]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ia64/bzero.S
Update copyright dates with scripts/update-copyrights.
[thirdparty/glibc.git] / sysdeps / ia64 / bzero.S
CommitLineData
d5efd131
MF
1/* Optimized version of the standard bzero() function.
2 This file is part of the GNU C Library.
b168057a 3 Copyright (C) 2000-2015 Free Software Foundation, Inc.
d5efd131
MF
4 Contributed by Dan Pop for Itanium <Dan.Pop@cern.ch>.
5 Rewritten for McKinley by Sverre Jarp, HP Labs/CERN <Sverre.Jarp@cern.ch>
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
75efb018
MF
18 License along with the GNU C Library; if not, see
19 <http://www.gnu.org/licenses/>. */
d5efd131
MF
20
21/* Return: dest
22
23 Inputs:
24 in0: dest
25 in1: count
26
27 The algorithm is fairly straightforward: set byte by byte until we
28 we get to a 16B-aligned address, then loop on 128 B chunks using an
29 early store as prefetching, then loop on 32B chucks, then clear remaining
30 words, finally clear remaining bytes.
31 Since a stf.spill f0 can store 16B in one go, we use this instruction
32 to get peak speed. */
33
34#include <sysdep.h>
35#undef ret
36
37#define dest in0
38#define cnt in1
39
40#define tmp r31
41#define save_lc r30
42#define ptr0 r29
43#define ptr1 r28
44#define ptr2 r27
45#define ptr3 r26
46#define ptr9 r24
47#define loopcnt r23
48#define linecnt r22
49#define bytecnt r21
50
51// This routine uses only scratch predicate registers (p6 - p15)
52#define p_scr p6 // default register for same-cycle branches
53#define p_unalgn p9
54#define p_y p11
55#define p_n p12
56#define p_yy p13
57#define p_nn p14
58
59#define movi0 mov
60
61#define MIN1 15
62#define MIN1P1HALF 8
63#define LINE_SIZE 128
64#define LSIZE_SH 7 // shift amount
65#define PREF_AHEAD 8
66
67#define USE_FLP
68#if defined(USE_INT)
69#define store st8
70#define myval r0
71#elif defined(USE_FLP)
72#define store stf8
73#define myval f0
74#endif
75
76.align 64
77ENTRY(bzero)
78{ .mmi
79 .prologue
80 alloc tmp = ar.pfs, 2, 0, 0, 0
81 lfetch.nt1 [dest]
82 .save ar.lc, save_lc
83 movi0 save_lc = ar.lc
84} { .mmi
85 .body
86 mov ret0 = dest // return value
87 nop.m 0
88 cmp.eq p_scr, p0 = cnt, r0
89;; }
90{ .mmi
91 and ptr2 = -(MIN1+1), dest // aligned address
92 and tmp = MIN1, dest // prepare to check for alignment
93 tbit.nz p_y, p_n = dest, 0 // Do we have an odd address? (M_B_U)
94} { .mib
95 mov ptr1 = dest
96 nop.i 0
97(p_scr) br.ret.dpnt.many rp // return immediately if count = 0
98;; }
99{ .mib
100 cmp.ne p_unalgn, p0 = tmp, r0
101} { .mib // NB: # of bytes to move is 1
102 sub bytecnt = (MIN1+1), tmp // higher than loopcnt
103 cmp.gt p_scr, p0 = 16, cnt // is it a minimalistic task?
104(p_scr) br.cond.dptk.many .move_bytes_unaligned // go move just a few (M_B_U)
105;; }
106{ .mmi
107(p_unalgn) add ptr1 = (MIN1+1), ptr2 // after alignment
108(p_unalgn) add ptr2 = MIN1P1HALF, ptr2 // after alignment
109(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3 // should we do a st8 ?
110;; }
111{ .mib
112(p_y) add cnt = -8, cnt
113(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2 // should we do a st4 ?
114} { .mib
115(p_y) st8 [ptr2] = r0,-4
116(p_n) add ptr2 = 4, ptr2
117;; }
118{ .mib
119(p_yy) add cnt = -4, cnt
120(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1 // should we do a st2 ?
