]> git.ipfire.org Git - thirdparty/glibc.git/blame - elf/dl-tls.c
Use glibc_likely instead __builtin_expect.
[thirdparty/glibc.git] / elf / dl-tls.c
CommitLineData
b6ab06ce 1/* Thread-local storage handling in the ELF dynamic linker. Generic version.
d4697bc9 2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
b6ab06ce
UD
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
59ba27a6
PE
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
b6ab06ce
UD
18
19#include <assert.h>
20#include <errno.h>
21#include <libintl.h>
22#include <signal.h>
23#include <stdlib.h>
24#include <unistd.h>
25#include <sys/param.h>
26
27#include <tls.h>
11bf311e
UD
28#include <dl-tls.h>
29#include <ldsodefs.h>
b6ab06ce
UD
30
31/* Amount of excess space to allocate in the static TLS area
32 to allow dynamic loading of modules defining IE-model TLS data. */
11bf311e 33#define TLS_STATIC_SURPLUS 64 + DL_NNS * 100
b6ab06ce 34
b6ab06ce
UD
35
36/* Out-of-memory handler. */
11bf311e 37#ifdef SHARED
b6ab06ce
UD
38static void
39__attribute__ ((__noreturn__))
40oom (void)
41{
42 _dl_fatal_printf ("cannot allocate memory for thread-local data: ABORT\n");
43}
11bf311e 44#endif
b6ab06ce
UD
45
46
47size_t
48internal_function
49_dl_next_tls_modid (void)
50{
51 size_t result;
52
53 if (__builtin_expect (GL(dl_tls_dtv_gaps), false))
54 {
55 size_t disp = 0;
56 struct dtv_slotinfo_list *runp = GL(dl_tls_dtv_slotinfo_list);
57
58 /* Note that this branch will never be executed during program
59 start since there are no gaps at that time. Therefore it
60 does not matter that the dl_tls_dtv_slotinfo is not allocated
61 yet when the function is called for the first times.
62
63 NB: the offset +1 is due to the fact that DTV[0] is used
64 for something else. */
65 result = GL(dl_tls_static_nelem) + 1;
66 if (result <= GL(dl_tls_max_dtv_idx))
67 do
68 {
69 while (result - disp < runp->len)
70 {
71 if (runp->slotinfo[result - disp].map == NULL)
72 break;
73
74 ++result;
75 assert (result <= GL(dl_tls_max_dtv_idx) + 1);
76 }
77
78 if (result - disp < runp->len)
79 break;
80
81 disp += runp->len;
82 }
83 while ((runp = runp->next) != NULL);
84
85 if (result > GL(dl_tls_max_dtv_idx))
86 {
87 /* The new index must indeed be exactly one higher than the
88 previous high. */
89 assert (result == GL(dl_tls_max_dtv_idx) + 1);
90 /* There is no gap anymore. */
91 GL(dl_tls_dtv_gaps) = false;
92
93 goto nogaps;
94 }
95 }
96 else
97 {
98 /* No gaps, allocate a new entry. */
99 nogaps:
100
101 result = ++GL(dl_tls_max_dtv_idx);
102 }
103
104 return result;
105}
106
107
11bf311e 108#ifdef SHARED
b6ab06ce
UD
109void
110internal_function
111_dl_determine_tlsoffset (void)
112{
113 size_t max_align = TLS_TCB_ALIGN;
114 size_t freetop = 0;
115 size_t freebottom = 0;
116
117 /* The first element of the dtv slot info list is allocated. */
118 assert (GL(dl_tls_dtv_slotinfo_list) != NULL);
119 /* There is at this point only one element in the
120 dl_tls_dtv_slotinfo_list list. */
121 assert (GL(dl_tls_dtv_slotinfo_list)->next == NULL);
122
123 struct dtv_slotinfo *slotinfo = GL(dl_tls_dtv_slotinfo_list)->slotinfo;
124
125 /* Determining the offset of the various parts of the static TLS
126 block has several dependencies. In addition we have to work
127 around bugs in some toolchains.
128
129 Each TLS block from the objects available at link time has a size
130 and an alignment requirement. The GNU ld computes the alignment
131 requirements for the data at the positions *in the file*, though.
