]> git.ipfire.org Git - thirdparty/glibc.git/blame - nptl/sysdeps/pthread/timer_routines.c
Update copyright notices with scripts/update-copyrights
[thirdparty/glibc.git] / nptl / sysdeps / pthread / timer_routines.c
CommitLineData
cbbb4b6c 1/* Helper code for POSIX timer implementation on NPTL.
d4697bc9 2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
76a50749
UD
3 This file is part of the GNU C Library.
4 Contributed by Kaz Kylheku <kaz@ashi.footprints.net>.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public License as
8 published by the Free Software Foundation; either version 2.1 of the
9 License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
59ba27a6
PE
17 License along with the GNU C Library; see the file COPYING.LIB. If
18 not, see <http://www.gnu.org/licenses/>. */
76a50749
UD
19
20#include <assert.h>
21#include <errno.h>
22#include <pthread.h>
23#include <stddef.h>
24#include <stdlib.h>
25#include <string.h>
26#include <sysdep.h>
27#include <time.h>
28#include <unistd.h>
29#include <sys/syscall.h>
30
31#include "posix-timer.h"
32#include <pthreadP.h>
33
34
35/* Number of threads used. */
36#define THREAD_MAXNODES 16
37
38/* Array containing the descriptors for the used threads. */
39static struct thread_node thread_array[THREAD_MAXNODES];
40
41/* Static array with the structures for all the timers. */
42struct timer_node __timer_array[TIMER_MAX];
43
44/* Global lock to protect operation on the lists. */
45pthread_mutex_t __timer_mutex = PTHREAD_MUTEX_INITIALIZER;
46
47/* Variable to protext initialization. */
48pthread_once_t __timer_init_once_control = PTHREAD_ONCE_INIT;
49
50/* Nonzero if initialization of timer implementation failed. */
51int __timer_init_failed;
52
53/* Node for the thread used to deliver signals. */
54struct thread_node __timer_signal_thread_rclk;
76a50749
UD
55
56/* Lists to keep free and used timers and threads. */
57struct list_links timer_free_list;
58struct list_links thread_free_list;
59struct list_links thread_active_list;
60
61
62#ifdef __NR_rt_sigqueueinfo
63extern int __syscall_rt_sigqueueinfo (int, int, siginfo_t *);
64#endif
65
66
67/* List handling functions. */
68static inline void
69list_init (struct list_links *list)
70{
71 list->next = list->prev = list;
72}
73
74static inline void
75list_append (struct list_links *list, struct list_links *newp)
76{
77 newp->prev = list->prev;
78 newp->next = list;
79 list->prev->next = newp;
80 list->prev = newp;
81}
82
83static inline void
84list_insbefore (struct list_links *list, struct list_links *newp)
85{
86 list_append (list, newp);
87}
88
89/*
90 * Like list_unlink_ip, except that calling it on a node that
91 * is already unlinked is disastrous rather than a noop.
92 */
93
94static inline void
95list_unlink (struct list_links *list)
96{
97 struct list_links *lnext = list->next, *lprev = list->prev;
98
99 lnext->prev = lprev;
100 lprev->next = lnext;
101}
102
103static inline struct list_links *
104list_first (struct list_links *list)
105{
106 return list->next;
107}
108
109static inline struct list_links *
110list_null (struct list_links *list)
111{
112 return list;
113}
114
115static inline struct list_links *
116list_next (struct list_links *list)
117{
118 return list->next;
119}
120
121static inline int
122list_isempty (struct list_links *list)
123{
124 return list->next == list;
125}
126
127
128/* Functions build on top of the list functions. */
129static inline struct thread_node *
130thread_links2ptr (struct list_links *list)
131{
132 return (struct thread_node *) ((char *) list
133 - offsetof (struct thread_node, links));
134}
135
136static inline struct timer_node *
137timer_links2ptr (struct list_links *list)
138{
139 return (struct timer_node *) ((char *) list
140 - offsetof (struct timer_node, links));
141}
142
143
144/* Initialize a newly allocated thread structure. */
145static void
146thread_init (struct thread_node *thread, const pthread_attr_t *attr, clockid_t clock_id)
147{
148 if (attr != NULL)
149 thread->attr = *attr;
150 else
151 {
152 pthread_attr_init (&thread->attr);
