]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/ieee754/dbl-64/s_log1p.c
ea1dc6ca767f1ebab609576c85a6558bc91855e2
[thirdparty/glibc.git] / sysdeps / ieee754 / dbl-64 / s_log1p.c
1 /* @(#)s_log1p.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 */
12 /* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
13 for performance improvement on pipelined processors.
14 */
15
16 /* double log1p(double x)
17 *
18 * Method :
19 * 1. Argument Reduction: find k and f such that
20 * 1+x = 2^k * (1+f),
21 * where sqrt(2)/2 < 1+f < sqrt(2) .
22 *
23 * Note. If k=0, then f=x is exact. However, if k!=0, then f
24 * may not be representable exactly. In that case, a correction
25 * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
26 * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
27 * and add back the correction term c/u.
28 * (Note: when x > 2**53, one can simply return log(x))
29 *
30 * 2. Approximation of log1p(f).
31 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
32 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
33 * = 2s + s*R
34 * We use a special Reme algorithm on [0,0.1716] to generate
35 * a polynomial of degree 14 to approximate R The maximum error
36 * of this polynomial approximation is bounded by 2**-58.45. In
37 * other words,
38 * 2 4 6 8 10 12 14
39 * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
40 * (the values of Lp1 to Lp7 are listed in the program)
41 * and
42 * | 2 14 | -58.45
43 * | Lp1*s +...+Lp7*s - R(z) | <= 2
44 * | |
45 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
46 * In order to guarantee error in log below 1ulp, we compute log
47 * by
48 * log1p(f) = f - (hfsq - s*(hfsq+R)).
49 *
50 * 3. Finally, log1p(x) = k*ln2 + log1p(f).
51 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
52 * Here ln2 is split into two floating point number:
53 * ln2_hi + ln2_lo,
54 * where n*ln2_hi is always exact for |n| < 2000.
55 *
56 * Special cases:
57 * log1p(x) is NaN with signal if x < -1 (including -INF) ;
58 * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
59 * log1p(NaN) is that NaN with no signal.
60 *
61 * Accuracy:
62 * according to an error analysis, the error is always less than
63 * 1 ulp (unit in the last place).
64 *
65 * Constants:
66 * The hexadecimal values are the intended ones for the following
67 * constants. The decimal values may be used, provided that the
68 * compiler will convert from decimal to binary accurately enough
69 * to produce the hexadecimal values shown.
70 *
71 * Note: Assuming log() return accurate answer, the following
72 * algorithm can be used to compute log1p(x) to within a few ULP:
73 *
74 * u = 1+x;
75 * if(u==1.0) return x ; else
76 * return log(u)*(x/(u-1.0));
77 *
78 * See HP-15C Advanced Functions Handbook, p.193.
79 */
80
81 #include <math.h>
82 #include <math_private.h>
83
84 static const double
85 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
86 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
87 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
88 Lp[] = { 0.0, 6.666666666666735130e-01, /* 3FE55555 55555593 */
89 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
90 2.857142874366239149e-01, /* 3FD24924 94229359 */
91 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
92 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
93 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
94 1.479819860511658591e-01 }; /* 3FC2F112 DF3E5244 */
95
96 static const double zero = 0.0;
97
98 double
99 __log1p (double x)
100 {
101 double hfsq, f, c, s, z, R, u, z2, z4, z6, R1, R2, R3, R4;
102 int32_t k, hx, hu, ax;
103
104 GET_HIGH_WORD (hx, x);
105 ax = hx & 0x7fffffff;
106
107 k = 1;
108 if (hx < 0x3FDA827A) /* x < 0.41422 */
109 {
110 if (__builtin_expect (ax >= 0x3ff00000, 0)) /* x <= -1.0 */
111 {
112 if (x == -1.0)
113 return -two54 / (x - x); /* log1p(-1)=+inf */
114 else
115 return (x - x) / (x - x); /* log1p(x<-1)=NaN */
116 }
117 if (__builtin_expect (ax < 0x3e200000, 0)) /* |x| < 2**-29 */
118 {
119 math_force_eval (two54 + x); /* raise inexact */
120 if (ax < 0x3c900000) /* |x| < 2**-54 */
121 return x;
122 else
123 return x - x * x * 0.5;
124 }
125 if (hx > 0 || hx <= ((int32_t) 0xbfd2bec3))
126 {
127 k = 0; f = x; hu = 1;
128 } /* -0.2929<x<0.41422 */
129 }
130 else if (__builtin_expect (hx >= 0x7ff00000, 0))
131 return x + x;
132 if (k != 0)
133 {
134 if (hx < 0x43400000)
135 {
136 u = 1.0 + x;
137 GET_HIGH_WORD (hu, u);
138 k = (hu >> 20) - 1023;
139 c = (k > 0) ? 1.0 - (u - x) : x - (u - 1.0); /* correction term */
140 c /= u;
141 }
142 else
143 {
144 u = x;
145 GET_HIGH_WORD (hu, u);
146 k = (hu >> 20) - 1023;
147 c = 0;
148 }
149 hu &= 0x000fffff;
150 if (hu < 0x6a09e)
151 {
152 SET_HIGH_WORD (u, hu | 0x3ff00000); /* normalize u */
153 }
154 else
155 {
156 k += 1;
157 SET_HIGH_WORD (u, hu | 0x3fe00000); /* normalize u/2 */
158 hu = (0x00100000 - hu) >> 2;
159 }
160 f = u - 1.0;
161 }
162 hfsq = 0.5 * f * f;
163 if (hu == 0) /* |f| < 2**-20 */
164 {
165 if (f == zero)
166 {
167 if (k == 0)
168 return zero;
169 else
170 {
171 c += k * ln2_lo; return k * ln2_hi + c;
172 }
173 }
174 R = hfsq * (1.0 - 0.66666666666666666 * f);
175 if (k == 0)
176 return f - R;
177 else
178 return k * ln2_hi - ((R - (k * ln2_lo + c)) - f);
179 }
180 s = f / (2.0 + f);
181 z = s * s;
182 R1 = z * Lp[1]; z2 = z * z;
183 R2 = Lp[2] + z * Lp[3]; z4 = z2 * z2;
184 R3 = Lp[4] + z * Lp[5]; z6 = z4 * z2;
185 R4 = Lp[6] + z * Lp[7];
186 R = R1 + z2 * R2 + z4 * R3 + z6 * R4;
187 if (k == 0)
188 return f - (hfsq - s * (hfsq + R));
189 else
190 return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f);
191 }
192 weak_alias (__log1p, log1p)
193 #ifdef NO_LONG_DOUBLE
194 strong_alias (__log1p, __log1pl)
195 weak_alias (__log1p, log1pl)
196 #endif