]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ieee754/dbl-64/dla.h
Update copyright dates with scripts/update-copyrights.
[thirdparty/glibc.git] / sysdeps / ieee754 / dbl-64 / dla.h
CommitLineData
e4d82761
UD
1/*
2 * IBM Accurate Mathematical Library
c6c6dd48 3 * Written by International Business Machines Corp.
f7a9f785 4 * Copyright (C) 2001-2016 Free Software Foundation, Inc.
e4d82761
UD
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU Lesser General Public License as published by
cc7375ce 8 * the Free Software Foundation; either version 2.1 of the License, or
e4d82761 9 * (at your option) any later version.
c6c6dd48 10 *
e4d82761
UD
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
c6c6dd48 14 * GNU Lesser General Public License for more details.
e4d82761
UD
15 *
16 * You should have received a copy of the GNU Lesser General Public License
59ba27a6 17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
e4d82761 18 */
c6c6dd48 19
0e9be4db
WD
20#include <math.h>
21
e4d82761
UD
22/***********************************************************************/
23/*MODULE_NAME: dla.h */
24/* */
25/* This file holds C language macros for 'Double Length Floating Point */
26/* Arithmetic'. The macros are based on the paper: */
27/* T.J.Dekker, "A floating-point Technique for extending the */
28/* Available Precision", Number. Math. 18, 224-242 (1971). */
29/* A Double-Length number is defined by a pair (r,s), of IEEE double */
30/* precision floating point numbers that satisfy, */
31/* */
32/* abs(s) <= abs(r+s)*2**(-53)/(1+2**(-53)). */
33/* */
34/* The computer arithmetic assumed is IEEE double precision in */
35/* round to nearest mode. All variables in the macros must be of type */
36/* IEEE double. */
37/***********************************************************************/
38
085ec079
SP
39/* CN = 1+2**27 = '41a0000002000000' IEEE double format. Use it to split a
40 double for better accuracy. */
e4d82761
UD
41#define CN 134217729.0
42
43
44/* Exact addition of two single-length floating point numbers, Dekker. */
45/* The macro produces a double-length number (z,zz) that satisfies */
46/* z+zz = x+y exactly. */
47
48#define EADD(x,y,z,zz) \
0e9be4db 49 z=(x)+(y); zz=(fabs(x)>fabs(y)) ? (((x)-(z))+(y)) : (((y)-(z))+(x));
e4d82761
UD
50
51
52/* Exact subtraction of two single-length floating point numbers, Dekker. */
53/* The macro produces a double-length number (z,zz) that satisfies */
54/* z+zz = x-y exactly. */
55
56#define ESUB(x,y,z,zz) \
0e9be4db 57 z=(x)-(y); zz=(fabs(x)>fabs(y)) ? (((x)-(z))-(y)) : ((x)-((y)+(z)));
e4d82761
UD
58
59
60/* Exact multiplication of two single-length floating point numbers, */
61/* Veltkamp. The macro produces a double-length number (z,zz) that */
62/* satisfies z+zz = x*y exactly. p,hx,tx,hy,ty are temporary */
63/* storage variables of type double. */
64
774a2669 65#ifdef DLA_FMS
c5d5d574
OB
66# define EMULV(x, y, z, zz, p, hx, tx, hy, ty) \
67 z = x * y; zz = DLA_FMS (x, y, z);
a1a87169 68#else
c5d5d574
OB
69# define EMULV(x, y, z, zz, p, hx, tx, hy, ty) \
70 p = CN * (x); hx = ((x) - p) + p; tx = (x) - hx; \
71 p = CN * (y); hy = ((y) - p) + p; ty = (y) - hy; \
72 z = (x) * (y); zz = (((hx * hy - z) + hx * ty) + tx * hy) + tx * ty;
a1a87169 73#endif
e4d82761
UD
74
75
76/* Exact multiplication of two single-length floating point numbers, Dekker. */
77/* The macro produces a nearly double-length number (z,zz) (see Dekker) */
78/* that satisfies z+zz = x*y exactly. p,hx,tx,hy,ty,q are temporary */
79/* storage variables of type double. */
80
774a2669 81#ifdef DLA_FMS
a1a87169
UD
82# define MUL12(x,y,z,zz,p,hx,tx,hy,ty,q) \
83 EMULV(x,y,z,zz,p,hx,tx,hy,ty)
84#else
85# define MUL12(x,y,z,zz,p,hx,tx,hy,ty,q) \
86 p=CN*(x); hx=((x)-p)+p; tx=(x)-hx; \
87 p=CN*(y); hy=((y)-p)+p; ty=(y)-hy; \
88 p=hx*hy; q=hx*ty+tx*hy; z=p+q; zz=((p-z)+q)+tx*ty;
89#endif
e4d82761
UD
90
91
92/* Double-length addition, Dekker. The macro produces a double-length */
93/* number (z,zz) which satisfies approximately z+zz = x+xx + y+yy. */
94/* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