132 I.e, it is not simply possible to allocate a block with the size
133 of the TLS program header entry. The data is layed out assuming
134 that the first byte of the TLS block fulfills
135
136 p_vaddr mod p_align == &TLS_BLOCK mod p_align
137
138 This means we have to add artificial padding at the beginning of
139 the TLS block. These bytes are never used for the TLS data in
140 this module but the first byte allocated must be aligned
141 according to mod p_align == 0 so that the first byte of the TLS
142 block is aligned according to p_vaddr mod p_align. This is ugly
143 and the linker can help by computing the offsets in the TLS block
144 assuming the first byte of the TLS block is aligned according to
145 p_align.
146
147 The extra space which might be allocated before the first byte of
148 the TLS block need not go unused. The code below tries to use
149 that memory for the next TLS block. This can work if the total
150 memory requirement for the next TLS block is smaller than the
151 gap. */
152
11bf311e 153#if TLS_TCB_AT_TP
b6ab06ce
UD
154 /* We simply start with zero. */
155 size_t offset = 0;
156
157 for (size_t cnt = 0; slotinfo[cnt].map != NULL; ++cnt)
158 {
159 assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len);
160
161 size_t firstbyte = (-slotinfo[cnt].map->l_tls_firstbyte_offset
162 & (slotinfo[cnt].map->l_tls_align - 1));
163 size_t off;
164 max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align);
165
166 if (freebottom - freetop >= slotinfo[cnt].map->l_tls_blocksize)
167 {
168 off = roundup (freetop + slotinfo[cnt].map->l_tls_blocksize
169 - firstbyte, slotinfo[cnt].map->l_tls_align)
170 + firstbyte;
171 if (off <= freebottom)
172 {
173 freetop = off;
174
175 /* XXX For some architectures we perhaps should store the
176 negative offset. */
177 slotinfo[cnt].map->l_tls_offset = off;
178 continue;
179 }
180 }
181
182 off = roundup (offset + slotinfo[cnt].map->l_tls_blocksize - firstbyte,
183 slotinfo[cnt].map->l_tls_align) + firstbyte;
184 if (off > offset + slotinfo[cnt].map->l_tls_blocksize
185 + (freebottom - freetop))
186 {
187 freetop = offset;
188 freebottom = off - slotinfo[cnt].map->l_tls_blocksize;
189 }
190 offset = off;
191
192 /* XXX For some architectures we perhaps should store the
193 negative offset. */
194 slotinfo[cnt].map->l_tls_offset = off;
195 }
196
197 GL(dl_tls_static_used) = offset;
198 GL(dl_tls_static_size) = (roundup (offset + TLS_STATIC_SURPLUS, max_align)
199 + TLS_TCB_SIZE);
11bf311e 200#elif TLS_DTV_AT_TP
b6ab06ce
UD
201 /* The TLS blocks start right after the TCB. */
202 size_t offset = TLS_TCB_SIZE;
203
204 for (size_t cnt = 0; slotinfo[cnt].map != NULL; ++cnt)
205 {
206 assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len);
207
208 size_t firstbyte = (-slotinfo[cnt].map->l_tls_firstbyte_offset
209 & (slotinfo[cnt].map->l_tls_align - 1));
210 size_t off;
211 max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align);
212
213 if (slotinfo[cnt].map->l_tls_blocksize <= freetop - freebottom)
214 {
215 off = roundup (freebottom, slotinfo[cnt].map->l_tls_align);
216 if (off - freebottom < firstbyte)
217 off += slotinfo[cnt].map->l_tls_align;
218 if (off + slotinfo[cnt].map->l_tls_blocksize - firstbyte <= freetop)
219 {
220 slotinfo[cnt].map->l_tls_offset = off - firstbyte;
221 freebottom = (off + slotinfo[cnt].map->l_tls_blocksize
222 - firstbyte);
223 continue;
224 }
225 }
226
227 off = roundup (offset, slotinfo[cnt].map->l_tls_align);
228 if (off - offset < firstbyte)
229 off += slotinfo[cnt].map->l_tls_align;
230
