]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - block/bio.c
block: return from __bio_try_merge_page if merging occured in the same page
[thirdparty/kernel/linux.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
1da177e4 19
55782138 20#include <trace/events/block.h>
9e234eea 21#include "blk.h"
67b42d0b 22#include "blk-rq-qos.h"
0bfc2455 23
392ddc32
JA
24/*
25 * Test patch to inline a certain number of bi_io_vec's inside the bio
26 * itself, to shrink a bio data allocation from two mempool calls to one
27 */
28#define BIO_INLINE_VECS 4
29
1da177e4
LT
30/*
31 * if you change this list, also change bvec_alloc or things will
32 * break badly! cannot be bigger than what you can fit into an
33 * unsigned short
34 */
bd5c4fac 35#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 36static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 37 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
38};
39#undef BV
40
1da177e4
LT
41/*
42 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
43 * IO code that does not need private memory pools.
44 */
f4f8154a 45struct bio_set fs_bio_set;
3f86a82a 46EXPORT_SYMBOL(fs_bio_set);
1da177e4 47
bb799ca0
JA
48/*
49 * Our slab pool management
50 */
51struct bio_slab {
52 struct kmem_cache *slab;
53 unsigned int slab_ref;
54 unsigned int slab_size;
55 char name[8];
56};
57static DEFINE_MUTEX(bio_slab_lock);
58static struct bio_slab *bio_slabs;
59static unsigned int bio_slab_nr, bio_slab_max;
60
61static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
62{
63 unsigned int sz = sizeof(struct bio) + extra_size;
64 struct kmem_cache *slab = NULL;
389d7b26 65 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 66 unsigned int new_bio_slab_max;
bb799ca0
JA
67 unsigned int i, entry = -1;
68
69 mutex_lock(&bio_slab_lock);
70
71 i = 0;
72 while (i < bio_slab_nr) {
f06f135d 73 bslab = &bio_slabs[i];
bb799ca0
JA
74
75 if (!bslab->slab && entry == -1)
76 entry = i;
77 else if (bslab->slab_size == sz) {
78 slab = bslab->slab;
79 bslab->slab_ref++;
80 break;
81 }
82 i++;
83 }
84
85 if (slab)
86 goto out_unlock;
87
88 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 89 new_bio_slab_max = bio_slab_max << 1;
389d7b26 90 new_bio_slabs = krealloc(bio_slabs,
386bc35a 91 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
92 GFP_KERNEL);
93 if (!new_bio_slabs)
bb799ca0 94 goto out_unlock;
386bc35a 95 bio_slab_max = new_bio_slab_max;
389d7b26 96 bio_slabs = new_bio_slabs;
bb799ca0
JA
97 }
98 if (entry == -1)
99 entry = bio_slab_nr++;
100
101 bslab = &bio_slabs[entry];
102
103 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
104 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
105 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
106 if (!slab)
107 goto out_unlock;
108
bb799ca0
JA
109 bslab->slab = slab;
110 bslab->slab_ref = 1;
111 bslab->slab_size = sz;
112out_unlock:
113 mutex_unlock(&bio_slab_lock);
114 return slab;
115}
116
117static void bio_put_slab(struct bio_set *bs)
118{
119 struct bio_slab *bslab = NULL;
120 unsigned int i;
121
122 mutex_lock(&bio_slab_lock);
123
124 for (i = 0; i < bio_slab_nr; i++) {
125 if (bs->bio_slab == bio_slabs[i].slab) {
126 bslab = &bio_slabs[i];
127 break;
128 }
129 }
130
131 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
132 goto out;
133
134 WARN_ON(!bslab->slab_ref);
135
136 if (--bslab->slab_ref)
137 goto out;
138
139 kmem_cache_destroy(bslab->slab);
140 bslab->slab = NULL;
141
142out:
143 mutex_unlock(&bio_slab_lock);
144}
145
7ba1ba12
MP
146unsigned int bvec_nr_vecs(unsigned short idx)
147{
d6c02a9b 148 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
149}
150
9f060e22 151void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 152{
ed996a52
CH
153 if (!idx)
154 return;
155 idx--;
156
157 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 158
ed996a52 159 if (idx == BVEC_POOL_MAX) {
9f060e22 160 mempool_free(bv, pool);
ed996a52 161 } else {
bb799ca0
JA
162 struct biovec_slab *bvs = bvec_slabs + idx;
163
164 kmem_cache_free(bvs->slab, bv);
165 }
166}
167
9f060e22
KO
168struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
169 mempool_t *pool)
1da177e4
LT
170{
171 struct bio_vec *bvl;
1da177e4 172
7ff9345f
JA
173 /*
174 * see comment near bvec_array define!
175 */
176 switch (nr) {
177 case 1:
178 *idx = 0;
179 break;
180 case 2 ... 4:
181 *idx = 1;
182 break;
183 case 5 ... 16:
184 *idx = 2;
185 break;
186 case 17 ... 64:
187 *idx = 3;
188 break;
189 case 65 ... 128:
190 *idx = 4;
191 break;
192 case 129 ... BIO_MAX_PAGES:
193 *idx = 5;
194 break;
195 default:
196 return NULL;
197 }
198
199 /*
200 * idx now points to the pool we want to allocate from. only the
201 * 1-vec entry pool is mempool backed.
202 */
ed996a52 203 if (*idx == BVEC_POOL_MAX) {
7ff9345f 204fallback:
9f060e22 205 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
206 } else {
207 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 208 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 209
0a0d96b0 210 /*
7ff9345f
JA
211 * Make this allocation restricted and don't dump info on
212 * allocation failures, since we'll fallback to the mempool
213 * in case of failure.
0a0d96b0 214 */
7ff9345f 215 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 216
0a0d96b0 217 /*
d0164adc 218 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 219 * is set, retry with the 1-entry mempool
0a0d96b0 220 */
7ff9345f 221 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 222 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 223 *idx = BVEC_POOL_MAX;
7ff9345f
JA
224 goto fallback;
225 }
226 }
227
ed996a52 228 (*idx)++;
1da177e4
LT
229 return bvl;
230}
231
9ae3b3f5 232void bio_uninit(struct bio *bio)
1da177e4 233{
6f70fb66 234 bio_disassociate_blkg(bio);
4254bba1 235}
9ae3b3f5 236EXPORT_SYMBOL(bio_uninit);
7ba1ba12 237
4254bba1
KO
238static void bio_free(struct bio *bio)
239{
240 struct bio_set *bs = bio->bi_pool;
241 void *p;
242
9ae3b3f5 243 bio_uninit(bio);
4254bba1
KO
244
245 if (bs) {
8aa6ba2f 246 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
247
248 /*
249 * If we have front padding, adjust the bio pointer before freeing
250 */
251 p = bio;
bb799ca0
JA
252 p -= bs->front_pad;
253
8aa6ba2f 254 mempool_free(p, &bs->bio_pool);
4254bba1
KO
255 } else {
256 /* Bio was allocated by bio_kmalloc() */
257 kfree(bio);
258 }
3676347a
PO
259}
260
9ae3b3f5
JA
261/*
262 * Users of this function have their own bio allocation. Subsequently,
263 * they must remember to pair any call to bio_init() with bio_uninit()
264 * when IO has completed, or when the bio is released.