95/* are assumed to be double-length numbers. r,s are temporary */
96/* storage variables of type double. */
97
c5d5d574 98#define ADD2(x, xx, y, yy, z, zz, r, s) \
0e9be4db 99 r = (x) + (y); s = (fabs (x) > fabs (y)) ? \
c5d5d574
OB
100 (((((x) - r) + (y)) + (yy)) + (xx)) : \
101 (((((y) - r) + (x)) + (xx)) + (yy)); \
102 z = r + s; zz = (r - z) + s;
e4d82761
UD
103
104
105/* Double-length subtraction, Dekker. The macro produces a double-length */
106/* number (z,zz) which satisfies approximately z+zz = x+xx - (y+yy). */
107/* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
108/* are assumed to be double-length numbers. r,s are temporary */
109/* storage variables of type double. */
110
c5d5d574 111#define SUB2(x, xx, y, yy, z, zz, r, s) \
0e9be4db 112 r = (x) - (y); s = (fabs (x) > fabs (y)) ? \
c5d5d574
OB
113 (((((x) - r) - (y)) - (yy)) + (xx)) : \
114 ((((x) - ((y) + r)) + (xx)) - (yy)); \
115 z = r + s; zz = (r - z) + s;
e4d82761
UD
116
117
118/* Double-length multiplication, Dekker. The macro produces a double-length */
119/* number (z,zz) which satisfies approximately z+zz = (x+xx)*(y+yy). */
120/* An error bound: abs((x+xx)*(y+yy))*1.24e-31. (x,xx), (y,yy) */
121/* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc are */
122/* temporary storage variables of type double. */
123
c5d5d574
OB
124#define MUL2(x, xx, y, yy, z, zz, p, hx, tx, hy, ty, q, c, cc) \
125 MUL12 (x, y, c, cc, p, hx, tx, hy, ty, q) \
126 cc = ((x) * (yy) + (xx) * (y)) + cc; z = c + cc; zz = (c - z) + cc;
e4d82761
UD
127
128
129/* Double-length division, Dekker. The macro produces a double-length */
130/* number (z,zz) which satisfies approximately z+zz = (x+xx)/(y+yy). */
131/* An error bound: abs((x+xx)/(y+yy))*1.50e-31. (x,xx), (y,yy) */
132/* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc,u,uu */
133/* are temporary storage variables of type double. */
134
135#define DIV2(x,xx,y,yy,z,zz,p,hx,tx,hy,ty,q,c,cc,u,uu) \
a1a87169
UD
136 c=(x)/(y); MUL12(c,y,u,uu,p,hx,tx,hy,ty,q) \
137 cc=(((((x)-u)-uu)+(xx))-c*(yy))/(y); z=c+cc; zz=(c-z)+cc;
e4d82761
UD
138
139
140/* Double-length addition, slower but more accurate than ADD2. */
141/* The macro produces a double-length */
142/* number (z,zz) which satisfies approximately z+zz = (x+xx)+(y+yy). */
143/* An error bound: abs(x+xx + y+yy)*1.50e-31. (x,xx), (y,yy) */
144/* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w */
145/* are temporary storage variables of type double. */
146
c5d5d574
OB
147#define ADD2A(x, xx, y, yy, z, zz, r, rr, s, ss, u, uu, w) \
148 r = (x) + (y); \
0e9be4db 149 if (fabs (x) > fabs (y)) { rr = ((x) - r) + (y); s = (rr + (yy)) + (xx); } \
c5d5d574
OB
150 else { rr = ((y) - r) + (x); s = (rr + (xx)) + (yy); } \
151 if (rr != 0.0) { \
152 z = r + s; zz = (r - z) + s; } \
153 else { \
0e9be4db 154 ss = (fabs (xx) > fabs (yy)) ? (((xx) - s) + (yy)) : (((yy) - s) + (xx));\
c5d5d574 155 u = r + s; \
0e9be4db 156 uu = (fabs (r) > fabs (s)) ? ((r - u) + s) : ((s - u) + r); \
c5d5d574 157 w = uu + ss; z = u + w; \
0e9be4db 158 zz = (fabs (u) > fabs (w)) ? ((u - z) + w) : ((w - z) + u); }
e4d82761
UD
159
160
161/* Double-length subtraction, slower but more accurate than SUB2. */
162/* The macro produces a double-length */
163/* number (z,zz) which satisfies approximately z+zz = (x+xx)-(y+yy). */
164/* An error bound: abs(x+xx - (y+yy))*1.50e-31. (x,xx), (y,yy) */
165/* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w */
166/* are temporary storage variables of type double. */
167
c5d5d574
OB
168#define SUB2A(x, xx, y, yy, z, zz, r, rr, s, ss, u, uu, w) \
169 r = (x) - (y); \
0e9be4db 170 if (fabs (x) > fabs (y)) { rr = ((x) - r) - (y); s = (rr - (yy)) + (xx); } \
c5d5d574
OB
171 else { rr = (x) - ((y) + r); s = (rr + (xx)) - (yy); } \
172 if (rr != 0.0) { \
173 z = r + s; zz = (r - z) + s; } \
174 else { \
0e9be4db 175 ss = (fabs (xx) > fabs (yy)) ? (((xx) - s) - (yy)) : ((xx) - ((yy) + s)); \
c5d5d574 176 u = r + s; \
0e9be4db 177 uu = (fabs (r) > fabs (s)) ? ((r - u) + s) : ((s - u) + r); \
c5d5d574 178 w = uu + ss; z = u + w; \
0e9be4db 179 zz = (fabs (u) > fabs (w)) ? ((u - z) + w) : ((w - z) + u); }