121} { .mib
122(p_yy) st4 [ptr2] = r0,-2
123(p_nn) add ptr2 = 2, ptr2
124;; }
125{ .mmi
126 mov tmp = LINE_SIZE+1 // for compare
127(p_y) add cnt = -2, cnt
128(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0 // should we do a st1 ?
129} { .mmi
130 nop.m 0
131(p_y) st2 [ptr2] = r0,-1
132(p_n) add ptr2 = 1, ptr2
133;; }
134
135{ .mmi
136(p_yy) st1 [ptr2] = r0
c70a4b1d 137 cmp.gt p_scr, p0 = tmp, cnt // is it a minimalistic task?
d5efd131
MF
138} { .mbb
139(p_yy) add cnt = -1, cnt
140(p_scr) br.cond.dpnt.many .fraction_of_line // go move just a few
141;; }
142{ .mib
143 nop.m 0
144 shr.u linecnt = cnt, LSIZE_SH
145 nop.b 0
146;; }
147
148 .align 32
149.l1b: // ------------------// L1B: store ahead into cache lines; fill later
150{ .mmi
151 and tmp = -(LINE_SIZE), cnt // compute end of range
152 mov ptr9 = ptr1 // used for prefetching
153 and cnt = (LINE_SIZE-1), cnt // remainder
154} { .mmi
155 mov loopcnt = PREF_AHEAD-1 // default prefetch loop
156 cmp.gt p_scr, p0 = PREF_AHEAD, linecnt // check against actual value
157;; }
158{ .mmi
159(p_scr) add loopcnt = -1, linecnt
160 add ptr2 = 16, ptr1 // start of stores (beyond prefetch stores)
161 add ptr1 = tmp, ptr1 // first address beyond total range
162;; }
163{ .mmi
164 add tmp = -1, linecnt // next loop count
165 movi0 ar.lc = loopcnt
166;; }
167.pref_l1b:
168{ .mib
169 stf.spill [ptr9] = f0, 128 // Do stores one cache line apart
170 nop.i 0
171 br.cloop.dptk.few .pref_l1b
172;; }
173{ .mmi
174 add ptr0 = 16, ptr2 // Two stores in parallel
175 movi0 ar.lc = tmp
176;; }
177.l1bx:
178 { .mmi
179 stf.spill [ptr2] = f0, 32
180 stf.spill [ptr0] = f0, 32
181 ;; }
182 { .mmi
183 stf.spill [ptr2] = f0, 32
184 stf.spill [ptr0] = f0, 32
185 ;; }
186 { .mmi
187 stf.spill [ptr2] = f0, 32
188 stf.spill [ptr0] = f0, 64
c70a4b1d 189 cmp.lt p_scr, p0 = ptr9, ptr1 // do we need more prefetching?
d5efd131
MF
190 ;; }
191{ .mmb
192 stf.spill [ptr2] = f0, 32
193(p_scr) stf.spill [ptr9] = f0, 128
194 br.cloop.dptk.few .l1bx
195;; }
196{ .mib
197 cmp.gt p_scr, p0 = 8, cnt // just a few bytes left ?
198(p_scr) br.cond.dpnt.many .move_bytes_from_alignment
199;; }
200
201.fraction_of_line:
202{ .mib
203 add ptr2 = 16, ptr1
204 shr.u loopcnt = cnt, 5 // loopcnt = cnt / 32
205;; }
206{ .mib
207 cmp.eq p_scr, p0 = loopcnt, r0
208 add loopcnt = -1, loopcnt
209(p_scr) br.cond.dpnt.many .store_words
210;; }
211{ .mib
212 and cnt = 0x1f, cnt // compute the remaining cnt
213 movi0 ar.lc = loopcnt
214;; }
215 .align 32
216.l2: // -----------------------------// L2A: store 32B in 2 cycles
217{ .mmb
218 store [ptr1] = myval, 8
219 store [ptr2] = myval, 8
220;; } { .mmb
221 store [ptr1] = myval, 24
222 store [ptr2] = myval, 24
223 br.cloop.dptk.many .l2
224;; }
225.store_words:
226{ .mib
227 cmp.gt p_scr, p0 = 8, cnt // just a few bytes left ?
