]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/x86_64/fpu/multiarch/svml_d_exp8_core_avx512.S
Update copyright dates with scripts/update-copyrights.
[thirdparty/glibc.git] / sysdeps / x86_64 / fpu / multiarch / svml_d_exp8_core_avx512.S
CommitLineData
9c02f663 1/* Function exp vectorized with AVX-512. KNL and SKX versions.
04277e02 2 Copyright (C) 2014-2019 Free Software Foundation, Inc.
9c02f663
AS
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
18
19#include <sysdep.h>
20#include "svml_d_exp_data.h"
21#include "svml_d_wrapper_impl.h"
22
23 .text
24ENTRY (_ZGVeN8v_exp_knl)
f43cb35c 25#ifndef HAVE_AVX512DQ_ASM_SUPPORT
9c02f663
AS
26WRAPPER_IMPL_AVX512 _ZGVdN4v_exp
27#else
28/*
29 ALGORITHM DESCRIPTION:
30
31 Argument representation:
32 N = rint(X*2^k/ln2) = 2^k*M+j
33 X = N*ln2/2^k + r = M*ln2 + ln2*(j/2^k) + r
34 then -ln2/2^(k+1) < r < ln2/2^(k+1)
35 Alternatively:
36 N = trunc(X*2^k/ln2)
37 then 0 < r < ln2/2^k
38
39 Result calculation:
40 exp(X) = exp(M*ln2 + ln2*(j/2^k) + r)
41 = 2^M * 2^(j/2^k) * exp(r)
42 2^M is calculated by bit manipulation
43 2^(j/2^k) is stored in table
44 exp(r) is approximated by polynomial
45
46 The table lookup is skipped if k = 0. */
47
48 pushq %rbp
49 cfi_adjust_cfa_offset (8)
50 cfi_rel_offset (%rbp, 0)
51 movq %rsp, %rbp
52 cfi_def_cfa_register (%rbp)
53 andq $-64, %rsp
54 subq $1280, %rsp
55 movq __svml_dexp_data@GOTPCREL(%rip), %rax
56
57/* dR = X - dN*dbLn2hi, dbLn2hi is 52-8-k hi bits of ln2/2^k */
58 vmovaps %zmm0, %zmm8
59
60/* iAbsX = (int)(lX>>32), lX = *(longlong*)&X */
61 vpsrlq $32, %zmm0, %zmm1
62
63/* iAbsX = iAbsX&iAbsMask */
64 movl $255, %edx
65 vpmovqd %zmm1, %ymm2
66 kmovw %edx, %k2
67
68/* iRangeMask = (iAbsX>iDomainRange) */
69 movl $-1, %ecx
70
71/* table lookup for dT[j] = 2^(j/2^k) */
72 vpxord %zmm11, %zmm11, %zmm11
73 vmovups __dbInvLn2(%rax), %zmm5
74 vmovups __dbLn2hi(%rax), %zmm7
75 kxnorw %k3, %k3, %k3
76
77/* dM = X*dbInvLn2+dbShifter, dbInvLn2 = 2^k/Ln2 */
78 vfmadd213pd __dbShifter(%rax), %zmm0, %zmm5
79 vmovups __dPC2(%rax), %zmm12
80
81/* dN = dM-dbShifter, dN = rint(X*2^k/Ln2) */
82 vsubpd __dbShifter(%rax), %zmm5, %zmm9
83 vmovups __lIndexMask(%rax), %zmm4
84 vfnmadd231pd %zmm9, %zmm7, %zmm8
85 vpandd __iAbsMask(%rax), %zmm2, %zmm2{%k2}
86
87/* lIndex = (*(longlong*)&dM)&lIndexMask, lIndex is the lower K bits of lM */
