
64 children_to_wait_for = p;
65 } else {
66 if (!in_signal)
67 free(p);
68 }
69 }
70
71 while (children_to_wait_for) {
72 struct child_to_clean *p = children_to_wait_for;
73 children_to_wait_for = p->next;
74
75 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
76 ; /* spin waiting for process exit or error */
77
78 if (!in_signal)
79 free(p);
80 }
81 }
82
83 static void cleanup_children_on_signal(int sig)
84 {
85 cleanup_children(sig, 1);
86 sigchain_pop(sig);
87 raise(sig);
88 }
89
90 static void cleanup_children_on_exit(void)
91 {
92 cleanup_children(SIGTERM, 0);
93 }
94
95 static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
96 {
97 struct child_to_clean *p = xmalloc(sizeof(*p));
98 p->pid = pid;
99 p->process = process;
100 p->next = children_to_clean;
101 children_to_clean = p;
102
103 if (!installed_child_cleanup_handler) {
104 atexit(cleanup_children_on_exit);
105 sigchain_push_common(cleanup_children_on_signal);
106 installed_child_cleanup_handler = 1;
107 }
108 }
109
110 static void clear_child_for_cleanup(pid_t pid)
111 {
112 struct child_to_clean **pp;
113
114 for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
115 struct child_to_clean *clean_me = *pp;
116
117 if (clean_me->pid == pid) {
118 *pp = clean_me->next;
119 free(clean_me);
120 return;
121 }
122 }
123 }
124
125 static inline void close_pair(int fd[2])
126 {
127 close(fd[0]);
128 close(fd[1]);
129 }
130
131 int is_executable(const char *name)
132 {
133 struct stat st;
134
135 if (stat(name, &st) || /* stat, not lstat */
136 !S_ISREG(st.st_mode))
137 return 0;
138
139 #if defined(GIT_WINDOWS_NATIVE)
140 /*
141 * On Windows there is no executable bit. The file extension
142 * indicates whether it can be run as an executable, and Git
143 * has special-handling to detect scripts and launch them
144 * through the indicated script interpreter. We test for the
145 * file extension first because virus scanners may make
146 * it quite expensive to open many files.
147 */
148 if (ends_with(name, ".exe"))
149 return S_IXUSR;
150
151 {
152 /*
153 * Now that we know it does not have an executable extension,
154 * peek into the file instead.
155 */
156 char buf[3] = { 0 };
157 int n;
158 int fd = open(name, O_RDONLY);
159 st.st_mode &= ~S_IXUSR;
160 if (fd >= 0) {
161 n = read(fd, buf, 2);
162 if (n == 2)
163 /* look for a she-bang */
164 if (!strcmp(buf, "#!"))
165 st.st_mode |= S_IXUSR;
166 close(fd);
167 }
168 }
169 #endif
170 return st.st_mode & S_IXUSR;
171 }
172
173 /*
174 * Search $PATH for a command. This emulates the path search that
175 * execvp would perform, without actually executing the command so it
176 * can be used before fork() to prepare to run a command using
177 * execve() or after execvp() to diagnose why it failed.
178 *
179 * The caller should ensure that file contains no directory
180 * separators.
181 *
182 * Returns the path to the command, as found in $PATH or NULL if the
183 * command could not be found. The caller inherits ownership of the memory
184 * used to store the resultant path.
185 *
186 * This should not be used on Windows, where the $PATH search rules
187 * are more complicated (e.g., a search for "foo" should find
188 * "foo.exe").
189 */
190 static char *locate_in_PATH(const char *file)
191 {
192 const char *p = getenv("PATH");
193 struct strbuf buf = STRBUF_INIT;
194
195 if (!p || !*p)
196 return NULL;
197
198 while (1) {
199 const char *end = strchrnul(p, ':');
200
201 strbuf_reset(&buf);
202
203 /* POSIX specifies an empty entry as the current directory. */
204 if (end != p) {
205 strbuf_add(&buf, p, end - p);
206 strbuf_addch(&buf, '/');
207 }
208 strbuf_addstr(&buf, file);
209
210 if (is_executable(buf.buf))
211 return strbuf_detach(&buf, NULL);
212
213 if (!*end)
214 break;
215 p = end + 1;
216 }
217
218 strbuf_release(&buf);
219 return NULL;
220 }
221
222 int exists_in_PATH(const char *command)
223 {
224 char *r = locate_in_PATH(command);
225 int found = r != NULL;
226 free(r);
227 return found;
228 }
229
230 int sane_execvp(const char *file, char * const argv[])
231 {
232 #ifndef GIT_WINDOWS_NATIVE
233 /*
234 * execvp() doesn't return, so we all we can do is tell trace2
235 * what we are about to do and let it leave a hint in the log
236 * (unless of course the execvp() fails).
237 *
238 * we skip this for Windows because the compat layer already
239 * has to emulate the execvp() call anyway.
240 */
241 int exec_id = trace2_exec(file, (const char **)argv);
242 #endif
243
244 if (!execvp(file, argv))
245 return 0; /* cannot happen ;-) */
246
247 #ifndef GIT_WINDOWS_NATIVE
248 {
249 int ec = errno;
250 trace2_exec_result(exec_id, ec);
251 errno = ec;
252 }
253 #endif
254
255 /*
256 * When a command can't be found because one of the directories
257 * listed in $PATH is unsearchable, execvp reports EACCES, but
258 * careful usability testing (read: analysis of occasional bug
259 * reports) reveals that "No such file or directory" is more
260 * intuitive.
261 *
262 * We avoid commands with "/", because execvp will not do $PATH
263 * lookups in that case.
264 *
265 * The reassignment of EACCES to errno looks like a no-op below,
266 * but we need to protect against exists_in_PATH overwriting errno.
267 */
268 if (errno == EACCES && !strchr(file, '/'))
269 errno = exists_in_PATH(file) ? EACCES : ENOENT;
270 else if (errno == ENOTDIR && !strchr(file, '/'))
271 errno = ENOENT;
272 return -1;
273 }
274
275 static const char **prepare_shell_cmd(struct strvec *out, const char **argv)
276 {
277 if (!argv[0])
278 BUG("shell command is empty");
279
280 if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
281 #ifndef GIT_WINDOWS_NATIVE
282 strvec_push(out, SHELL_PATH);
283 #else
284 strvec_push(out, "sh");
285 #endif
286 strvec_push(out, "-c");
287
288 /*
289 * If we have no extra arguments, we do not even need to
290 * bother with the "$@" magic.