231 slotinfo[cnt].map->l_tls_offset = off - firstbyte;
232 if (off - firstbyte - offset > freetop - freebottom)
233 {
234 freebottom = offset;
235 freetop = off - firstbyte;
236 }
237
238 offset = off + slotinfo[cnt].map->l_tls_blocksize - firstbyte;
239 }
240
241 GL(dl_tls_static_used) = offset;
242 GL(dl_tls_static_size) = roundup (offset + TLS_STATIC_SURPLUS,
243 TLS_TCB_ALIGN);
11bf311e
UD
244#else
245# error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
246#endif
b6ab06ce
UD
247
248 /* The alignment requirement for the static TLS block. */
249 GL(dl_tls_static_align) = max_align;
250}
251
252
253/* This is called only when the data structure setup was skipped at startup,
254 when there was no need for it then. Now we have dynamically loaded
255 something needing TLS, or libpthread needs it. */
256int
257internal_function
258_dl_tls_setup (void)
259{
260 assert (GL(dl_tls_dtv_slotinfo_list) == NULL);
261 assert (GL(dl_tls_max_dtv_idx) == 0);
262
263 const size_t nelem = 2 + TLS_SLOTINFO_SURPLUS;
264
265 GL(dl_tls_dtv_slotinfo_list)
266 = calloc (1, (sizeof (struct dtv_slotinfo_list)
267 + nelem * sizeof (struct dtv_slotinfo)));
268 if (GL(dl_tls_dtv_slotinfo_list) == NULL)
269 return -1;
270
271 GL(dl_tls_dtv_slotinfo_list)->len = nelem;
272
273 /* Number of elements in the static TLS block. It can't be zero
274 because of various assumptions. The one element is null. */
275 GL(dl_tls_static_nelem) = GL(dl_tls_max_dtv_idx) = 1;
276
277 /* This initializes more variables for us. */
278 _dl_determine_tlsoffset ();
279
280 return 0;
281}
282rtld_hidden_def (_dl_tls_setup)
11bf311e 283#endif
b6ab06ce
UD
284
285static void *
286internal_function
287allocate_dtv (void *result)
288{
289 dtv_t *dtv;
290 size_t dtv_length;
291
292 /* We allocate a few more elements in the dtv than are needed for the
293 initial set of modules. This should avoid in most cases expansions
294 of the dtv. */
295 dtv_length = GL(dl_tls_max_dtv_idx) + DTV_SURPLUS;
dd654bf9 296 dtv = calloc (dtv_length + 2, sizeof (dtv_t));
b6ab06ce
UD
297 if (dtv != NULL)
298 {
299 /* This is the initial length of the dtv. */
300 dtv[0].counter = dtv_length;
301
302 /* The rest of the dtv (including the generation counter) is
303 Initialize with zero to indicate nothing there. */
304
305 /* Add the dtv to the thread data structures. */
306 INSTALL_DTV (result, dtv);
307 }
308 else
309 result = NULL;
310
311 return result;
312}
313
314
315/* Get size and alignment requirements of the static TLS block. */
316void
317internal_function
318_dl_get_tls_static_info (size_t *sizep, size_t *alignp)
319{
320 *sizep = GL(dl_tls_static_size);
321 *alignp = GL(dl_tls_static_align);
322}
323
324
325void *
326internal_function
327_dl_allocate_tls_storage (void)
328{
329 void *result;
330 size_t size = GL(dl_tls_static_size);
331
11bf311e 332#if TLS_DTV_AT_TP
b6ab06ce
UD
333 /* Memory layout is:
334 [ TLS_PRE_TCB_SIZE ] [ TLS_TCB_SIZE ] [ TLS blocks ]
335 ^ This should be returned. */
336 size += (TLS_PRE_TCB_SIZE + GL(dl_tls_static_align) - 1)
337 & ~(GL(dl_tls_static_align) - 1);
11bf311e 338#endif
b6ab06ce
UD
339
340 /* Allocate a correctly aligned chunk of memory. */
341 result = __libc_memalign (GL(dl_tls_static_align), size);
342 if (__builtin_expect (result != NULL, 1))
343 {
344 /* Allocate the DTV. */
345 void *allocated = result;
346
11bf311e 347#if TLS_TCB_AT_TP
b6ab06ce
UD
348 /* The TCB follows the TLS blocks. */
349 result = (char *) result + size - TLS_TCB_SIZE;
350
351 /* Clear the TCB data structure. We can't ask the caller (i.e.
