]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ieee754/ldbl-128/k_tanl.c
Narrowing the visibility of libc-internal.h even further.
[thirdparty/glibc.git] / sysdeps / ieee754 / ldbl-128 / k_tanl.c
CommitLineData
9b7ee67e
UD
1/*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4 *
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11
12/*
cc7375ce
RM
13 Long double expansions are
14 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
9c84384c 15 and are incorporated herein by permission of the author. The author
9cd2726c 16 reserves the right to distribute this material elsewhere under different
9c84384c 17 copying permissions. These modifications are distributed here under
9cd2726c 18 the following terms:
cc7375ce
RM
19
20 This library is free software; you can redistribute it and/or
21 modify it under the terms of the GNU Lesser General Public
22 License as published by the Free Software Foundation; either
23 version 2.1 of the License, or (at your option) any later version.
24
25 This library is distributed in the hope that it will be useful,
26 but WITHOUT ANY WARRANTY; without even the implied warranty of
27 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28 Lesser General Public License for more details.
29
30 You should have received a copy of the GNU Lesser General Public
59ba27a6
PE
31 License along with this library; if not, see
32 <http://www.gnu.org/licenses/>. */
9b7ee67e
UD
33
34/* __kernel_tanl( x, y, k )
35 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
36 * Input x is assumed to be bounded by ~pi/4 in magnitude.
37 * Input y is the tail of x.
38 * Input k indicates whether tan (if k=1) or
39 * -1/tan (if k= -1) is returned.
40 *
41 * Algorithm
42 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
43 * 2. if x < 2^-57, return x with inexact if x!=0.
44 * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
45 * on [0,0.67433].
46 *
47 * Note: tan(x+y) = tan(x) + tan'(x)*y
48 * ~ tan(x) + (1+x*x)*y
49 * Therefore, for better accuracy in computing tan(x+y), let
50 * r = x^3 * R(x^2)
51 * then
52 * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
53 *
54 * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then
55 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
56 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
57 */
58
37550cb3 59#include <float.h>
1ed0291c
RH
60#include <math.h>
61#include <math_private.h>
9090848d
ZW
62#include <libc-diag.h>
63
15089e04 64static const _Float128
02bbfb41
PM
65 one = 1,
66 pio4hi = L(7.8539816339744830961566084581987569936977E-1),
67 pio4lo = L(2.1679525325309452561992610065108379921906E-35),
9b7ee67e
UD
68
69 /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
70 0 <= x <= 0.6743316650390625
71 Peak relative error 8.0e-36 */
02bbfb41
PM
72 TH = L(3.333333333333333333333333333333333333333E-1),
73 T0 = L(-1.813014711743583437742363284336855889393E7),
74 T1 = L(1.320767960008972224312740075083259247618E6),
75 T2 = L(-2.626775478255838182468651821863299023956E4),
76 T3 = L(1.764573356488504935415411383687150199315E2),
77 T4 = L(-3.333267763822178690794678978979803526092E-1),
9b7ee67e 78
02bbfb41
PM
79 U0 = L(-1.359761033807687578306772463253710042010E8),
80 U1 = L(6.494370630656893175666729313065113194784E7),
81 U2 = L(-4.180787672237927475505536849168729386782E6),
82 U3 = L(8.031643765106170040139966622980914621521E4),
83 U4 = L(-5.323131271912475695157127875560667378597E2);
9b7ee67e
UD
84 /* 1.000000000000000000000000000000000000000E0 */
85
86
15089e04
PM
87_Float128
88__kernel_tanl (_Float128 x, _Float128 y, int iy)
9b7ee67e 89{
15089e04 90 _Float128 z, r, v, w, s;
9b7ee67e
UD
91 int32_t ix, sign;
92 ieee854_long_double_shape_type u, u1;
93
94 u.value = x;
95 ix = u.parts32.w0 & 0x7fffffff;
96 if (ix < 0x3fc60000) /* x < 2**-57 */
97 {
98 if ((int) x == 0)
99 { /* generate inexact */
100 if ((ix | u.parts32.w1 | u.parts32.w2 | u.parts32.w3
101 | (iy + 1)) == 0)
cad1d606 102 return one / fabsl (x);
37550cb3
JM
103 else if (iy == 1)
104 {
d96164c3 105 math_check_force_underflow (x);
37550cb3
JM
106 return x;
107 }
9b7ee67e 108 else
37550cb3 109 return -one / x;
9b7ee67e
UD
110 }
111 }
112 if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */
113 {
114 if ((u.parts32.w0 & 0x80000000) != 0)
115 {
116 x = -x;
117 y = -y;
118 sign = -1;
119 }
120 else
121 sign = 1;
122 z = pio4hi - x;
123 w = pio4lo - y;
124 x = z + w;
125 y = 0.0;
126 }
127 z = x * x;
128 r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
129 v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
130 r = r / v;
131
132 s = z * x;
133 r = y + z * (s * r + y);
134 r += TH * s;
135 w = x + r;
136 if (ix >= 0x3ffe5942)
137 {
15089e04 138 v = (_Float128) iy;
9b7ee67e 139 w = (v - 2.0 * (x - (w * w / (w + v) - r)));
0c3717e7
JM
140 /* SIGN is set for arguments that reach this code, but not
141 otherwise, resulting in warnings that it may be used
142 uninitialized although in the cases where it is used it has
143 always been set. */
144 DIAG_PUSH_NEEDS_COMMENT;
0c3717e7 145 DIAG_IGNORE_NEEDS_COMMENT (5, "-Wmaybe-uninitialized");
9b7ee67e
UD
146 if (sign < 0)
147 w = -w;
0c3717e7 148 DIAG_POP_NEEDS_COMMENT;
9b7ee67e
UD
149 return w;
150 }
151 if (iy == 1)
152 return w;
153 else
154 { /* if allow error up to 2 ulp,
155 simply return -1.0/(x+r) here */
156 /* compute -1.0/(x+r) accurately */
157 u1.value = w;
158 u1.parts32.w2 = 0;
159 u1.parts32.w3 = 0;
160 v = r - (u1.value - x); /* u1+v = r+x */
161 z = -1.0 / w;
162 u.value = z;
163 u.parts32.w2 = 0;
164 u.parts32.w3 = 0;
165 s = 1.0 + u.value * u1.value;
166 return u.value + z * (s + u.value * v);
167 }
168}