291 */
292 if (!argv[1])
293 strvec_push(out, argv[0]);
294 else
295 strvec_pushf(out, "%s \"$@\"", argv[0]);
296 }
297
298 strvec_pushv(out, argv);
299 return out->v;
300 }
301
302 #ifndef GIT_WINDOWS_NATIVE
303 static int child_notifier = -1;
304
305 enum child_errcode {
306 CHILD_ERR_CHDIR,
307 CHILD_ERR_DUP2,
308 CHILD_ERR_CLOSE,
309 CHILD_ERR_SIGPROCMASK,
310 CHILD_ERR_ENOENT,
311 CHILD_ERR_SILENT,
312 CHILD_ERR_ERRNO
313 };
314
315 struct child_err {
316 enum child_errcode err;
317 int syserr; /* errno */
318 };
319
320 static void child_die(enum child_errcode err)
321 {
322 struct child_err buf;
323
324 buf.err = err;
325 buf.syserr = errno;
326
327 /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
328 xwrite(child_notifier, &buf, sizeof(buf));
329 _exit(1);
330 }
331
332 static void child_dup2(int fd, int to)
333 {
334 if (dup2(fd, to) < 0)
335 child_die(CHILD_ERR_DUP2);
336 }
337
338 static void child_close(int fd)
339 {
340 if (close(fd))
341 child_die(CHILD_ERR_CLOSE);
342 }
343
344 static void child_close_pair(int fd[2])
345 {
346 child_close(fd[0]);
347 child_close(fd[1]);
348 }
349
350 static void child_error_fn(const char *err UNUSED, va_list params UNUSED)
351 {
352 const char msg[] = "error() should not be called in child\n";
353 xwrite(2, msg, sizeof(msg) - 1);
354 }
355
356 static void child_warn_fn(const char *err UNUSED, va_list params UNUSED)
357 {
358 const char msg[] = "warn() should not be called in child\n";
359 xwrite(2, msg, sizeof(msg) - 1);
360 }
361
362 static void NORETURN child_die_fn(const char *err UNUSED, va_list params UNUSED)
363 {
364 const char msg[] = "die() should not be called in child\n";
365 xwrite(2, msg, sizeof(msg) - 1);
366 _exit(2);
367 }
368
369 /* this runs in the parent process */
370 static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
371 {
372 static void (*old_errfn)(const char *err, va_list params);
373 report_fn die_message_routine = get_die_message_routine();
374
375 old_errfn = get_error_routine();
376 set_error_routine(die_message_routine);
377 errno = cerr->syserr;
378
379 switch (cerr->err) {
380 case CHILD_ERR_CHDIR:
381 error_errno("exec '%s': cd to '%s' failed",
382 cmd->args.v[0], cmd->dir);
383 break;
384 case CHILD_ERR_DUP2:
385 error_errno("dup2() in child failed");
386 break;
387 case CHILD_ERR_CLOSE:
388 error_errno("close() in child failed");
389 break;
390 case CHILD_ERR_SIGPROCMASK:
391 error_errno("sigprocmask failed restoring signals");
392 break;
393 case CHILD_ERR_ENOENT:
394 error_errno("cannot run %s", cmd->args.v[0]);
395 break;
396 case CHILD_ERR_SILENT:
397 break;
398 case CHILD_ERR_ERRNO:
399 error_errno("cannot exec '%s'", cmd->args.v[0]);
400 break;
401 }
402 set_error_routine(old_errfn);
403 }
404
405 static int prepare_cmd(struct strvec *out, const struct child_process *cmd)
406 {
407 if (!cmd->args.v[0])
408 BUG("command is empty");
409
410 /*
411 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
412 * attempt to interpret the command with 'sh'.
413 */
414 strvec_push(out, SHELL_PATH);
415
416 if (cmd->git_cmd) {
417 prepare_git_cmd(out, cmd->args.v);
418 } else if (cmd->use_shell) {
419 prepare_shell_cmd(out, cmd->args.v);
420 } else {
421 strvec_pushv(out, cmd->args.v);
422 }
423
424 /*
425 * If there are no dir separator characters in the command then perform
426 * a path lookup and use the resolved path as the command to exec. If
427 * there are dir separator characters, we have exec attempt to invoke
428 * the command directly.
429 */
430 if (!has_dir_sep(out->v[1])) {
431 char *program = locate_in_PATH(out->v[1]);
432 if (program) {
433 free((char *)out->v[1]);
434 out->v[1] = program;
435 } else {
436 strvec_clear(out);
437 errno = ENOENT;
438 return -1;
439 }
440 }
441
442 return 0;
443 }
444
445 static char **prep_childenv(const char *const *deltaenv)
446 {
447 extern char **environ;
448 char **childenv;
449 struct string_list env = STRING_LIST_INIT_DUP;
450 struct strbuf key = STRBUF_INIT;
451 const char *const *p;
452 int i;
453
454 /* Construct a sorted string list consisting of the current environ */
455 for (p = (const char *const *) environ; p && *p; p++) {
456 const char *equals = strchr(*p, '=');
457
458 if (equals) {
459 strbuf_reset(&key);
460 strbuf_add(&key, *p, equals - *p);
461 string_list_append(&env, key.buf)->util = (void *) *p;
462 } else {
463 string_list_append(&env, *p)->util = (void *) *p;
464 }
465 }
466 string_list_sort(&env);
467
468 /* Merge in 'deltaenv' with the current environ */
469 for (p = deltaenv; p && *p; p++) {
470 const char *equals = strchr(*p, '=');
471
472 if (equals) {
473 /* ('key=value'), insert or replace entry */
474 strbuf_reset(&key);
475 strbuf_add(&key, *p, equals - *p);
476 string_list_insert(&env, key.buf)->util = (void *) *p;
477 } else {
478 /* otherwise ('key') remove existing entry */
479 string_list_remove(&env, *p, 0);
480 }
481 }
482
483 /* Create an array of 'char *' to be used as the childenv */
484 ALLOC_ARRAY(childenv, env.nr + 1);
485 for (i = 0; i < env.nr; i++)
486 childenv[i] = env.items[i].util;
487 childenv[env.nr] = NULL;
488
489 string_list_clear(&env, 0);
490 strbuf_release(&key);
491 return childenv;
492 }
493
494 struct atfork_state {
495 #ifndef NO_PTHREADS
496 int cs;
497 #endif
498 sigset_t old;
499 };
500
501 #define CHECK_BUG(err, msg) \
502 do { \
503 int e = (err); \
504 if (e) \
505 BUG("%s: %s", msg, strerror(e)); \
506 } while(0)
507
508 static void atfork_prepare(struct atfork_state *as)
509 {
510 sigset_t all;
511
512 if (sigfillset(&all))
513 die_errno("sigfillset");
514 #ifdef NO_PTHREADS
515 if (sigprocmask(SIG_SETMASK, &all, &as->old))
516 die_errno("sigprocmask");
517 #else
518 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
519 "blocking all signals");
520 CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
521 "disabling cancellation");
522 #endif
523 }
524
525 static void atfork_parent(struct atfork_state *as)
526 {
527 #ifdef NO_PTHREADS
528 if (sigprocmask(SIG_SETMASK, &as->old, NULL))
529 die_errno("sigprocmask");
530 #else
531 CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
532 "re-enabling cancellation");
533 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
534 "restoring signal mask");
535 #endif
536 }
537 #endif /* GIT_WINDOWS_NATIVE */
538
539 static inline void set_cloexec(int fd)
540 {
541 int flags = fcntl(fd, F_GETFD);
542 if (flags >= 0)
543 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
544 }
545
546 static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
547 {
548 int status, code = -1;
549 pid_t waiting;
550 int failed_errno = 0;
551
552 while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
553 ; /* nothing */
554
555 if (waiting < 0) {
556 failed_errno = errno;
557 if (!in_signal)
558 error_errno("waitpid for %s failed", argv0);
559 } else if (waiting != pid) {
560 if (!in_signal)
561 error("waitpid is confused (%s)", argv0);
562 } else if (WIFSIGNALED(status)) {
563 code = WTERMSIG(status);
564 if (!in_signal && code != SIGINT && code != SIGQUIT && code != SIGPIPE)
565 error("%s died of signal %d", argv0, code);
566 /*
567 * This return value is chosen so that code & 0xff
568 * mimics the exit code that a POSIX shell would report for
569 * a program that died from this signal.