265 */
3a83f467
ML
266void bio_init(struct bio *bio, struct bio_vec *table,
267 unsigned short max_vecs)
1da177e4 268{
2b94de55 269 memset(bio, 0, sizeof(*bio));
c4cf5261 270 atomic_set(&bio->__bi_remaining, 1);
dac56212 271 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
272
273 bio->bi_io_vec = table;
274 bio->bi_max_vecs = max_vecs;
1da177e4 275}
a112a71d 276EXPORT_SYMBOL(bio_init);
1da177e4 277
f44b48c7
KO
278/**
279 * bio_reset - reinitialize a bio
280 * @bio: bio to reset
281 *
282 * Description:
283 * After calling bio_reset(), @bio will be in the same state as a freshly
284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
285 * preserved are the ones that are initialized by bio_alloc_bioset(). See
286 * comment in struct bio.
287 */
288void bio_reset(struct bio *bio)
289{
290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291
9ae3b3f5 292 bio_uninit(bio);
f44b48c7
KO
293
294 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 295 bio->bi_flags = flags;
c4cf5261 296 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
297}
298EXPORT_SYMBOL(bio_reset);
299
38f8baae 300static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 301{
4246a0b6
CH
302 struct bio *parent = bio->bi_private;
303
4e4cbee9
CH
304 if (!parent->bi_status)
305 parent->bi_status = bio->bi_status;
196d38bc 306 bio_put(bio);
38f8baae
CH
307 return parent;
308}
309
310static void bio_chain_endio(struct bio *bio)
311{
312 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
313}
314
315/**
316 * bio_chain - chain bio completions
1051a902
RD
317 * @bio: the target bio
318 * @parent: the @bio's parent bio
196d38bc
KO
319 *
320 * The caller won't have a bi_end_io called when @bio completes - instead,
321 * @parent's bi_end_io won't be called until both @parent and @bio have
322 * completed; the chained bio will also be freed when it completes.
323 *
324 * The caller must not set bi_private or bi_end_io in @bio.
325 */
326void bio_chain(struct bio *bio, struct bio *parent)
327{
328 BUG_ON(bio->bi_private || bio->bi_end_io);
329
330 bio->bi_private = parent;
331 bio->bi_end_io = bio_chain_endio;
c4cf5261 332 bio_inc_remaining(parent);
196d38bc
KO
333}
334EXPORT_SYMBOL(bio_chain);
335
df2cb6da
KO
336static void bio_alloc_rescue(struct work_struct *work)
337{
338 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
339 struct bio *bio;
340
341 while (1) {
342 spin_lock(&bs->rescue_lock);
343 bio = bio_list_pop(&bs->rescue_list);
344 spin_unlock(&bs->rescue_lock);
345
346 if (!bio)
347 break;
348
349 generic_make_request(bio);
350 }
351}
352
353static void punt_bios_to_rescuer(struct bio_set *bs)
354{
355 struct bio_list punt, nopunt;
356 struct bio *bio;
357
47e0fb46
N
358 if (WARN_ON_ONCE(!bs->rescue_workqueue))
359 return;
df2cb6da
KO
360 /*
361 * In order to guarantee forward progress we must punt only bios that
362 * were allocated from this bio_set; otherwise, if there was a bio on
363 * there for a stacking driver higher up in the stack, processing it
364 * could require allocating bios from this bio_set, and doing that from
365 * our own rescuer would be bad.
366 *
367 * Since bio lists are singly linked, pop them all instead of trying to
368 * remove from the middle of the list:
369 */
370
371 bio_list_init(&punt);
372 bio_list_init(&nopunt);
373
f5fe1b51 374 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 375 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 376 current->bio_list[0] = nopunt;
df2cb6da 377
f5fe1b51
N
378 bio_list_init(&nopunt);
379 while ((bio = bio_list_pop(&current->bio_list[1])))
380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 current->bio_list[1] = nopunt;
df2cb6da
KO
382
383 spin_lock(&bs->rescue_lock);
384 bio_list_merge(&bs->rescue_list, &punt);
385 spin_unlock(&bs->rescue_lock);
386
387 queue_work(bs->rescue_workqueue, &bs->rescue_work);
388}
389
1da177e4
LT
390/**
391 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 392 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 393 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 394 * @bs: the bio_set to allocate from.
1da177e4
LT
395 *
396 * Description:
3f86a82a
KO
397 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
398 * backed by the @bs's mempool.
399 *
d0164adc
MG
400 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
401 * always be able to allocate a bio. This is due to the mempool guarantees.
402 * To make this work, callers must never allocate more than 1 bio at a time
403 * from this pool. Callers that need to allocate more than 1 bio must always
404 * submit the previously allocated bio for IO before attempting to allocate
405 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 406 *
df2cb6da
KO
407 * Note that when running under generic_make_request() (i.e. any block
408 * driver), bios are not submitted until after you return - see the code in
409 * generic_make_request() that converts recursion into iteration, to prevent
410 * stack overflows.
411 *
412 * This would normally mean allocating multiple bios under
413 * generic_make_request() would be susceptible to deadlocks, but we have
414 * deadlock avoidance code that resubmits any blocked bios from a rescuer
415 * thread.
416 *
417 * However, we do not guarantee forward progress for allocations from other
418 * mempools. Doing multiple allocations from the same mempool under
419 * generic_make_request() should be avoided - instead, use bio_set's front_pad
420 * for per bio allocations.
421 *
3f86a82a
KO
422 * RETURNS:
423 * Pointer to new bio on success, NULL on failure.
424 */
7a88fa19
DC
425struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
426 struct bio_set *bs)
1da177e4 427{
df2cb6da 428 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
429 unsigned front_pad;
430 unsigned inline_vecs;
34053979 431 struct bio_vec *bvl = NULL;
451a9ebf
TH
432 struct bio *bio;
433 void *p;
434
3f86a82a
KO
435 if (!bs) {
436 if (nr_iovecs > UIO_MAXIOV)
437 return NULL;
438
439 p = kmalloc(sizeof(struct bio) +
440 nr_iovecs * sizeof(struct bio_vec),
441 gfp_mask);
442 front_pad = 0;
443 inline_vecs = nr_iovecs;
444 } else {
d8f429e1 445 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
446 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
447 nr_iovecs > 0))
d8f429e1 448 return NULL;
df2cb6da
KO
449 /*
450 * generic_make_request() converts recursion to iteration; this
451 * means if we're running beneath it, any bios we allocate and
452 * submit will not be submitted (and thus freed) until after we
453 * return.
454 *
455 * This exposes us to a potential deadlock if we allocate
456 * multiple bios from the same bio_set() while running
457 * underneath generic_make_request(). If we were to allocate
458 * multiple bios (say a stacking block driver that was splitting
459 * bios), we would deadlock if we exhausted the mempool's
460 * reserve.
