]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ieee754/dbl-64/s_fma.c
Update copyright dates with scripts/update-copyrights
[thirdparty/glibc.git] / sysdeps / ieee754 / dbl-64 / s_fma.c
CommitLineData
5e908464 1/* Compute x * y + z as ternary operation.
2b778ceb 2 Copyright (C) 2010-2021 Free Software Foundation, Inc.
5e908464
JJ
3 This file is part of the GNU C Library.
4 Contributed by Jakub Jelinek <jakub@redhat.com>, 2010.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
59ba27a6 17 License along with the GNU C Library; if not, see
5a82c748 18 <https://www.gnu.org/licenses/>. */
5e908464
JJ
19
20#include <float.h>
21#include <math.h>
22#include <fenv.h>
23#include <ieee754.h>
b4d5b8b0 24#include <math-barriers.h>
70e2ba33 25#include <fenv_private.h>
7e16a5d1 26#include <libm-alias-double.h>
ef82f4da 27#include <tininess.h>
628d90c5 28#include <math-use-builtins.h>
5e908464
JJ
29
30/* This implementation uses rounding to odd to avoid problems with
31 double rounding. See a paper by Boldo and Melquiond:
32 http://www.lri.fr/~melquion/doc/08-tc.pdf */
33
34double
35__fma (double x, double y, double z)
36{
628d90c5
VG
37#if USE_FMA_BUILTIN
38 return __builtin_fma (x, y, z);
39#else
40 /* Use generic implementation. */
5e908464
JJ
41 union ieee754_double u, v, w;
42 int adjust = 0;
43 u.d = x;
44 v.d = y;
45 w.d = z;
46 if (__builtin_expect (u.ieee.exponent + v.ieee.exponent
47 >= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG, 0)
48 || __builtin_expect (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
49 || __builtin_expect (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
f3f7372d
JJ
50 || __builtin_expect (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
51 || __builtin_expect (u.ieee.exponent + v.ieee.exponent
52 <= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG, 0))
5e908464 53 {
3e692e05
JJ
54 /* If z is Inf, but x and y are finite, the result should be
55 z rather than NaN. */
56 if (w.ieee.exponent == 0x7ff
57 && u.ieee.exponent != 0x7ff
d9a8d0ab 58 && v.ieee.exponent != 0x7ff)
3e692e05 59 return (z + x) + y;
bec749fd
JM
60 /* If z is zero and x are y are nonzero, compute the result
61 as x * y to avoid the wrong sign of a zero result if x * y
62 underflows to 0. */
63 if (z == 0 && x != 0 && y != 0)
64 return x * y;
a0c2940d
JM
65 /* If x or y or z is Inf/NaN, or if x * y is zero, compute as
66 x * y + z. */
5e908464
JJ
67 if (u.ieee.exponent == 0x7ff
68 || v.ieee.exponent == 0x7ff
69 || w.ieee.exponent == 0x7ff
473611b2
JM
70 || x == 0
71 || y == 0)
5e908464 72 return x * y + z;
a0c2940d
JM
73 /* If fma will certainly overflow, compute as x * y. */
74 if (u.ieee.exponent + v.ieee.exponent > 0x7ff + IEEE754_DOUBLE_BIAS)
75 return x * y;
1f4dafa3 76 /* If x * y is less than 1/4 of DBL_TRUE_MIN, neither the
473611b2
JM
77 result nor whether there is underflow depends on its exact
78 value, only on its sign. */
79 if (u.ieee.exponent + v.ieee.exponent
80 < IEEE754_DOUBLE_BIAS - DBL_MANT_DIG - 2)
81 {
82 int neg = u.ieee.negative ^ v.ieee.negative;
83 double tiny = neg ? -0x1p-1074 : 0x1p-1074;
84 if (w.ieee.exponent >= 3)
85 return tiny + z;
86 /* Scaling up, adding TINY and scaling down produces the
87 correct result, because in round-to-nearest mode adding
88 TINY has no effect and in other modes double rounding is
89 harmless. But it may not produce required underflow
90 exceptions. */
91 v.d = z * 0x1p54 + tiny;
92 if (TININESS_AFTER_ROUNDING
93 ? v.ieee.exponent < 55
94 : (w.ieee.exponent == 0
95 || (w.ieee.exponent == 1
96 && w.ieee.negative != neg
97 && w.ieee.mantissa1 == 0
98 && w.ieee.mantissa0 == 0)))
99 {
d96164c3
JM
100 double force_underflow = x * y;
101 math_force_eval (force_underflow);
473611b2
JM
102 }
103 return v.d * 0x1p-54;
104 }
5e908464
JJ
105 if (u.ieee.exponent + v.ieee.exponent
106 >= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG)
107 {
108 /* Compute 1p-53 times smaller result and multiply
109 at the end. */
110 if (u.ieee.exponent > v.ieee.exponent)
111 u.ieee.exponent -= DBL_MANT_DIG;
112 else
113 v.ieee.exponent -= DBL_MANT_DIG;
114 /* If x + y exponent is very large and z exponent is very small,
115 it doesn't matter if we don't adjust it. */
116 if (w.ieee.exponent > DBL_MANT_DIG)
117 w.ieee.exponent -= DBL_MANT_DIG;
118 adjust = 1;
119 }
120 else if (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
121 {
122 /* Similarly.