570 */
571 code += 128;
572 } else if (WIFEXITED(status)) {
573 code = WEXITSTATUS(status);
574 } else {
575 if (!in_signal)
576 error("waitpid is confused (%s)", argv0);
577 }
578
579 if (!in_signal)
580 clear_child_for_cleanup(pid);
581
582 errno = failed_errno;
583 return code;
584 }
585
586 static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
587 {
588 struct string_list envs = STRING_LIST_INIT_DUP;
589 const char *const *e;
590 int i;
591 int printed_unset = 0;
592
593 /* Last one wins, see run-command.c:prep_childenv() for context */
594 for (e = deltaenv; e && *e; e++) {
595 struct strbuf key = STRBUF_INIT;
596 char *equals = strchr(*e, '=');
597
598 if (equals) {
599 strbuf_add(&key, *e, equals - *e);
600 string_list_insert(&envs, key.buf)->util = equals + 1;
601 } else {
602 string_list_insert(&envs, *e)->util = NULL;
603 }
604 strbuf_release(&key);
605 }
606
607 /* "unset X Y...;" */
608 for (i = 0; i < envs.nr; i++) {
609 const char *var = envs.items[i].string;
610 const char *val = envs.items[i].util;
611
612 if (val || !getenv(var))
613 continue;
614
615 if (!printed_unset) {
616 strbuf_addstr(dst, " unset");
617 printed_unset = 1;
618 }
619 strbuf_addf(dst, " %s", var);
620 }
621 if (printed_unset)
622 strbuf_addch(dst, ';');
623
624 /* ... followed by "A=B C=D ..." */
625 for (i = 0; i < envs.nr; i++) {
626 const char *var = envs.items[i].string;
627 const char *val = envs.items[i].util;
628 const char *oldval;
629
630 if (!val)
631 continue;
632
633 oldval = getenv(var);
634 if (oldval && !strcmp(val, oldval))
635 continue;
636
637 strbuf_addf(dst, " %s=", var);
638 sq_quote_buf_pretty(dst, val);
639 }
640 string_list_clear(&envs, 0);
641 }
642
643 static void trace_run_command(const struct child_process *cp)
644 {
645 struct strbuf buf = STRBUF_INIT;
646
647 if (!trace_want(&trace_default_key))
648 return;
649
650 strbuf_addstr(&buf, "trace: run_command:");
651 if (cp->dir) {
652 strbuf_addstr(&buf, " cd ");
653 sq_quote_buf_pretty(&buf, cp->dir);
654 strbuf_addch(&buf, ';');
655 }
656 trace_add_env(&buf, cp->env.v);
657 if (cp->git_cmd)
658 strbuf_addstr(&buf, " git");
659 sq_quote_argv_pretty(&buf, cp->args.v);
660
661 trace_printf("%s", buf.buf);
662 strbuf_release(&buf);
663 }
664
665 int start_command(struct child_process *cmd)
666 {
667 int need_in, need_out, need_err;
668 int fdin[2], fdout[2], fderr[2];
669 int failed_errno;
670 char *str;
671
672 /*
673 * In case of errors we must keep the promise to close FDs
674 * that have been passed in via ->in and ->out.
675 */
676
677 need_in = !cmd->no_stdin && cmd->in < 0;
678 if (need_in) {
679 if (pipe(fdin) < 0) {
680 failed_errno = errno;
681 if (cmd->out > 0)
682 close(cmd->out);
683 str = "standard input";
684 goto fail_pipe;
685 }
686 cmd->in = fdin[1];
687 }
688
689 need_out = !cmd->no_stdout
690 && !cmd->stdout_to_stderr
691 && cmd->out < 0;
692 if (need_out) {
693 if (pipe(fdout) < 0) {
694 failed_errno = errno;
695 if (need_in)
696 close_pair(fdin);
697 else if (cmd->in)
698 close(cmd->in);
699 str = "standard output";
700 goto fail_pipe;
701 }
702 cmd->out = fdout[0];
703 }
704
705 need_err = !cmd->no_stderr && cmd->err < 0;
706 if (need_err) {
707 if (pipe(fderr) < 0) {
708 failed_errno = errno;
709 if (need_in)
710 close_pair(fdin);
711 else if (cmd->in)
712 close(cmd->in);
713 if (need_out)
714 close_pair(fdout);
715 else if (cmd->out)
716 close(cmd->out);
717 str = "standard error";
718 fail_pipe:
719 error("cannot create %s pipe for %s: %s",
720 str, cmd->args.v[0], strerror(failed_errno));
721 child_process_clear(cmd);
722 errno = failed_errno;
723 return -1;
724 }
725 cmd->err = fderr[0];
726 }
727
728 trace2_child_start(cmd);
729 trace_run_command(cmd);
730
731 fflush(NULL);
732
733 if (cmd->close_object_store)
734 close_object_store(the_repository->objects);
735
736 #ifndef GIT_WINDOWS_NATIVE
737 {
738 int notify_pipe[2];
739 int null_fd = -1;
740 char **childenv;
741 struct strvec argv = STRVEC_INIT;
742 struct child_err cerr;
743 struct atfork_state as;
744
745 if (prepare_cmd(&argv, cmd) < 0) {
746 failed_errno = errno;
747 cmd->pid = -1;
748 if (!cmd->silent_exec_failure)
749 error_errno("cannot run %s", cmd->args.v[0]);
750 goto end_of_spawn;
751 }
752
753 if (pipe(notify_pipe))
754 notify_pipe[0] = notify_pipe[1] = -1;
755
756 if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
757 null_fd = xopen("/dev/null", O_RDWR | O_CLOEXEC);
758 set_cloexec(null_fd);
759 }
760
761 childenv = prep_childenv(cmd->env.v);
762 atfork_prepare(&as);
763
764 /*
765 * NOTE: In order to prevent deadlocking when using threads special
766 * care should be taken with the function calls made in between the
767 * fork() and exec() calls. No calls should be made to functions which
768 * require acquiring a lock (e.g. malloc) as the lock could have been
769 * held by another thread at the time of forking, causing the lock to
770 * never be released in the child process. This means only
771 * Async-Signal-Safe functions are permitted in the child.
772 */
773 cmd->pid = fork();
774 failed_errno = errno;
775 if (!cmd->pid) {
776 int sig;
777 /*
778 * Ensure the default die/error/warn routines do not get
779 * called, they can take stdio locks and malloc.
