]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ieee754/dbl-64/s_fma.c
Prefer https to http for gnu.org and fsf.org URLs
[thirdparty/glibc.git] / sysdeps / ieee754 / dbl-64 / s_fma.c
CommitLineData
5e908464 1/* Compute x * y + z as ternary operation.
04277e02 2 Copyright (C) 2010-2019 Free Software Foundation, Inc.
5e908464
JJ
3 This file is part of the GNU C Library.
4 Contributed by Jakub Jelinek <jakub@redhat.com>, 2010.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
59ba27a6 17 License along with the GNU C Library; if not, see
5a82c748 18 <https://www.gnu.org/licenses/>. */
5e908464
JJ
19
20#include <float.h>
21#include <math.h>
22#include <fenv.h>
23#include <ieee754.h>
b4d5b8b0 24#include <math-barriers.h>
70e2ba33 25#include <fenv_private.h>
7e16a5d1 26#include <libm-alias-double.h>
ef82f4da 27#include <tininess.h>
5e908464
JJ
28
29/* This implementation uses rounding to odd to avoid problems with
30 double rounding. See a paper by Boldo and Melquiond:
31 http://www.lri.fr/~melquion/doc/08-tc.pdf */
32
33double
34__fma (double x, double y, double z)
35{
36 union ieee754_double u, v, w;
37 int adjust = 0;
38 u.d = x;
39 v.d = y;
40 w.d = z;
41 if (__builtin_expect (u.ieee.exponent + v.ieee.exponent
42 >= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG, 0)
43 || __builtin_expect (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
44 || __builtin_expect (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
f3f7372d
JJ
45 || __builtin_expect (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
46 || __builtin_expect (u.ieee.exponent + v.ieee.exponent
47 <= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG, 0))
5e908464 48 {
3e692e05
JJ
49 /* If z is Inf, but x and y are finite, the result should be
50 z rather than NaN. */
51 if (w.ieee.exponent == 0x7ff
52 && u.ieee.exponent != 0x7ff
d9a8d0ab 53 && v.ieee.exponent != 0x7ff)
3e692e05 54 return (z + x) + y;
bec749fd
JM
55 /* If z is zero and x are y are nonzero, compute the result
56 as x * y to avoid the wrong sign of a zero result if x * y
57 underflows to 0. */
58 if (z == 0 && x != 0 && y != 0)
59 return x * y;
a0c2940d
JM
60 /* If x or y or z is Inf/NaN, or if x * y is zero, compute as
61 x * y + z. */
5e908464
JJ
62 if (u.ieee.exponent == 0x7ff
63 || v.ieee.exponent == 0x7ff
64 || w.ieee.exponent == 0x7ff
473611b2
JM
65 || x == 0
66 || y == 0)
5e908464 67 return x * y + z;
a0c2940d
JM
68 /* If fma will certainly overflow, compute as x * y. */
69 if (u.ieee.exponent + v.ieee.exponent > 0x7ff + IEEE754_DOUBLE_BIAS)
70 return x * y;
1f4dafa3 71 /* If x * y is less than 1/4 of DBL_TRUE_MIN, neither the
473611b2
JM
72 result nor whether there is underflow depends on its exact
73 value, only on its sign. */
74 if (u.ieee.exponent + v.ieee.exponent
75 < IEEE754_DOUBLE_BIAS - DBL_MANT_DIG - 2)
76 {
77 int neg = u.ieee.negative ^ v.ieee.negative;
78 double tiny = neg ? -0x1p-1074 : 0x1p-1074;
79 if (w.ieee.exponent >= 3)
80 return tiny + z;
81 /* Scaling up, adding TINY and scaling down produces the
82 correct result, because in round-to-nearest mode adding
83 TINY has no effect and in other modes double rounding is
84 harmless. But it may not produce required underflow
85 exceptions. */
86 v.d = z * 0x1p54 + tiny;
87 if (TININESS_AFTER_ROUNDING
88 ? v.ieee.exponent < 55
89 : (w.ieee.exponent == 0
90 || (w.ieee.exponent == 1
91 && w.ieee.negative != neg
92 && w.ieee.mantissa1 == 0
93 && w.ieee.mantissa0 == 0)))
94 {
d96164c3
JM
95 double force_underflow = x * y;
96 math_force_eval (force_underflow);
473611b2
JM
97 }
98 return v.d * 0x1p-54;
99 }
5e908464
JJ
100 if (u.ieee.exponent + v.ieee.exponent
101 >= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG)
102 {
103 /* Compute 1p-53 times smaller result and multiply
104 at the end. */
105 if (u.ieee.exponent > v.ieee.exponent)
106 u.ieee.exponent -= DBL_MANT_DIG;
107 else
108 v.ieee.exponent -= DBL_MANT_DIG;
109 /* If x + y exponent is very large and z exponent is very small,
110 it doesn't matter if we don't adjust it. */
111 if (w.ieee.exponent > DBL_MANT_DIG)
112 w.ieee.exponent -= DBL_MANT_DIG;
113 adjust = 1;
114 }
115 else if (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
116 {
117 /* Similarly.
