]> git.ipfire.org Git - thirdparty/glibc.git/blob - math/test-tgmath.c
f8f1e5b56ee3e3f6b2010f769b13d8bfb1ba39f5
[thirdparty/glibc.git] / math / test-tgmath.c
1 /* Test compilation of tgmath macros.
2 Copyright (C) 2001-2019 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Jakub Jelinek <jakub@redhat.com> and
5 Ulrich Drepper <drepper@redhat.com>, 2001.
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef HAVE_MAIN
22 #undef __NO_MATH_INLINES
23 #define __NO_MATH_INLINES 1
24 #include <float.h>
25 #include <math.h>
26 #include <stdint.h>
27 #include <stdio.h>
28 #include <tgmath.h>
29
30 //#define DEBUG
31
32 static void compile_test (void);
33 static void compile_testf (void);
34 #if LDBL_MANT_DIG > DBL_MANT_DIG
35 static void compile_testl (void);
36 #endif
37
38 float fx;
39 double dx;
40 long double lx;
41 const float fy = 1.25;
42 const double dy = 1.25;
43 const long double ly = 1.25;
44 complex float fz;
45 complex double dz;
46 complex long double lz;
47
48 volatile int count_double;
49 volatile int count_float;
50 volatile int count_ldouble;
51 volatile int count_cdouble;
52 volatile int count_cfloat;
53 volatile int count_cldouble;
54
55 #define NCALLS 132
56 #define NCALLS_INT 4
57 #define NCCALLS 47
58
59 static int
60 do_test (void)
61 {
62 int result = 0;
63
64 count_float = count_double = count_ldouble = 0;
65 count_cfloat = count_cdouble = count_cldouble = 0;
66 compile_test ();
67 if (count_float != 0 || count_cfloat != 0)
68 {
69 puts ("float function called for double test");
70 result = 1;
71 }
72 if (count_ldouble != 0 || count_cldouble != 0)
73 {
74 puts ("long double function called for double test");
75 result = 1;
76 }
77 if (count_double < NCALLS + NCALLS_INT)
78 {
79 printf ("double functions not called often enough (%d)\n",
80 count_double);
81 result = 1;
82 }
83 else if (count_double > NCALLS + NCALLS_INT)
84 {
85 printf ("double functions called too often (%d)\n",
86 count_double);
87 result = 1;
88 }
89 if (count_cdouble < NCCALLS)
90 {
91 printf ("double complex functions not called often enough (%d)\n",
92 count_cdouble);
93 result = 1;
94 }
95 else if (count_cdouble > NCCALLS)
96 {
97 printf ("double complex functions called too often (%d)\n",
98 count_cdouble);
99 result = 1;
100 }
101
102 count_float = count_double = count_ldouble = 0;
103 count_cfloat = count_cdouble = count_cldouble = 0;
104 compile_testf ();
105 if (count_double != 0 || count_cdouble != 0)
106 {
107 puts ("double function called for float test");
108 result = 1;
109 }
110 if (count_ldouble != 0 || count_cldouble != 0)
111 {
112 puts ("long double function called for float test");
113 result = 1;
114 }
115 if (count_float < NCALLS)
116 {
117 printf ("float functions not called often enough (%d)\n", count_float);
