]> git.ipfire.org Git - thirdparty/glibc.git/blame - soft-fp/extended.h
soft-fp: fix typo in comment.
[thirdparty/glibc.git] / soft-fp / extended.h
CommitLineData
d876f532
UD
1/* Software floating-point emulation.
2 Definitions for IEEE Extended Precision.
568035b7 3 Copyright (C) 1999-2013 Free Software Foundation, Inc.
d876f532
UD
4 This file is part of the GNU C Library.
5 Contributed by Jakub Jelinek (jj@ultra.linux.cz).
6
7 The GNU C Library is free software; you can redistribute it and/or
41bdb6e2
AJ
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
d876f532 11
638a783c
RM
12 In addition to the permissions in the GNU Lesser General Public
13 License, the Free Software Foundation gives you unlimited
14 permission to link the compiled version of this file into
15 combinations with other programs, and to distribute those
16 combinations without any restriction coming from the use of this
17 file. (The Lesser General Public License restrictions do apply in
18 other respects; for example, they cover modification of the file,
19 and distribution when not linked into a combine executable.)
20
d876f532
UD
21 The GNU C Library is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
41bdb6e2 24 Lesser General Public License for more details.
d876f532 25
41bdb6e2 26 You should have received a copy of the GNU Lesser General Public
59ba27a6
PE
27 License along with the GNU C Library; if not, see
28 <http://www.gnu.org/licenses/>. */
d876f532
UD
29
30#if _FP_W_TYPE_SIZE < 32
31#error "Here's a nickel, kid. Go buy yourself a real computer."
32#endif
33
34#if _FP_W_TYPE_SIZE < 64
35#define _FP_FRACTBITS_E (4*_FP_W_TYPE_SIZE)
77f01ab5 36#define _FP_FRACTBITS_DW_E (8*_FP_W_TYPE_SIZE)
d876f532
UD
37#else
38#define _FP_FRACTBITS_E (2*_FP_W_TYPE_SIZE)
77f01ab5 39#define _FP_FRACTBITS_DW_E (4*_FP_W_TYPE_SIZE)
d876f532
UD
40#endif
41
42#define _FP_FRACBITS_E 64
43#define _FP_FRACXBITS_E (_FP_FRACTBITS_E - _FP_FRACBITS_E)
44#define _FP_WFRACBITS_E (_FP_WORKBITS + _FP_FRACBITS_E)
45#define _FP_WFRACXBITS_E (_FP_FRACTBITS_E - _FP_WFRACBITS_E)
46#define _FP_EXPBITS_E 15
47#define _FP_EXPBIAS_E 16383
48#define _FP_EXPMAX_E 32767
49
50#define _FP_QNANBIT_E \
51 ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-2) % _FP_W_TYPE_SIZE)
fe0b1e85
RM
52#define _FP_QNANBIT_SH_E \
53 ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-2+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
d876f532
UD
54#define _FP_IMPLBIT_E \
55 ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-1) % _FP_W_TYPE_SIZE)
fe0b1e85
RM
56#define _FP_IMPLBIT_SH_E \
57 ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-1+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
d876f532
UD