153 pthread_attr_setdetachstate (&thread->attr, PTHREAD_CREATE_DETACHED);
154 }
155
156 thread->exists = 0;
157 list_init (&thread->timer_queue);
158 pthread_cond_init (&thread->cond, 0);
159 thread->current_timer = 0;
160 thread->captured = pthread_self ();
161 thread->clock_id = clock_id;
162}
163
164
165/* Initialize the global lists, and acquire global resources. Error
166 reporting is done by storing a non-zero value to the global variable
167 timer_init_failed. */
168static void
169init_module (void)
170{
171 int i;
172
173 list_init (&timer_free_list);
174 list_init (&thread_free_list);
175 list_init (&thread_active_list);
176
177 for (i = 0; i < TIMER_MAX; ++i)
178 {
179 list_append (&timer_free_list, &__timer_array[i].links);
180 __timer_array[i].inuse = TIMER_FREE;
181 }
182
183 for (i = 0; i < THREAD_MAXNODES; ++i)
184 list_append (&thread_free_list, &thread_array[i].links);
185
186 thread_init (&__timer_signal_thread_rclk, 0, CLOCK_REALTIME);
76a50749
UD
187}
188
189
190/* This is a handler executed in a child process after a fork()
191 occurs. It reinitializes the module, resetting all of the data
192 structures to their initial state. The mutex is initialized in
193 case it was locked in the parent process. */
194static void
195reinit_after_fork (void)
196{
197 init_module ();
198 pthread_mutex_init (&__timer_mutex, 0);
199}
200
201
202/* Called once form pthread_once in timer_init. This initializes the
203 module and ensures that reinit_after_fork will be executed in any
204 child process. */
205void
206__timer_init_once (void)
207{
208 init_module ();
209 pthread_atfork (0, 0, reinit_after_fork);
210}
211
212
213/* Deinitialize a thread that is about to be deallocated. */
214static void
215thread_deinit (struct thread_node *thread)
216{
217 assert (list_isempty (&thread->timer_queue));
218 pthread_cond_destroy (&thread->cond);
219}
220
221
222/* Allocate a thread structure from the global free list. Global
223 mutex lock must be held by caller. The thread is moved to
224 the active list. */
225struct thread_node *
226__timer_thread_alloc (const pthread_attr_t *desired_attr, clockid_t clock_id)
227{
228 struct list_links *node = list_first (&thread_free_list);
229
230 if (node != list_null (&thread_free_list))
231 {
232 struct thread_node *thread = thread_links2ptr (node);
233 list_unlink (node);
234 thread_init (thread, desired_attr, clock_id);
235 list_append (&thread_active_list, node);
236 return thread;
237 }
238
239 return 0;
240}
241
242
243/* Return a thread structure to the global free list. Global lock
244 must be held by caller. */
245void
246__timer_thread_dealloc (struct thread_node *thread)
247{
248 thread_deinit (thread);
249 list_unlink (&thread->links);
250 list_append (&thread_free_list, &thread->links);
251}
252
253
254/* Each of our threads which terminates executes this cleanup
255 handler. We never terminate threads ourselves; if a thread gets here
256 it means that the evil application has killed it. If the thread has
257 timers, these require servicing and so we must hire a replacement
258 thread right away. We must also unblock another thread that may
259 have been waiting for this thread to finish servicing a timer (see
260 timer_delete()). */
261
262static void
263thread_cleanup (void *val)
264{
265 if (val != NULL)
266 {
267 struct thread_node *thread = val;
268
269 /* How did the signal thread get killed? */
270 assert (thread != &__timer_signal_thread_rclk);
76a50749
UD
271
272 pthread_mutex_lock (&__timer_mutex);
273
274 thread->exists = 0;
275
276 /* We are no longer processing a timer event. */
277 thread->current_timer = 0;
278
279 if (list_isempty (&thread->timer_queue))
a7f6c66e 280 __timer_thread_dealloc (thread);
76a50749
UD
281 else
282 (void) __timer_thread_start (thread);
283
284 pthread_mutex_unlock (&__timer_mutex);
285
286 /* Unblock potentially blocked timer_delete(). */
287 pthread_cond_broadcast (&thread->cond);
288 }
289}
290
291
292/* Handle a timer which is supposed to go off now. */
293static void
294thread_expire_timer (struct thread_node *self, struct timer_node *timer)
295{