461 *
462 * We solve this, and guarantee forward progress, with a rescuer
463 * workqueue per bio_set. If we go to allocate and there are
464 * bios on current->bio_list, we first try the allocation
d0164adc
MG
465 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
466 * bios we would be blocking to the rescuer workqueue before
467 * we retry with the original gfp_flags.
df2cb6da
KO
468 */
469
f5fe1b51
N
470 if (current->bio_list &&
471 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
472 !bio_list_empty(&current->bio_list[1])) &&
473 bs->rescue_workqueue)
d0164adc 474 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 475
8aa6ba2f 476 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
477 if (!p && gfp_mask != saved_gfp) {
478 punt_bios_to_rescuer(bs);
479 gfp_mask = saved_gfp;
8aa6ba2f 480 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
481 }
482
3f86a82a
KO
483 front_pad = bs->front_pad;
484 inline_vecs = BIO_INLINE_VECS;
485 }
486
451a9ebf
TH
487 if (unlikely(!p))
488 return NULL;
1da177e4 489
3f86a82a 490 bio = p + front_pad;
3a83f467 491 bio_init(bio, NULL, 0);
34053979 492
3f86a82a 493 if (nr_iovecs > inline_vecs) {
ed996a52
CH
494 unsigned long idx = 0;
495
8aa6ba2f 496 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
497 if (!bvl && gfp_mask != saved_gfp) {
498 punt_bios_to_rescuer(bs);
499 gfp_mask = saved_gfp;
8aa6ba2f 500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
501 }
502
34053979
IM
503 if (unlikely(!bvl))
504 goto err_free;
a38352e0 505
ed996a52 506 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
507 } else if (nr_iovecs) {
508 bvl = bio->bi_inline_vecs;
1da177e4 509 }
3f86a82a
KO
510
511 bio->bi_pool = bs;
34053979 512 bio->bi_max_vecs = nr_iovecs;
34053979 513 bio->bi_io_vec = bvl;
1da177e4 514 return bio;
34053979
IM
515
516err_free:
8aa6ba2f 517 mempool_free(p, &bs->bio_pool);
34053979 518 return NULL;
1da177e4 519}
a112a71d 520EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 521
38a72dac 522void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
523{
524 unsigned long flags;
7988613b
KO
525 struct bio_vec bv;
526 struct bvec_iter iter;
1da177e4 527
38a72dac 528 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
529 char *data = bvec_kmap_irq(&bv, &flags);
530 memset(data, 0, bv.bv_len);
531 flush_dcache_page(bv.bv_page);
1da177e4
LT
532 bvec_kunmap_irq(data, &flags);
533 }
534}
38a72dac 535EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4
LT
536
537/**
538 * bio_put - release a reference to a bio
539 * @bio: bio to release reference to
540 *
541 * Description:
542 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 543 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
544 **/
545void bio_put(struct bio *bio)
546{
dac56212 547 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 548 bio_free(bio);
dac56212
JA
549 else {
550 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
551
552 /*
553 * last put frees it
554 */
555 if (atomic_dec_and_test(&bio->__bi_cnt))
556 bio_free(bio);
557 }
1da177e4 558}
a112a71d 559EXPORT_SYMBOL(bio_put);
1da177e4 560
6c210aa5 561int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
562{
563 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
564 blk_recount_segments(q, bio);
565
566 return bio->bi_phys_segments;
567}
568
59d276fe
KO
569/**
570 * __bio_clone_fast - clone a bio that shares the original bio's biovec
571 * @bio: destination bio
572 * @bio_src: bio to clone
573 *
574 * Clone a &bio. Caller will own the returned bio, but not
575 * the actual data it points to. Reference count of returned
576 * bio will be one.
577 *
578 * Caller must ensure that @bio_src is not freed before @bio.
579 */
580void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
581{
ed996a52 582 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
583
584 /*
74d46992 585 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
586 * so we don't set nor calculate new physical/hw segment counts here
587 */
74d46992 588 bio->bi_disk = bio_src->bi_disk;
62530ed8 589 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 590 bio_set_flag(bio, BIO_CLONED);
111be883
SL
591 if (bio_flagged(bio_src, BIO_THROTTLED))
592 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 593 bio->bi_opf = bio_src->bi_opf;
ca474b73 594 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 595 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
596 bio->bi_iter = bio_src->bi_iter;
597 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 598
db6638d7 599 bio_clone_blkg_association(bio, bio_src);
e439bedf 600 blkcg_bio_issue_init(bio);
59d276fe
KO
601}
602EXPORT_SYMBOL(__bio_clone_fast);
603
604/**
605 * bio_clone_fast - clone a bio that shares the original bio's biovec
606 * @bio: bio to clone
607 * @gfp_mask: allocation priority
608 * @bs: bio_set to allocate from
609 *
610 * Like __bio_clone_fast, only also allocates the returned bio
611 */
612struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
613{
614 struct bio *b;
615
616 b = bio_alloc_bioset(gfp_mask, 0, bs);
617 if (!b)
618 return NULL;
619
620 __bio_clone_fast(b, bio);
621
622 if (bio_integrity(bio)) {
623 int ret;
624
625 ret = bio_integrity_clone(b, bio, gfp_mask);
626
627 if (ret < 0) {
628 bio_put(b);
629 return NULL;
630 }
631 }
632
633 return b;
634}
635EXPORT_SYMBOL(bio_clone_fast);
636
5919482e
ML
637static inline bool page_is_mergeable(const struct bio_vec *bv,
638 struct page *page, unsigned int len, unsigned int off,
ff896738 639 bool *same_page)
5919482e
ML
640{
641 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
642 bv->bv_offset + bv->bv_len - 1;
643 phys_addr_t page_addr = page_to_phys(page);
644
645 if (vec_end_addr + 1 != page_addr + off)
646 return false;
647 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
648 return false;
52d52d1c 649
ff896738
CH
650 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
651 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
652 return false;
5919482e
ML
653 return true;
654}
655
489fbbcb
ML
656/*
657 * Check if the @page can be added to the current segment(@bv), and make
658 * sure to call it only if page_is_mergeable(@bv, @page) is true
659 */
660static bool can_add_page_to_seg(struct request_queue *q,
661 struct bio_vec *bv, struct page *page, unsigned len,
662 unsigned offset)
663{
664 unsigned long mask = queue_segment_boundary(q);
665 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
666 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
667
668 if ((addr1 | mask) != (addr2 | mask))
669 return false;
670
671 if (bv->bv_len + len > queue_max_segment_size(q))
672 return false;
673
674 return true;
675}
676
1da177e4 677/**
19047087 678 * __bio_add_pc_page - attempt to add page to passthrough bio
c66a14d0
KO
679 * @q: the target queue
680 * @bio: destination bio
681 * @page: page to add
682 * @len: vec entry length
683 * @offset: vec entry offset
19047087 684 * @put_same_page: put the page if it is same with last added page
1da177e4 685 *
c66a14d0
KO
686 * Attempt to add a page to the bio_vec maplist. This can fail for a
687 * number of reasons, such as the bio being full or target block device
688 * limitations. The target block device must allow bio's up to PAGE_SIZE,
689 * so it is always possible to add a single page to an empty bio.
690 *
5a8ce240 691 * This should only be used by passthrough bios.