118 result = 1;
119 }
120 else if (count_float > NCALLS)
121 {
122 printf ("float functions called too often (%d)\n",
123 count_double);
124 result = 1;
125 }
126 if (count_cfloat < NCCALLS)
127 {
128 printf ("float complex functions not called often enough (%d)\n",
129 count_cfloat);
130 result = 1;
131 }
132 else if (count_cfloat > NCCALLS)
133 {
134 printf ("float complex functions called too often (%d)\n",
135 count_cfloat);
136 result = 1;
137 }
138
139 #if LDBL_MANT_DIG > DBL_MANT_DIG
140 count_float = count_double = count_ldouble = 0;
141 count_cfloat = count_cdouble = count_cldouble = 0;
142 compile_testl ();
143 if (count_float != 0 || count_cfloat != 0)
144 {
145 puts ("float function called for long double test");
146 result = 1;
147 }
148 if (count_double != 0 || count_cdouble != 0)
149 {
150 puts ("double function called for long double test");
151 result = 1;
152 }
153 if (count_ldouble < NCALLS)
154 {
155 printf ("long double functions not called often enough (%d)\n",
156 count_ldouble);
157 result = 1;
158 }
159 else if (count_ldouble > NCALLS)
160 {
161 printf ("long double functions called too often (%d)\n",
162 count_double);
163 result = 1;
164 }
165 if (count_cldouble < NCCALLS)
166 {
167 printf ("long double complex functions not called often enough (%d)\n",
168 count_cldouble);
169 result = 1;
170 }
171 else if (count_cldouble > NCCALLS)
172 {
173 printf ("long double complex functions called too often (%d)\n",
174 count_cldouble);
175 result = 1;
176 }
177 #endif
178
179 return result;
180 }
181
182 /* Now generate the three functions. */
183 #define HAVE_MAIN
184
185 #define F(name) name
186 #define TYPE double
187 #define TEST_INT 1
188 #define x dx
189 #define y dy
190 #define z dz
191 #define count count_double
192 #define ccount count_cdouble
193 #include "test-tgmath.c"
194
195 #define F(name) name##f
196 #define TYPE float
197 #define x fx
198 #define y fy
199 #define z fz
200 #define count count_float
201 #define ccount count_cfloat
202 #include "test-tgmath.c"
203
204 #if LDBL_MANT_DIG > DBL_MANT_DIG
205 #define F(name) name##l
206 #define TYPE long double
207 #define x lx
208 #define y ly
209 #define z lz
210 #define count count_ldouble
211 #define ccount count_cldouble
212 #include "test-tgmath.c"
213 #endif
214
215 #define TEST_FUNCTION do_test ()
216 #include "../test-skeleton.c"
217
218 #else
219
220 #ifdef DEBUG
221 #define P() puts (__FUNCTION__)
222 #else
223 #define P()
224 #endif
225
226 static void
227 F(compile_test) (void)
228 {
229 TYPE a, b, c = 1.0;
230 complex TYPE d;
231 int i = 2;
232 int saved_count;
233 long int j;
234 long long int k;
235 intmax_t m;
236 uintmax_t um;
237
238 a = cos (cos (x));
239 b = acos (acos (a));
240 a = sin (sin (x));