123 If z exponent is very large and x and y exponents are
82477c28
JM
124 very small, adjust them up to avoid spurious underflows,
125 rather than down. */
126 if (u.ieee.exponent + v.ieee.exponent
739babd7 127 <= IEEE754_DOUBLE_BIAS + 2 * DBL_MANT_DIG)
82477c28
JM
128 {
129 if (u.ieee.exponent > v.ieee.exponent)
130 u.ieee.exponent += 2 * DBL_MANT_DIG + 2;
131 else
132 v.ieee.exponent += 2 * DBL_MANT_DIG + 2;
133 }
134 else if (u.ieee.exponent > v.ieee.exponent)
5e908464
JJ
135 {
136 if (u.ieee.exponent > DBL_MANT_DIG)
137 u.ieee.exponent -= DBL_MANT_DIG;
138 }
139 else if (v.ieee.exponent > DBL_MANT_DIG)
140 v.ieee.exponent -= DBL_MANT_DIG;
141 w.ieee.exponent -= DBL_MANT_DIG;
142 adjust = 1;
143 }
144 else if (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
145 {
146 u.ieee.exponent -= DBL_MANT_DIG;
147 if (v.ieee.exponent)
148 v.ieee.exponent += DBL_MANT_DIG;
149 else
150 v.d *= 0x1p53;
151 }
f3f7372d 152 else if (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
5e908464
JJ
153 {
154 v.ieee.exponent -= DBL_MANT_DIG;
155 if (u.ieee.exponent)
156 u.ieee.exponent += DBL_MANT_DIG;
157 else
158 u.d *= 0x1p53;
159 }
f3f7372d
JJ
160 else /* if (u.ieee.exponent + v.ieee.exponent
161 <= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG) */
162 {
163 if (u.ieee.exponent > v.ieee.exponent)
82477c28 164 u.ieee.exponent += 2 * DBL_MANT_DIG + 2;
f3f7372d 165 else
82477c28
JM
166 v.ieee.exponent += 2 * DBL_MANT_DIG + 2;
167 if (w.ieee.exponent <= 4 * DBL_MANT_DIG + 6)
f3f7372d
JJ
168 {
169 if (w.ieee.exponent)
82477c28 170 w.ieee.exponent += 2 * DBL_MANT_DIG + 2;
f3f7372d 171 else
82477c28 172 w.d *= 0x1p108;
f3f7372d
JJ
173 adjust = -1;
174 }
175 /* Otherwise x * y should just affect inexact
176 and nothing else. */
177 }
5e908464
JJ
178 x = u.d;
179 y = v.d;
180 z = w.d;
181 }
8ec5b013
JM
182
183 /* Ensure correct sign of exact 0 + 0. */
a1ffb40e 184 if (__glibc_unlikely ((x == 0 || y == 0) && z == 0))
09245377
L
185 {
186 x = math_opt_barrier (x);
187 return x * y + z;
188 }
8ec5b013 189
5b5b04d6
JM
190 fenv_t env;
191 libc_feholdexcept_setround (&env, FE_TONEAREST);
192
5e908464
JJ
193 /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */
194#define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1)
195 double x1 = x * C;
196 double y1 = y * C;
197 double m1 = x * y;
198 x1 = (x - x1) + x1;
199 y1 = (y - y1) + y1;
200 double x2 = x - x1;
201 double y2 = y - y1;
202 double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;
203
204 /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */
205 double a1 = z + m1;
206 double t1 = a1 - z;
207 double t2 = a1 - t1;
208 t1 = m1 - t1;
209 t2 = z - t2;
210 double a2 = t1 + t2;
4896f049
RH
211 /* Ensure the arithmetic is not scheduled after feclearexcept call. */
212 math_force_eval (m2);
213 math_force_eval (a2);
5b5b04d6 214 feclearexcept (FE_INEXACT);
5e908464 215
4896f049 216 /* If the result is an exact zero, ensure it has the correct sign. */
5b5b04d6
JM
217 if (a1 == 0 && m2 == 0)
218 {
219 libc_feupdateenv (&env);
4896f049
RH