88 vpandq %zmm4, %zmm5, %zmm10
89 vgatherqpd (%rax,%zmm10,8), %zmm11{%k3}
90 vpcmpgtd __iDomainRange(%rax), %zmm2, %k1{%k2}
91
92/* lM = (*(longlong*)&dM)&(~lIndexMask) */
93 vpandnq %zmm5, %zmm4, %zmm6
94 vpbroadcastd %ecx, %zmm3{%k1}{z}
95
96/* lM = lM<<(52-K), 2^M */
97 vpsllq $42, %zmm6, %zmm14
98
99/* dR = dR - dN*dbLn2lo, dbLn2lo is 40..94 bits of lo part of ln2/2^k */
100 vfnmadd132pd __dbLn2lo(%rax), %zmm8, %zmm9
101
102/* Mask = iRangeMask?1:0, set mask for overflow/underflow */
103 vptestmd %zmm3, %zmm3, %k0{%k2}
104
105/* exp(r) = b0+r*(b0+r*(b1+r*b2)) */
106 vfmadd213pd __dPC1(%rax), %zmm9, %zmm12
107 kmovw %k0, %ecx
108 movzbl %cl, %ecx
109 vfmadd213pd __dPC0(%rax), %zmm9, %zmm12
110 vfmadd213pd __dPC0(%rax), %zmm9, %zmm12
111
112/* 2^(j/2^k) * exp(r) */
113 vmulpd %zmm12, %zmm11, %zmm13
114
115/* multiply by 2^M through integer add */
116 vpaddq %zmm14, %zmm13, %zmm1
117 testl %ecx, %ecx
118 jne .LBL_1_3
119
120.LBL_1_2:
121 cfi_remember_state
122 vmovaps %zmm1, %zmm0
123 movq %rbp, %rsp
124 cfi_def_cfa_register (%rsp)
125 popq %rbp
126 cfi_adjust_cfa_offset (-8)
127 cfi_restore (%rbp)
128 ret
129
130.LBL_1_3:
131 cfi_restore_state
132 vmovups %zmm0, 1152(%rsp)
133 vmovups %zmm1, 1216(%rsp)
134 je .LBL_1_2
135
136 xorb %dl, %dl
137 kmovw %k4, 1048(%rsp)
138 xorl %eax, %eax
139 kmovw %k5, 1040(%rsp)
140 kmovw %k6, 1032(%rsp)
141 kmovw %k7, 1024(%rsp)
142 vmovups %zmm16, 960(%rsp)
143 vmovups %zmm17, 896(%rsp)
144 vmovups %zmm18, 832(%rsp)
145 vmovups %zmm19, 768(%rsp)
146 vmovups %zmm20, 704(%rsp)
147 vmovups %zmm21, 640(%rsp)
148 vmovups %zmm22, 576(%rsp)
149 vmovups %zmm23, 512(%rsp)
150 vmovups %zmm24, 448(%rsp)
151 vmovups %zmm25, 384(%rsp)
152 vmovups %zmm26, 320(%rsp)
153 vmovups %zmm27, 256(%rsp)
154 vmovups %zmm28, 192(%rsp)
155 vmovups %zmm29, 128(%rsp)
156 vmovups %zmm30, 64(%rsp)
157 vmovups %zmm31, (%rsp)
158 movq %rsi, 1064(%rsp)
159 movq %rdi, 1056(%rsp)
160 movq %r12, 1096(%rsp)
161 cfi_offset_rel_rsp (12, 1096)
162 movb %dl, %r12b
163 movq %r13, 1088(%rsp)
164 cfi_offset_rel_rsp (13, 1088)
165 movl %ecx, %r13d
166 movq %r14, 1080(%rsp)
167 cfi_offset_rel_rsp (14, 1080)
168 movl %eax, %r14d
169 movq %r15, 1072(%rsp)
170 cfi_offset_rel_rsp (15, 1072)
171 cfi_remember_state
172
173.LBL_1_6:
174 btl %r14d, %r13d
175 jc .LBL_1_12
176
177.LBL_1_7:
178 lea 1(%r14), %esi
179 btl %esi, %r13d
180 jc .LBL_1_10
181