780 */
781 set_die_routine(child_die_fn);
782 set_error_routine(child_error_fn);
783 set_warn_routine(child_warn_fn);
784
785 close(notify_pipe[0]);
786 set_cloexec(notify_pipe[1]);
787 child_notifier = notify_pipe[1];
788
789 if (cmd->no_stdin)
790 child_dup2(null_fd, 0);
791 else if (need_in) {
792 child_dup2(fdin[0], 0);
793 child_close_pair(fdin);
794 } else if (cmd->in) {
795 child_dup2(cmd->in, 0);
796 child_close(cmd->in);
797 }
798
799 if (cmd->no_stderr)
800 child_dup2(null_fd, 2);
801 else if (need_err) {
802 child_dup2(fderr[1], 2);
803 child_close_pair(fderr);
804 } else if (cmd->err > 1) {
805 child_dup2(cmd->err, 2);
806 child_close(cmd->err);
807 }
808
809 if (cmd->no_stdout)
810 child_dup2(null_fd, 1);
811 else if (cmd->stdout_to_stderr)
812 child_dup2(2, 1);
813 else if (need_out) {
814 child_dup2(fdout[1], 1);
815 child_close_pair(fdout);
816 } else if (cmd->out > 1) {
817 child_dup2(cmd->out, 1);
818 child_close(cmd->out);
819 }
820
821 if (cmd->dir && chdir(cmd->dir))
822 child_die(CHILD_ERR_CHDIR);
823
824 /*
825 * restore default signal handlers here, in case
826 * we catch a signal right before execve below
827 */
828 for (sig = 1; sig < NSIG; sig++) {
829 /* ignored signals get reset to SIG_DFL on execve */
830 if (signal(sig, SIG_DFL) == SIG_IGN)
831 signal(sig, SIG_IGN);
832 }
833
834 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
835 child_die(CHILD_ERR_SIGPROCMASK);
836
837 /*
838 * Attempt to exec using the command and arguments starting at
839 * argv.argv[1]. argv.argv[0] contains SHELL_PATH which will
840 * be used in the event exec failed with ENOEXEC at which point
841 * we will try to interpret the command using 'sh'.
842 */
843 execve(argv.v[1], (char *const *) argv.v + 1,
844 (char *const *) childenv);
845 if (errno == ENOEXEC)
846 execve(argv.v[0], (char *const *) argv.v,
847 (char *const *) childenv);
848
849 if (errno == ENOENT) {
850 if (cmd->silent_exec_failure)
851 child_die(CHILD_ERR_SILENT);
852 child_die(CHILD_ERR_ENOENT);
853 } else {
854 child_die(CHILD_ERR_ERRNO);
855 }
856 }
857 atfork_parent(&as);
858 if (cmd->pid < 0)
859 error_errno("cannot fork() for %s", cmd->args.v[0]);
860 else if (cmd->clean_on_exit)
861 mark_child_for_cleanup(cmd->pid, cmd);
862
863 /*
864 * Wait for child's exec. If the exec succeeds (or if fork()
865 * failed), EOF is seen immediately by the parent. Otherwise, the
866 * child process sends a child_err struct.
867 * Note that use of this infrastructure is completely advisory,
868 * therefore, we keep error checks minimal.
869 */
870 close(notify_pipe[1]);
871 if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
872 /*
873 * At this point we know that fork() succeeded, but exec()
874 * failed. Errors have been reported to our stderr.
875 */
876 wait_or_whine(cmd->pid, cmd->args.v[0], 0);
877 child_err_spew(cmd, &cerr);
878 failed_errno = errno;
879 cmd->pid = -1;
880 }
881 close(notify_pipe[0]);
882
883 if (null_fd >= 0)
884 close(null_fd);
885 strvec_clear(&argv);
886 free(childenv);
887 }
888 end_of_spawn:
889
890 #else
891 {
892 int fhin = 0, fhout = 1, fherr = 2;
893 const char **sargv = cmd->args.v;
894 struct strvec nargv = STRVEC_INIT;
895
896 if (cmd->no_stdin)
897 fhin = open("/dev/null", O_RDWR);
898 else if (need_in)
899 fhin = dup(fdin[0]);
900 else if (cmd->in)
901 fhin = dup(cmd->in);
902
903 if (cmd->no_stderr)
904 fherr = open("/dev/null", O_RDWR);
905 else if (need_err)
906 fherr = dup(fderr[1]);
907 else if (cmd->err > 2)
908 fherr = dup(cmd->err);
909
910 if (cmd->no_stdout)
911 fhout = open("/dev/null", O_RDWR);
912 else if (cmd->stdout_to_stderr)
913 fhout = dup(fherr);
914 else if (need_out)
915 fhout = dup(fdout[1]);
916 else if (cmd->out > 1)
917 fhout = dup(cmd->out);
918
919 if (cmd->git_cmd)
920 cmd->args.v = prepare_git_cmd(&nargv, sargv);
921 else if (cmd->use_shell)
922 cmd->args.v = prepare_shell_cmd(&nargv, sargv);
923
924 cmd->pid = mingw_spawnvpe(cmd->args.v[0], cmd->args.v,
925 (char**) cmd->env.v,
926 cmd->dir, fhin, fhout, fherr);
927 failed_errno = errno;
928 if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
929 error_errno("cannot spawn %s", cmd->args.v[0]);
930 if (cmd->clean_on_exit && cmd->pid >= 0)
931 mark_child_for_cleanup(cmd->pid, cmd);
932
933 strvec_clear(&nargv);
934 cmd->args.v = sargv;
935 if (fhin != 0)
936 close(fhin);
937 if (fhout != 1)
938 close(fhout);
939 if (fherr != 2)
940 close(fherr);
941 }
942 #endif
943
944 if (cmd->pid < 0) {
945 trace2_child_exit(cmd, -1);
946
947 if (need_in)
948 close_pair(fdin);
949 else if (cmd->in)
950 close(cmd->in);
951 if (need_out)
952 close_pair(fdout);
953 else if (cmd->out)
954 close(cmd->out);
955 if (need_err)
956 close_pair(fderr);
957 else if (cmd->err)
958 close(cmd->err);
959 child_process_clear(cmd);
960 errno = failed_errno;
961 return -1;
962 }
963
964 if (need_in)
965 close(fdin[0]);
966 else if (cmd->in)
967 close(cmd->in);
968
969 if (need_out)
970 close(fdout[1]);
971 else if (cmd->out)
972 close(cmd->out);
973
974 if (need_err)
975 close(fderr[1]);
976 else if (cmd->err)
977 close(cmd->err);
978
979 return 0;
980 }
981
982 int finish_command(struct child_process *cmd)
983 {
984 int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 0);
985 trace2_child_exit(cmd, ret);
986 child_process_clear(cmd);
987 invalidate_lstat_cache();
988 return ret;
989 }
990
991 int finish_command_in_signal(struct child_process *cmd)
992 {
993 int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 1);
994 if (ret != -1)
995 trace2_child_exit(cmd, ret);
996 return ret;
997 }
998
999
1000 int run_command(struct child_process *cmd)
1001 {
1002 int code;
1003
1004 if (cmd->out < 0 || cmd->err < 0)
1005 BUG("run_command with a pipe can cause deadlock");
1006
1007 code = start_command(cmd);
1008 if (code)
1009 return code;
1010 return finish_command(cmd);
1011 }
1012
1013 #ifndef NO_PTHREADS
1014 static pthread_t main_thread;
1015 static int main_thread_set;
1016 static pthread_key_t async_key;
1017 static pthread_key_t async_die_counter;
1018
1019 static void *run_thread(void *data)
1020 {
1021 struct async *async = data;
1022 intptr_t ret;
1023
1024 if (async->isolate_sigpipe) {
1025 sigset_t mask;
1026 sigemptyset(&mask);
1027 sigaddset(&mask, SIGPIPE);
1028 if (pthread_sigmask(SIG_BLOCK, &mask, NULL)) {
1029 ret = error("unable to block SIGPIPE in async thread");
1030 return (void *)ret;
1031 }
1032 }
1033
1034 pthread_setspecific(async_key, async);
1035 ret = async->proc(async->proc_in, async->proc_out, async->data);
1036 return (void *)ret;
1037 }
1038
1039 static NORETURN void die_async(const char *err, va_list params)
1040 {