241 b = asin (asin (a));
242 a = tan (tan (x));
243 b = atan (atan (a));
244 c = atan2 (atan2 (a, c), atan2 (b, x));
245 a = cosh (cosh (x));
246 b = acosh (acosh (a));
247 a = sinh (sinh (x));
248 b = asinh (asinh (a));
249 a = tanh (tanh (x));
250 b = atanh (atanh (a));
251 a = exp (exp (x));
252 b = log (log (a));
253 a = log10 (log10 (x));
254 b = ldexp (ldexp (a, 1), 5);
255 a = frexp (frexp (x, &i), &i);
256 b = expm1 (expm1 (a));
257 a = log1p (log1p (x));
258 b = logb (logb (a));
259 a = exp2 (exp2 (x));
260 b = log2 (log2 (a));
261 a = pow (pow (x, a), pow (c, b));
262 b = sqrt (sqrt (a));
263 a = hypot (hypot (x, b), hypot (c, a));
264 b = cbrt (cbrt (a));
265 a = ceil (ceil (x));
266 b = fabs (fabs (a));
267 a = floor (floor (x));
268 b = fmod (fmod (a, b), fmod (c, x));
269 a = nearbyint (nearbyint (x));
270 b = round (round (a));
271 c = roundeven (roundeven (a));
272 a = trunc (trunc (x));
273 b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i);
274 j = lrint (x) + lround (a);
275 k = llrint (b) + llround (c);
276 m = fromfp (a, FP_INT_UPWARD, 2) + fromfpx (b, FP_INT_DOWNWARD, 3);
277 um = ufromfp (c, FP_INT_TONEAREST, 4) + ufromfpx (a, FP_INT_TOWARDZERO, 5);
278 a = erf (erf (x));
279 b = erfc (erfc (a));
280 a = tgamma (tgamma (x));
281 b = lgamma (lgamma (a));
282 a = rint (rint (x));
283 b = nextafter (nextafter (a, b), nextafter (c, x));
284 a = nextdown (nextdown (a));
285 b = nexttoward (nexttoward (x, a), c);
286 a = nextup (nextup (a));
287 b = remainder (remainder (a, b), remainder (c, x));
288 a = scalb (scalb (x, a), (TYPE) (6));
289 k = scalbn (a, 7) + scalbln (c, 10l);
290 i = ilogb (x);
291 j = llogb (x);
292 a = fdim (fdim (x, a), fdim (c, b));
293 b = fmax (fmax (a, x), fmax (c, b));
294 a = fmin (fmin (x, a), fmin (c, b));
295 b = fmaxmag (fmaxmag (a, x), fmaxmag (c, b));
296 a = fminmag (fminmag (x, a), fminmag (c, b));
297 b = fma (sin (a), sin (x), sin (c));
298
299 #ifdef TEST_INT
300 a = atan2 (i, b);
301 b = remquo (i, a, &i);
302 c = fma (i, b, i);
303 a = pow (i, c);
304 #endif
305 x = a + b + c + i + j + k + m + um;
306
307 saved_count = count;
308 if (ccount != 0)
309 ccount = -10000;
310
311 d = cos (cos (z));
312 z = acos (acos (d));
313 d = sin (sin (z));
314 z = asin (asin (d));
315 d = tan (tan (z));
316 z = atan (atan (d));
317 d = cosh (cosh (z));
318 z = acosh (acosh (d));
319 d = sinh (sinh (z));
320 z = asinh (asinh (d));
321 d = tanh (tanh (z));
322 z = atanh (atanh (d));
323 d = exp (exp (z));
324 z = log (log (d));
325 d = sqrt (sqrt (z));
326 z = conj (conj (d));
327 d = fabs (conj (a));
328 z = pow (pow (a, d), pow (b, z));
329 d = cproj (cproj (z));
330 z += fabs (cproj (a));
331 a = carg (carg (z));
332 b = creal (creal (d));
333 c = cimag (cimag (z));