182.LBL_1_8:
183 addb $1, %r12b
184 addl $2, %r14d
185 cmpb $16, %r12b
186 jb .LBL_1_6
187
188 kmovw 1048(%rsp), %k4
189 movq 1064(%rsp), %rsi
190 kmovw 1040(%rsp), %k5
191 movq 1056(%rsp), %rdi
192 kmovw 1032(%rsp), %k6
193 movq 1096(%rsp), %r12
194 cfi_restore (%r12)
195 movq 1088(%rsp), %r13
196 cfi_restore (%r13)
197 kmovw 1024(%rsp), %k7
198 vmovups 960(%rsp), %zmm16
199 vmovups 896(%rsp), %zmm17
200 vmovups 832(%rsp), %zmm18
201 vmovups 768(%rsp), %zmm19
202 vmovups 704(%rsp), %zmm20
203 vmovups 640(%rsp), %zmm21
204 vmovups 576(%rsp), %zmm22
205 vmovups 512(%rsp), %zmm23
206 vmovups 448(%rsp), %zmm24
207 vmovups 384(%rsp), %zmm25
208 vmovups 320(%rsp), %zmm26
209 vmovups 256(%rsp), %zmm27
210 vmovups 192(%rsp), %zmm28
211 vmovups 128(%rsp), %zmm29
212 vmovups 64(%rsp), %zmm30
213 vmovups (%rsp), %zmm31
214 movq 1080(%rsp), %r14
215 cfi_restore (%r14)
216 movq 1072(%rsp), %r15
217 cfi_restore (%r15)
218 vmovups 1216(%rsp), %zmm1
219 jmp .LBL_1_2
220
221.LBL_1_10:
222 cfi_restore_state
223 movzbl %r12b, %r15d
224 shlq $4, %r15
225 vmovsd 1160(%rsp,%r15), %xmm0
533f9beb 226 call JUMPTARGET(__exp_finite)
9c02f663
AS
227 vmovsd %xmm0, 1224(%rsp,%r15)
228 jmp .LBL_1_8
229
230.LBL_1_12:
231 movzbl %r12b, %r15d
232 shlq $4, %r15
233 vmovsd 1152(%rsp,%r15), %xmm0
533f9beb 234 call JUMPTARGET(__exp_finite)
9c02f663
AS
235 vmovsd %xmm0, 1216(%rsp,%r15)
236 jmp .LBL_1_7
237#endif
238END (_ZGVeN8v_exp_knl)
239
240ENTRY (_ZGVeN8v_exp_skx)
f43cb35c 241#ifndef HAVE_AVX512DQ_ASM_SUPPORT
9c02f663
AS
242WRAPPER_IMPL_AVX512 _ZGVdN4v_exp
243#else
244/*
245 ALGORITHM DESCRIPTION:
246
247 Argument representation:
248 N = rint(X*2^k/ln2) = 2^k*M+j
249 X = N*ln2/2^k + r = M*ln2 + ln2*(j/2^k) + r
250 then -ln2/2^(k+1) < r < ln2/2^(k+1)
251 Alternatively:
252 N = trunc(X*2^k/ln2)
253 then 0 < r < ln2/2^k
254
255 Result calculation:
256 exp(X) = exp(M*ln2 + ln2*(j/2^k) + r)
257 = 2^M * 2^(j/2^k) * exp(r)
258 2^M is calculated by bit manipulation
259 2^(j/2^k) is stored in table
260 exp(r) is approximated by polynomial
261
262 The table lookup is skipped if k = 0. */
263
264 pushq %rbp
265 cfi_adjust_cfa_offset (8)
266 cfi_rel_offset (%rbp, 0)
267 movq %rsp, %rbp
268 cfi_def_cfa_register (%rbp)
269 andq $-64, %rsp
270 subq $1280, %rsp
271 movq __svml_dexp_data@GOTPCREL(%rip), %rax
272
273/* table lookup for dT[j] = 2^(j/2^k) */
274 kxnorw %k1, %k1, %k1
