]> git.ipfire.org Git - thirdparty/glibc.git/blame - elf/dl-profile.c
manual: Adjust twalk_r documentation.
[thirdparty/glibc.git] / elf / dl-profile.c
CommitLineData
3996f34b 1/* Profiling of shared libraries.
04277e02 2 Copyright (C) 1997-2019 Free Software Foundation, Inc.
3996f34b
UD
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
9a0a462c 5 Based on the BSD mcount implementation.
3996f34b
UD
6
7 The GNU C Library is free software; you can redistribute it and/or
41bdb6e2
AJ
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
3996f34b
UD
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
41bdb6e2 15 Lesser General Public License for more details.
3996f34b 16
41bdb6e2 17 You should have received a copy of the GNU Lesser General Public
59ba27a6
PE
18 License along with the GNU C Library; if not, see
19 <http://www.gnu.org/licenses/>. */
3996f34b 20
9710f75d 21#include <assert.h>
3996f34b
UD
22#include <errno.h>
23#include <fcntl.h>
24#include <inttypes.h>
cbdee279 25#include <limits.h>
3996f34b
UD
26#include <stdio.h>
27#include <stdlib.h>
28#include <string.h>
29#include <unistd.h>
e054f494 30#include <stdint.h>
a42195db 31#include <ldsodefs.h>
3996f34b
UD
32#include <sys/gmon.h>
33#include <sys/gmon_out.h>
34#include <sys/mman.h>
650425ce 35#include <sys/param.h>
3996f34b 36#include <sys/stat.h>
4009bf40 37#include <atomic.h>
329ea513 38#include <not-cancel.h>
3996f34b
UD
39
40/* The LD_PROFILE feature has to be implemented different to the
41 normal profiling using the gmon/ functions. The problem is that an
42 arbitrary amount of processes simulataneously can be run using
43 profiling and all write the results in the same file. To provide
44 this mechanism one could implement a complicated mechanism to merge
45 the content of two profiling runs or one could extend the file
46 format to allow more than one data set. For the second solution we
47 would have the problem that the file can grow in size beyond any
48 limit and both solutions have the problem that the concurrency of
49 writing the results is a big problem.
50
51 Another much simpler method is to use mmap to map the same file in
52 all using programs and modify the data in the mmap'ed area and so
53 also automatically on the disk. Using the MAP_SHARED option of
54 mmap(2) this can be done without big problems in more than one
55 file.
56
57 This approach is very different from the normal profiling. We have
58 to use the profiling data in exactly the way they are expected to
0413b54c
UD
59 be written to disk. But the normal format used by gprof is not usable
60 to do this. It is optimized for size. It writes the tags as single
61 bytes but this means that the following 32/64 bit values are
62 unaligned.
63
64 Therefore we use a new format. This will look like this
65
66 0 1 2 3 <- byte is 32 bit word
67 0000 g m o n
68 0004 *version* <- GMON_SHOBJ_VERSION
69 0008 00 00 00 00
70 000c 00 00 00 00
71 0010 00 00 00 00
72
73 0014 *tag* <- GMON_TAG_TIME_HIST
74 0018 ?? ?? ?? ??
75 ?? ?? ?? ?? <- 32/64 bit LowPC
76 0018+A ?? ?? ?? ??
77 ?? ?? ?? ?? <- 32/64 bit HighPC
78 0018+2*A *histsize*
79 001c+2*A *profrate*
80 0020+2*A s e c o
81 0024+2*A n d s \0
82 0028+2*A \0 \0 \0 \0
83 002c+2*A \0 \0 \0
84 002f+2*A s
85
86 0030+2*A ?? ?? ?? ?? <- Count data
87 ... ...
88 0030+2*A+K ?? ?? ?? ??
89
90 0030+2*A+K *tag* <- GMON_TAG_CG_ARC
91 0034+2*A+K *lastused*
92 0038+2*A+K ?? ?? ?? ??
93 ?? ?? ?? ?? <- FromPC#1
94 0038+3*A+K ?? ?? ?? ??