352 libpthread) to do it, because we will initialize the DTV et al. */
353 memset (result, '\0', TLS_TCB_SIZE);
11bf311e 354#elif TLS_DTV_AT_TP
b6ab06ce
UD
355 result = (char *) result + size - GL(dl_tls_static_size);
356
357 /* Clear the TCB data structure and TLS_PRE_TCB_SIZE bytes before it.
358 We can't ask the caller (i.e. libpthread) to do it, because we will
359 initialize the DTV et al. */
360 memset ((char *) result - TLS_PRE_TCB_SIZE, '\0',
361 TLS_PRE_TCB_SIZE + TLS_TCB_SIZE);
11bf311e 362#endif
b6ab06ce
UD
363
364 result = allocate_dtv (result);
365 if (result == NULL)
366 free (allocated);
367 }
368
369 return result;
370}
371
372
373void *
374internal_function
375_dl_allocate_tls_init (void *result)
376{
377 if (result == NULL)
378 /* The memory allocation failed. */
379 return NULL;
380
381 dtv_t *dtv = GET_DTV (result);
382 struct dtv_slotinfo_list *listp;
383 size_t total = 0;
384 size_t maxgen = 0;
385
386 /* We have to prepare the dtv for all currently loaded modules using
387 TLS. For those which are dynamically loaded we add the values
388 indicating deferred allocation. */
389 listp = GL(dl_tls_dtv_slotinfo_list);
390 while (1)
391 {
392 size_t cnt;
393
394 for (cnt = total == 0 ? 1 : 0; cnt < listp->len; ++cnt)
395 {
396 struct link_map *map;
397 void *dest;
398
399 /* Check for the total number of used slots. */
400 if (total + cnt > GL(dl_tls_max_dtv_idx))
401 break;
402
403 map = listp->slotinfo[cnt].map;
404 if (map == NULL)
405 /* Unused entry. */
406 continue;
407
408 /* Keep track of the maximum generation number. This might
409 not be the generation counter. */
410 maxgen = MAX (maxgen, listp->slotinfo[cnt].gen);
411
4c533566
UD
412 if (map->l_tls_offset == NO_TLS_OFFSET
413 || map->l_tls_offset == FORCED_DYNAMIC_TLS_OFFSET)
b6ab06ce
UD
414 {
415 /* For dynamically loaded modules we simply store
416 the value indicating deferred allocation. */
417 dtv[map->l_tls_modid].pointer.val = TLS_DTV_UNALLOCATED;
418 dtv[map->l_tls_modid].pointer.is_static = false;
419 continue;
420 }
421
422 assert (map->l_tls_modid == cnt);
423 assert (map->l_tls_blocksize >= map->l_tls_initimage_size);
11bf311e 424#if TLS_TCB_AT_TP
b6ab06ce
UD
425 assert ((size_t) map->l_tls_offset >= map->l_tls_blocksize);
426 dest = (char *) result - map->l_tls_offset;
11bf311e 427#elif TLS_DTV_AT_TP
b6ab06ce 428 dest = (char *) result + map->l_tls_offset;
11bf311e
UD
429#else
430# error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
431#endif
b6ab06ce
UD
432
433 /* Copy the initialization image and clear the BSS part. */
434 dtv[map->l_tls_modid].pointer.val = dest;
435 dtv[map->l_tls_modid].pointer.is_static = true;
436 memset (__mempcpy (dest, map->l_tls_initimage,
437 map->l_tls_initimage_size), '\0',
438 map->l_tls_blocksize - map->l_tls_initimage_size);
439 }
440
441 total += cnt;
442 if (total >= GL(dl_tls_max_dtv_idx))
443 break;
444
445 listp = listp->next;
446 assert (listp != NULL);
447 }
448
449 /* The DTV version is up-to-date now. */
450 dtv[0].counter = maxgen;
451
452 return result;
453}
454rtld_hidden_def (_dl_allocate_tls_init)
455
456void *
457internal_function
458_dl_allocate_tls (void *mem)
459{
460 return _dl_allocate_tls_init (mem == NULL
461 ? _dl_allocate_tls_storage ()
462 : allocate_dtv (mem));
463}
464rtld_hidden_def (_dl_allocate_tls)
465
466
b80af2f4
L
467#ifndef SHARED