275
276/* iAbsX = (int)(lX>>32), lX = *(longlong*)&X */
277 vpsrlq $32, %zmm0, %zmm1
278 vmovups __dbInvLn2(%rax), %zmm7
279 vmovups __dbShifter(%rax), %zmm5
280 vmovups __lIndexMask(%rax), %zmm6
281 vmovups __dbLn2hi(%rax), %zmm9
282 vmovups __dPC0(%rax), %zmm12
283
284/* dM = X*dbInvLn2+dbShifter, dbInvLn2 = 2^k/Ln2 */
285 vfmadd213pd %zmm5, %zmm0, %zmm7
286 vpmovqd %zmm1, %ymm2
287
288/* dN = dM-dbShifter, dN = rint(X*2^k/Ln2) */
289 vsubpd %zmm5, %zmm7, %zmm11
290
291/* iAbsX = iAbsX&iAbsMask */
292 vpand __iAbsMask(%rax), %ymm2, %ymm3
293
294/* dR = X - dN*dbLn2hi, dbLn2hi is 52-8-k hi bits of ln2/2^k */
295 vmovaps %zmm0, %zmm10
296 vfnmadd231pd %zmm11, %zmm9, %zmm10
297 vmovups __dPC2(%rax), %zmm9
298
299/* dR = dR - dN*dbLn2lo, dbLn2lo is 40..94 bits of lo part of ln2/2^k */
300 vfnmadd132pd __dbLn2lo(%rax), %zmm10, %zmm11
301
302/* exp(r) = b0+r*(b0+r*(b1+r*b2)) */
303 vfmadd213pd __dPC1(%rax), %zmm11, %zmm9
304 vfmadd213pd %zmm12, %zmm11, %zmm9
305 vfmadd213pd %zmm12, %zmm11, %zmm9
306
307/* iRangeMask = (iAbsX>iDomainRange) */
308 vpcmpgtd __iDomainRange(%rax), %ymm3, %ymm4
309
310/* Mask = iRangeMask?1:0, set mask for overflow/underflow */
311 vmovmskps %ymm4, %ecx
312
313/* lIndex = (*(longlong*)&dM)&lIndexMask, lIndex is the lower K bits of lM */
314 vpandq %zmm6, %zmm7, %zmm13
315 vpmovqd %zmm13, %ymm14
316 vpxord %zmm15, %zmm15, %zmm15
317 vgatherdpd (%rax,%ymm14,8), %zmm15{%k1}
318
319/* 2^(j/2^k) * exp(r) */
320 vmulpd %zmm9, %zmm15, %zmm10
321
322/* lM = (*(longlong*)&dM)&(~lIndexMask) */
323 vpandnq %zmm7, %zmm6, %zmm8
324
325/* lM = lM<<(52-K), 2^M */
326 vpsllq $42, %zmm8, %zmm1
327
328/* multiply by 2^M through integer add */
329 vpaddq %zmm1, %zmm10, %zmm1
330 testl %ecx, %ecx
331 jne .LBL_2_3
332
333.LBL_2_2:
334 cfi_remember_state
335 vmovaps %zmm1, %zmm0
336 movq %rbp, %rsp
337 cfi_def_cfa_register (%rsp)
338 popq %rbp
339 cfi_adjust_cfa_offset (-8)
340 cfi_restore (%rbp)
341 ret
342
343.LBL_2_3:
344 cfi_restore_state
345 vmovups %zmm0, 1152(%rsp)
346 vmovups %zmm1, 1216(%rsp)
347 je .LBL_2_2
348
349 xorb %dl, %dl
350 xorl %eax, %eax
351 kmovw %k4, 1048(%rsp)
352 kmovw %k5, 1040(%rsp)
353 kmovw %k6, 1032(%rsp)
354 kmovw %k7, 1024(%rsp)
355 vmovups %zmm16, 960(%rsp)
356 vmovups %zmm17, 896(%rsp)
357 vmovups %zmm18, 832(%rsp)
358 vmovups %zmm19, 768(%rsp)
359 vmovups %zmm20, 704(%rsp)