334 x += a + b + c + i + j + k;
335 z += d;
336
337 if (saved_count != count)
338 count = -10000;
339
340 if (0)
341 {
342 a = cos (y);
343 a = acos (y);
344 a = sin (y);
345 a = asin (y);
346 a = tan (y);
347 a = atan (y);
348 a = atan2 (y, y);
349 a = cosh (y);
350 a = acosh (y);
351 a = sinh (y);
352 a = asinh (y);
353 a = tanh (y);
354 a = atanh (y);
355 a = exp (y);
356 a = log (y);
357 a = log10 (y);
358 a = ldexp (y, 5);
359 a = frexp (y, &i);
360 a = expm1 (y);
361 a = log1p (y);
362 a = logb (y);
363 a = exp2 (y);
364 a = log2 (y);
365 a = pow (y, y);
366 a = sqrt (y);
367 a = hypot (y, y);
368 a = cbrt (y);
369 a = ceil (y);
370 a = fabs (y);
371 a = floor (y);
372 a = fmod (y, y);
373 a = nearbyint (y);
374 a = round (y);
375 a = roundeven (y);
376 a = trunc (y);
377 a = remquo (y, y, &i);
378 j = lrint (y) + lround (y);
379 k = llrint (y) + llround (y);
380 m = fromfp (y, FP_INT_UPWARD, 6) + fromfpx (y, FP_INT_DOWNWARD, 7);
381 um = (ufromfp (y, FP_INT_TONEAREST, 8)
382 + ufromfpx (y, FP_INT_TOWARDZERO, 9));
383 a = erf (y);
384 a = erfc (y);
385 a = tgamma (y);
386 a = lgamma (y);
387 a = rint (y);
388 a = nextafter (y, y);
389 a = nexttoward (y, y);
390 a = remainder (y, y);
391 a = scalb (y, (const TYPE) (6));
392 k = scalbn (y, 7) + scalbln (y, 10l);
393 i = ilogb (y);
394 j = llogb (y);
395 a = fdim (y, y);
396 a = fmax (y, y);
397 a = fmin (y, y);
398 a = fmaxmag (y, y);
399 a = fminmag (y, y);
400 a = fma (y, y, y);
401
402 #ifdef TEST_INT
403 a = atan2 (i, y);
404 a = remquo (i, y, &i);
405 a = fma (i, y, i);
406 a = pow (i, y);
407 #endif
408
409 d = cos ((const complex TYPE) z);
410 d = acos ((const complex TYPE) z);
411 d = sin ((const complex TYPE) z);
412 d = asin ((const complex TYPE) z);
413 d = tan ((const complex TYPE) z);
414 d = atan ((const complex TYPE) z);
415 d = cosh ((const complex TYPE) z);
416 d = acosh ((const complex TYPE) z);
417 d = sinh ((const complex TYPE) z);
418 d = asinh ((const complex TYPE) z);
419 d = tanh ((const complex TYPE) z);
420 d = atanh ((const complex TYPE) z);
421 d = exp ((const complex TYPE) z);
422 d = log ((const complex TYPE) z);
423 d = sqrt ((const complex TYPE) z);
424 d = pow ((const complex TYPE) z, (const complex TYPE) z);
425 d = fabs ((const complex TYPE) z);
426 d = carg ((const complex TYPE) z);
427 d = creal ((const complex TYPE) z);
428 d = cimag ((const complex TYPE) z);
429 d = conj ((const complex TYPE) z);
430 d = cproj ((const complex TYPE) z);
431 }
432 }
433 #undef x
434 #undef y
435 #undef z
436
437
438 TYPE
439 (F(cos)) (TYPE x)
440 {
441 ++count;
442 P ();
443 return x;
444 }
445
446 TYPE
447 (F(acos)) (TYPE x)
448 {
449 ++count;
450 P ();
451 return x;
452 }
453
454 TYPE
455 (F(sin)) (TYPE x)
456 {
457 ++count;
458 P ();
459 return x;