468extern dtv_t _dl_static_dtv[];
04570aaa 469# define _dl_initial_dtv (&_dl_static_dtv[1])
b80af2f4
L
470#endif
471
b6ab06ce
UD
472void
473internal_function
474_dl_deallocate_tls (void *tcb, bool dealloc_tcb)
475{
476 dtv_t *dtv = GET_DTV (tcb);
477
478 /* We need to free the memory allocated for non-static TLS. */
479 for (size_t cnt = 0; cnt < dtv[-1].counter; ++cnt)
480 if (! dtv[1 + cnt].pointer.is_static
481 && dtv[1 + cnt].pointer.val != TLS_DTV_UNALLOCATED)
dd654bf9 482 free (dtv[1 + cnt].pointer.val);
b6ab06ce
UD
483
484 /* The array starts with dtv[-1]. */
04570aaa 485 if (dtv != GL(dl_initial_dtv))
dd654bf9 486 free (dtv - 1);
b6ab06ce
UD
487
488 if (dealloc_tcb)
489 {
11bf311e 490#if TLS_TCB_AT_TP
b6ab06ce
UD
491 /* The TCB follows the TLS blocks. Back up to free the whole block. */
492 tcb -= GL(dl_tls_static_size) - TLS_TCB_SIZE;
11bf311e 493#elif TLS_DTV_AT_TP
b6ab06ce
UD
494 /* Back up the TLS_PRE_TCB_SIZE bytes. */
495 tcb -= (TLS_PRE_TCB_SIZE + GL(dl_tls_static_align) - 1)
496 & ~(GL(dl_tls_static_align) - 1);
11bf311e 497#endif
b6ab06ce
UD
498 free (tcb);
499 }
500}
501rtld_hidden_def (_dl_deallocate_tls)
502
503
11bf311e 504#ifdef SHARED
b6ab06ce
UD
505/* The __tls_get_addr function has two basic forms which differ in the
506 arguments. The IA-64 form takes two parameters, the module ID and
507 offset. The form used, among others, on IA-32 takes a reference to
508 a special structure which contain the same information. The second
509 form seems to be more often used (in the moment) so we default to
510 it. Users of the IA-64 form have to provide adequate definitions
511 of the following macros. */
11bf311e
UD
512# ifndef GET_ADDR_ARGS
513# define GET_ADDR_ARGS tls_index *ti
27a25b6e 514# define GET_ADDR_PARAM ti
11bf311e
UD
515# endif
516# ifndef GET_ADDR_MODULE
517# define GET_ADDR_MODULE ti->ti_module
518# endif
519# ifndef GET_ADDR_OFFSET
520# define GET_ADDR_OFFSET ti->ti_offset
521# endif
b6ab06ce
UD
522
523
73d61e4f
AM
524static void *
525allocate_and_init (struct link_map *map)
b6ab06ce
UD
526{
527 void *newp;
dd654bf9
AM
528
529 newp = __libc_memalign (map->l_tls_align, map->l_tls_blocksize);
b6ab06ce
UD
530 if (newp == NULL)
531 oom ();
532
73d61e4f 533 /* Initialize the memory. */
b6ab06ce
UD
534 memset (__mempcpy (newp, map->l_tls_initimage, map->l_tls_initimage_size),
535 '\0', map->l_tls_blocksize - map->l_tls_initimage_size);
536
73d61e4f 537 return newp;
b6ab06ce
UD
538}
539
540
541struct link_map *
542_dl_update_slotinfo (unsigned long int req_modid)
543{
544 struct link_map *the_map = NULL;
545 dtv_t *dtv = THREAD_DTV ();
546
547 /* The global dl_tls_dtv_slotinfo array contains for each module
548 index the generation counter current when the entry was created.
549 This array never shrinks so that all module indices which were
550 valid at some time can be used to access it. Before the first
551 use of a new module index in this function the array was extended
552 appropriately. Access also does not have to be guarded against
553 modifications of the array. It is assumed that pointer-size
554 values can be read atomically even in SMP environments. It is
555 possible that other threads at the same time dynamically load
556 code and therefore add to the slotinfo list. This is a problem
557 since we must not pick up any information about incomplete work.
