]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/ieee754/dbl-64/math_config.h
2049cea3f79d7314204c061aef0efb6542a6665c
[thirdparty/glibc.git] / sysdeps / ieee754 / dbl-64 / math_config.h
1 /* Configuration for double precision math routines.
2 Copyright (C) 2018-2023 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <https://www.gnu.org/licenses/>. */
18
19 #ifndef _MATH_CONFIG_H
20 #define _MATH_CONFIG_H
21
22 #include <math.h>
23 #include <math_private.h>
24 #include <nan-high-order-bit.h>
25 #include <stdint.h>
26
27 #ifndef WANT_ROUNDING
28 /* Correct special case results in non-nearest rounding modes. */
29 # define WANT_ROUNDING 1
30 #endif
31 #ifndef WANT_ERRNO
32 /* Set errno according to ISO C with (math_errhandling & MATH_ERRNO) != 0. */
33 # define WANT_ERRNO 1
34 #endif
35 #ifndef WANT_ERRNO_UFLOW
36 /* Set errno to ERANGE if result underflows to 0 (in all rounding modes). */
37 # define WANT_ERRNO_UFLOW (WANT_ROUNDING && WANT_ERRNO)
38 #endif
39
40 #ifndef TOINT_INTRINSICS
41 /* When set, the roundtoint and converttoint functions are provided with
42 the semantics documented below. */
43 # define TOINT_INTRINSICS 0
44 #endif
45
46 static inline int
47 clz_uint64 (uint64_t x)
48 {
49 if (sizeof (uint64_t) == sizeof (unsigned long))
50 return __builtin_clzl (x);
51 else
52 return __builtin_clzll (x);
53 }
54
55 static inline int
56 ctz_uint64 (uint64_t x)
57 {
58 if (sizeof (uint64_t) == sizeof (unsigned long))
59 return __builtin_ctzl (x);
60 else
61 return __builtin_ctzll (x);
62 }
63
64 #if TOINT_INTRINSICS
65 /* Round x to nearest int in all rounding modes, ties have to be rounded
66 consistently with converttoint so the results match. If the result
67 would be outside of [-2^31, 2^31-1] then the semantics is unspecified. */
68 static inline double_t
69 roundtoint (double_t x);
70
71 /* Convert x to nearest int in all rounding modes, ties have to be rounded
72 consistently with roundtoint. If the result is not representible in an
73 int32_t then the semantics is unspecified. */
74 static inline int32_t
75 converttoint (double_t x);
76 #endif
77
78 static inline uint64_t
79 asuint64 (double f)
80 {
81 union
82 {
83 double f;
84 uint64_t i;
85 } u = {f};
86 return u.i;
87 }
88
89 static inline double
90 asdouble (uint64_t i)
91 {
92 union
93 {
94 uint64_t i;
95 double f;
96 } u = {i};
97 return u.f;
98 }
99
100 static inline int
101 issignaling_inline (double x)
102 {
103 uint64_t ix = asuint64 (x);
104 if (HIGH_ORDER_BIT_IS_SET_FOR_SNAN)
105 return (ix & 0x7ff8000000000000) == 0x7ff8000000000000;
106 return 2 * (ix ^ 0x0008000000000000) > 2 * 0x7ff8000000000000ULL;
107 }
108
109 #define BIT_WIDTH 64
110 #define MANTISSA_WIDTH 52
111 #define EXPONENT_WIDTH 11
112 #define MANTISSA_MASK UINT64_C(0x000fffffffffffff)
113 #define EXPONENT_MASK UINT64_C(0x7ff0000000000000)
114 #define EXP_MANT_MASK UINT64_C(0x7fffffffffffffff)
115 #define QUIET_NAN_MASK UINT64_C(0x0008000000000000)
116 #define SIGN_MASK UINT64_C(0x8000000000000000)
117
118 static inline bool
119 is_nan (uint64_t x)
120 {
121 return (x & EXP_MANT_MASK) > EXPONENT_MASK;
122 }
123
124 static inline uint64_t
125 get_mantissa (uint64_t x)
126 {
127 return x & MANTISSA_MASK;
128 }
129
130 /* Convert integer number X, unbiased exponent EP, and sign S to double:
131
132 result = X * 2^(EP+1 - exponent_bias)
133
134 NB: zero is not supported. */
135 static inline double
136 make_double (uint64_t x, int64_t ep, uint64_t s)
137 {
138 int lz = clz_uint64 (x) - EXPONENT_WIDTH;
139 x <<= lz;
140 ep -= lz;
141
142 if (__glibc_unlikely (ep < 0 || x == 0))
143 {
144 x >>= -ep;
145 ep = 0;
146 }
147
148 return asdouble (s + x + (ep << MANTISSA_WIDTH));
149 }
150
151
152 #define NOINLINE __attribute__ ((noinline))
153
154 /* Error handling tail calls for special cases, with a sign argument.