58#define _FP_OVERFLOW_E \
59 ((_FP_W_TYPE)1 << (_FP_WFRACBITS_E % _FP_W_TYPE_SIZE))
60
77f01ab5
JM
61#define _FP_WFRACBITS_DW_E (2 * _FP_WFRACBITS_E)
62#define _FP_WFRACXBITS_DW_E (_FP_FRACTBITS_DW_E - _FP_WFRACBITS_DW_E)
63#define _FP_HIGHBIT_DW_E \
64 ((_FP_W_TYPE)1 << (_FP_WFRACBITS_DW_E - 1) % _FP_W_TYPE_SIZE)
65
fe0b1e85
RM
66typedef float XFtype __attribute__((mode(XF)));
67
d876f532
UD
68#if _FP_W_TYPE_SIZE < 64
69
70union _FP_UNION_E
71{
fe0b1e85 72 XFtype flt;
f775c276 73 struct _FP_STRUCT_LAYOUT
d876f532
UD
74 {
75#if __BYTE_ORDER == __BIG_ENDIAN
76 unsigned long pad1 : _FP_W_TYPE_SIZE;
77 unsigned long pad2 : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
78 unsigned long sign : 1;
79 unsigned long exp : _FP_EXPBITS_E;
80 unsigned long frac1 : _FP_W_TYPE_SIZE;
81 unsigned long frac0 : _FP_W_TYPE_SIZE;
82#else
83 unsigned long frac0 : _FP_W_TYPE_SIZE;
84 unsigned long frac1 : _FP_W_TYPE_SIZE;
85 unsigned exp : _FP_EXPBITS_E;
86 unsigned sign : 1;
87#endif /* not bigendian */
88 } bits __attribute__((packed));
89};
90
91
92#define FP_DECL_E(X) _FP_DECL(4,X)
93
94#define FP_UNPACK_RAW_E(X, val) \
95 do { \
96 union _FP_UNION_E _flo; _flo.flt = (val); \
97 \
98 X##_f[2] = 0; X##_f[3] = 0; \
99 X##_f[0] = _flo.bits.frac0; \
100 X##_f[1] = _flo.bits.frac1; \
101 X##_e = _flo.bits.exp; \
102 X##_s = _flo.bits.sign; \
d876f532
UD
103 } while (0)
104
105#define FP_UNPACK_RAW_EP(X, val) \
106 do { \
107 union _FP_UNION_E *_flo = \
108 (union _FP_UNION_E *)(val); \
109 \
110 X##_f[2] = 0; X##_f[3] = 0; \
111 X##_f[0] = _flo->bits.frac0; \
112 X##_f[1] = _flo->bits.frac1; \
113 X##_e = _flo->bits.exp; \
114 X##_s = _flo->bits.sign; \
d876f532
UD
115 } while (0)
116
117#define FP_PACK_RAW_E(val, X) \
118 do { \
119 union _FP_UNION_E _flo; \
120 \
121 if (X##_e) X##_f[1] |= _FP_IMPLBIT_E; \
122 else X##_f[1] &= ~(_FP_IMPLBIT_E); \
123 _flo.bits.frac0 = X##_f[0]; \
124 _flo.bits.frac1 = X##_f[1]; \
125 _flo.bits.exp = X##_e; \
126 _flo.bits.sign = X##_s; \
127 \
128 (val) = _flo.flt; \
129 } while (0)
130
131#define FP_PACK_RAW_EP(val, X) \
132 do { \
133 if (!FP_INHIBIT_RESULTS) \
134 { \
135 union _FP_UNION_E *_flo = \
136 (union _FP_UNION_E *)(val); \
137 \
138 if (X##_e) X##_f[1] |= _FP_IMPLBIT_E; \
139 else X##_f[1] &= ~(_FP_IMPLBIT_E); \
140 _flo->bits.frac0 = X##_f[0]; \
141 _flo->bits.frac1 = X##_f[1]; \
142 _flo->bits.exp = X##_e; \
143 _flo->bits.sign = X##_s; \
144 } \
145 } while (0)
146
147#define FP_UNPACK_E(X,val) \
148 do { \
149 FP_UNPACK_RAW_E(X,val); \
150 _FP_UNPACK_CANONICAL(E,4,X); \
151 } while (0)
152
153#define FP_UNPACK_EP(X,val) \
154 do { \
fe0b1e85 155 FP_UNPACK_RAW_EP(X,val); \
d876f532
UD
156 _FP_UNPACK_CANONICAL(E,4,X); \