558 The solution to this is to ignore all dtv slots which were
559 created after the one we are currently interested. We know that
560 dynamic loading for this module is completed and this is the last
561 load operation we know finished. */
562 unsigned long int idx = req_modid;
563 struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list);
564
565 while (idx >= listp->len)
566 {
567 idx -= listp->len;
568 listp = listp->next;
569 }
570
571 if (dtv[0].counter < listp->slotinfo[idx].gen)
572 {
573 /* The generation counter for the slot is higher than what the
574 current dtv implements. We have to update the whole dtv but
575 only those entries with a generation counter <= the one for
576 the entry we need. */
577 size_t new_gen = listp->slotinfo[idx].gen;
578 size_t total = 0;
73d61e4f 579
b6ab06ce
UD
580 /* We have to look through the entire dtv slotinfo list. */
581 listp = GL(dl_tls_dtv_slotinfo_list);
582 do
583 {
584 for (size_t cnt = total == 0 ? 1 : 0; cnt < listp->len; ++cnt)
585 {
586 size_t gen = listp->slotinfo[cnt].gen;
587
588 if (gen > new_gen)
589 /* This is a slot for a generation younger than the
590 one we are handling now. It might be incompletely
591 set up so ignore it. */
592 continue;
593
594 /* If the entry is older than the current dtv layout we
595 know we don't have to handle it. */
596 if (gen <= dtv[0].counter)
597 continue;
598
599 /* If there is no map this means the entry is empty. */
600 struct link_map *map = listp->slotinfo[cnt].map;
601 if (map == NULL)
602 {
603 /* If this modid was used at some point the memory
604 might still be allocated. */
dd654bf9
AM
605 if (! dtv[total + cnt].pointer.is_static
606 && dtv[total + cnt].pointer.val != TLS_DTV_UNALLOCATED)
b6ab06ce 607 {
dd654bf9
AM
608 free (dtv[total + cnt].pointer.val);
609 dtv[total + cnt].pointer.val = TLS_DTV_UNALLOCATED;
b6ab06ce
UD
610 }
611
612 continue;
613 }
614
615 /* Check whether the current dtv array is large enough. */
dd654bf9
AM
616 size_t modid = map->l_tls_modid;
617 assert (total + cnt == modid);
b6ab06ce
UD
618 if (dtv[-1].counter < modid)
619 {
620 /* Reallocate the dtv. */
621 dtv_t *newp;
622 size_t newsize = GL(dl_tls_max_dtv_idx) + DTV_SURPLUS;
623 size_t oldsize = dtv[-1].counter;
624
625 assert (map->l_tls_modid <= newsize);
626
627 if (dtv == GL(dl_initial_dtv))
628 {
629 /* This is the initial dtv that was allocated
630 during rtld startup using the dl-minimal.c
dd654bf9 631 malloc instead of the real malloc. We can't
b6ab06ce
UD
632 free it, we have to abandon the old storage. */
633
dd654bf9 634 newp = malloc ((2 + newsize) * sizeof (dtv_t));
b6ab06ce
UD
635 if (newp == NULL)
636 oom ();
292eb817 637 memcpy (newp, &dtv[-1], (2 + oldsize) * sizeof (dtv_t));
b6ab06ce
UD
638 }
639 else
640 {
dd654bf9 641 newp = realloc (&dtv[-1],
b6ab06ce
UD
642 (2 + newsize) * sizeof (dtv_t));
643 if (newp == NULL)
644 oom ();
645 }
646
647 newp[0].counter = newsize;
648
649 /* Clear the newly allocated part. */
650 memset (newp + 2 + oldsize, '\0',
651 (newsize - oldsize) * sizeof (dtv_t));
652
653 /* Point dtv to the generation counter. */
654 dtv = &newp[1];
655
656 /* Install this new dtv in the thread data
657 structures. */
658 INSTALL_NEW_DTV (dtv);
659 }
660
661 /* If there is currently memory allocate for this
662 dtv entry free it. */
663 /* XXX Ideally we will at some point create a memory
664 pool. */
665 if (! dtv[modid].pointer.is_static