155 The sign of the return value is set if the argument is non-zero. */
156
157 /* The result overflows. */
158 attribute_hidden double __math_oflow (uint32_t);
159 /* The result underflows to 0 in nearest rounding mode. */
160 attribute_hidden double __math_uflow (uint32_t);
161 /* The result underflows to 0 in some directed rounding mode only. */
162 attribute_hidden double __math_may_uflow (uint32_t);
163 /* Division by zero. */
164 attribute_hidden double __math_divzero (uint32_t);
165
166 /* Error handling using input checking. */
167
168 /* Invalid input unless it is a quiet NaN. */
169 attribute_hidden double __math_invalid (double);
170
171 /* Error handling using output checking, only for errno setting. */
172
173 /* Check if the result overflowed to infinity. */
174 attribute_hidden double __math_check_oflow (double);
175 /* Check if the result underflowed to 0. */
176 attribute_hidden double __math_check_uflow (double);
177
178 /* Check if the result overflowed to infinity. */
179 static inline double
180 check_oflow (double x)
181 {
182 return WANT_ERRNO ? __math_check_oflow (x) : x;
183 }
184
185 /* Check if the result underflowed to 0. */
186 static inline double
187 check_uflow (double x)
188 {
189 return WANT_ERRNO ? __math_check_uflow (x) : x;
190 }
191
192 #define EXP_TABLE_BITS 7
193 #define EXP_POLY_ORDER 5
194 #define EXP2_POLY_ORDER 5
195 extern const struct exp_data
196 {
197 double invln2N;
198 double shift;
199 double negln2hiN;
200 double negln2loN;
201 double poly[4]; /* Last four coefficients. */
202 double exp2_shift;
203 double exp2_poly[EXP2_POLY_ORDER];
204 uint64_t tab[2*(1 << EXP_TABLE_BITS)];
205 } __exp_data attribute_hidden;
206
207 #define LOG_TABLE_BITS 7
208 #define LOG_POLY_ORDER 6
209 #define LOG_POLY1_ORDER 12
210 extern const struct log_data
211 {
212 double ln2hi;
213 double ln2lo;
214 double poly[LOG_POLY_ORDER - 1]; /* First coefficient is 1. */
215 double poly1[LOG_POLY1_ORDER - 1];
216 /* See e_log_data.c for details. */
217 struct {double invc, logc;} tab[1 << LOG_TABLE_BITS];
218 #ifndef __FP_FAST_FMA
219 struct {double chi, clo;} tab2[1 << LOG_TABLE_BITS];
220 #endif
221 } __log_data attribute_hidden;
222
223 #define LOG2_TABLE_BITS 6
224 #define LOG2_POLY_ORDER 7
225 #define LOG2_POLY1_ORDER 11
226 extern const struct log2_data
227 {
228 double invln2hi;
229 double invln2lo;
230 double poly[LOG2_POLY_ORDER - 1];
231 double poly1[LOG2_POLY1_ORDER - 1];
232 /* See e_log2_data.c for details. */
233 struct {double invc, logc;} tab[1 << LOG2_TABLE_BITS];
234 #ifndef __FP_FAST_FMA
235 struct {double chi, clo;} tab2[1 << LOG2_TABLE_BITS];
236 #endif
237 } __log2_data attribute_hidden;
238
239 #define POW_LOG_TABLE_BITS 7
240 #define POW_LOG_POLY_ORDER 8
241 extern const struct pow_log_data
242 {
243 double ln2hi;
244 double ln2lo;
245 double poly[POW_LOG_POLY_ORDER - 1]; /* First coefficient is 1. */
246 /* Note: the pad field is unused, but allows slightly faster indexing. */
247 /* See e_pow_log_data.c for details. */
248 struct {double invc, pad, logc, logctail;} tab[1 << POW_LOG_TABLE_BITS];
249 } __pow_log_data attribute_hidden;
250
251 #endif