360 vmovups %zmm21, 640(%rsp)
361 vmovups %zmm22, 576(%rsp)
362 vmovups %zmm23, 512(%rsp)
363 vmovups %zmm24, 448(%rsp)
364 vmovups %zmm25, 384(%rsp)
365 vmovups %zmm26, 320(%rsp)
366 vmovups %zmm27, 256(%rsp)
367 vmovups %zmm28, 192(%rsp)
368 vmovups %zmm29, 128(%rsp)
369 vmovups %zmm30, 64(%rsp)
370 vmovups %zmm31, (%rsp)
371 movq %rsi, 1064(%rsp)
372 movq %rdi, 1056(%rsp)
373 movq %r12, 1096(%rsp)
374 cfi_offset_rel_rsp (12, 1096)
375 movb %dl, %r12b
376 movq %r13, 1088(%rsp)
377 cfi_offset_rel_rsp (13, 1088)
378 movl %ecx, %r13d
379 movq %r14, 1080(%rsp)
380 cfi_offset_rel_rsp (14, 1080)
381 movl %eax, %r14d
382 movq %r15, 1072(%rsp)
383 cfi_offset_rel_rsp (15, 1072)
384 cfi_remember_state
385
386.LBL_2_6:
387 btl %r14d, %r13d
388 jc .LBL_2_12
389
390.LBL_2_7:
391 lea 1(%r14), %esi
392 btl %esi, %r13d
393 jc .LBL_2_10
394
395.LBL_2_8:
396 incb %r12b
397 addl $2, %r14d
398 cmpb $16, %r12b
399 jb .LBL_2_6
400
401 kmovw 1048(%rsp), %k4
402 kmovw 1040(%rsp), %k5
403 kmovw 1032(%rsp), %k6
404 kmovw 1024(%rsp), %k7
405 vmovups 960(%rsp), %zmm16
406 vmovups 896(%rsp), %zmm17
407 vmovups 832(%rsp), %zmm18
408 vmovups 768(%rsp), %zmm19
409 vmovups 704(%rsp), %zmm20
410 vmovups 640(%rsp), %zmm21
411 vmovups 576(%rsp), %zmm22
412 vmovups 512(%rsp), %zmm23
413 vmovups 448(%rsp), %zmm24
414 vmovups 384(%rsp), %zmm25
415 vmovups 320(%rsp), %zmm26
416 vmovups 256(%rsp), %zmm27
417 vmovups 192(%rsp), %zmm28
418 vmovups 128(%rsp), %zmm29
419 vmovups 64(%rsp), %zmm30
420 vmovups (%rsp), %zmm31
421 vmovups 1216(%rsp), %zmm1
422 movq 1064(%rsp), %rsi
423 movq 1056(%rsp), %rdi
424 movq 1096(%rsp), %r12
425 cfi_restore (%r12)
426 movq 1088(%rsp), %r13
427 cfi_restore (%r13)
428 movq 1080(%rsp), %r14
429 cfi_restore (%r14)
430 movq 1072(%rsp), %r15
431 cfi_restore (%r15)
432 jmp .LBL_2_2
433
434.LBL_2_10:
435 cfi_restore_state
436 movzbl %r12b, %r15d
437 shlq $4, %r15
438 vmovsd 1160(%rsp,%r15), %xmm0
439 vzeroupper
440 vmovsd 1160(%rsp,%r15), %xmm0
533f9beb 441 call JUMPTARGET(__exp_finite)
9c02f663
AS
442 vmovsd %xmm0, 1224(%rsp,%r15)
443 jmp .LBL_2_8
444
445.LBL_2_12:
446 movzbl %r12b, %r15d
447 shlq $4, %r15
448 vmovsd 1152(%rsp,%r15), %xmm0
449 vzeroupper
450 vmovsd 1152(%rsp,%r15), %xmm0
533f9beb 451 call JUMPTARGET(__exp_finite)
9c02f663
AS
452 vmovsd %xmm0, 1216(%rsp,%r15)
453 jmp .LBL_2_7
454
455#endif
456END (_ZGVeN8v_exp_skx)