157 } while (0)
158
fe0b1e85
RM
159#define FP_UNPACK_SEMIRAW_E(X,val) \
160 do { \
37002cbc 161 FP_UNPACK_RAW_E(X,val); \
fe0b1e85
RM
162 _FP_UNPACK_SEMIRAW(E,4,X); \
163 } while (0)
164
165#define FP_UNPACK_SEMIRAW_EP(X,val) \
166 do { \
37002cbc 167 FP_UNPACK_RAW_EP(X,val); \
fe0b1e85
RM
168 _FP_UNPACK_SEMIRAW(E,4,X); \
169 } while (0)
170
d876f532
UD
171#define FP_PACK_E(val,X) \
172 do { \
173 _FP_PACK_CANONICAL(E,4,X); \
174 FP_PACK_RAW_E(val,X); \
175 } while (0)
176
177#define FP_PACK_EP(val,X) \
178 do { \
179 _FP_PACK_CANONICAL(E,4,X); \
180 FP_PACK_RAW_EP(val,X); \
181 } while (0)
182
fe0b1e85
RM
183#define FP_PACK_SEMIRAW_E(val,X) \
184 do { \
185 _FP_PACK_SEMIRAW(E,4,X); \
37002cbc 186 FP_PACK_RAW_E(val,X); \
fe0b1e85
RM
187 } while (0)
188
189#define FP_PACK_SEMIRAW_EP(val,X) \
190 do { \
191 _FP_PACK_SEMIRAW(E,4,X); \
37002cbc 192 FP_PACK_RAW_EP(val,X); \
fe0b1e85
RM
193 } while (0)
194
d876f532
UD
195#define FP_ISSIGNAN_E(X) _FP_ISSIGNAN(E,4,X)
196#define FP_NEG_E(R,X) _FP_NEG(E,4,R,X)
197#define FP_ADD_E(R,X,Y) _FP_ADD(E,4,R,X,Y)
198#define FP_SUB_E(R,X,Y) _FP_SUB(E,4,R,X,Y)
199#define FP_MUL_E(R,X,Y) _FP_MUL(E,4,R,X,Y)
200#define FP_DIV_E(R,X,Y) _FP_DIV(E,4,R,X,Y)
201#define FP_SQRT_E(R,X) _FP_SQRT(E,4,R,X)
77f01ab5 202#define FP_FMA_E(R,X,Y,Z) _FP_FMA(E,4,8,R,X,Y,Z)
d876f532
UD
203
204/*
205 * Square root algorithms:
206 * We have just one right now, maybe Newton approximation
207 * should be added for those machines where division is fast.
208 * This has special _E version because standard _4 square
209 * root would not work (it has to start normally with the
210 * second word and not the first), but as we have to do it
211 * anyway, we optimize it by doing most of the calculations
212 * in two UWtype registers instead of four.
213 */
9c84384c 214
d876f532
UD
215#define _FP_SQRT_MEAT_E(R, S, T, X, q) \
216 do { \
217 q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
218 _FP_FRAC_SRL_4(X, (_FP_WORKBITS)); \
219 while (q) \
220 { \
221 T##_f[1] = S##_f[1] + q; \
222 if (T##_f[1] <= X##_f[1]) \
223 { \
224 S##_f[1] = T##_f[1] + q; \
225 X##_f[1] -= T##_f[1]; \
226 R##_f[1] += q; \
227 } \
228 _FP_FRAC_SLL_2(X, 1); \
229 q >>= 1; \
230 } \
231 q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
232 while (q) \
233 { \
234 T##_f[0] = S##_f[0] + q; \
235 T##_f[1] = S##_f[1]; \
236 if (T##_f[1] < X##_f[1] || \
237 (T##_f[1] == X##_f[1] && \
238 T##_f[0] <= X##_f[0])) \
239 { \
240 S##_f[0] = T##_f[0] + q; \
241 S##_f[1] += (T##_f[0] > S##_f[0]); \
242 _FP_FRAC_DEC_2(X, T); \
243 R##_f[0] += q; \
244 } \
245 _FP_FRAC_SLL_2(X, 1); \
246 q >>= 1; \
247 } \
248 _FP_FRAC_SLL_4(R, (_FP_WORKBITS)); \
249 if (X##_f[0] | X##_f[1]) \