1041 report_fn die_message_fn = get_die_message_routine();
1042
1043 die_message_fn(err, params);
1044
1045 if (in_async()) {
1046 struct async *async = pthread_getspecific(async_key);
1047 if (async->proc_in >= 0)
1048 close(async->proc_in);
1049 if (async->proc_out >= 0)
1050 close(async->proc_out);
1051 pthread_exit((void *)128);
1052 }
1053
1054 exit(128);
1055 }
1056
1057 static int async_die_is_recursing(void)
1058 {
1059 void *ret = pthread_getspecific(async_die_counter);
1060 pthread_setspecific(async_die_counter, &async_die_counter); /* set to any non-NULL valid pointer */
1061 return ret != NULL;
1062 }
1063
1064 int in_async(void)
1065 {
1066 if (!main_thread_set)
1067 return 0; /* no asyncs started yet */
1068 return !pthread_equal(main_thread, pthread_self());
1069 }
1070
1071 static void NORETURN async_exit(int code)
1072 {
1073 pthread_exit((void *)(intptr_t)code);
1074 }
1075
1076 #else
1077
1078 static struct {
1079 void (**handlers)(void);
1080 size_t nr;
1081 size_t alloc;
1082 } git_atexit_hdlrs;
1083
1084 static int git_atexit_installed;
1085
1086 static void git_atexit_dispatch(void)
1087 {
1088 size_t i;
1089
1090 for (i=git_atexit_hdlrs.nr ; i ; i--)
1091 git_atexit_hdlrs.handlers[i-1]();
1092 }
1093
1094 static void git_atexit_clear(void)
1095 {
1096 free(git_atexit_hdlrs.handlers);
1097 memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1098 git_atexit_installed = 0;
1099 }
1100
1101 #undef atexit
1102 int git_atexit(void (*handler)(void))
1103 {
1104 ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1105 git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1106 if (!git_atexit_installed) {
1107 if (atexit(&git_atexit_dispatch))
1108 return -1;
1109 git_atexit_installed = 1;
1110 }
1111 return 0;
1112 }
1113 #define atexit git_atexit
1114
1115 static int process_is_async;
1116 int in_async(void)
1117 {
1118 return process_is_async;
1119 }
1120
1121 static void NORETURN async_exit(int code)
1122 {
1123 exit(code);
1124 }
1125
1126 #endif
1127
1128 void check_pipe(int err)
1129 {
1130 if (err == EPIPE) {
1131 if (in_async())
1132 async_exit(141);
1133
1134 signal(SIGPIPE, SIG_DFL);
1135 raise(SIGPIPE);
1136 /* Should never happen, but just in case... */
1137 exit(141);
1138 }
1139 }
1140
1141 int start_async(struct async *async)
1142 {
1143 int need_in, need_out;
1144 int fdin[2], fdout[2];
1145 int proc_in, proc_out;
1146
1147 need_in = async->in < 0;
1148 if (need_in) {
1149 if (pipe(fdin) < 0) {
1150 if (async->out > 0)
1151 close(async->out);
1152 return error_errno("cannot create pipe");
1153 }
1154 async->in = fdin[1];
1155 }
1156
1157 need_out = async->out < 0;
1158 if (need_out) {
1159 if (pipe(fdout) < 0) {
1160 if (need_in)
1161 close_pair(fdin);
1162 else if (async->in)
1163 close(async->in);
1164 return error_errno("cannot create pipe");
1165 }
1166 async->out = fdout[0];
1167 }
1168
1169 if (need_in)
1170 proc_in = fdin[0];
1171 else if (async->in)
1172 proc_in = async->in;
1173 else
1174 proc_in = -1;
1175
1176 if (need_out)
1177 proc_out = fdout[1];
1178 else if (async->out)
1179 proc_out = async->out;
1180 else
1181 proc_out = -1;
1182
1183 #ifdef NO_PTHREADS
1184 /* Flush stdio before fork() to avoid cloning buffers */
1185 fflush(NULL);
1186
1187 async->pid = fork();
1188 if (async->pid < 0) {
1189 error_errno("fork (async) failed");
1190 goto error;
1191 }
1192 if (!async->pid) {
1193 if (need_in)
1194 close(fdin[1]);
1195 if (need_out)
1196 close(fdout[0]);
1197 git_atexit_clear();
1198 process_is_async = 1;
1199 exit(!!async->proc(proc_in, proc_out, async->data));
1200 }
1201
1202 mark_child_for_cleanup(async->pid, NULL);
1203
1204 if (need_in)
1205 close(fdin[0]);
1206 else if (async->in)
1207 close(async->in);
1208
1209 if (need_out)
1210 close(fdout[1]);
1211 else if (async->out)
1212 close(async->out);
1213 #else
1214 if (!main_thread_set) {
1215 /*
1216 * We assume that the first time that start_async is called
1217 * it is from the main thread.
1218 */
1219 main_thread_set = 1;
1220 main_thread = pthread_self();
1221 pthread_key_create(&async_key, NULL);
1222 pthread_key_create(&async_die_counter, NULL);
1223 set_die_routine(die_async);
1224 set_die_is_recursing_routine(async_die_is_recursing);
1225 }
1226
1227 if (proc_in >= 0)
1228 set_cloexec(proc_in);
1229 if (proc_out >= 0)
1230 set_cloexec(proc_out);
1231 async->proc_in = proc_in;
1232 async->proc_out = proc_out;
1233 {
1234 int err = pthread_create(&async->tid, NULL, run_thread, async);
1235 if (err) {
1236 error(_("cannot create async thread: %s"), strerror(err));
1237 goto error;
1238 }
1239 }
1240 #endif
1241 return 0;
1242
1243 error:
1244 if (need_in)
1245 close_pair(fdin);
1246 else if (async->in)
1247 close(async->in);
1248
1249 if (need_out)
1250 close_pair(fdout);
1251 else if (async->out)
1252 close(async->out);
1253 return -1;
1254 }
1255
1256 int finish_async(struct async *async)
1257 {
1258 #ifdef NO_PTHREADS
1259 int ret = wait_or_whine(async->pid, "child process", 0);
1260
1261 invalidate_lstat_cache();
1262
1263 return ret;
1264 #else
1265 void *ret = (void *)(intptr_t)(-1);
1266
1267 if (pthread_join(async->tid, &ret))
1268 error("pthread_join failed");
1269 invalidate_lstat_cache();
1270 return (int)(intptr_t)ret;
1271
1272 #endif
1273 }
1274
1275 int async_with_fork(void)
1276 {
1277 #ifdef NO_PTHREADS
1278 return 1;
1279 #else
1280 return 0;
1281 #endif
1282 }
1283
1284 struct io_pump {
1285 /* initialized by caller */
1286 int fd;
1287 int type; /* POLLOUT or POLLIN */
1288 union {
1289 struct {
1290 const char *buf;
1291 size_t len;
1292 } out;
1293 struct {
1294 struct strbuf *buf;
1295 size_t hint;
1296 } in;
1297 } u;
1298
1299 /* returned by pump_io */
1300 int error; /* 0 for success, otherwise errno */
1301
1302 /* internal use */
1303 struct pollfd *pfd;
1304 };
1305
1306 static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1307 {
1308 int pollsize = 0;
1309 int i;
1310
1311 for (i = 0; i < nr; i++) {
1312 struct io_pump *io = &slots[i];
1313 if (io->fd < 0)
1314 continue;
1315 pfd[pollsize].fd = io->fd;
1316 pfd[pollsize].events = io->type;
1317 io->pfd = &pfd[pollsize++];
1318 }
1319
1320 if (!pollsize)
1321 return 0;
1322
1323 if (poll(pfd, pollsize, -1) < 0) {
1324 if (errno == EINTR)
1325 return 1;
1326 die_errno("poll failed");
1327 }
1328
1329 for (i = 0; i < nr; i++) {
1330 struct io_pump *io = &slots[i];
1331
1332 if (io->fd < 0)
1333 continue;
1334
1335 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1336 continue;
1337
1338 if (io->type == POLLOUT) {
1339 ssize_t len;
1340
1341 /*
1342 * Don't use xwrite() here. It loops forever on EAGAIN,
1343 * and we're in our own poll() loop here.