228(p_scr) br.cond.dpnt.many .move_bytes_from_alignment // Branch
229;; }
230
231{ .mmi
232 store [ptr1] = myval, 8 // store
233 cmp.le p_y, p_n = 16, cnt //
234 add cnt = -8, cnt // subtract
235;; }
236{ .mmi
237(p_y) store [ptr1] = myval, 8 // store
238(p_y) cmp.le.unc p_yy, p_nn = 16, cnt
239(p_y) add cnt = -8, cnt // subtract
240;; }
241{ .mmi // store
242(p_yy) store [ptr1] = myval, 8
243(p_yy) add cnt = -8, cnt // subtract
244;; }
245
246.move_bytes_from_alignment:
247{ .mib
248 cmp.eq p_scr, p0 = cnt, r0
249 tbit.nz.unc p_y, p0 = cnt, 2 // should we terminate with a st4 ?
250(p_scr) br.cond.dpnt.few .restore_and_exit
251;; }
252{ .mib
253(p_y) st4 [ptr1] = r0,4
254 tbit.nz.unc p_yy, p0 = cnt, 1 // should we terminate with a st2 ?
255;; }
256{ .mib
257(p_yy) st2 [ptr1] = r0,2
258 tbit.nz.unc p_y, p0 = cnt, 0 // should we terminate with a st1 ?
259;; }
260
261{ .mib
262(p_y) st1 [ptr1] = r0
263;; }
264.restore_and_exit:
265{ .mib
266 nop.m 0
267 movi0 ar.lc = save_lc
268 br.ret.sptk.many rp
269;; }
270
271.move_bytes_unaligned:
272{ .mmi
273 .pred.rel "mutex",p_y, p_n
274 .pred.rel "mutex",p_yy, p_nn
275(p_n) cmp.le p_yy, p_nn = 4, cnt
276(p_y) cmp.le p_yy, p_nn = 5, cnt
277(p_n) add ptr2 = 2, ptr1
278} { .mmi
279(p_y) add ptr2 = 3, ptr1
280(p_y) st1 [ptr1] = r0, 1 // fill 1 (odd-aligned) byte
281(p_y) add cnt = -1, cnt // [15, 14 (or less) left]
282;; }
283{ .mmi
284(p_yy) cmp.le.unc p_y, p0 = 8, cnt
285 add ptr3 = ptr1, cnt // prepare last store
286 movi0 ar.lc = save_lc
287} { .mmi
288(p_yy) st2 [ptr1] = r0, 4 // fill 2 (aligned) bytes
289(p_yy) st2 [ptr2] = r0, 4 // fill 2 (aligned) bytes
290(p_yy) add cnt = -4, cnt // [11, 10 (o less) left]
291;; }
292{ .mmi
293(p_y) cmp.le.unc p_yy, p0 = 8, cnt
294 add ptr3 = -1, ptr3 // last store
295 tbit.nz p_scr, p0 = cnt, 1 // will there be a st2 at the end ?
296} { .mmi
297(p_y) st2 [ptr1] = r0, 4 // fill 2 (aligned) bytes
298(p_y) st2 [ptr2] = r0, 4 // fill 2 (aligned) bytes
299(p_y) add cnt = -4, cnt // [7, 6 (or less) left]
300;; }
301{ .mmi
302(p_yy) st2 [ptr1] = r0, 4 // fill 2 (aligned) bytes
303(p_yy) st2 [ptr2] = r0, 4 // fill 2 (aligned) bytes
304 // [3, 2 (or less) left]
305 tbit.nz p_y, p0 = cnt, 0 // will there be a st1 at the end ?
306} { .mmi
307(p_yy) add cnt = -4, cnt
308;; }
309{ .mmb
310(p_scr) st2 [ptr1] = r0 // fill 2 (aligned) bytes
311(p_y) st1 [ptr3] = r0 // fill last byte (using ptr3)
312 br.ret.sptk.many rp
313;; }
314END(bzero)