460 }
461
462 TYPE
463 (F(asin)) (TYPE x)
464 {
465 ++count;
466 P ();
467 return x;
468 }
469
470 TYPE
471 (F(tan)) (TYPE x)
472 {
473 ++count;
474 P ();
475 return x;
476 }
477
478 TYPE
479 (F(atan)) (TYPE x)
480 {
481 ++count;
482 P ();
483 return x;
484 }
485
486 TYPE
487 (F(atan2)) (TYPE x, TYPE y)
488 {
489 ++count;
490 P ();
491 return x + y;
492 }
493
494 TYPE
495 (F(cosh)) (TYPE x)
496 {
497 ++count;
498 P ();
499 return x;
500 }
501
502 TYPE
503 (F(acosh)) (TYPE x)
504 {
505 ++count;
506 P ();
507 return x;
508 }
509
510 TYPE
511 (F(sinh)) (TYPE x)
512 {
513 ++count;
514 P ();
515 return x;
516 }
517
518 TYPE
519 (F(asinh)) (TYPE x)
520 {
521 ++count;
522 P ();
523 return x;
524 }
525
526 TYPE
527 (F(tanh)) (TYPE x)
528 {
529 ++count;
530 P ();
531 return x;
532 }
533
534 TYPE
535 (F(atanh)) (TYPE x)
536 {
537 ++count;
538 P ();
539 return x;
540 }
541
542 TYPE
543 (F(exp)) (TYPE x)
544 {
545 ++count;
546 P ();
547 return x;
548 }
549
550 TYPE
551 (F(log)) (TYPE x)
552 {
553 ++count;
554 P ();
555 return x;
556 }
557
558 TYPE
559 (F(log10)) (TYPE x)
560 {
561 ++count;
562 P ();
563 return x;
564 }
565
566 TYPE
567 (F(ldexp)) (TYPE x, int y)
568 {
569 ++count;
570 P ();
571 return x + y;
572 }
573
574 TYPE
575 (F(frexp)) (TYPE x, int *y)
576 {
577 ++count;
578 P ();
579 return x + *y;
580 }
581
582 TYPE
583 (F(expm1)) (TYPE x)
584 {
585 ++count;
586 P ();
587 return x;
588 }
589
590 TYPE
591 (F(log1p)) (TYPE x)
592 {
593 ++count;
594 P ();
595 return x;
596 }
597
598 TYPE
599 (F(logb)) (TYPE x)
600 {
601 ++count;
602 P ();
603 return x;
604 }
605
606 TYPE
607 (F(exp2)) (TYPE x)
608 {
609 ++count;
610 P ();
611 return x;
612 }
613
614 TYPE
615 (F(log2)) (TYPE x)
616 {
617 ++count;
618 P ();
619 return x;
620 }
621
622 TYPE
623 (F(pow)) (TYPE x, TYPE y)
624 {
625 ++count;
626 P ();
627 return x + y;
628 }
629
630 TYPE
631 (F(sqrt)) (TYPE x)
632 {
633 ++count;
634 P ();
635 return x;
636 }
637
638 TYPE
639 (F(hypot)) (TYPE x, TYPE y)
640 {
641 ++count;
642 P ();
643 return x + y;
644 }
645
646 TYPE
647 (F(cbrt)) (TYPE x)
648 {
649 ++count;
650 P ();
651 return x;
652 }
653
654 TYPE
655 (F(ceil)) (TYPE x)
656 {
657 ++count;
658 P ();
659 return x;
660 }
661
662 TYPE
663 (F(fabs)) (TYPE x)
664 {
665 ++count;
666 P ();
667 return x;
668 }
669
670 TYPE
671 (F(floor)) (TYPE x)
672 {
673 ++count;
674 P ();
675 return x;
676 }
677
678 TYPE
679 (F(fmod)) (TYPE x, TYPE y)
680 {
681 ++count;
682 P ();
683 return x + y;
684 }
685
686 TYPE
687 (F(nearbyint)) (TYPE x)
688 {
689 ++count;
690 P ();
691 return x;
692 }
693
694 TYPE
695 (F(round)) (TYPE x)
696 {
697 ++count;
698 P ();
699 return x;
700 }
701
702 TYPE
703 (F(roundeven)) (TYPE x)
704 {
705 ++count;
706 P ();
707 return x;
708 }
709
710 TYPE
711 (F(trunc)) (TYPE x)