1344 *
1345 * Note that we lose xwrite()'s handling of MAX_IO_SIZE
1346 * and EINTR, so we have to implement those ourselves.
1347 */
1348 len = write(io->fd, io->u.out.buf,
1349 io->u.out.len <= MAX_IO_SIZE ?
1350 io->u.out.len : MAX_IO_SIZE);
1351 if (len < 0) {
1352 if (errno != EINTR && errno != EAGAIN &&
1353 errno != ENOSPC) {
1354 io->error = errno;
1355 close(io->fd);
1356 io->fd = -1;
1357 }
1358 } else {
1359 io->u.out.buf += len;
1360 io->u.out.len -= len;
1361 if (!io->u.out.len) {
1362 close(io->fd);
1363 io->fd = -1;
1364 }
1365 }
1366 }
1367
1368 if (io->type == POLLIN) {
1369 ssize_t len = strbuf_read_once(io->u.in.buf,
1370 io->fd, io->u.in.hint);
1371 if (len < 0)
1372 io->error = errno;
1373 if (len <= 0) {
1374 close(io->fd);
1375 io->fd = -1;
1376 }
1377 }
1378 }
1379
1380 return 1;
1381 }
1382
1383 static int pump_io(struct io_pump *slots, int nr)
1384 {
1385 struct pollfd *pfd;
1386 int i;
1387
1388 for (i = 0; i < nr; i++)
1389 slots[i].error = 0;
1390
1391 ALLOC_ARRAY(pfd, nr);
1392 while (pump_io_round(slots, nr, pfd))
1393 ; /* nothing */
1394 free(pfd);
1395
1396 /* There may be multiple errno values, so just pick the first. */
1397 for (i = 0; i < nr; i++) {
1398 if (slots[i].error) {
1399 errno = slots[i].error;
1400 return -1;
1401 }
1402 }
1403 return 0;
1404 }
1405
1406
1407 int pipe_command(struct child_process *cmd,
1408 const char *in, size_t in_len,
1409 struct strbuf *out, size_t out_hint,
1410 struct strbuf *err, size_t err_hint)
1411 {
1412 struct io_pump io[3];
1413 int nr = 0;
1414
1415 if (in)
1416 cmd->in = -1;
1417 if (out)
1418 cmd->out = -1;
1419 if (err)
1420 cmd->err = -1;
1421
1422 if (start_command(cmd) < 0)
1423 return -1;
1424
1425 if (in) {
1426 if (enable_pipe_nonblock(cmd->in) < 0) {
1427 error_errno("unable to make pipe non-blocking");
1428 close(cmd->in);
1429 if (out)
1430 close(cmd->out);
1431 if (err)
1432 close(cmd->err);
1433 return -1;
1434 }
1435 io[nr].fd = cmd->in;
1436 io[nr].type = POLLOUT;
1437 io[nr].u.out.buf = in;
1438 io[nr].u.out.len = in_len;
1439 nr++;
1440 }
1441 if (out) {
1442 io[nr].fd = cmd->out;
1443 io[nr].type = POLLIN;
1444 io[nr].u.in.buf = out;
1445 io[nr].u.in.hint = out_hint;
1446 nr++;
1447 }
1448 if (err) {
1449 io[nr].fd = cmd->err;
1450 io[nr].type = POLLIN;
1451 io[nr].u.in.buf = err;
1452 io[nr].u.in.hint = err_hint;
1453 nr++;
1454 }
1455
1456 if (pump_io(io, nr) < 0) {
1457 finish_command(cmd); /* throw away exit code */
1458 return -1;
1459 }
1460
1461 return finish_command(cmd);
1462 }
1463
1464 enum child_state {
1465 GIT_CP_FREE,
1466 GIT_CP_WORKING,
1467 GIT_CP_WAIT_CLEANUP,
1468 };
1469
1470 struct parallel_processes {
1471 size_t nr_processes;
1472
1473 struct {
1474 enum child_state state;
1475 struct child_process process;
1476 struct strbuf err;
1477 void *data;
1478 } *children;
1479 /*
1480 * The struct pollfd is logically part of *children,
1481 * but the system call expects it as its own array.
1482 */
1483 struct pollfd *pfd;
1484
1485 unsigned shutdown : 1;
1486
1487 size_t output_owner;
1488 struct strbuf buffered_output; /* of finished children */
1489 };
1490
1491 struct parallel_processes_for_signal {
1492 const struct run_process_parallel_opts *opts;
1493 const struct parallel_processes *pp;
1494 };
1495
1496 static void kill_children(const struct parallel_processes *pp,
1497 const struct run_process_parallel_opts *opts,
1498 int signo)
1499 {
1500 for (size_t i = 0; i < opts->processes; i++)
1501 if (pp->children[i].state == GIT_CP_WORKING)
1502 kill(pp->children[i].process.pid, signo);
1503 }
1504
1505 static void kill_children_signal(const struct parallel_processes_for_signal *pp_sig,
1506 int signo)
1507 {
1508 kill_children(pp_sig->pp, pp_sig->opts, signo);
1509 }
1510
1511 static struct parallel_processes_for_signal *pp_for_signal;
1512
1513 static void handle_children_on_signal(int signo)
1514 {
1515 kill_children_signal(pp_for_signal, signo);
1516 sigchain_pop(signo);
1517 raise(signo);
1518 }
1519
1520 static void pp_init(struct parallel_processes *pp,
1521 const struct run_process_parallel_opts *opts,
1522 struct parallel_processes_for_signal *pp_sig)
1523 {
1524 const size_t n = opts->processes;
1525
1526 if (!n)
1527 BUG("you must provide a non-zero number of processes!");
1528
1529 trace_printf("run_processes_parallel: preparing to run up to %"PRIuMAX" tasks",
1530 (uintmax_t)n);
1531
1532 if (!opts->get_next_task)
1533 BUG("you need to specify a get_next_task function");
1534
1535 CALLOC_ARRAY(pp->children, n);
1536 if (!opts->ungroup)
1537 CALLOC_ARRAY(pp->pfd, n);
1538
1539 for (size_t i = 0; i < n; i++) {
1540 strbuf_init(&pp->children[i].err, 0);
1541 child_process_init(&pp->children[i].process);
1542 if (pp->pfd) {
1543 pp->pfd[i].events = POLLIN | POLLHUP;
1544 pp->pfd[i].fd = -1;
1545 }
1546 }
1547
1548 pp_sig->pp = pp;
1549 pp_sig->opts = opts;
1550 pp_for_signal = pp_sig;
1551 sigchain_push_common(handle_children_on_signal);
1552 }
1553
1554 static void pp_cleanup(struct parallel_processes *pp,
1555 const struct run_process_parallel_opts *opts)
1556 {
1557 trace_printf("run_processes_parallel: done");
1558 for (size_t i = 0; i < opts->processes; i++) {
1559 strbuf_release(&pp->children[i].err);
1560 child_process_clear(&pp->children[i].process);
1561 }
1562
1563 free(pp->children);
1564 free(pp->pfd);
1565
1566 /*
1567 * When get_next_task added messages to the buffer in its last
1568 * iteration, the buffered output is non empty.