1da177e4 692 */
4713839d 693static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
19047087
ML
694 struct page *page, unsigned int len, unsigned int offset,
695 bool put_same_page)
1da177e4 696{
1da177e4 697 struct bio_vec *bvec;
ff896738 698 bool same_page = false;
1da177e4
LT
699
700 /*
701 * cloned bio must not modify vec list
702 */
703 if (unlikely(bio_flagged(bio, BIO_CLONED)))
704 return 0;
705
c66a14d0 706 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
707 return 0;
708
80cfd548 709 if (bio->bi_vcnt > 0) {
5a8ce240 710 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
80cfd548 711
5a8ce240
ML
712 if (page == bvec->bv_page &&
713 offset == bvec->bv_offset + bvec->bv_len) {
19047087
ML
714 if (put_same_page)
715 put_page(page);
5a8ce240 716 bvec->bv_len += len;
80cfd548
JA
717 goto done;
718 }
66cb45aa
JA
719
720 /*
721 * If the queue doesn't support SG gaps and adding this
722 * offset would create a gap, disallow it.
723 */
5a8ce240 724 if (bvec_gap_to_prev(q, bvec, offset))
66cb45aa 725 return 0;
489fbbcb 726
ff896738 727 if (page_is_mergeable(bvec, page, len, offset, &same_page) &&
dcdca753
CH
728 can_add_page_to_seg(q, bvec, page, len, offset)) {
729 bvec->bv_len += len;
730 goto done;
731 }
80cfd548
JA
732 }
733
0aa69fd3 734 if (bio_full(bio))
1da177e4
LT
735 return 0;
736
489fbbcb
ML
737 if (bio->bi_phys_segments >= queue_max_segments(q))
738 return 0;
739
fcbf6a08
ML
740 bvec = &bio->bi_io_vec[bio->bi_vcnt];
741 bvec->bv_page = page;
742 bvec->bv_len = len;
743 bvec->bv_offset = offset;
744 bio->bi_vcnt++;
80cfd548 745 done:
dcdca753 746 bio->bi_iter.bi_size += len;
489fbbcb
ML
747 bio->bi_phys_segments = bio->bi_vcnt;
748 bio_set_flag(bio, BIO_SEG_VALID);
1da177e4
LT
749 return len;
750}
19047087
ML
751
752int bio_add_pc_page(struct request_queue *q, struct bio *bio,
753 struct page *page, unsigned int len, unsigned int offset)
754{
755 return __bio_add_pc_page(q, bio, page, len, offset, false);
756}
a112a71d 757EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 758
1da177e4 759/**
0aa69fd3
CH
760 * __bio_try_merge_page - try appending data to an existing bvec.
761 * @bio: destination bio
551879a4 762 * @page: start page to add
0aa69fd3 763 * @len: length of the data to add
551879a4 764 * @off: offset of the data relative to @page
ff896738 765 * @same_page: return if the segment has been merged inside the same page
1da177e4 766 *
0aa69fd3
CH
767 * Try to add the data at @page + @off to the last bvec of @bio. This is a
768 * a useful optimisation for file systems with a block size smaller than the
769 * page size.
770 *
551879a4
ML
771 * Warn if (@len, @off) crosses pages in case that @same_page is true.
772 *
0aa69fd3 773 * Return %true on success or %false on failure.
1da177e4 774 */
0aa69fd3 775bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 776 unsigned int len, unsigned int off, bool *same_page)
1da177e4 777{
c66a14d0 778 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 779 return false;
762380ad 780
c66a14d0 781 if (bio->bi_vcnt > 0) {
0aa69fd3 782 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
783
784 if (page_is_mergeable(bv, page, len, off, same_page)) {
785 bv->bv_len += len;
786 bio->bi_iter.bi_size += len;
787 return true;
788 }
c66a14d0 789 }
0aa69fd3
CH
790 return false;
791}
792EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 793
0aa69fd3 794/**
551879a4 795 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 796 * @bio: destination bio
551879a4
ML
797 * @page: start page to add
798 * @len: length of the data to add, may cross pages
799 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
800 *
801 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
802 * that @bio has space for another bvec.
803 */
804void __bio_add_page(struct bio *bio, struct page *page,
805 unsigned int len, unsigned int off)
806{
807 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 808
0aa69fd3
CH
809 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
810 WARN_ON_ONCE(bio_full(bio));
811
812 bv->bv_page = page;
813 bv->bv_offset = off;
814 bv->bv_len = len;
c66a14d0 815
c66a14d0 816 bio->bi_iter.bi_size += len;
0aa69fd3
CH
817 bio->bi_vcnt++;
818}
819EXPORT_SYMBOL_GPL(__bio_add_page);
820
821/**
551879a4 822 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 823 * @bio: destination bio
551879a4
ML
824 * @page: start page to add
825 * @len: vec entry length, may cross pages
826 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 827 *
551879a4 828 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
829 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
830 */
831int bio_add_page(struct bio *bio, struct page *page,
832 unsigned int len, unsigned int offset)
833{
ff896738
CH
834 bool same_page = false;
835
836 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
0aa69fd3
CH
837 if (bio_full(bio))
838 return 0;
839 __bio_add_page(bio, page, len, offset);
840 }
c66a14d0 841 return len;
1da177e4 842}
a112a71d 843EXPORT_SYMBOL(bio_add_page);
1da177e4 844
7321ecbf
CH
845static void bio_get_pages(struct bio *bio)
846{
847 struct bvec_iter_all iter_all;
848 struct bio_vec *bvec;
7321ecbf 849
2b070cfe 850 bio_for_each_segment_all(bvec, bio, iter_all)
7321ecbf
CH
851 get_page(bvec->bv_page);
852}
853
854static void bio_release_pages(struct bio *bio)
855{
856 struct bvec_iter_all iter_all;
857 struct bio_vec *bvec;
7321ecbf 858
2b070cfe 859 bio_for_each_segment_all(bvec, bio, iter_all)
7321ecbf
CH
860 put_page(bvec->bv_page);
861}
862
6d0c48ae
JA
863static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
864{
865 const struct bio_vec *bv = iter->bvec;
866 unsigned int len;
867 size_t size;
868
869 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
870 return -EINVAL;
871
872 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
873 size = bio_add_page(bio, bv->bv_page, len,
874 bv->bv_offset + iter->iov_offset);
a10584c3
CH
875 if (unlikely(size != len))
876 return -EINVAL;
a10584c3
CH
877 iov_iter_advance(iter, size);
878 return 0;
6d0c48ae
JA
879}
880
576ed913
CH
881#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
882
2cefe4db 883/**
17d51b10 884 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
885 * @bio: bio to add pages to
886 * @iter: iov iterator describing the region to be mapped
887 *
17d51b10 888 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 889 * pages will have to be released using put_page() when done.
17d51b10
MW
890 * For multi-segment *iter, this function only adds pages from the
891 * the next non-empty segment of the iov iterator.
2cefe4db 892 */
17d51b10 893static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 894{
576ed913
CH
895 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
896 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
897 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
898 struct page **pages = (struct page **)bv;
576ed913
CH
899 ssize_t size, left;
900 unsigned len, i;
b403ea24 901 size_t offset;
576ed913
CH
902
903 /*
904 * Move page array up in the allocated memory for the bio vecs as far as
905 * possible so that we can start filling biovecs from the beginning
906 * without overwriting the temporary page array.