95 ?? ?? ?? ?? <- ToPC#1
96 0038+4*A+K ?? ?? ?? ?? <- Count#1
97 ... ... ...
98 0038+(2*(CN-1)+2)*A+(CN-1)*4+K ?? ?? ?? ??
99 ?? ?? ?? ?? <- FromPC#CGN
100 0038+(2*(CN-1)+3)*A+(CN-1)*4+K ?? ?? ?? ??
101 ?? ?? ?? ?? <- ToPC#CGN
102 0038+(2*CN+2)*A+(CN-1)*4+K ?? ?? ?? ?? <- Count#CGN
103
650425ce 104 We put (for now?) no basic block information in the file since this would
0413b54c
UD
105 introduce rase conditions among all the processes who want to write them.
106
107 `K' is the number of count entries which is computed as
108
109 textsize / HISTFRACTION
110
111 `CG' in the above table is the number of call graph arcs. Normally,
112 the table is sparse and the profiling code writes out only the those
113 entries which are really used in the program run. But since we must
114 not extend this table (the profiling file) we'll keep them all here.
115 So CN can be executed in advance as
116
117 MINARCS <= textsize*(ARCDENSITY/100) <= MAXARCS
118
119 Now the remaining question is: how to build the data structures we can
120 work with from this data. We need the from set and must associate the
121 froms with all the associated tos. We will do this by constructing this
122 data structures at the program start. To do this we'll simply visit all
123 entries in the call graph table and add it to the appropriate list. */
3996f34b 124
d8cf93f4 125extern int __profile_frequency (void);
37ba7d66 126libc_hidden_proto (__profile_frequency)
3996f34b 127
3996f34b
UD
128/* We define a special type to address the elements of the arc table.
129 This is basically the `gmon_cg_arc_record' format but it includes
130 the room for the tag and it uses real types. */
131struct here_cg_arc_record
132 {
0413b54c
UD
133 uintptr_t from_pc;
134 uintptr_t self_pc;
ce61a2ad
NF
135 /* The count field is atomically incremented in _dl_mcount, which
136 requires it to be properly aligned for its type, and for this
137 alignment to be visible to the compiler. The amount of data
138 before an array of this structure is calculated as
139 expected_size in _dl_start_profile. Everything in that
140 calculation is a multiple of 4 bytes (in the case of
141 kcountsize, because it is derived from a subtraction of
142 page-aligned values, and the corresponding calculation in
143 __monstartup also ensures it is at least a multiple of the size
144 of u_long), so all copies of this field do in fact have the
145 appropriate alignment. */
146 uint32_t count __attribute__ ((aligned (__alignof__ (uint32_t))));
0413b54c 147 } __attribute__ ((packed));
3996f34b
UD
148
149static struct here_cg_arc_record *data;
150
7982ecfe
UD
151/* Nonzero if profiling is under way. */
152static int running;
153
0413b54c
UD
154/* This is the number of entry which have been incorporated in the toset. */
155static uint32_t narcs;