1569 */
1570 strbuf_write(&pp->buffered_output, stderr);
1571 strbuf_release(&pp->buffered_output);
1572
1573 sigchain_pop_common();
1574 }
1575
1576 /* returns
1577 * 0 if a new task was started.
1578 * 1 if no new jobs was started (get_next_task ran out of work, non critical
1579 * problem with starting a new command)
1580 * <0 no new job was started, user wishes to shutdown early. Use negative code
1581 * to signal the children.
1582 */
1583 static int pp_start_one(struct parallel_processes *pp,
1584 const struct run_process_parallel_opts *opts)
1585 {
1586 size_t i;
1587 int code;
1588
1589 for (i = 0; i < opts->processes; i++)
1590 if (pp->children[i].state == GIT_CP_FREE)
1591 break;
1592 if (i == opts->processes)
1593 BUG("bookkeeping is hard");
1594
1595 /*
1596 * By default, do not inherit stdin from the parent process - otherwise,
1597 * all children would share stdin! Users may overwrite this to provide
1598 * something to the child's stdin by having their 'get_next_task'
1599 * callback assign 0 to .no_stdin and an appropriate integer to .in.
1600 */
1601 pp->children[i].process.no_stdin = 1;
1602
1603 code = opts->get_next_task(&pp->children[i].process,
1604 opts->ungroup ? NULL : &pp->children[i].err,
1605 opts->data,
1606 &pp->children[i].data);
1607 if (!code) {
1608 if (!opts->ungroup) {
1609 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1610 strbuf_reset(&pp->children[i].err);
1611 }
1612 return 1;
1613 }
1614 if (!opts->ungroup) {
1615 pp->children[i].process.err = -1;
1616 pp->children[i].process.stdout_to_stderr = 1;
1617 }
1618
1619 if (start_command(&pp->children[i].process)) {
1620 if (opts->start_failure)
1621 code = opts->start_failure(opts->ungroup ? NULL :
1622 &pp->children[i].err,
1623 opts->data,
1624 pp->children[i].data);
1625 else
1626 code = 0;
1627
1628 if (!opts->ungroup) {
1629 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1630 strbuf_reset(&pp->children[i].err);
1631 }
1632 if (code)
1633 pp->shutdown = 1;
1634 return code;
1635 }
1636
1637 pp->nr_processes++;
1638 pp->children[i].state = GIT_CP_WORKING;
1639 if (pp->pfd)
1640 pp->pfd[i].fd = pp->children[i].process.err;
1641 return 0;
1642 }
1643
1644 static void pp_buffer_stderr(struct parallel_processes *pp,
1645 const struct run_process_parallel_opts *opts,
1646 int output_timeout)
1647 {
1648 while (poll(pp->pfd, opts->processes, output_timeout) < 0) {
1649 if (errno == EINTR)
1650 continue;
1651 pp_cleanup(pp, opts);
1652 die_errno("poll");
1653 }
1654
1655 /* Buffer output from all pipes. */
1656 for (size_t i = 0; i < opts->processes; i++) {
1657 if (pp->children[i].state == GIT_CP_WORKING &&
1658 pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1659 int n = strbuf_read_once(&pp->children[i].err,
1660 pp->children[i].process.err, 0);
1661 if (n == 0) {
1662 close(pp->children[i].process.err);
1663 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1664 } else if (n < 0)
1665 if (errno != EAGAIN)
1666 die_errno("read");
1667 }
1668 }
1669 }
1670
1671 static void pp_output(const struct parallel_processes *pp)
1672 {
1673 size_t i = pp->output_owner;
1674
1675 if (pp->children[i].state == GIT_CP_WORKING &&
1676 pp->children[i].err.len) {
1677 strbuf_write(&pp->children[i].err, stderr);
1678 strbuf_reset(&pp->children[i].err);
1679 }
1680 }
1681
1682 static int pp_collect_finished(struct parallel_processes *pp,
1683 const struct run_process_parallel_opts *opts)
1684 {
1685 int code;
1686 size_t i;
1687 int result = 0;
1688
1689 while (pp->nr_processes > 0) {
1690 for (i = 0; i < opts->processes; i++)
1691 if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1692 break;
1693 if (i == opts->processes)
1694 break;
1695
1696 code = finish_command(&pp->children[i].process);
1697
1698 if (opts->task_finished)
1699 code = opts->task_finished(code, opts->ungroup ? NULL :
1700 &pp->children[i].err, opts->data,
1701 pp->children[i].data);
1702 else
1703 code = 0;
1704
1705 if (code)
1706 result = code;
1707 if (code < 0)
1708 break;
1709
1710 pp->nr_processes--;
1711 pp->children[i].state = GIT_CP_FREE;
1712 if (pp->pfd)
1713 pp->pfd[i].fd = -1;
1714 child_process_init(&pp->children[i].process);
1715
1716 if (opts->ungroup) {
1717 ; /* no strbuf_*() work to do here */
1718 } else if (i != pp->output_owner) {
1719 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1720 strbuf_reset(&pp->children[i].err);
1721 } else {
1722 const size_t n = opts->processes;
1723
1724 strbuf_write(&pp->children[i].err, stderr);
1725 strbuf_reset(&pp->children[i].err);
1726
1727 /* Output all other finished child processes */
1728 strbuf_write(&pp->buffered_output, stderr);
1729 strbuf_reset(&pp->buffered_output);
1730
1731 /*
1732 * Pick next process to output live.
1733 * NEEDSWORK:
1734 * For now we pick it randomly by doing a round
1735 * robin. Later we may want to pick the one with
1736 * the most output or the longest or shortest
1737 * running process time.