907 */
908 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
909 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
910
911 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
912 if (unlikely(size <= 0))
913 return size ? size : -EFAULT;
2cefe4db 914
576ed913
CH
915 for (left = size, i = 0; left > 0; left -= len, i++) {
916 struct page *page = pages[i];
2cefe4db 917
576ed913
CH
918 len = min_t(size_t, PAGE_SIZE - offset, left);
919 if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
920 return -EINVAL;
921 offset = 0;
2cefe4db
KO
922 }
923
2cefe4db
KO
924 iov_iter_advance(iter, size);
925 return 0;
926}
17d51b10
MW
927
928/**
6d0c48ae 929 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 930 * @bio: bio to add pages to
6d0c48ae
JA
931 * @iter: iov iterator describing the region to be added
932 *
933 * This takes either an iterator pointing to user memory, or one pointing to
934 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
935 * map them into the kernel. On IO completion, the caller should put those
399254aa
JA
936 * pages. If we're adding kernel pages, and the caller told us it's safe to
937 * do so, we just have to add the pages to the bio directly. We don't grab an
938 * extra reference to those pages (the user should already have that), and we
939 * don't put the page on IO completion. The caller needs to check if the bio is
940 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
941 * released.
17d51b10 942 *
17d51b10 943 * The function tries, but does not guarantee, to pin as many pages as
6d0c48ae
JA
944 * fit into the bio, or are requested in *iter, whatever is smaller. If
945 * MM encounters an error pinning the requested pages, it stops. Error
946 * is returned only if 0 pages could be pinned.
17d51b10
MW
947 */
948int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
949{
6d0c48ae 950 const bool is_bvec = iov_iter_is_bvec(iter);
14eacf12
CH
951 int ret;
952
953 if (WARN_ON_ONCE(bio->bi_vcnt))
954 return -EINVAL;
17d51b10
MW
955
956 do {
6d0c48ae
JA
957 if (is_bvec)
958 ret = __bio_iov_bvec_add_pages(bio, iter);
959 else
960 ret = __bio_iov_iter_get_pages(bio, iter);
14eacf12 961 } while (!ret && iov_iter_count(iter) && !bio_full(bio));
17d51b10 962
7321ecbf
CH
963 if (iov_iter_bvec_no_ref(iter))
964 bio_set_flag(bio, BIO_NO_PAGE_REF);
0257c0ed 965 else if (is_bvec)
7321ecbf
CH
966 bio_get_pages(bio);
967
14eacf12 968 return bio->bi_vcnt ? 0 : ret;
17d51b10 969}
2cefe4db 970
4246a0b6 971static void submit_bio_wait_endio(struct bio *bio)
9e882242 972{
65e53aab 973 complete(bio->bi_private);
9e882242
KO
974}
975
976/**
977 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
978 * @bio: The &struct bio which describes the I/O
979 *
980 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
981 * bio_endio() on failure.
3d289d68
JK
982 *
983 * WARNING: Unlike to how submit_bio() is usually used, this function does not
984 * result in bio reference to be consumed. The caller must drop the reference
985 * on his own.
9e882242 986 */
4e49ea4a 987int submit_bio_wait(struct bio *bio)
9e882242 988{
e319e1fb 989 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 990
65e53aab 991 bio->bi_private = &done;
9e882242 992 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 993 bio->bi_opf |= REQ_SYNC;
4e49ea4a 994 submit_bio(bio);
65e53aab 995 wait_for_completion_io(&done);
9e882242 996
65e53aab 997 return blk_status_to_errno(bio->bi_status);
9e882242
KO
998}
999EXPORT_SYMBOL(submit_bio_wait);
1000
054bdf64
KO
1001/**
1002 * bio_advance - increment/complete a bio by some number of bytes
1003 * @bio: bio to advance
1004 * @bytes: number of bytes to complete
1005 *
1006 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1007 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1008 * be updated on the last bvec as well.
1009 *
1010 * @bio will then represent the remaining, uncompleted portion of the io.
1011 */
1012void bio_advance(struct bio *bio, unsigned bytes)
1013{
1014 if (bio_integrity(bio))
1015 bio_integrity_advance(bio, bytes);
1016
4550dd6c 1017 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1018}
1019EXPORT_SYMBOL(bio_advance);
1020
45db54d5
KO
1021void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1022 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1023{
1cb9dda4 1024 struct bio_vec src_bv, dst_bv;
16ac3d63 1025 void *src_p, *dst_p;
1cb9dda4 1026 unsigned bytes;
16ac3d63 1027
45db54d5
KO
1028 while (src_iter->bi_size && dst_iter->bi_size) {
1029 src_bv = bio_iter_iovec(src, *src_iter);
1030 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1031
1032 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1033
1cb9dda4
KO
1034 src_p = kmap_atomic(src_bv.bv_page);
1035 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1036
1cb9dda4
KO
1037 memcpy(dst_p + dst_bv.bv_offset,
1038 src_p + src_bv.bv_offset,
16ac3d63
KO
1039 bytes);
1040
1041 kunmap_atomic(dst_p);
1042 kunmap_atomic(src_p);
1043
6e6e811d
KO
1044 flush_dcache_page(dst_bv.bv_page);
1045
45db54d5
KO
1046 bio_advance_iter(src, src_iter, bytes);
1047 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
1048 }
1049}
38a72dac
KO
1050EXPORT_SYMBOL(bio_copy_data_iter);
1051
1052/**
45db54d5
KO
1053 * bio_copy_data - copy contents of data buffers from one bio to another
1054 * @src: source bio
1055 * @dst: destination bio
38a72dac
KO
1056 *
1057 * Stops when it reaches the end of either @src or @dst - that is, copies
1058 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1059 */
1060void bio_copy_data(struct bio *dst, struct bio *src)
1061{
45db54d5
KO
1062 struct bvec_iter src_iter = src->bi_iter;
1063 struct bvec_iter dst_iter = dst->bi_iter;
1064
1065 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1066}
16ac3d63
KO
1067EXPORT_SYMBOL(bio_copy_data);
1068
45db54d5
KO
1069/**
1070 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1071 * another
1072 * @src: source bio list
1073 * @dst: destination bio list
1074 *
1075 * Stops when it reaches the end of either the @src list or @dst list - that is,
1076 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1077 * bios).