220 /* Ensure that round-to-nearest value of z + m1 is not reused. */
221 z = math_opt_barrier (z);
5b5b04d6
JM
222 return z + m1;
223 }
224
225 libc_fesetround (FE_TOWARDZERO);
0fe0f1f8 226
5e908464
JJ
227 /* Perform m2 + a2 addition with round to odd. */
228 u.d = a2 + m2;
5e908464 229
a1ffb40e 230 if (__glibc_unlikely (adjust < 0))
0fe0f1f8
RH
231 {
232 if ((u.ieee.mantissa1 & 1) == 0)
233 u.ieee.mantissa1 |= libc_fetestexcept (FE_INEXACT) != 0;
234 v.d = a1 + u.d;
efb73488
AJ
235 /* Ensure the addition is not scheduled after fetestexcept call. */
236 math_force_eval (v.d);
0fe0f1f8
RH
237 }
238
239 /* Reset rounding mode and test for inexact simultaneously. */
240 int j = libc_feupdateenv_test (&env, FE_INEXACT) != 0;
241
a1ffb40e 242 if (__glibc_likely (adjust == 0))
f3f7372d
JJ
243 {
244 if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff)
0fe0f1f8 245 u.ieee.mantissa1 |= j;
f3f7372d
JJ
246 /* Result is a1 + u.d. */
247 return a1 + u.d;
248 }
a1ffb40e 249 else if (__glibc_likely (adjust > 0))
f3f7372d
JJ
250 {
251 if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff)
0fe0f1f8 252 u.ieee.mantissa1 |= j;
f3f7372d
JJ
253 /* Result is a1 + u.d, scaled up. */
254 return (a1 + u.d) * 0x1p53;
255 }
256 else
257 {
f3f7372d
JJ
258 /* If a1 + u.d is exact, the only rounding happens during
259 scaling down. */
260 if (j == 0)
82477c28 261 return v.d * 0x1p-108;
f3f7372d
JJ
262 /* If result rounded to zero is not subnormal, no double
263 rounding will occur. */
82477c28
JM
264 if (v.ieee.exponent > 108)
265 return (a1 + u.d) * 0x1p-108;
266 /* If v.d * 0x1p-108 with round to zero is a subnormal above
267 or equal to DBL_MIN / 2, then v.d * 0x1p-108 shifts mantissa
f3f7372d
JJ
268 down just by 1 bit, which means v.ieee.mantissa1 |= j would
269 change the round bit, not sticky or guard bit.
82477c28 270 v.d * 0x1p-108 never normalizes by shifting up,
f3f7372d
JJ
271 so round bit plus sticky bit should be already enough
272 for proper rounding. */
82477c28 273 if (v.ieee.exponent == 108)
f3f7372d 274 {
ef82f4da
JM
275 /* If the exponent would be in the normal range when
276 rounding to normal precision with unbounded exponent
277 range, the exact result is known and spurious underflows
278 must be avoided on systems detecting tininess after
279 rounding. */
280 if (TININESS_AFTER_ROUNDING)
281 {
282 w.d = a1 + u.d;
82477c28
JM
283 if (w.ieee.exponent == 109)
284 return w.d * 0x1p-108;
ef82f4da 285 }
f3f7372d
JJ
286 /* v.ieee.mantissa1 & 2 is LSB bit of the result before rounding,
287 v.ieee.mantissa1 & 1 is the round bit and j is our sticky
8627a232
JM
288 bit. */
289 w.d = 0.0;
290 w.ieee.mantissa1 = ((v.ieee.mantissa1 & 3) << 1) | j;
291 w.ieee.negative = v.ieee.negative;
292 v.ieee.mantissa1 &= ~3U;
82477c28 293 v.d *= 0x1p-108;
8627a232
JM
294 w.d *= 0x1p-2;
295 return v.d + w.d;
f3f7372d
JJ
296 }
297 v.ieee.mantissa1 |= j;
82477c28 298 return v.d * 0x1p-108;
f3f7372d 299 }
628d90c5 300#endif /* ! USE_FMA_BUILTIN */
5e908464
JJ
301}
302#ifndef __fma
7e16a5d1 303libm_alias_double (__fma, fma)
5e908464 304#endif