712 {
713 ++count;
714 P ();
715 return x;
716 }
717
718 TYPE
719 (F(remquo)) (TYPE x, TYPE y, int *i)
720 {
721 ++count;
722 P ();
723 return x + y + *i;
724 }
725
726 long int
727 (F(lrint)) (TYPE x)
728 {
729 ++count;
730 P ();
731 return x;
732 }
733
734 long int
735 (F(lround)) (TYPE x)
736 {
737 ++count;
738 P ();
739 return x;
740 }
741
742 long long int
743 (F(llrint)) (TYPE x)
744 {
745 ++count;
746 P ();
747 return x;
748 }
749
750 long long int
751 (F(llround)) (TYPE x)
752 {
753 ++count;
754 P ();
755 return x;
756 }
757
758 intmax_t
759 (F(fromfp)) (TYPE x, int round, unsigned int width)
760 {
761 ++count;
762 P ();
763 return x;
764 }
765
766 intmax_t
767 (F(fromfpx)) (TYPE x, int round, unsigned int width)
768 {
769 ++count;
770 P ();
771 return x;
772 }
773
774 uintmax_t
775 (F(ufromfp)) (TYPE x, int round, unsigned int width)
776 {
777 ++count;
778 P ();
779 return x;
780 }
781
782 uintmax_t
783 (F(ufromfpx)) (TYPE x, int round, unsigned int width)
784 {
785 ++count;
786 P ();
787 return x;
788 }
789
790 TYPE
791 (F(erf)) (TYPE x)
792 {
793 ++count;
794 P ();
795 return x;
796 }
797
798 TYPE
799 (F(erfc)) (TYPE x)
800 {
801 ++count;
802 P ();
803 return x;
804 }
805
806 TYPE
807 (F(tgamma)) (TYPE x)
808 {
809 ++count;
810 P ();
811 return x;
812 }
813
814 TYPE
815 (F(lgamma)) (TYPE x)
816 {
817 ++count;
818 P ();
819 return x;
820 }
821
822 TYPE
823 (F(rint)) (TYPE x)
824 {
825 ++count;
826 P ();
827 return x;
828 }
829
830 TYPE
831 (F(nextafter)) (TYPE x, TYPE y)
832 {
833 ++count;
834 P ();
835 return x + y;
836 }
837
838 TYPE
839 (F(nextdown)) (TYPE x)
840 {
841 ++count;
842 P ();
843 return x;
844 }
845
846 TYPE
847 (F(nexttoward)) (TYPE x, long double y)
848 {
849 ++count;
850 P ();
851 return x + y;
852 }
853
854 TYPE
855 (F(nextup)) (TYPE x)
856 {
857 ++count;
858 P ();
859 return x;
860 }
861
862 TYPE
863 (F(remainder)) (TYPE x, TYPE y)
864 {
865 ++count;
866 P ();
867 return x + y;
868 }
869
870 TYPE
871 (F(scalb)) (TYPE x, TYPE y)
872 {
873 ++count;
874 P ();
875 return x + y;
876 }
877
878 TYPE
879 (F(scalbn)) (TYPE x, int y)
880 {
881 ++count;
882 P ();
883 return x + y;
884 }
885
886 TYPE
887 (F(scalbln)) (TYPE x, long int y)
888 {
889 ++count;
890 P ();
891 return x + y;
892 }
893
894 int
895 (F(ilogb)) (TYPE x)
896 {
897 ++count;
898 P ();
899 return x;
900 }
901
902 long int
903 (F(llogb)) (TYPE x)
904 {
905 ++count;
906 P ();
907 return x;
908 }
909
910 TYPE
911 (F(fdim)) (TYPE x, TYPE y)
912 {
913 ++count;
914 P ();
915 return x + y;
916 }
917
918 TYPE
919 (F(fmin)) (TYPE x, TYPE y)
920 {
921 ++count;
922 P ();
923 return x + y;
924 }
925
926 TYPE
927 (F(fmax)) (TYPE x, TYPE y)
928 {
929 ++count;
930 P ();
931 return x + y;
932 }
933
934 TYPE
935 (F(fminmag)) (TYPE x, TYPE y)