1078 */
1079void bio_list_copy_data(struct bio *dst, struct bio *src)
1080{
1081 struct bvec_iter src_iter = src->bi_iter;
1082 struct bvec_iter dst_iter = dst->bi_iter;
1083
1084 while (1) {
1085 if (!src_iter.bi_size) {
1086 src = src->bi_next;
1087 if (!src)
1088 break;
1089
1090 src_iter = src->bi_iter;
1091 }
1092
1093 if (!dst_iter.bi_size) {
1094 dst = dst->bi_next;
1095 if (!dst)
1096 break;
1097
1098 dst_iter = dst->bi_iter;
1099 }
1100
1101 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1102 }
1103}
1104EXPORT_SYMBOL(bio_list_copy_data);
1105
1da177e4 1106struct bio_map_data {
152e283f 1107 int is_our_pages;
26e49cfc
KO
1108 struct iov_iter iter;
1109 struct iovec iov[];
1da177e4
LT
1110};
1111
0e5b935d 1112static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1113 gfp_t gfp_mask)
1da177e4 1114{
0e5b935d
AV
1115 struct bio_map_data *bmd;
1116 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1117 return NULL;
1da177e4 1118
0e5b935d
AV
1119 bmd = kmalloc(sizeof(struct bio_map_data) +
1120 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1121 if (!bmd)
1122 return NULL;
1123 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1124 bmd->iter = *data;
1125 bmd->iter.iov = bmd->iov;
1126 return bmd;
1da177e4
LT
1127}
1128
9124d3fe
DP
1129/**
1130 * bio_copy_from_iter - copy all pages from iov_iter to bio
1131 * @bio: The &struct bio which describes the I/O as destination
1132 * @iter: iov_iter as source
1133 *
1134 * Copy all pages from iov_iter to bio.
1135 * Returns 0 on success, or error on failure.
1136 */
98a09d61 1137static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1138{
c5dec1c3 1139 struct bio_vec *bvec;
6dc4f100 1140 struct bvec_iter_all iter_all;
c5dec1c3 1141
2b070cfe 1142 bio_for_each_segment_all(bvec, bio, iter_all) {
9124d3fe 1143 ssize_t ret;
c5dec1c3 1144
9124d3fe
DP
1145 ret = copy_page_from_iter(bvec->bv_page,
1146 bvec->bv_offset,
1147 bvec->bv_len,
98a09d61 1148 iter);
9124d3fe 1149
98a09d61 1150 if (!iov_iter_count(iter))
9124d3fe
DP
1151 break;
1152
1153 if (ret < bvec->bv_len)
1154 return -EFAULT;
c5dec1c3
FT
1155 }
1156
9124d3fe
DP
1157 return 0;
1158}
1159
1160/**
1161 * bio_copy_to_iter - copy all pages from bio to iov_iter
1162 * @bio: The &struct bio which describes the I/O as source
1163 * @iter: iov_iter as destination
1164 *
1165 * Copy all pages from bio to iov_iter.
1166 * Returns 0 on success, or error on failure.
1167 */
1168static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1169{
9124d3fe 1170 struct bio_vec *bvec;
6dc4f100 1171 struct bvec_iter_all iter_all;
9124d3fe 1172
2b070cfe 1173 bio_for_each_segment_all(bvec, bio, iter_all) {
9124d3fe
DP
1174 ssize_t ret;
1175
1176 ret = copy_page_to_iter(bvec->bv_page,
1177 bvec->bv_offset,
1178 bvec->bv_len,
1179 &iter);
1180
1181 if (!iov_iter_count(&iter))
1182 break;
1183
1184 if (ret < bvec->bv_len)
1185 return -EFAULT;
1186 }
1187
1188 return 0;
c5dec1c3
FT
1189}
1190
491221f8 1191void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1192{
1193 struct bio_vec *bvec;
6dc4f100 1194 struct bvec_iter_all iter_all;
1dfa0f68 1195
2b070cfe 1196 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1197 __free_page(bvec->bv_page);
1198}
491221f8 1199EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1200
1da177e4
LT
1201/**
1202 * bio_uncopy_user - finish previously mapped bio
1203 * @bio: bio being terminated
1204 *
ddad8dd0 1205 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1206 * to user space in case of a read.
1207 */
1208int bio_uncopy_user(struct bio *bio)
1209{
1210 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1211 int ret = 0;
1da177e4 1212
35dc2483
RD
1213 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1214 /*
1215 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1216 * don't copy into a random user address space, just free
1217 * and return -EINTR so user space doesn't expect any data.
35dc2483 1218 */
2d99b55d
HR
1219 if (!current->mm)
1220 ret = -EINTR;
1221 else if (bio_data_dir(bio) == READ)
9124d3fe 1222 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1223 if (bmd->is_our_pages)
1224 bio_free_pages(bio);
35dc2483 1225 }
c8db4448 1226 kfree(bmd);
1da177e4
LT
1227 bio_put(bio);
1228 return ret;
1229}
1230
1231/**
c5dec1c3 1232 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1233 * @q: destination block queue
1234 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1235 * @iter: iovec iterator
1236 * @gfp_mask: memory allocation flags
1da177e4
LT
1237 *
1238 * Prepares and returns a bio for indirect user io, bouncing data
1239 * to/from kernel pages as necessary. Must be paired with
1240 * call bio_uncopy_user() on io completion.
1241 */
152e283f
FT
1242struct bio *bio_copy_user_iov(struct request_queue *q,
1243 struct rq_map_data *map_data,
e81cef5d 1244 struct iov_iter *iter,
26e49cfc 1245 gfp_t gfp_mask)
1da177e4 1246{
1da177e4 1247 struct bio_map_data *bmd;
1da177e4
LT
1248 struct page *page;
1249 struct bio *bio;
d16d44eb
AV
1250 int i = 0, ret;
1251 int nr_pages;
26e49cfc 1252 unsigned int len = iter->count;
bd5cecea 1253 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1254
0e5b935d 1255 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1256 if (!bmd)
1257 return ERR_PTR(-ENOMEM);
1258
26e49cfc
KO
1259 /*
1260 * We need to do a deep copy of the iov_iter including the iovecs.
1261 * The caller provided iov might point to an on-stack or otherwise
1262 * shortlived one.
1263 */
1264 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1265
d16d44eb
AV
1266 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1267 if (nr_pages > BIO_MAX_PAGES)
1268 nr_pages = BIO_MAX_PAGES;
26e49cfc 1269
1da177e4 1270 ret = -ENOMEM;
a9e9dc24 1271 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1272 if (!bio)
1273 goto out_bmd;
1274
1da177e4 1275 ret = 0;
56c451f4
FT
1276
1277 if (map_data) {
e623ddb4 1278 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1279 i = map_data->offset / PAGE_SIZE;
1280 }
1da177e4 1281 while (len) {
e623ddb4 1282 unsigned int bytes = PAGE_SIZE;
1da177e4 1283
56c451f4
FT
1284 bytes -= offset;
1285
1da177e4
LT
1286 if (bytes > len)
1287 bytes = len;
1288
152e283f 1289 if (map_data) {
e623ddb4 1290 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1291 ret = -ENOMEM;
1292 break;
1293 }
e623ddb4
FT
1294
1295 page = map_data->pages[i / nr_pages];
1296 page += (i % nr_pages);
1297
1298 i++;
1299 } else {
152e283f 1300 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1301 if (!page) {
1302 ret = -ENOMEM;
1303 break;
1304 }
1da177e4
LT
1305 }
1306
a3761c3c
JG
1307 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1308 if (!map_data)
1309 __free_page(page);
1da177e4 1310 break;
a3761c3c 1311 }
1da177e4
LT
1312
1313 len -= bytes;
56c451f4 1314 offset = 0;
1da177e4
LT
1315 }
1316
1317 if (ret)
1318 goto cleanup;
1319
2884d0be
AV
1320 if (map_data)
1321 map_data->offset += bio->bi_iter.bi_size;
1322
1da177e4
LT
1323 /*
1324 * success
1325 */
00e23707 1326 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1327 (map_data && map_data->from_user)) {
98a09d61 1328 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1329 if (ret)
1330 goto cleanup;
98a09d61 1331 } else {
f55adad6
KB
1332 if (bmd->is_our_pages)
1333 zero_fill_bio(bio);
98a09d61 1334 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1335 }
1336
26e49cfc 1337 bio->bi_private = bmd;
2884d0be
AV
1338 if (map_data && map_data->null_mapped)
1339 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1340 return bio;
1341cleanup:
152e283f 1342 if (!map_data)
1dfa0f68 1343 bio_free_pages(bio);
1da177e4
LT
1344 bio_put(bio);
1345out_bmd:
c8db4448 1346 kfree(bmd);
1da177e4
LT
1347 return ERR_PTR(ret);
1348}
1349
37f19e57
CH
1350/**
1351 * bio_map_user_iov - map user iovec into bio
1352 * @q: the struct request_queue for the bio
1353 * @iter: iovec iterator
1354 * @gfp_mask: memory allocation flags
1355 *
1356 * Map the user space address into a bio suitable for io to a block
1357 * device. Returns an error pointer in case of error.