156/* This is a pointer to the object representing the number of entries
157 currently in the mmaped file. At no point of time this has to be the
158 same as NARCS. If it is equal all entries from the file are in our
159 lists. */
650425ce 160static volatile uint32_t *narcsp;
0413b54c 161
0413b54c 162
9a0a462c 163struct here_fromstruct
0413b54c
UD
164 {
165 struct here_cg_arc_record volatile *here;
166 uint16_t link;
167 };
168
d472655c 169static volatile uint16_t *tos;
9a0a462c
UD
170
171static struct here_fromstruct *froms;
d472655c
UD
172static uint32_t fromlimit;
173static volatile uint32_t fromidx;
0413b54c
UD
174
175static uintptr_t lowpc;
0413b54c 176static size_t textsize;
0413b54c
UD
177static unsigned int log_hashfraction;
178
9a0a462c 179
0413b54c
UD
180\f
181/* Set up profiling data to profile object desribed by MAP. The output
182 file is found (or created) in OUTPUT_DIR. */
3996f34b 183void
53bfdc1c 184_dl_start_profile (void)
3996f34b
UD
185{
186 char *filename;
187 int fd;
5763742f 188 struct stat64 st;
3996f34b
UD
189 const ElfW(Phdr) *ph;
190 ElfW(Addr) mapstart = ~((ElfW(Addr)) 0);
191 ElfW(Addr) mapend = 0;
9a0a462c 192 char *hist, *cp;
0413b54c 193 size_t idx;
128e2b0f
UD
194 size_t tossize;
195 size_t fromssize;
196 uintptr_t highpc;
321e8782
UD
197 uint16_t *kcount;
198 size_t kcountsize;
128e2b0f
UD
199 struct gmon_hdr *addr = NULL;
200 off_t expected_size;
201 /* See profil(2) where this is described. */
202 int s_scale;
203#define SCALE_1_TO_1 0x10000L
321e8782 204 const char *errstr = NULL;
3996f34b
UD
205
206 /* Compute the size of the sections which contain program code. */
53bfdc1c
UD
207 for (ph = GL(dl_profile_map)->l_phdr;
208 ph < &GL(dl_profile_map)->l_phdr[GL(dl_profile_map)->l_phnum]; ++ph)
3996f34b
UD
209 if (ph->p_type == PT_LOAD && (ph->p_flags & PF_X))
210 {
afdca0f2
UD
211 ElfW(Addr) start = (ph->p_vaddr & ~(GLRO(dl_pagesize) - 1));
212 ElfW(Addr) end = ((ph->p_vaddr + ph->p_memsz + GLRO(dl_pagesize) - 1)
213 & ~(GLRO(dl_pagesize) - 1));
3996f34b
UD
214
215 if (start < mapstart)
216 mapstart = start;
217 if (end > mapend)
218 mapend = end;
219 }
220
221 /* Now we can compute the size of the profiling data. This is done
222 with the same formulars as in `monstartup' (see gmon.c). */
7982ecfe 223 running = 0;
53bfdc1c 224 lowpc = ROUNDDOWN (mapstart + GL(dl_profile_map)->l_addr,
9a0a462c 225 HISTFRACTION * sizeof (HISTCOUNTER));
53bfdc1c 226 highpc = ROUNDUP (mapend + GL(dl_profile_map)->l_addr,
9a0a462c 227 HISTFRACTION * sizeof (HISTCOUNTER));
0413b54c
UD
228 textsize = highpc - lowpc;
229 kcountsize = textsize / HISTFRACTION;
3996f34b 230 if ((HASHFRACTION & (HASHFRACTION - 1)) == 0)
9710f75d
UD
231 {
232 /* If HASHFRACTION is a power of two, mcount can use shifting
233 instead of integer division. Precompute shift amount.