250 { \
251 if (S##_f[1] < X##_f[1] || \
252 (S##_f[1] == X##_f[1] && \
253 S##_f[0] < X##_f[0])) \
254 R##_f[0] |= _FP_WORK_ROUND; \
255 R##_f[0] |= _FP_WORK_STICKY; \
256 } \
257 } while (0)
258
259#define FP_CMP_E(r,X,Y,un) _FP_CMP(E,4,r,X,Y,un)
260#define FP_CMP_EQ_E(r,X,Y) _FP_CMP_EQ(E,4,r,X,Y)
e7b8c7bc 261#define FP_CMP_UNORD_E(r,X,Y) _FP_CMP_UNORD(E,4,r,X,Y)
d876f532
UD
262
263#define FP_TO_INT_E(r,X,rsz,rsg) _FP_TO_INT(E,4,r,X,rsz,rsg)
264#define FP_FROM_INT_E(X,r,rs,rt) _FP_FROM_INT(E,4,X,r,rs,rt)
265
266#define _FP_FRAC_HIGH_E(X) (X##_f[2])
267#define _FP_FRAC_HIGH_RAW_E(X) (X##_f[1])
268
77f01ab5
JM
269#define _FP_FRAC_HIGH_DW_E(X) (X##_f[4])
270
d876f532
UD
271#else /* not _FP_W_TYPE_SIZE < 64 */
272union _FP_UNION_E
273{
fe0b1e85 274 XFtype flt;
f775c276 275 struct _FP_STRUCT_LAYOUT {
d876f532 276#if __BYTE_ORDER == __BIG_ENDIAN
06029c20
JJ
277 _FP_W_TYPE pad : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
278 unsigned sign : 1;
279 unsigned exp : _FP_EXPBITS_E;
280 _FP_W_TYPE frac : _FP_W_TYPE_SIZE;
d876f532 281#else
06029c20
JJ
282 _FP_W_TYPE frac : _FP_W_TYPE_SIZE;
283 unsigned exp : _FP_EXPBITS_E;
284 unsigned sign : 1;
d876f532
UD
285#endif
286 } bits;
287};
288
289#define FP_DECL_E(X) _FP_DECL(2,X)
290
291#define FP_UNPACK_RAW_E(X, val) \
292 do { \
293 union _FP_UNION_E _flo; _flo.flt = (val); \
294 \
295 X##_f0 = _flo.bits.frac; \
296 X##_f1 = 0; \
297 X##_e = _flo.bits.exp; \
298 X##_s = _flo.bits.sign; \
d876f532
UD
299 } while (0)
300
301#define FP_UNPACK_RAW_EP(X, val) \
302 do { \
303 union _FP_UNION_E *_flo = \
304 (union _FP_UNION_E *)(val); \
305 \
306 X##_f0 = _flo->bits.frac; \
307 X##_f1 = 0; \
308 X##_e = _flo->bits.exp; \
309 X##_s = _flo->bits.sign; \
d876f532
UD
310 } while (0)
311
312#define FP_PACK_RAW_E(val, X) \
313 do { \
314 union _FP_UNION_E _flo; \
315 \
316 if (X##_e) X##_f0 |= _FP_IMPLBIT_E; \
317 else X##_f0 &= ~(_FP_IMPLBIT_E); \
318 _flo.bits.frac = X##_f0; \
319 _flo.bits.exp = X##_e; \
320 _flo.bits.sign = X##_s; \
321 \
322 (val) = _flo.flt; \
323 } while (0)
324
325#define FP_PACK_RAW_EP(fs, val, X) \
326 do { \
327 if (!FP_INHIBIT_RESULTS) \
328 { \
329 union _FP_UNION_E *_flo = \
330 (union _FP_UNION_E *)(val); \
331 \
332 if (X##_e) X##_f0 |= _FP_IMPLBIT_E; \
333 else X##_f0 &= ~(_FP_IMPLBIT_E); \
334 _flo->bits.frac = X##_f0; \
335 _flo->bits.exp = X##_e; \
336 _flo->bits.sign = X##_s; \
337 } \
338 } while (0)
339
340
341#define FP_UNPACK_E(X,val) \
342 do { \
343 FP_UNPACK_RAW_E(X,val); \
344 _FP_UNPACK_CANONICAL(E,2,X); \
345 } while (0)
346
347#define FP_UNPACK_EP(X,val) \
348 do { \
349 FP_UNPACK_RAW_EP(X,val); \
350 _FP_UNPACK_CANONICAL(E,2,X); \
351 } while (0)
352