1358 */
1359struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1360 struct iov_iter *iter,
37f19e57 1361 gfp_t gfp_mask)
1da177e4 1362{
26e49cfc 1363 int j;
1da177e4 1364 struct bio *bio;
076098e5 1365 int ret;
2b04e8f6 1366 struct bio_vec *bvec;
6dc4f100 1367 struct bvec_iter_all iter_all;
1da177e4 1368
b282cc76 1369 if (!iov_iter_count(iter))
1da177e4
LT
1370 return ERR_PTR(-EINVAL);
1371
b282cc76 1372 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1373 if (!bio)
1374 return ERR_PTR(-ENOMEM);
1375
0a0f1513 1376 while (iov_iter_count(iter)) {
629e42bc 1377 struct page **pages;
076098e5
AV
1378 ssize_t bytes;
1379 size_t offs, added = 0;
1380 int npages;
1da177e4 1381
0a0f1513 1382 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1383 if (unlikely(bytes <= 0)) {
1384 ret = bytes ? bytes : -EFAULT;
f1970baf 1385 goto out_unmap;
99172157 1386 }
f1970baf 1387
076098e5 1388 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1389
98f0bc99
AV
1390 if (unlikely(offs & queue_dma_alignment(q))) {
1391 ret = -EINVAL;
1392 j = 0;
1393 } else {
1394 for (j = 0; j < npages; j++) {
1395 struct page *page = pages[j];
1396 unsigned int n = PAGE_SIZE - offs;
f1970baf 1397
98f0bc99
AV
1398 if (n > bytes)
1399 n = bytes;
95d78c28 1400
19047087
ML
1401 if (!__bio_add_pc_page(q, bio, page, n, offs,
1402 true))
98f0bc99 1403 break;
1da177e4 1404
98f0bc99
AV
1405 added += n;
1406 bytes -= n;
1407 offs = 0;
1408 }
0a0f1513 1409 iov_iter_advance(iter, added);
f1970baf 1410 }
1da177e4 1411 /*
f1970baf 1412 * release the pages we didn't map into the bio, if any
1da177e4 1413 */
629e42bc 1414 while (j < npages)
09cbfeaf 1415 put_page(pages[j++]);
629e42bc 1416 kvfree(pages);
e2e115d1
AV
1417 /* couldn't stuff something into bio? */
1418 if (bytes)
1419 break;
1da177e4
LT
1420 }
1421
b7c44ed9 1422 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1423
1424 /*
5fad1b64 1425 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1426 * it would normally disappear when its bi_end_io is run.
1427 * however, we need it for the unmap, so grab an extra
1428 * reference to it
1429 */
1430 bio_get(bio);
1da177e4 1431 return bio;
f1970baf
JB
1432
1433 out_unmap:
2b070cfe 1434 bio_for_each_segment_all(bvec, bio, iter_all) {
2b04e8f6 1435 put_page(bvec->bv_page);
f1970baf 1436 }
1da177e4
LT
1437 bio_put(bio);
1438 return ERR_PTR(ret);
1439}
1440
1da177e4
LT
1441static void __bio_unmap_user(struct bio *bio)
1442{
1443 struct bio_vec *bvec;
6dc4f100 1444 struct bvec_iter_all iter_all;
1da177e4
LT
1445
1446 /*
1447 * make sure we dirty pages we wrote to
1448 */
2b070cfe 1449 bio_for_each_segment_all(bvec, bio, iter_all) {
1da177e4
LT
1450 if (bio_data_dir(bio) == READ)
1451 set_page_dirty_lock(bvec->bv_page);
1452
09cbfeaf 1453 put_page(bvec->bv_page);
1da177e4
LT
1454 }
1455
1456 bio_put(bio);
1457}
1458
1459/**
1460 * bio_unmap_user - unmap a bio
1461 * @bio: the bio being unmapped
1462 *
5fad1b64
BVA
1463 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1464 * process context.
1da177e4
LT
1465 *
1466 * bio_unmap_user() may sleep.
1467 */
1468void bio_unmap_user(struct bio *bio)
1469{
1470 __bio_unmap_user(bio);
1471 bio_put(bio);
1472}
1473
4246a0b6 1474static void bio_map_kern_endio(struct bio *bio)
b823825e 1475{
b823825e 1476 bio_put(bio);
b823825e
JA
1477}
1478
75c72b83
CH
1479/**
1480 * bio_map_kern - map kernel address into bio
1481 * @q: the struct request_queue for the bio
1482 * @data: pointer to buffer to map
1483 * @len: length in bytes
1484 * @gfp_mask: allocation flags for bio allocation
1485 *
1486 * Map the kernel address into a bio suitable for io to a block
1487 * device. Returns an error pointer in case of error.
1488 */
1489struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1490 gfp_t gfp_mask)
df46b9a4
MC
1491{
1492 unsigned long kaddr = (unsigned long)data;
1493 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1494 unsigned long start = kaddr >> PAGE_SHIFT;
1495 const int nr_pages = end - start;
1496 int offset, i;
1497 struct bio *bio;
1498
a9e9dc24 1499 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1500 if (!bio)
1501 return ERR_PTR(-ENOMEM);
1502
1503 offset = offset_in_page(kaddr);
1504 for (i = 0; i < nr_pages; i++) {
1505 unsigned int bytes = PAGE_SIZE - offset;
1506
1507 if (len <= 0)
1508 break;
1509
1510 if (bytes > len)
1511 bytes = len;
1512
defd94b7 1513 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1514 offset) < bytes) {
1515 /* we don't support partial mappings */
1516 bio_put(bio);
1517 return ERR_PTR(-EINVAL);
1518 }
df46b9a4
MC
1519
1520 data += bytes;
1521 len -= bytes;
1522 offset = 0;
1523 }
1524
b823825e 1525 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1526 return bio;
1527}
a112a71d 1528EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1529
4246a0b6 1530static void bio_copy_kern_endio(struct bio *bio)
68154e90 1531{
1dfa0f68
CH
1532 bio_free_pages(bio);
1533 bio_put(bio);
1534}
1535
4246a0b6 1536static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1537{
42d2683a 1538 char *p = bio->bi_private;
1dfa0f68 1539 struct bio_vec *bvec;
6dc4f100 1540 struct bvec_iter_all iter_all;
68154e90 1541
2b070cfe 1542 bio_for_each_segment_all(bvec, bio, iter_all) {
1dfa0f68 1543 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1544 p += bvec->bv_len;
68154e90
FT
1545 }
1546
4246a0b6 1547 bio_copy_kern_endio(bio);
68154e90
FT
1548}
1549
1550/**
1551 * bio_copy_kern - copy kernel address into bio
1552 * @q: the struct request_queue for the bio
1553 * @data: pointer to buffer to copy
1554 * @len: length in bytes
1555 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1556 * @reading: data direction is READ
68154e90
FT
1557 *
1558 * copy the kernel address into a bio suitable for io to a block
1559 * device. Returns an error pointer in case of error.