118 If z exponent is very large and x and y exponents are
82477c28
JM
119 very small, adjust them up to avoid spurious underflows,
120 rather than down. */
121 if (u.ieee.exponent + v.ieee.exponent
739babd7 122 <= IEEE754_DOUBLE_BIAS + 2 * DBL_MANT_DIG)
82477c28
JM
123 {
124 if (u.ieee.exponent > v.ieee.exponent)
125 u.ieee.exponent += 2 * DBL_MANT_DIG + 2;
126 else
127 v.ieee.exponent += 2 * DBL_MANT_DIG + 2;
128 }
129 else if (u.ieee.exponent > v.ieee.exponent)
5e908464
JJ
130 {
131 if (u.ieee.exponent > DBL_MANT_DIG)
132 u.ieee.exponent -= DBL_MANT_DIG;
133 }
134 else if (v.ieee.exponent > DBL_MANT_DIG)
135 v.ieee.exponent -= DBL_MANT_DIG;
136 w.ieee.exponent -= DBL_MANT_DIG;
137 adjust = 1;
138 }
139 else if (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
140 {
141 u.ieee.exponent -= DBL_MANT_DIG;
142 if (v.ieee.exponent)
143 v.ieee.exponent += DBL_MANT_DIG;
144 else
145 v.d *= 0x1p53;
146 }
f3f7372d 147 else if (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
5e908464
JJ
148 {
149 v.ieee.exponent -= DBL_MANT_DIG;
150 if (u.ieee.exponent)
151 u.ieee.exponent += DBL_MANT_DIG;
152 else
153 u.d *= 0x1p53;
154 }
f3f7372d
JJ
155 else /* if (u.ieee.exponent + v.ieee.exponent
156 <= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG) */
157 {
158 if (u.ieee.exponent > v.ieee.exponent)
82477c28 159 u.ieee.exponent += 2 * DBL_MANT_DIG + 2;
f3f7372d 160 else
82477c28
JM
161 v.ieee.exponent += 2 * DBL_MANT_DIG + 2;
162 if (w.ieee.exponent <= 4 * DBL_MANT_DIG + 6)
f3f7372d
JJ
163 {
164 if (w.ieee.exponent)
82477c28 165 w.ieee.exponent += 2 * DBL_MANT_DIG + 2;
f3f7372d 166 else
82477c28 167 w.d *= 0x1p108;
f3f7372d
JJ
168 adjust = -1;
169 }
170 /* Otherwise x * y should just affect inexact
171 and nothing else. */
172 }
5e908464
JJ
173 x = u.d;
174 y = v.d;
175 z = w.d;
176 }
8ec5b013
JM
177
178 /* Ensure correct sign of exact 0 + 0. */
a1ffb40e 179 if (__glibc_unlikely ((x == 0 || y == 0) && z == 0))
09245377
L
180 {
181 x = math_opt_barrier (x);
182 return x * y + z;
183 }
8ec5b013 184
5b5b04d6
JM
185 fenv_t env;
186 libc_feholdexcept_setround (&env, FE_TONEAREST);
187
5e908464
JJ
188 /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */
189#define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1)
190 double x1 = x * C;
191 double y1 = y * C;
192 double m1 = x * y;
193 x1 = (x - x1) + x1;
194 y1 = (y - y1) + y1;
195 double x2 = x - x1;
196 double y2 = y - y1;
197 double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;
198
199 /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */
200 double a1 = z + m1;
201 double t1 = a1 - z;
202 double t2 = a1 - t1;
203 t1 = m1 - t1;
204 t2 = z - t2;
205 double a2 = t1 + t2;
4896f049
RH
206 /* Ensure the arithmetic is not scheduled after feclearexcept call. */
207 math_force_eval (m2);
208 math_force_eval (a2);
5b5b04d6 209 feclearexcept (FE_INEXACT);
5e908464 210
4896f049 211 /* If the result is an exact zero, ensure it has the correct sign. */
5b5b04d6
JM
212 if (a1 == 0 && m2 == 0)
213 {
214 libc_feupdateenv (&env);