234
235 This is a constant but the compiler cannot compile the
236 expression away since the __ffs implementation is not known
237 to the compiler. Help the compiler by precomputing the
238 usual cases. */
321e8782 239 assert (HASHFRACTION == 2);
9710f75d
UD
240
241 if (sizeof (*froms) == 8)
242 log_hashfraction = 4;
243 else if (sizeof (*froms) == 16)
244 log_hashfraction = 5;
245 else
321e8782 246 log_hashfraction = __ffs (HASHFRACTION * sizeof (*froms)) - 1;
9710f75d 247 }
0413b54c
UD
248 else
249 log_hashfraction = -1;
9a0a462c
UD
250 tossize = textsize / HASHFRACTION;
251 fromlimit = textsize * ARCDENSITY / 100;
252 if (fromlimit < MINARCS)
253 fromlimit = MINARCS;
254 if (fromlimit > MAXARCS)
255 fromlimit = MAXARCS;
256 fromssize = fromlimit * sizeof (struct here_fromstruct);
3996f34b
UD
257
258 expected_size = (sizeof (struct gmon_hdr)
0413b54c 259 + 4 + sizeof (struct gmon_hist_hdr) + kcountsize
9a0a462c 260 + 4 + 4 + fromssize * sizeof (struct here_cg_arc_record));
3996f34b
UD
261
262 /* Create the gmon_hdr we expect or write. */
6cc8844f
UD
263 struct real_gmon_hdr
264 {
265 char cookie[4];
266 int32_t version;
267 char spare[3 * 4];
268 } gmon_hdr;
269 if (sizeof (gmon_hdr) != sizeof (struct gmon_hdr)
270 || (offsetof (struct real_gmon_hdr, cookie)
271 != offsetof (struct gmon_hdr, cookie))
272 || (offsetof (struct real_gmon_hdr, version)
273 != offsetof (struct gmon_hdr, version)))
274 abort ();
275
3996f34b 276 memcpy (&gmon_hdr.cookie[0], GMON_MAGIC, sizeof (gmon_hdr.cookie));
6cc8844f
UD
277 gmon_hdr.version = GMON_SHOBJ_VERSION;
278 memset (gmon_hdr.spare, '\0', sizeof (gmon_hdr.spare));
3996f34b
UD
279
280 /* Create the hist_hdr we expect or write. */
6cc8844f
UD
281 struct real_gmon_hist_hdr
282 {
283 char *low_pc;
284 char *high_pc;
285 int32_t hist_size;
286 int32_t prof_rate;
287 char dimen[15];
288 char dimen_abbrev;
289 } hist_hdr;
290 if (sizeof (hist_hdr) != sizeof (struct gmon_hist_hdr)
291 || (offsetof (struct real_gmon_hist_hdr, low_pc)
292 != offsetof (struct gmon_hist_hdr, low_pc))
293 || (offsetof (struct real_gmon_hist_hdr, high_pc)
294 != offsetof (struct gmon_hist_hdr, high_pc))
295 || (offsetof (struct real_gmon_hist_hdr, hist_size)
296 != offsetof (struct gmon_hist_hdr, hist_size))
297 || (offsetof (struct real_gmon_hist_hdr, prof_rate)
298 != offsetof (struct gmon_hist_hdr, prof_rate))
299 || (offsetof (struct real_gmon_hist_hdr, dimen)
300 != offsetof (struct gmon_hist_hdr, dimen))
301 || (offsetof (struct real_gmon_hist_hdr, dimen_abbrev)
302 != offsetof (struct gmon_hist_hdr, dimen_abbrev)))
303 abort ();
304
305 hist_hdr.low_pc = (char *) mapstart;
306 hist_hdr.high_pc = (char *) mapend;
307 hist_hdr.hist_size = kcountsize / sizeof (HISTCOUNTER);
308 hist_hdr.prof_rate = __profile_frequency ();
1e823b7d 309 if (sizeof (hist_hdr.dimen) >= sizeof ("seconds"))
7fec4f2f
UD
310 {
311 memcpy (hist_hdr.dimen, "seconds", sizeof ("seconds"));
312 memset (hist_hdr.dimen + sizeof ("seconds"), '\0',
313 sizeof (hist_hdr.dimen) - sizeof ("seconds"));
314 }
1e823b7d
UD
315 else
316 strncpy (hist_hdr.dimen, "seconds", sizeof (hist_hdr.dimen));
3996f34b
UD
317 hist_hdr.dimen_abbrev = 's';
