]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/ieee754/ldbl-128/e_expl.c
7b6ec0b347ae2469a544903d66fe6d10762c02a7
[thirdparty/glibc.git] / sysdeps / ieee754 / ldbl-128 / e_expl.c
1 /* Quad-precision floating point e^x.
2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Jakub Jelinek <jj@ultra.linux.cz>
5 Partly based on double-precision code
6 by Geoffrey Keating <geoffk@ozemail.com.au>
7
8 The GNU C Library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
12
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
17
18 You should have received a copy of the GNU Lesser General Public
19 License along with the GNU C Library; if not, see
20 <http://www.gnu.org/licenses/>. */
21
22 /* The basic design here is from
23 Abraham Ziv, "Fast Evaluation of Elementary Mathematical Functions with
24 Correctly Rounded Last Bit", ACM Trans. Math. Soft., 17 (3), September 1991,
25 pp. 410-423.
26
27 We work with number pairs where the first number is the high part and
28 the second one is the low part. Arithmetic with the high part numbers must
29 be exact, without any roundoff errors.
30
31 The input value, X, is written as
32 X = n * ln(2)_0 + arg1[t1]_0 + arg2[t2]_0 + x
33 - n * ln(2)_1 + arg1[t1]_1 + arg2[t2]_1 + xl
34
35 where:
36 - n is an integer, 16384 >= n >= -16495;
37 - ln(2)_0 is the first 93 bits of ln(2), and |ln(2)_0-ln(2)-ln(2)_1| < 2^-205
38 - t1 is an integer, 89 >= t1 >= -89
39 - t2 is an integer, 65 >= t2 >= -65
40 - |arg1[t1]-t1/256.0| < 2^-53
41 - |arg2[t2]-t2/32768.0| < 2^-53
42 - x + xl is whatever is left, |x + xl| < 2^-16 + 2^-53
43
44 Then e^x is approximated as
45
46 e^x = 2^n_1 ( 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
47 + 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
48 * p (x + xl + n * ln(2)_1))
49 where:
50 - p(x) is a polynomial approximating e(x)-1
51 - e^(arg1[t1]_0 + arg1[t1]_1) is obtained from a table
52 - e^(arg2[t2]_0 + arg2[t2]_1) likewise
53 - n_1 + n_0 = n, so that |n_0| < -LDBL_MIN_EXP-1.
54
55 If it happens that n_1 == 0 (this is the usual case), that multiplication
56 is omitted.
57 */
58
59 #ifndef _GNU_SOURCE
60 #define _GNU_SOURCE
61 #endif
62 #include <float.h>
63 #include <ieee754.h>
64 #include <math.h>
65 #include <fenv.h>
66 #include <inttypes.h>
67 #include <math-barriers.h>
68 #include <math_private.h>
69 #include <math-underflow.h>
70 #include <stdlib.h>
71 #include "t_expl.h"
72
73 static const _Float128 C[] = {
74 /* Smallest integer x for which e^x overflows. */
75 #define himark C[0]
76 L(11356.523406294143949491931077970765),
77
78 /* Largest integer x for which e^x underflows. */
79 #define lomark C[1]
80 L(-11433.4627433362978788372438434526231),
81
82 /* 3x2^96 */
83 #define THREEp96 C[2]
84 L(59421121885698253195157962752.0),
85
86 /* 3x2^103 */
87 #define THREEp103 C[3]
88 L(30423614405477505635920876929024.0),
89
90 /* 3x2^111 */
91 #define THREEp111 C[4]
92 L(7788445287802241442795744493830144.0),
93
94 /* 1/ln(2) */
95 #define M_1_LN2 C[5]
96 L(1.44269504088896340735992468100189204),
97
98 /* first 93 bits of ln(2) */
99 #define M_LN2_0 C[6]
100 L(0.693147180559945309417232121457981864),
101
102 /* ln2_0 - ln(2) */
103 #define M_LN2_1 C[7]
104 L(-1.94704509238074995158795957333327386E-31),
105
106 /* very small number */
107 #define TINY C[8]
108 L(1.0e-4900),
109
110 /* 2^16383 */
111 #define TWO16383 C[9]
112 L(5.94865747678615882542879663314003565E+4931),
113
114 /* 256 */
115 #define TWO8 C[10]
116 256,
117
118 /* 32768 */
119 #define TWO15 C[11]
120 32768,
121
122 /* Chebyshev polynom coefficients for (exp(x)-1)/x */