296 self->current_timer = timer; /* Lets timer_delete know timer is running. */
297
298 pthread_mutex_unlock (&__timer_mutex);
299
300 switch (__builtin_expect (timer->event.sigev_notify, SIGEV_SIGNAL))
301 {
302 case SIGEV_NONE:
76a50749
UD
303 break;
304
305 case SIGEV_SIGNAL:
306#ifdef __NR_rt_sigqueueinfo
307 {
308 siginfo_t info;
309
310 /* First, clear the siginfo_t structure, so that we don't pass our
311 stack content to other tasks. */
312 memset (&info, 0, sizeof (siginfo_t));
313 /* We must pass the information about the data in a siginfo_t
314 value. */
315 info.si_signo = timer->event.sigev_signo;
316 info.si_code = SI_TIMER;
317 info.si_pid = timer->creator_pid;
318 info.si_uid = getuid ();
319 info.si_value = timer->event.sigev_value;
320
321 INLINE_SYSCALL (rt_sigqueueinfo, 3, info.si_pid, info.si_signo, &info);
322 }
323#else
324 if (pthread_kill (self->captured, timer->event.sigev_signo) != 0)
325 {
326 if (pthread_kill (self->id, timer->event.sigev_signo) != 0)
327 abort ();
328 }
329#endif
330 break;
331
332 case SIGEV_THREAD:
333 timer->event.sigev_notify_function (timer->event.sigev_value);
334 break;
335
336 default:
337 assert (! "unknown event");
338 break;
339 }
340
341 pthread_mutex_lock (&__timer_mutex);
342
343 self->current_timer = 0;
344
345 pthread_cond_broadcast (&self->cond);
346}
347
348
349/* Thread function; executed by each timer thread. The job of this
350 function is to wait on the thread's timer queue and expire the
351 timers in chronological order as close to their scheduled time as
352 possible. */
353static void
354__attribute__ ((noreturn))
355thread_func (void *arg)
356{
357 struct thread_node *self = arg;
358
359 /* Register cleanup handler, in case rogue application terminates
360 this thread. (This cannot happen to __timer_signal_thread, which
361 doesn't invoke application callbacks). */
362
363 pthread_cleanup_push (thread_cleanup, self);
364
365 pthread_mutex_lock (&__timer_mutex);
366
367 while (1)
368 {
369 struct list_links *first;
370 struct timer_node *timer = NULL;
371
372 /* While the timer queue is not empty, inspect the first node. */
373 first = list_first (&self->timer_queue);
374 if (first != list_null (&self->timer_queue))
375 {
376 struct timespec now;
377
378 timer = timer_links2ptr (first);
379
380 /* This assumes that the elements of the list of one thread
381 are all for the same clock. */
382 clock_gettime (timer->clock, &now);
383
384 while (1)
385 {
386 /* If the timer is due or overdue, remove it from the queue.
387 If it's a periodic timer, re-compute its new time and
388 requeue it. Either way, perform the timer expiry. */
389 if (timespec_compare (&now, &timer->expirytime) < 0)
390 break;
391
392 list_unlink_ip (first);
393
394 if (__builtin_expect (timer->value.it_interval.tv_sec, 0) != 0
395 || timer->value.it_interval.tv_nsec != 0)
396 {
397 timer->overrun_count = 0;
398 timespec_add (&timer->expirytime, &timer->expirytime,
399 &timer->value.it_interval);
400 while (timespec_compare (&timer->expirytime, &now) < 0)
401 {
402 timespec_add (&timer->expirytime, &timer->expirytime,
403 &timer->value.it_interval);
404 if (timer->overrun_count < DELAYTIMER_MAX)
405 ++timer->overrun_count;
406 }
407 __timer_thread_queue_timer (self, timer);
408 }
409
410 thread_expire_timer (self, timer);
411
412 first = list_first (&self->timer_queue);
413 if (first == list_null (&self->timer_queue))
414 break;
415
416 timer = timer_links2ptr (first);
417 }
418 }
419
420 /* If the queue is not empty, wait until the expiry time of the
421 first node. Otherwise wait indefinitely. Insertions at the
422 head of the queue must wake up the thread by broadcasting
423 this condition variable. */
424 if (timer != NULL)
425 pthread_cond_timedwait (&self->cond, &__timer_mutex,
426 &timer->expirytime);
427 else
428 pthread_cond_wait (&self->cond, &__timer_mutex);
429 }
430 /* This macro will never be executed since the while loop loops
431 forever - but we have to add it for proper nesting. */
432 pthread_cleanup_pop (1);
433}
434
435
436/* Enqueue a timer in wakeup order in the thread's timer queue.