318
319 /* First determine the output name. We write in the directory
320 OUTPUT_DIR and the name is composed from the shared objects
321 soname (or the file name) and the ending ".profile". */
53bfdc1c 322 filename = (char *) alloca (strlen (GLRO(dl_profile_output)) + 1
afdca0f2 323 + strlen (GLRO(dl_profile)) + sizeof ".profile");
53bfdc1c 324 cp = __stpcpy (filename, GLRO(dl_profile_output));
9a0a462c 325 *cp++ = '/';
afdca0f2 326 __stpcpy (__stpcpy (cp, GLRO(dl_profile)), ".profile");
3996f34b 327
329ea513 328 fd = __open64_nocancel (filename, O_RDWR|O_CREAT|O_NOFOLLOW, DEFFILEMODE);
3996f34b 329 if (fd == -1)
650425ce 330 {
650425ce 331 char buf[400];
321e8782
UD
332 int errnum;
333
334 /* We cannot write the profiling data so don't do anything. */
335 errstr = "%s: cannot open file: %s\n";
336 print_error:
337 errnum = errno;
338 if (fd != -1)
329ea513 339 __close_nocancel (fd);
321e8782
UD
340 _dl_error_printf (errstr, filename,
341 __strerror_r (errnum, buf, sizeof buf));
650425ce
UD
342 return;
343 }
3996f34b 344
5763742f 345 if (__fxstat64 (_STAT_VER, fd, &st) < 0 || !S_ISREG (st.st_mode))
3996f34b
UD
346 {
347 /* Not stat'able or not a regular file => don't use it. */
321e8782
UD
348 errstr = "%s: cannot stat file: %s\n";
349 goto print_error;
3996f34b
UD
350 }
351
352 /* Test the size. If it does not match what we expect from the size
353 values in the map MAP we don't use it and warn the user. */
354 if (st.st_size == 0)
355 {
356 /* We have to create the file. */
afdca0f2 357 char buf[GLRO(dl_pagesize)];
3996f34b 358
afdca0f2 359 memset (buf, '\0', GLRO(dl_pagesize));
3996f34b 360
afdca0f2 361 if (__lseek (fd, expected_size & ~(GLRO(dl_pagesize) - 1), SEEK_SET) == -1)
3996f34b 362 {
3996f34b 363 cannot_create:
321e8782
UD
364 errstr = "%s: cannot create file: %s\n";
365 goto print_error;
3996f34b
UD
366 }
367
329ea513
ZW
368 if (TEMP_FAILURE_RETRY
369 (__write_nocancel (fd, buf, (expected_size & (GLRO(dl_pagesize) - 1))))
2bcf29ba 370 < 0)
3996f34b
UD
371 goto cannot_create;
372 }
373 else if (st.st_size != expected_size)
374 {
329ea513 375 __close_nocancel (fd);
3996f34b 376 wrong_format:
0413b54c
UD
377
378 if (addr != NULL)
379 __munmap ((void *) addr, expected_size);
380
35fc382a 381 _dl_error_printf ("%s: file is no correct profile data file for `%s'\n",
afdca0f2 382 filename, GLRO(dl_profile));
3996f34b
UD
383 return;
384 }
385
0413b54c
UD
386 addr = (struct gmon_hdr *) __mmap (NULL, expected_size, PROT_READ|PROT_WRITE,
387 MAP_SHARED|MAP_FILE, fd, 0);
388 if (addr == (struct gmon_hdr *) MAP_FAILED)
3996f34b 389 {
321e8782
UD
390 errstr = "%s: cannot map file: %s\n";
391 goto print_error;
3996f34b
UD
392 }
393
ce6e047f 394 /* We don't need the file descriptor anymore. */
329ea513 395 __close_nocancel (fd);
3996f34b
UD
396
397 /* Pointer to data after the header. */
398 hist = (char *) (addr + 1);
0413b54c
UD
399 kcount = (uint16_t *) ((char *) hist + sizeof (uint32_t)
400 + sizeof (struct gmon_hist_hdr));
3996f34b
UD
401
402 /* Compute pointer to array of the arc information. */
650425ce
UD
403 narcsp = (uint32_t *) ((char *) kcount + kcountsize + sizeof (uint32_t));