123 #define P1 C[12]
124 #define P2 C[13]
125 #define P3 C[14]
126 #define P4 C[15]
127 #define P5 C[16]
128 #define P6 C[17]
129 L(0.5),
130 L(1.66666666666666666666666666666666683E-01),
131 L(4.16666666666666666666654902320001674E-02),
132 L(8.33333333333333333333314659767198461E-03),
133 L(1.38888888889899438565058018857254025E-03),
134 L(1.98412698413981650382436541785404286E-04),
135 };
136
137 _Float128
138 __ieee754_expl (_Float128 x)
139 {
140 /* Check for usual case. */
141 if (isless (x, himark) && isgreater (x, lomark))
142 {
143 int tval1, tval2, unsafe, n_i;
144 _Float128 x22, n, t, result, xl;
145 union ieee854_long_double ex2_u, scale_u;
146 fenv_t oldenv;
147
148 feholdexcept (&oldenv);
149 #ifdef FE_TONEAREST
150 fesetround (FE_TONEAREST);
151 #endif
152
153 /* Calculate n. */
154 n = x * M_1_LN2 + THREEp111;
155 n -= THREEp111;
156 x = x - n * M_LN2_0;
157 xl = n * M_LN2_1;
158
159 /* Calculate t/256. */
160 t = x + THREEp103;
161 t -= THREEp103;
162
163 /* Compute tval1 = t. */
164 tval1 = (int) (t * TWO8);
165
166 x -= __expl_table[T_EXPL_ARG1+2*tval1];
167 xl -= __expl_table[T_EXPL_ARG1+2*tval1+1];
168
169 /* Calculate t/32768. */
170 t = x + THREEp96;
171 t -= THREEp96;
172
173 /* Compute tval2 = t. */
174 tval2 = (int) (t * TWO15);
175
176 x -= __expl_table[T_EXPL_ARG2+2*tval2];
177 xl -= __expl_table[T_EXPL_ARG2+2*tval2+1];
178
179 x = x + xl;
180
181 /* Compute ex2 = 2^n_0 e^(argtable[tval1]) e^(argtable[tval2]). */
182 ex2_u.d = __expl_table[T_EXPL_RES1 + tval1]
183 * __expl_table[T_EXPL_RES2 + tval2];
184 n_i = (int)n;
185 /* 'unsafe' is 1 iff n_1 != 0. */
186 unsafe = abs(n_i) >= 15000;
187 ex2_u.ieee.exponent += n_i >> unsafe;
188
189 /* Compute scale = 2^n_1. */
190 scale_u.d = 1;
191 scale_u.ieee.exponent += n_i - (n_i >> unsafe);
192
193 /* Approximate e^x2 - 1, using a seventh-degree polynomial,
194 with maximum error in [-2^-16-2^-53,2^-16+2^-53]
195 less than 4.8e-39. */
196 x22 = x + x*x*(P1+x*(P2+x*(P3+x*(P4+x*(P5+x*P6)))));
197 math_force_eval (x22);
198
199 /* Return result. */
200 fesetenv (&oldenv);
201
202 result = x22 * ex2_u.d + ex2_u.d;
203
204 /* Now we can test whether the result is ultimate or if we are unsure.
205 In the later case we should probably call a mpn based routine to give
206 the ultimate result.
207 Empirically, this routine is already ultimate in about 99.9986% of
208 cases, the test below for the round to nearest case will be false
209 in ~ 99.9963% of cases.
210 Without proc2 routine maximum error which has been seen is
211 0.5000262 ulp.
212
213 union ieee854_long_double ex3_u;
214
215 #ifdef FE_TONEAREST
216 fesetround (FE_TONEAREST);
217 #endif
218 ex3_u.d = (result - ex2_u.d) - x22 * ex2_u.d;
219 ex2_u.d = result;
220 ex3_u.ieee.exponent += LDBL_MANT_DIG + 15 + IEEE854_LONG_DOUBLE_BIAS
221 - ex2_u.ieee.exponent;
222 n_i = abs (ex3_u.d);
223 n_i = (n_i + 1) / 2;
224 fesetenv (&oldenv);
225 #ifdef FE_TONEAREST
226 if (fegetround () == FE_TONEAREST)
227 n_i -= 0x4000;
228 #endif
229 if (!n_i) {
230 return __ieee754_expl_proc2 (origx);
231 }
232 */
233 if (!unsafe)
234 return result;
235 else
236 {
237 result *= scale_u.d;
238 math_check_force_underflow_nonneg (result);
239 return result;
240 }
241 }
242 /* Exceptional cases: */
243 else if (isless (x, himark))
244 {
245 if (isinf (x))
246 /* e^-inf == 0, with no error. */
247 return 0;
248 else
249 /* Underflow */
250 return TINY * TINY;
251 }
252 else
253 /* Return x, if x is a NaN or Inf; or overflow, otherwise. */
254 return TWO16383*x;
255 }
256 strong_alias (__ieee754_expl, __expl_finite)