1738 */
1739 for (i = 0; i < n; i++)
1740 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1741 break;
1742 pp->output_owner = (pp->output_owner + i) % n;
1743 }
1744 }
1745 return result;
1746 }
1747
1748 void run_processes_parallel(const struct run_process_parallel_opts *opts)
1749 {
1750 int i, code;
1751 int output_timeout = 100;
1752 int spawn_cap = 4;
1753 struct parallel_processes_for_signal pp_sig;
1754 struct parallel_processes pp = {
1755 .buffered_output = STRBUF_INIT,
1756 };
1757 /* options */
1758 const char *tr2_category = opts->tr2_category;
1759 const char *tr2_label = opts->tr2_label;
1760 const int do_trace2 = tr2_category && tr2_label;
1761
1762 if (do_trace2)
1763 trace2_region_enter_printf(tr2_category, tr2_label, NULL,
1764 "max:%d", opts->processes);
1765
1766 pp_init(&pp, opts, &pp_sig);
1767 while (1) {
1768 for (i = 0;
1769 i < spawn_cap && !pp.shutdown &&
1770 pp.nr_processes < opts->processes;
1771 i++) {
1772 code = pp_start_one(&pp, opts);
1773 if (!code)
1774 continue;
1775 if (code < 0) {
1776 pp.shutdown = 1;
1777 kill_children(&pp, opts, -code);
1778 }
1779 break;
1780 }
1781 if (!pp.nr_processes)
1782 break;
1783 if (opts->ungroup) {
1784 for (size_t i = 0; i < opts->processes; i++)
1785 pp.children[i].state = GIT_CP_WAIT_CLEANUP;
1786 } else {
1787 pp_buffer_stderr(&pp, opts, output_timeout);
1788 pp_output(&pp);
1789 }
1790 code = pp_collect_finished(&pp, opts);
1791 if (code) {
1792 pp.shutdown = 1;
1793 if (code < 0)
1794 kill_children(&pp, opts,-code);
1795 }
1796 }
1797
1798 pp_cleanup(&pp, opts);
1799
1800 if (do_trace2)
1801 trace2_region_leave(tr2_category, tr2_label, NULL);
1802 }
1803
1804 int run_auto_maintenance(int quiet)
1805 {
1806 int enabled;
1807 struct child_process maint = CHILD_PROCESS_INIT;
1808
1809 if (!git_config_get_bool("maintenance.auto", &enabled) &&
1810 !enabled)
1811 return 0;
1812
1813 maint.git_cmd = 1;
1814 maint.close_object_store = 1;
1815 strvec_pushl(&maint.args, "maintenance", "run", "--auto", NULL);
1816 strvec_push(&maint.args, quiet ? "--quiet" : "--no-quiet");
1817
1818 return run_command(&maint);
1819 }
1820
1821 void prepare_other_repo_env(struct strvec *env, const char *new_git_dir)
1822 {
1823 const char * const *var;
1824
1825 for (var = local_repo_env; *var; var++) {
1826 if (strcmp(*var, CONFIG_DATA_ENVIRONMENT) &&
1827 strcmp(*var, CONFIG_COUNT_ENVIRONMENT))
1828 strvec_push(env, *var);
1829 }
1830 strvec_pushf(env, "%s=%s", GIT_DIR_ENVIRONMENT, new_git_dir);
1831 }
1832
1833 enum start_bg_result start_bg_command(struct child_process *cmd,
1834 start_bg_wait_cb *wait_cb,
1835 void *cb_data,
1836 unsigned int timeout_sec)
1837 {
1838 enum start_bg_result sbgr = SBGR_ERROR;
1839 int ret;
1840 int wait_status;
1841 pid_t pid_seen;
1842 time_t time_limit;
1843
1844 /*
1845 * We do not allow clean-on-exit because the child process
1846 * should persist in the background and possibly/probably
1847 * after this process exits. So we don't want to kill the
1848 * child during our atexit routine.
1849 */
1850 if (cmd->clean_on_exit)
1851 BUG("start_bg_command() does not allow non-zero clean_on_exit");
1852
1853 if (!cmd->trace2_child_class)
1854 cmd->trace2_child_class = "background";
1855
1856 ret = start_command(cmd);
1857 if (ret) {
1858 /*
1859 * We assume that if `start_command()` fails, we
1860 * either get a complete `trace2_child_start() /
1861 * trace2_child_exit()` pair or it fails before the
1862 * `trace2_child_start()` is emitted, so we do not
1863 * need to worry about it here.
1864 *
1865 * We also assume that `start_command()` does not add
1866 * us to the cleanup list. And that it calls
1867 * `child_process_clear()`.
1868 */
1869 sbgr = SBGR_ERROR;
1870 goto done;
1871 }
1872
1873 time(&time_limit);
1874 time_limit += timeout_sec;
1875
1876 wait:
1877 pid_seen = waitpid(cmd->pid, &wait_status, WNOHANG);
1878
1879 if (!pid_seen) {
1880 /*
1881 * The child is currently running. Ask the callback
1882 * if the child is ready to do work or whether we
1883 * should keep waiting for it to boot up.
1884 */
1885 ret = (*wait_cb)(cmd, cb_data);
1886 if (!ret) {
1887 /*
1888 * The child is running and "ready".
1889 */
1890 trace2_child_ready(cmd, "ready");
1891 sbgr = SBGR_READY;
1892 goto done;
1893 } else if (ret > 0) {
1894 /*
1895 * The callback said to give it more time to boot up
1896 * (subject to our timeout limit).
1897 */
1898 time_t now;
1899
1900 time(&now);
1901 if (now < time_limit)
1902 goto wait;
1903
1904 /*
1905 * Our timeout has expired. We don't try to
1906 * kill the child, but rather let it continue
1907 * (hopefully) trying to startup.
1908 */
1909 trace2_child_ready(cmd, "timeout");
1910 sbgr = SBGR_TIMEOUT;
1911 goto done;
1912 } else {
1913 /*
1914 * The cb gave up on this child. It is still running,
1915 * but our cb got an error trying to probe it.
1916 */
1917 trace2_child_ready(cmd, "error");
1918 sbgr = SBGR_CB_ERROR;
1919 goto done;
1920 }
1921 }
1922
1923 else if (pid_seen == cmd->pid) {
1924 int child_code = -1;
1925
1926 /*
1927 * The child started, but exited or was terminated
1928 * before becoming "ready".
1929 *
1930 * We try to match the behavior of `wait_or_whine()`
1931 * WRT the handling of WIFSIGNALED() and WIFEXITED()
1932 * and convert the child's status to a return code for
1933 * tracing purposes and emit the `trace2_child_exit()`
1934 * event.
1935 *
1936 * We do not want the wait_or_whine() error message
1937 * because we will be called by client-side library
1938 * routines.
1939 */
1940 if (WIFEXITED(wait_status))
1941 child_code = WEXITSTATUS(wait_status);
1942 else if (WIFSIGNALED(wait_status))
1943 child_code = WTERMSIG(wait_status) + 128;
1944 trace2_child_exit(cmd, child_code);
1945
1946 sbgr = SBGR_DIED;
1947 goto done;
1948 }
1949
1950 else if (pid_seen < 0 && errno == EINTR)
1951 goto wait;
1952
1953 trace2_child_exit(cmd, -1);
1954 sbgr = SBGR_ERROR;
1955
1956 done:
1957 child_process_clear(cmd);
1958 invalidate_lstat_cache();
1959 return sbgr;
1960 }