404 data = (struct here_cg_arc_record *) ((char *) narcsp + sizeof (uint32_t));
3996f34b
UD
405
406 if (st.st_size == 0)
407 {
408 /* Create the signature. */
3996f34b
UD
409 memcpy (addr, &gmon_hdr, sizeof (struct gmon_hdr));
410
0413b54c
UD
411 *(uint32_t *) hist = GMON_TAG_TIME_HIST;
412 memcpy (hist + sizeof (uint32_t), &hist_hdr,
413 sizeof (struct gmon_hist_hdr));
3996f34b 414
650425ce 415 narcsp[-1] = GMON_TAG_CG_ARC;
3996f34b
UD
416 }
417 else
418 {
419 /* Test the signature in the file. */
420 if (memcmp (addr, &gmon_hdr, sizeof (struct gmon_hdr)) != 0
0413b54c
UD
421 || *(uint32_t *) hist != GMON_TAG_TIME_HIST
422 || memcmp (hist + sizeof (uint32_t), &hist_hdr,
423 sizeof (struct gmon_hist_hdr)) != 0
650425ce 424 || narcsp[-1] != GMON_TAG_CG_ARC)
3996f34b
UD
425 goto wrong_format;
426 }
427
0413b54c 428 /* Allocate memory for the froms data and the pointer to the tos records. */
9a0a462c 429 tos = (uint16_t *) calloc (tossize + fromssize, 1);
650425ce 430 if (tos == NULL)
0413b54c
UD
431 {
432 __munmap ((void *) addr, expected_size);
35fc382a 433 _dl_fatal_printf ("Out of memory while initializing profiler\n");
0413b54c
UD
434 /* NOTREACHED */
435 }
436
9a0a462c
UD
437 froms = (struct here_fromstruct *) ((char *) tos + tossize);
438 fromidx = 0;
0413b54c
UD
439
440 /* Now we have to process all the arc count entries. BTW: it is
441 not critical whether the *NARCSP value changes meanwhile. Before
442 we enter a new entry in to toset we will check that everything is
443 available in TOS. This happens in _dl_mcount.
444
445 Loading the entries in reverse order should help to get the most
446 frequently used entries at the front of the list. */
650425ce 447 for (idx = narcs = MIN (*narcsp, fromlimit); idx > 0; )
0413b54c 448 {
9a0a462c
UD
449 size_t to_index;
450 size_t newfromidx;
0413b54c 451 --idx;
321e8782 452 to_index = (data[idx].self_pc / (HASHFRACTION * sizeof (*tos)));
9a0a462c
UD
453 newfromidx = fromidx++;
454 froms[newfromidx].here = &data[idx];
455 froms[newfromidx].link = tos[to_index];
456 tos[to_index] = newfromidx;
0413b54c
UD
457 }
458
9a0a462c
UD
459 /* Setup counting data. */
460 if (kcountsize < highpc - lowpc)
f4017d20 461 {
f4017d20
UD
462#if 0
463 s_scale = ((double) kcountsize / (highpc - lowpc)) * SCALE_1_TO_1;
464#else
cbdee279
UD
465 size_t range = highpc - lowpc;
466 size_t quot = range / kcountsize;
467
468 if (quot >= SCALE_1_TO_1)
469 s_scale = 1;
470 else if (quot >= SCALE_1_TO_1 / 256)
471 s_scale = SCALE_1_TO_1 / quot;
472 else if (range > ULONG_MAX / 256)
473 s_scale = (SCALE_1_TO_1 * 256) / (range / (kcountsize / 256));
474 else
475 s_scale = (SCALE_1_TO_1 * 256) / ((range * 256) / kcountsize);
f4017d20
UD
476#endif
477 }
9a0a462c
UD
478 else
479 s_scale = SCALE_1_TO_1;
480
481 /* Start the profiler. */
482 __profil ((void *) kcount, kcountsize, lowpc, s_scale);
483
3996f34b 484 /* Turn on profiling. */
7982ecfe 485 running = 1;
3996f34b
UD
486}
487
488
489void
490_dl_mcount (ElfW(Addr) frompc, ElfW(Addr) selfpc)
491{
d472655c 492 volatile uint16_t *topcindex;
9a0a462c
UD
493 size_t i, fromindex;
494 struct here_fromstruct *fromp;
495
7982ecfe 496 if (! running)
7f81ac70 497 return;