666 && dtv[modid].pointer.val != TLS_DTV_UNALLOCATED)
667 /* Note that free is called for NULL is well. We
668 deallocate even if it is this dtv entry we are
669 supposed to load. The reason is that we call
670 memalign and not malloc. */
dd654bf9 671 free (dtv[modid].pointer.val);
b6ab06ce
UD
672
673 /* This module is loaded dynamically- We defer memory
674 allocation. */
675 dtv[modid].pointer.is_static = false;
676 dtv[modid].pointer.val = TLS_DTV_UNALLOCATED;
677
678 if (modid == req_modid)
679 the_map = map;
680 }
681
682 total += listp->len;
683 }
684 while ((listp = listp->next) != NULL);
685
686 /* This will be the new maximum generation counter. */
687 dtv[0].counter = new_gen;
688 }
689
690 return the_map;
691}
692
693
a3636e8b
UD
694static void *
695__attribute_noinline__
27a25b6e 696tls_get_addr_tail (GET_ADDR_ARGS, dtv_t *dtv, struct link_map *the_map)
a3636e8b
UD
697{
698 /* The allocation was deferred. Do it now. */
699 if (the_map == NULL)
700 {
701 /* Find the link map for this module. */
27a25b6e 702 size_t idx = GET_ADDR_MODULE;
a3636e8b
UD
703 struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list);
704
705 while (idx >= listp->len)
706 {
707 idx -= listp->len;
708 listp = listp->next;
709 }
710
711 the_map = listp->slotinfo[idx].map;
712 }
73d61e4f
AM
713
714 again:
715 /* Make sure that, if a dlopen running in parallel forces the
716 variable into static storage, we'll wait until the address in the
717 static TLS block is set up, and use that. If we're undecided
718 yet, make sure we make the decision holding the lock as well. */
719 if (__builtin_expect (the_map->l_tls_offset
720 != FORCED_DYNAMIC_TLS_OFFSET, 0))
7f507ee1 721 {
73d61e4f 722 __rtld_lock_lock_recursive (GL(dl_load_lock));
a1ffb40e 723 if (__glibc_likely (the_map->l_tls_offset == NO_TLS_OFFSET))
a3636e8b 724 {
73d61e4f
AM
725 the_map->l_tls_offset = FORCED_DYNAMIC_TLS_OFFSET;
726 __rtld_lock_unlock_recursive (GL(dl_load_lock));
727 }
728 else
729 {
730 __rtld_lock_unlock_recursive (GL(dl_load_lock));
731 if (__builtin_expect (the_map->l_tls_offset
732 != FORCED_DYNAMIC_TLS_OFFSET, 1))
733 {
734 void *p = dtv[GET_ADDR_MODULE].pointer.val;
a1ffb40e 735 if (__glibc_unlikely (p == TLS_DTV_UNALLOCATED))
73d61e4f
AM
736 goto again;
737
738 return (char *) p + GET_ADDR_OFFSET;
739 }
a3636e8b
UD
740 }
741 }
73d61e4f
AM
742 void *p = dtv[GET_ADDR_MODULE].pointer.val = allocate_and_init (the_map);
743 dtv[GET_ADDR_MODULE].pointer.is_static = false;
a3636e8b 744
73d61e4f 745 return (char *) p + GET_ADDR_OFFSET;
27a25b6e
UD
746}
747
748
749static struct link_map *
750__attribute_noinline__
751update_get_addr (GET_ADDR_ARGS)
752{
753 struct link_map *the_map = _dl_update_slotinfo (GET_ADDR_MODULE);
754 dtv_t *dtv = THREAD_DTV ();
755
756 void *p = dtv[GET_ADDR_MODULE].pointer.val;
757
a1ffb40e 758 if (__glibc_unlikely (p == TLS_DTV_UNALLOCATED))
27a25b6e
UD
759 return tls_get_addr_tail (GET_ADDR_PARAM, dtv, the_map);
760
57b957eb 761 return (void *) p + GET_ADDR_OFFSET;
a3636e8b
UD
762}
763
764
b6ab06ce
UD
765/* The generic dynamic and local dynamic model cannot be used in
766 statically linked applications. */
767void *
768__tls_get_addr (GET_ADDR_ARGS)
769{
770 dtv_t *dtv = THREAD_DTV ();
b6ab06ce 771
a1ffb40e 772 if (__glibc_unlikely (dtv[0].counter != GL(dl_tls_generation)))
27a25b6e 773 return update_get_addr (GET_ADDR_PARAM);
b6ab06ce 774
27a25b6e 775 void *p = dtv[GET_ADDR_MODULE].pointer.val;
b6ab06ce 776
