]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ieee754/ldbl-128/k_tanl.c
Prefer https to http for gnu.org and fsf.org URLs
[thirdparty/glibc.git] / sysdeps / ieee754 / ldbl-128 / k_tanl.c
CommitLineData
9b7ee67e
UD
1/*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4 *
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11
12/*
cc7375ce
RM
13 Long double expansions are
14 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
9c84384c 15 and are incorporated herein by permission of the author. The author
9cd2726c 16 reserves the right to distribute this material elsewhere under different
9c84384c 17 copying permissions. These modifications are distributed here under
9cd2726c 18 the following terms:
cc7375ce
RM
19
20 This library is free software; you can redistribute it and/or
21 modify it under the terms of the GNU Lesser General Public
22 License as published by the Free Software Foundation; either
23 version 2.1 of the License, or (at your option) any later version.
24
25 This library is distributed in the hope that it will be useful,
26 but WITHOUT ANY WARRANTY; without even the implied warranty of
27 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28 Lesser General Public License for more details.
29
30 You should have received a copy of the GNU Lesser General Public
59ba27a6 31 License along with this library; if not, see
5a82c748 32 <https://www.gnu.org/licenses/>. */
9b7ee67e
UD
33
34/* __kernel_tanl( x, y, k )
35 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
36 * Input x is assumed to be bounded by ~pi/4 in magnitude.
37 * Input y is the tail of x.
38 * Input k indicates whether tan (if k=1) or
39 * -1/tan (if k= -1) is returned.
40 *
41 * Algorithm
42 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
43 * 2. if x < 2^-57, return x with inexact if x!=0.
44 * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
45 * on [0,0.67433].
46 *
47 * Note: tan(x+y) = tan(x) + tan'(x)*y
48 * ~ tan(x) + (1+x*x)*y
49 * Therefore, for better accuracy in computing tan(x+y), let
50 * r = x^3 * R(x^2)
51 * then
52 * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
53 *
54 * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then
55 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
56 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
57 */
58
37550cb3 59#include <float.h>
1ed0291c
RH
60#include <math.h>
61#include <math_private.h>
8f5b00d3 62#include <math-underflow.h>
9090848d
ZW
63#include <libc-diag.h>
64
15089e04 65static const _Float128
02bbfb41
PM
66 one = 1,
67 pio4hi = L(7.8539816339744830961566084581987569936977E-1),
68 pio4lo = L(2.1679525325309452561992610065108379921906E-35),
9b7ee67e
UD
69
70 /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
71 0 <= x <= 0.6743316650390625
72 Peak relative error 8.0e-36 */
02bbfb41
PM
73 TH = L(3.333333333333333333333333333333333333333E-1),
74 T0 = L(-1.813014711743583437742363284336855889393E7),
75 T1 = L(1.320767960008972224312740075083259247618E6),
76 T2 = L(-2.626775478255838182468651821863299023956E4),
77 T3 = L(1.764573356488504935415411383687150199315E2),
78 T4 = L(-3.333267763822178690794678978979803526092E-1),
9b7ee67e 79
02bbfb41
PM
80 U0 = L(-1.359761033807687578306772463253710042010E8),
81 U1 = L(6.494370630656893175666729313065113194784E7),
82 U2 = L(-4.180787672237927475505536849168729386782E6),
83 U3 = L(8.031643765106170040139966622980914621521E4),
84 U4 = L(-5.323131271912475695157127875560667378597E2);
9b7ee67e
UD
85 /* 1.000000000000000000000000000000000000000E0 */
86
87
15089e04
PM
88_Float128
89__kernel_tanl (_Float128 x, _Float128 y, int iy)
9b7ee67e 90{
15089e04 91 _Float128 z, r, v, w, s;
9b7ee67e
UD
92 int32_t ix, sign;
93 ieee854_long_double_shape_type u, u1;
94
95 u.value = x;
96 ix = u.parts32.w0 & 0x7fffffff;
97 if (ix < 0x3fc60000) /* x < 2**-57 */
98 {
99 if ((int) x == 0)
100 { /* generate inexact */
101 if ((ix | u.parts32.w1 | u.parts32.w2 | u.parts32.w3
102 | (iy + 1)) == 0)
cad1d606 103 return one / fabsl (x);
37550cb3
JM
104 else if (iy == 1)
105 {
d96164c3 106 math_check_force_underflow (x);
37550cb3
JM
107 return x;
108 }
9b7ee67e 109 else
37550cb3 110 return -one / x;
9b7ee67e
UD
111 }
112 }
113 if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */
114 {
115 if ((u.parts32.w0 & 0x80000000) != 0)
116 {
117 x = -x;
118 y = -y;
119 sign = -1;
120 }
121 else
122 sign = 1;
123 z = pio4hi - x;
124 w = pio4lo - y;
125 x = z + w;
126 y = 0.0;
127 }
128 z = x * x;
129 r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
130 v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
131 r = r / v;
132
133 s = z * x;
134 r = y + z * (s * r + y);
135 r += TH * s;
136 w = x + r;
137 if (ix >= 0x3ffe5942)
138 {
15089e04 139 v = (_Float128) iy;
9b7ee67e 140 w = (v - 2.0 * (x - (w * w / (w + v) - r)));
0c3717e7
JM
141 /* SIGN is set for arguments that reach this code, but not
142 otherwise, resulting in warnings that it may be used
143 uninitialized although in the cases where it is used it has
144 always been set. */
145 DIAG_PUSH_NEEDS_COMMENT;
0c3717e7 146 DIAG_IGNORE_NEEDS_COMMENT (5, "-Wmaybe-uninitialized");
9b7ee67e
UD
147 if (sign < 0)
148 w = -w;
0c3717e7 149 DIAG_POP_NEEDS_COMMENT;
9b7ee67e
UD
150 return w;
151 }
152 if (iy == 1)
153 return w;
154 else
155 { /* if allow error up to 2 ulp,
156 simply return -1.0/(x+r) here */
157 /* compute -1.0/(x+r) accurately */
158 u1.value = w;
159 u1.parts32.w2 = 0;
160 u1.parts32.w3 = 0;
161 v = r - (u1.value - x); /* u1+v = r+x */
162 z = -1.0 / w;
163 u.value = z;
164 u.parts32.w2 = 0;
165 u.parts32.w3 = 0;
166 s = 1.0 + u.value * u1.value;
167 return u.value + z * (s + u.value * v);
168 }
169}