fe0b1e85
RM
353#define FP_UNPACK_SEMIRAW_E(X,val) \
354 do { \
37002cbc 355 FP_UNPACK_RAW_E(X,val); \
fe0b1e85
RM
356 _FP_UNPACK_SEMIRAW(E,2,X); \
357 } while (0)
358
359#define FP_UNPACK_SEMIRAW_EP(X,val) \
360 do { \
37002cbc 361 FP_UNPACK_RAW_EP(X,val); \
fe0b1e85
RM
362 _FP_UNPACK_SEMIRAW(E,2,X); \
363 } while (0)
364
d876f532
UD
365#define FP_PACK_E(val,X) \
366 do { \
367 _FP_PACK_CANONICAL(E,2,X); \
368 FP_PACK_RAW_E(val,X); \
369 } while (0)
370
371#define FP_PACK_EP(val,X) \
372 do { \
373 _FP_PACK_CANONICAL(E,2,X); \
374 FP_PACK_RAW_EP(val,X); \
375 } while (0)
376
fe0b1e85
RM
377#define FP_PACK_SEMIRAW_E(val,X) \
378 do { \
379 _FP_PACK_SEMIRAW(E,2,X); \
37002cbc 380 FP_PACK_RAW_E(val,X); \
fe0b1e85
RM
381 } while (0)
382
383#define FP_PACK_SEMIRAW_EP(val,X) \
384 do { \
385 _FP_PACK_SEMIRAW(E,2,X); \
37002cbc 386 FP_PACK_RAW_EP(val,X); \
fe0b1e85
RM
387 } while (0)
388
d876f532
UD
389#define FP_ISSIGNAN_E(X) _FP_ISSIGNAN(E,2,X)
390#define FP_NEG_E(R,X) _FP_NEG(E,2,R,X)
391#define FP_ADD_E(R,X,Y) _FP_ADD(E,2,R,X,Y)
392#define FP_SUB_E(R,X,Y) _FP_SUB(E,2,R,X,Y)
393#define FP_MUL_E(R,X,Y) _FP_MUL(E,2,R,X,Y)
394#define FP_DIV_E(R,X,Y) _FP_DIV(E,2,R,X,Y)
395#define FP_SQRT_E(R,X) _FP_SQRT(E,2,R,X)
77f01ab5 396#define FP_FMA_E(R,X,Y,Z) _FP_FMA(E,2,4,R,X,Y,Z)
d876f532
UD
397
398/*
399 * Square root algorithms:
400 * We have just one right now, maybe Newton approximation
401 * should be added for those machines where division is fast.
402 * We optimize it by doing most of the calculations
403 * in one UWtype registers instead of two, although we don't
404 * have to.
405 */
406#define _FP_SQRT_MEAT_E(R, S, T, X, q) \
407 do { \
408 q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
409 _FP_FRAC_SRL_2(X, (_FP_WORKBITS)); \
410 while (q) \
411 { \
412 T##_f0 = S##_f0 + q; \
413 if (T##_f0 <= X##_f0) \
414 { \
415 S##_f0 = T##_f0 + q; \
416 X##_f0 -= T##_f0; \
417 R##_f0 += q; \
418 } \
419 _FP_FRAC_SLL_1(X, 1); \
420 q >>= 1; \
421 } \
422 _FP_FRAC_SLL_2(R, (_FP_WORKBITS)); \
423 if (X##_f0) \
424 { \
425 if (S##_f0 < X##_f0) \
426 R##_f0 |= _FP_WORK_ROUND; \
427 R##_f0 |= _FP_WORK_STICKY; \
428 } \
429 } while (0)
9c84384c 430
d876f532
UD
431#define FP_CMP_E(r,X,Y,un) _FP_CMP(E,2,r,X,Y,un)
432#define FP_CMP_EQ_E(r,X,Y) _FP_CMP_EQ(E,2,r,X,Y)
1e832e37 433#define FP_CMP_UNORD_E(r,X,Y) _FP_CMP_UNORD(E,2,r,X,Y)
d876f532
UD
434
435#define FP_TO_INT_E(r,X,rsz,rsg) _FP_TO_INT(E,2,r,X,rsz,rsg)
436#define FP_FROM_INT_E(X,r,rs,rt) _FP_FROM_INT(E,2,X,r,rs,rt)
437
438#define _FP_FRAC_HIGH_E(X) (X##_f1)
439#define _FP_FRAC_HIGH_RAW_E(X) (X##_f0)
440
77f01ab5
JM
441#define _FP_FRAC_HIGH_DW_E(X) (X##_f[2])
442
d876f532 443#endif /* not _FP_W_TYPE_SIZE < 64 */