]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/powerpc/fpu/e_sqrtf.c
58125f5cfc3505c61ff1e7aa7934162c69d6364c
[thirdparty/glibc.git] / sysdeps / powerpc / fpu / e_sqrtf.c
1 /* Single-precision floating point square root.
2 Copyright (C) 1997-2018 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
18
19 #include <math.h>
20 #include <math_private.h>
21 #include <fenv.h>
22 #include <fenv_libc.h>
23 #include <inttypes.h>
24 #include <stdint.h>
25 #include <sysdep.h>
26 #include <ldsodefs.h>
27
28 #ifndef _ARCH_PPCSQ
29 static const float almost_half = 0.50000006; /* 0.5 + 2^-24 */
30 static const ieee_float_shape_type a_nan = {.word = 0x7fc00000 };
31 static const ieee_float_shape_type a_inf = {.word = 0x7f800000 };
32 static const float two48 = 281474976710656.0;
33 static const float twom24 = 5.9604644775390625e-8;
34 extern const float __t_sqrt[1024];
35
36 /* The method is based on a description in
37 Computation of elementary functions on the IBM RISC System/6000 processor,
38 P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
39 Basically, it consists of two interleaved Newton-Raphson approximations,
40 one to find the actual square root, and one to find its reciprocal
41 without the expense of a division operation. The tricky bit here
42 is the use of the POWER/PowerPC multiply-add operation to get the
43 required accuracy with high speed.
44
45 The argument reduction works by a combination of table lookup to
46 obtain the initial guesses, and some careful modification of the
47 generated guesses (which mostly runs on the integer unit, while the
48 Newton-Raphson is running on the FPU). */
49
50 float
51 __slow_ieee754_sqrtf (float x)
52 {
53 const float inf = a_inf.value;
54
55 if (x > 0)
56 {
57 if (x != inf)
58 {
59 /* Variables named starting with 's' exist in the
60 argument-reduced space, so that 2 > sx >= 0.5,
61 1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
62 Variables named ending with 'i' are integer versions of
63 floating-point values. */
64 float sx; /* The value of which we're trying to find the square
65 root. */
66 float sg, g; /* Guess of the square root of x. */
67 float sd, d; /* Difference between the square of the guess and x. */
68 float sy; /* Estimate of 1/2g (overestimated by 1ulp). */
69 float sy2; /* 2*sy */
70 float e; /* Difference between y*g and 1/2 (note that e==se). */
71 float shx; /* == sx * fsg */
72 float fsg; /* sg*fsg == g. */
73 fenv_t fe; /* Saved floating-point environment (stores rounding
74 mode and whether the inexact exception is
75 enabled). */
76 uint32_t xi, sxi, fsgi;
77 const float *t_sqrt;
78
79 GET_FLOAT_WORD (xi, x);
80 fe = fegetenv_register ();
81 relax_fenv_state ();
82 sxi = (xi & 0x3fffffff) | 0x3f000000;
83 SET_FLOAT_WORD (sx, sxi);
84 t_sqrt = __t_sqrt + (xi >> (23 - 8 - 1) & 0x3fe);
85 sg = t_sqrt[0];
86 sy = t_sqrt[1];
87
88 /* Here we have three Newton-Raphson iterations each of a
89 division and a square root and the remainder of the
90 argument reduction, all interleaved. */
91 sd = -__builtin_fmaf (sg, sg, -sx);
92 fsgi = (xi + 0x40000000) >> 1 & 0x7f800000;
93 sy2 = sy + sy;
94 sg = __builtin_fmaf (sy, sd, sg); /* 16-bit approximation to
95 sqrt(sx). */
96 e = -__builtin_fmaf (sy, sg, -almost_half);
97 SET_FLOAT_WORD (fsg, fsgi);
98 sd = -__builtin_fmaf (sg, sg, -sx);
99 sy = __builtin_fmaf (e, sy2, sy);
100 if ((xi & 0x7f800000) == 0)
101 goto denorm;
102 shx = sx * fsg;
103 sg = __builtin_fmaf (sy, sd, sg); /* 32-bit approximation to
104 sqrt(sx), but perhaps
105 rounded incorrectly. */
106 sy2 = sy + sy;
107 g = sg * fsg;
108 e = -__builtin_fmaf (sy, sg, -almost_half);
109 d = -__builtin_fmaf (g, sg, -shx);
110 sy = __builtin_fmaf (e, sy2, sy);
111 fesetenv_register (fe);
112 return __builtin_fmaf (sy, d, g);
113 denorm:
114 /* For denormalised numbers, we normalise, calculate the
115 square root, and return an adjusted result. */
116 fesetenv_register (fe);
117 return __slow_ieee754_sqrtf (x * two48) * twom24;
118 }
119 }
120 else if (x < 0)
121 {
122 /* For some reason, some PowerPC32 processors don't implement
123 FE_INVALID_SQRT. */
124 #ifdef FE_INVALID_SQRT
125 feraiseexcept (FE_INVALID_SQRT);
126
127 fenv_union_t u = { .fenv = fegetenv_register () };
128 if ((u.l & FE_INVALID) == 0)
129 #endif
130 feraiseexcept (FE_INVALID);
131 x = a_nan.value;
132 }
133 return f_washf (x);
134 }
135 #endif /* _ARCH_PPCSQ */
136
137 #undef __ieee754_sqrtf
138 float
139 __ieee754_sqrtf (float x)
140 {
141 double z;
142
143 #ifdef _ARCH_PPCSQ
144 asm ("fsqrts %0,%1\n" :"=f" (z):"f" (x));
145 #else
146 z = __slow_ieee754_sqrtf (x);
147 #endif
148
149 return z;
150 }
151 strong_alias (__ieee754_sqrtf, __sqrtf_finite)