4896f049
RH
215 /* Ensure that round-to-nearest value of z + m1 is not reused. */
216 z = math_opt_barrier (z);
5b5b04d6
JM
217 return z + m1;
218 }
219
220 libc_fesetround (FE_TOWARDZERO);
0fe0f1f8 221
5e908464
JJ
222 /* Perform m2 + a2 addition with round to odd. */
223 u.d = a2 + m2;
5e908464 224
a1ffb40e 225 if (__glibc_unlikely (adjust < 0))
0fe0f1f8
RH
226 {
227 if ((u.ieee.mantissa1 & 1) == 0)
228 u.ieee.mantissa1 |= libc_fetestexcept (FE_INEXACT) != 0;
229 v.d = a1 + u.d;
efb73488
AJ
230 /* Ensure the addition is not scheduled after fetestexcept call. */
231 math_force_eval (v.d);
0fe0f1f8
RH
232 }
233
234 /* Reset rounding mode and test for inexact simultaneously. */
235 int j = libc_feupdateenv_test (&env, FE_INEXACT) != 0;
236
a1ffb40e 237 if (__glibc_likely (adjust == 0))
f3f7372d
JJ
238 {
239 if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff)
0fe0f1f8 240 u.ieee.mantissa1 |= j;
f3f7372d
JJ
241 /* Result is a1 + u.d. */
242 return a1 + u.d;
243 }
a1ffb40e 244 else if (__glibc_likely (adjust > 0))
f3f7372d
JJ
245 {
246 if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff)
0fe0f1f8 247 u.ieee.mantissa1 |= j;
f3f7372d
JJ
248 /* Result is a1 + u.d, scaled up. */
249 return (a1 + u.d) * 0x1p53;
250 }
251 else
252 {
f3f7372d
JJ
253 /* If a1 + u.d is exact, the only rounding happens during
254 scaling down. */
255 if (j == 0)
82477c28 256 return v.d * 0x1p-108;
f3f7372d
JJ
257 /* If result rounded to zero is not subnormal, no double
258 rounding will occur. */
82477c28
JM
259 if (v.ieee.exponent > 108)
260 return (a1 + u.d) * 0x1p-108;
261 /* If v.d * 0x1p-108 with round to zero is a subnormal above
262 or equal to DBL_MIN / 2, then v.d * 0x1p-108 shifts mantissa
f3f7372d
JJ
263 down just by 1 bit, which means v.ieee.mantissa1 |= j would
264 change the round bit, not sticky or guard bit.
82477c28 265 v.d * 0x1p-108 never normalizes by shifting up,
f3f7372d
JJ
266 so round bit plus sticky bit should be already enough
267 for proper rounding. */
82477c28 268 if (v.ieee.exponent == 108)
f3f7372d 269 {
ef82f4da
JM
270 /* If the exponent would be in the normal range when
271 rounding to normal precision with unbounded exponent
272 range, the exact result is known and spurious underflows
273 must be avoided on systems detecting tininess after
274 rounding. */
275 if (TININESS_AFTER_ROUNDING)
276 {
277 w.d = a1 + u.d;
82477c28
JM
278 if (w.ieee.exponent == 109)
279 return w.d * 0x1p-108;
ef82f4da 280 }
f3f7372d
JJ
281 /* v.ieee.mantissa1 & 2 is LSB bit of the result before rounding,
282 v.ieee.mantissa1 & 1 is the round bit and j is our sticky
8627a232
JM
283 bit. */
284 w.d = 0.0;
285 w.ieee.mantissa1 = ((v.ieee.mantissa1 & 3) << 1) | j;
286 w.ieee.negative = v.ieee.negative;
287 v.ieee.mantissa1 &= ~3U;
82477c28 288 v.d *= 0x1p-108;
8627a232
JM
289 w.d *= 0x1p-2;
290 return v.d + w.d;
f3f7372d
JJ
291 }
292 v.ieee.mantissa1 |= j;
82477c28 293 return v.d * 0x1p-108;
f3f7372d 294 }
5e908464
JJ
295}
296#ifndef __fma
7e16a5d1 297libm_alias_double (__fma, fma)
5e908464 298#endif