936 {
937 ++count;
938 P ();
939 return x + y;
940 }
941
942 TYPE
943 (F(fmaxmag)) (TYPE x, TYPE y)
944 {
945 ++count;
946 P ();
947 return x + y;
948 }
949
950 TYPE
951 (F(fma)) (TYPE x, TYPE y, TYPE z)
952 {
953 ++count;
954 P ();
955 return x + y + z;
956 }
957
958 complex TYPE
959 (F(cacos)) (complex TYPE x)
960 {
961 ++ccount;
962 P ();
963 return x;
964 }
965
966 complex TYPE
967 (F(casin)) (complex TYPE x)
968 {
969 ++ccount;
970 P ();
971 return x;
972 }
973
974 complex TYPE
975 (F(catan)) (complex TYPE x)
976 {
977 ++ccount;
978 P ();
979 return x;
980 }
981
982 complex TYPE
983 (F(ccos)) (complex TYPE x)
984 {
985 ++ccount;
986 P ();
987 return x;
988 }
989
990 complex TYPE
991 (F(csin)) (complex TYPE x)
992 {
993 ++ccount;
994 P ();
995 return x;
996 }
997
998 complex TYPE
999 (F(ctan)) (complex TYPE x)
1000 {
1001 ++ccount;
1002 P ();
1003 return x;
1004 }
1005
1006 complex TYPE
1007 (F(cacosh)) (complex TYPE x)
1008 {
1009 ++ccount;
1010 P ();
1011 return x;
1012 }
1013
1014 complex TYPE
1015 (F(casinh)) (complex TYPE x)
1016 {
1017 ++ccount;
1018 P ();
1019 return x;
1020 }
1021
1022 complex TYPE
1023 (F(catanh)) (complex TYPE x)
1024 {
1025 ++ccount;
1026 P ();
1027 return x;
1028 }
1029
1030 complex TYPE
1031 (F(ccosh)) (complex TYPE x)
1032 {
1033 ++ccount;
1034 P ();
1035 return x;
1036 }
1037
1038 complex TYPE
1039 (F(csinh)) (complex TYPE x)
1040 {
1041 ++ccount;
1042 P ();
1043 return x;
1044 }
1045
1046 complex TYPE
1047 (F(ctanh)) (complex TYPE x)
1048 {
1049 ++ccount;
1050 P ();
1051 return x;
1052 }
1053
1054 complex TYPE
1055 (F(cexp)) (complex TYPE x)
1056 {
1057 ++ccount;
1058 P ();
1059 return x;
1060 }
1061
1062 complex TYPE
1063 (F(clog)) (complex TYPE x)
1064 {
1065 ++ccount;
1066 P ();
1067 return x;
1068 }
1069
1070 complex TYPE
1071 (F(csqrt)) (complex TYPE x)
1072 {
1073 ++ccount;
1074 P ();
1075 return x;
1076 }
1077
1078 complex TYPE
1079 (F(cpow)) (complex TYPE x, complex TYPE y)
1080 {
1081 ++ccount;
1082 P ();
1083 return x + y;
1084 }
1085
1086 TYPE
1087 (F(cabs)) (complex TYPE x)
1088 {
1089 ++ccount;
1090 P ();
1091 return x;
1092 }
1093
1094 TYPE
1095 (F(carg)) (complex TYPE x)
1096 {
1097 ++ccount;
1098 P ();
1099 return x;
1100 }
1101
1102 TYPE
1103 (F(creal)) (complex TYPE x)
1104 {
1105 ++ccount;
1106 P ();
1107 return __real__ x;
1108 }
1109
1110 TYPE
1111 (F(cimag)) (complex TYPE x)
1112 {
1113 ++ccount;
1114 P ();
1115 return __imag__ x;
1116 }
1117
1118 complex TYPE
1119 (F(conj)) (complex TYPE x)
1120 {
1121 ++ccount;
1122 P ();
1123 return x;
1124 }
1125
1126 complex TYPE
1127 (F(cproj)) (complex TYPE x)
1128 {
1129 ++ccount;
1130 P ();
1131 return x;
1132 }
1133
1134 #undef F
1135 #undef TYPE
1136 #undef count
1137 #undef ccount
1138 #undef TEST_INT
1139 #endif