437 Returns 1 if the timer was inserted at the head of the queue,
438 causing the queue's next wakeup time to change. */
439
440int
441__timer_thread_queue_timer (struct thread_node *thread,
442 struct timer_node *insert)
443{
444 struct list_links *iter;
445 int athead = 1;
446
447 for (iter = list_first (&thread->timer_queue);
448 iter != list_null (&thread->timer_queue);
449 iter = list_next (iter))
450 {
451 struct timer_node *timer = timer_links2ptr (iter);
452
453 if (timespec_compare (&insert->expirytime, &timer->expirytime) < 0)
454 break;
455 athead = 0;
456 }
457
458 list_insbefore (iter, &insert->links);
459 return athead;
460}
461
462
463/* Start a thread and associate it with the given thread node. Global
464 lock must be held by caller. */
465int
466__timer_thread_start (struct thread_node *thread)
467{
468 int retval = 1;
469
470 assert (!thread->exists);
471 thread->exists = 1;
472
473 if (pthread_create (&thread->id, &thread->attr,
474 (void *(*) (void *)) thread_func, thread) != 0)
475 {
476 thread->exists = 0;
477 retval = -1;
478 }
479
480 return retval;
481}
482
483
484void
485__timer_thread_wakeup (struct thread_node *thread)
486{
487 pthread_cond_broadcast (&thread->cond);
488}
489
490
491/* Compare two pthread_attr_t thread attributes for exact equality.
9f292c24
UD
492 Returns 1 if they are equal, otherwise zero if they are not equal
493 or contain illegal values. This version is NPTL-specific for
76a50749
UD
494 performance reason. One could use the access functions to get the
495 values of all the fields of the attribute structure. */
496static int
497thread_attr_compare (const pthread_attr_t *left, const pthread_attr_t *right)
498{
499 struct pthread_attr *ileft = (struct pthread_attr *) left;
500 struct pthread_attr *iright = (struct pthread_attr *) right;
501
502 return (ileft->flags == iright->flags
503 && ileft->schedpolicy == iright->schedpolicy
504 && (ileft->schedparam.sched_priority
1683daeb
UD
505 == iright->schedparam.sched_priority)
506 && ileft->guardsize == iright->guardsize
507 && ileft->stackaddr == iright->stackaddr
508 && ileft->stacksize == iright->stacksize
509 && ((ileft->cpuset == NULL && iright->cpuset == NULL)
510 || (ileft->cpuset != NULL && iright->cpuset != NULL
511 && ileft->cpusetsize == iright->cpusetsize
512 && memcmp (ileft->cpuset, iright->cpuset,
513 ileft->cpusetsize) == 0)));
76a50749
UD
514}
515
516
517/* Search the list of active threads and find one which has matching
518 attributes. Global mutex lock must be held by caller. */
519struct thread_node *
520__timer_thread_find_matching (const pthread_attr_t *desired_attr,
521 clockid_t desired_clock_id)
522{
523 struct list_links *iter = list_first (&thread_active_list);
524
525 while (iter != list_null (&thread_active_list))
526 {
527 struct thread_node *candidate = thread_links2ptr (iter);
528
529 if (thread_attr_compare (desired_attr, &candidate->attr)
530 && desired_clock_id == candidate->clock_id)
a7f6c66e 531 return candidate;
76a50749
UD
532
533 iter = list_next (iter);
534 }
535
536 return NULL;
537}
538
539
540/* Grab a free timer structure from the global free list. The global
541 lock must be held by the caller. */
542struct timer_node *
543__timer_alloc (void)
544{
545 struct list_links *node = list_first (&timer_free_list);
546
547 if (node != list_null (&timer_free_list))
548 {
549 struct timer_node *timer = timer_links2ptr (node);
550 list_unlink_ip (node);
551 timer->inuse = TIMER_INUSE;
552 timer->refcount = 1;
553 return timer;
554 }
555
556 return NULL;
557}
558
559
560/* Return a timer structure to the global free list. The global lock
561 must be held by the caller. */
562void
563__timer_dealloc (struct timer_node *timer)
564{
565 assert (timer->refcount == 0);
566 timer->thread = NULL; /* Break association between timer and thread. */
567 timer->inuse = TIMER_FREE;
568 list_append (&timer_free_list, &timer->links);
569}
570
571
572/* Thread cancellation handler which unlocks a mutex. */
573void
574__timer_mutex_cancel_handler (void *arg)
575{
576 pthread_mutex_unlock (arg);
577}