a1ffb40e 777 if (__glibc_unlikely (p == TLS_DTV_UNALLOCATED))
27a25b6e 778 return tls_get_addr_tail (GET_ADDR_PARAM, dtv, NULL);
b6ab06ce
UD
779
780 return (char *) p + GET_ADDR_OFFSET;
781}
11bf311e 782#endif
b6ab06ce
UD
783
784
d78efd9f
RM
785/* Look up the module's TLS block as for __tls_get_addr,
786 but never touch anything. Return null if it's not allocated yet. */
787void *
d78efd9f
RM
788_dl_tls_get_addr_soft (struct link_map *l)
789{
a1ffb40e 790 if (__glibc_unlikely (l->l_tls_modid == 0))
d78efd9f
RM
791 /* This module has no TLS segment. */
792 return NULL;
793
794 dtv_t *dtv = THREAD_DTV ();
a1ffb40e 795 if (__glibc_unlikely (dtv[0].counter != GL(dl_tls_generation)))
d78efd9f
RM
796 {
797 /* This thread's DTV is not completely current,
798 but it might already cover this module. */
799
800 if (l->l_tls_modid >= dtv[-1].counter)
801 /* Nope. */
802 return NULL;
803
804 size_t idx = l->l_tls_modid;
805 struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list);
806 while (idx >= listp->len)
807 {
808 idx -= listp->len;
809 listp = listp->next;
810 }
811
812 /* We've reached the slot for this module.
813 If its generation counter is higher than the DTV's,
814 this thread does not know about this module yet. */
815 if (dtv[0].counter < listp->slotinfo[idx].gen)
816 return NULL;
817 }
818
819 void *data = dtv[l->l_tls_modid].pointer.val;
a1ffb40e 820 if (__glibc_unlikely (data == TLS_DTV_UNALLOCATED))
d78efd9f
RM
821 /* The DTV is current, but this thread has not yet needed
822 to allocate this module's segment. */
823 data = NULL;
824
825 return data;
826}
827
b6ab06ce
UD
828
829void
d78efd9f 830_dl_add_to_slotinfo (struct link_map *l)
b6ab06ce
UD
831{
832 /* Now that we know the object is loaded successfully add
833 modules containing TLS data to the dtv info table. We
834 might have to increase its size. */
835 struct dtv_slotinfo_list *listp;
836 struct dtv_slotinfo_list *prevp;
837 size_t idx = l->l_tls_modid;
838
839 /* Find the place in the dtv slotinfo list. */
840 listp = GL(dl_tls_dtv_slotinfo_list);
841 prevp = NULL; /* Needed to shut up gcc. */
842 do
843 {
844 /* Does it fit in the array of this list element? */
845 if (idx < listp->len)
846 break;
847 idx -= listp->len;
848 prevp = listp;
849 listp = listp->next;
850 }
851 while (listp != NULL);
852
853 if (listp == NULL)
854 {
855 /* When we come here it means we have to add a new element
856 to the slotinfo list. And the new module must be in
857 the first slot. */
858 assert (idx == 0);
859
860 listp = prevp->next = (struct dtv_slotinfo_list *)
861 malloc (sizeof (struct dtv_slotinfo_list)
862 + TLS_SLOTINFO_SURPLUS * sizeof (struct dtv_slotinfo));
863 if (listp == NULL)
864 {
865 /* We ran out of memory. We will simply fail this
866 call but don't undo anything we did so far. The
867 application will crash or be terminated anyway very
868 soon. */
869
870 /* We have to do this since some entries in the dtv
871 slotinfo array might already point to this
872 generation. */
873 ++GL(dl_tls_generation);
874
875 _dl_signal_error (ENOMEM, "dlopen", NULL, N_("\
876cannot create TLS data structures"));
877 }
878
879 listp->len = TLS_SLOTINFO_SURPLUS;
880 listp->next = NULL;
881 memset (listp->slotinfo, '\0',
882 TLS_SLOTINFO_SURPLUS * sizeof (struct dtv_slotinfo));
883 }
884
885 /* Add the information into the slotinfo data structure. */
886 listp->slotinfo[idx].map = l;
887 listp->slotinfo[idx].gen = GL(dl_tls_generation) + 1;
888}