3996f34b
UD
498
499 /* Compute relative addresses. The shared object can be loaded at
500 any address. The value of frompc could be anything. We cannot
501 restrict it in any way, just set to a fixed value (0) in case it
502 is outside the allowed range. These calls show up as calls from
503 <external> in the gprof output. */
0413b54c
UD
504 frompc -= lowpc;
505 if (frompc >= textsize)
3996f34b 506 frompc = 0;
0413b54c
UD
507 selfpc -= lowpc;
508 if (selfpc >= textsize)
509 goto done;
510
9a0a462c
UD
511 /* Getting here we now have to find out whether the location was
512 already used. If yes we are lucky and only have to increment a
513 counter (this also has to be atomic). If the entry is new things
514 are getting complicated... */
515
516 /* Avoid integer divide if possible. */
517 if ((HASHFRACTION & (HASHFRACTION - 1)) == 0)
518 i = selfpc >> log_hashfraction;
519 else
321e8782 520 i = selfpc / (HASHFRACTION * sizeof (*tos));
9a0a462c
UD
521
522 topcindex = &tos[i];
523 fromindex = *topcindex;
524
525 if (fromindex == 0)
526 goto check_new_or_add;
527
528 fromp = &froms[fromindex];
529
530 /* We have to look through the chain of arcs whether there is already
531 an entry for our arc. */
c0fb8a56 532 while (fromp->here->from_pc != frompc)
9a0a462c
UD
533 {
534 if (fromp->link != 0)
535 do
536 fromp = &froms[fromp->link];
537 while (fromp->link != 0 && fromp->here->from_pc != frompc);
538
650425ce 539 if (fromp->here->from_pc != frompc)
9a0a462c
UD
540 {
541 topcindex = &fromp->link;
542
543 check_new_or_add:
544 /* Our entry is not among the entries we read so far from the
545 data file. Now see whether we have to update the list. */
650425ce 546 while (narcs != *narcsp && narcs < fromlimit)
9a0a462c
UD
547 {
548 size_t to_index;
549 size_t newfromidx;
650425ce 550 to_index = (data[narcs].self_pc
321e8782 551 / (HASHFRACTION * sizeof (*tos)));
11bf311e 552 newfromidx = catomic_exchange_and_add (&fromidx, 1) + 1;
9a0a462c
UD
553 froms[newfromidx].here = &data[narcs];
554 froms[newfromidx].link = tos[to_index];
555 tos[to_index] = newfromidx;
11bf311e 556 catomic_increment (&narcs);
9a0a462c
UD
557 }
558
559 /* If we still have no entry stop searching and insert. */
560 if (*topcindex == 0)
561 {
11bf311e 562 uint_fast32_t newarc = catomic_exchange_and_add (narcsp, 1);
9a0a462c
UD
563
564 /* In rare cases it could happen that all entries in FROMS are
565 occupied. So we cannot count this anymore. */
650425ce 566 if (newarc >= fromlimit)
9a0a462c
UD
567 goto done;
568
11bf311e 569 *topcindex = catomic_exchange_and_add (&fromidx, 1) + 1;
d472655c 570 fromp = &froms[*topcindex];
9a0a462c 571
650425ce
UD
572 fromp->here = &data[newarc];
573 data[newarc].from_pc = frompc;
574 data[newarc].self_pc = selfpc;
575 data[newarc].count = 0;
9a0a462c 576 fromp->link = 0;
11bf311e 577 catomic_increment (&narcs);
9a0a462c
UD
578
579 break;
580 }
581
582 fromp = &froms[*topcindex];
583 }
584 else
585 /* Found in. */
586 break;
587 }
588
589 /* Increment the counter. */
11bf311e 590 catomic_increment (&fromp->here->count);
3996f34b 591
0413b54c 592 done:
ed073f0e 593 ;
3996f34b 594}
ab97ee8f 595rtld_hidden_def (_dl_mcount)