1560 */
1561struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1562 gfp_t gfp_mask, int reading)
1563{
42d2683a
CH
1564 unsigned long kaddr = (unsigned long)data;
1565 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1566 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1567 struct bio *bio;
1568 void *p = data;
1dfa0f68 1569 int nr_pages = 0;
68154e90 1570
42d2683a
CH
1571 /*
1572 * Overflow, abort
1573 */
1574 if (end < start)
1575 return ERR_PTR(-EINVAL);
68154e90 1576
42d2683a
CH
1577 nr_pages = end - start;
1578 bio = bio_kmalloc(gfp_mask, nr_pages);
1579 if (!bio)
1580 return ERR_PTR(-ENOMEM);
68154e90 1581
42d2683a
CH
1582 while (len) {
1583 struct page *page;
1584 unsigned int bytes = PAGE_SIZE;
68154e90 1585
42d2683a
CH
1586 if (bytes > len)
1587 bytes = len;
1588
1589 page = alloc_page(q->bounce_gfp | gfp_mask);
1590 if (!page)
1591 goto cleanup;
1592
1593 if (!reading)
1594 memcpy(page_address(page), p, bytes);
1595
1596 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1597 break;
1598
1599 len -= bytes;
1600 p += bytes;
68154e90
FT
1601 }
1602
1dfa0f68
CH
1603 if (reading) {
1604 bio->bi_end_io = bio_copy_kern_endio_read;
1605 bio->bi_private = data;
1606 } else {
1607 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1608 }
76029ff3 1609
68154e90 1610 return bio;
42d2683a
CH
1611
1612cleanup:
1dfa0f68 1613 bio_free_pages(bio);
42d2683a
CH
1614 bio_put(bio);
1615 return ERR_PTR(-ENOMEM);
68154e90
FT
1616}
1617
1da177e4
LT
1618/*
1619 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1620 * for performing direct-IO in BIOs.
1621 *
1622 * The problem is that we cannot run set_page_dirty() from interrupt context
1623 * because the required locks are not interrupt-safe. So what we can do is to
1624 * mark the pages dirty _before_ performing IO. And in interrupt context,
1625 * check that the pages are still dirty. If so, fine. If not, redirty them
1626 * in process context.
1627 *
1628 * We special-case compound pages here: normally this means reads into hugetlb
1629 * pages. The logic in here doesn't really work right for compound pages
1630 * because the VM does not uniformly chase down the head page in all cases.
1631 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1632 * handle them at all. So we skip compound pages here at an early stage.
1633 *
1634 * Note that this code is very hard to test under normal circumstances because
1635 * direct-io pins the pages with get_user_pages(). This makes
1636 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1637 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1638 * pagecache.
1639 *
1640 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1641 * deferred bio dirtying paths.
1642 */
1643
1644/*
1645 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1646 */
1647void bio_set_pages_dirty(struct bio *bio)
1648{
cb34e057 1649 struct bio_vec *bvec;
6dc4f100 1650 struct bvec_iter_all iter_all;
1da177e4 1651
2b070cfe 1652 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1653 if (!PageCompound(bvec->bv_page))
1654 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1655 }
1656}
1657
1da177e4
LT
1658/*
1659 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1660 * If they are, then fine. If, however, some pages are clean then they must
1661 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1662 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1663 *
1664 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1665 * here on. It will run one put_page() against each page and will run one
1666 * bio_put() against the BIO.
1da177e4
LT
1667 */
1668
65f27f38 1669static void bio_dirty_fn(struct work_struct *work);
1da177e4 1670
65f27f38 1671static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1672static DEFINE_SPINLOCK(bio_dirty_lock);
1673static struct bio *bio_dirty_list;
1674
1675/*
1676 * This runs in process context
1677 */
65f27f38 1678static void bio_dirty_fn(struct work_struct *work)
1da177e4 1679{
24d5493f 1680 struct bio *bio, *next;
1da177e4 1681
24d5493f
CH
1682 spin_lock_irq(&bio_dirty_lock);
1683 next = bio_dirty_list;
1da177e4 1684 bio_dirty_list = NULL;
24d5493f 1685 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1686
24d5493f
CH
1687 while ((bio = next) != NULL) {
1688 next = bio->bi_private;
1da177e4
LT
1689
1690 bio_set_pages_dirty(bio);
399254aa
JA
1691 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1692 bio_release_pages(bio);
1da177e4 1693 bio_put(bio);
1da177e4
LT
1694 }
1695}
1696
1697void bio_check_pages_dirty(struct bio *bio)
1698{
cb34e057 1699 struct bio_vec *bvec;
24d5493f 1700 unsigned long flags;
6dc4f100 1701 struct bvec_iter_all iter_all;
1da177e4 1702
2b070cfe 1703 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1704 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1705 goto defer;
1da177e4
LT
1706 }
1707
399254aa
JA
1708 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1709 bio_release_pages(bio);
24d5493f
CH
1710 bio_put(bio);
1711 return;
1712defer:
1713 spin_lock_irqsave(&bio_dirty_lock, flags);
1714 bio->bi_private = bio_dirty_list;
1715 bio_dirty_list = bio;
1716 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1717 schedule_work(&bio_dirty_work);
1da177e4
LT
1718}
1719
5b18b5a7
MP
1720void update_io_ticks(struct hd_struct *part, unsigned long now)
1721{
1722 unsigned long stamp;
1723again:
1724 stamp = READ_ONCE(part->stamp);
1725 if (unlikely(stamp != now)) {
1726 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1727 __part_stat_add(part, io_ticks, 1);
1728 }
1729 }
1730 if (part->partno) {
1731 part = &part_to_disk(part)->part0;
1732 goto again;
1733 }
1734}
1da177e4 1735
ddcf35d3 1736void generic_start_io_acct(struct request_queue *q, int op,
d62e26b3 1737 unsigned long sectors, struct hd_struct *part)
394ffa50 1738{
ddcf35d3 1739 const int sgrp = op_stat_group(op);
394ffa50 1740
112f158f
MS
1741 part_stat_lock();
1742
5b18b5a7 1743 update_io_ticks(part, jiffies);
112f158f
MS
1744 part_stat_inc(part, ios[sgrp]);
1745 part_stat_add(part, sectors[sgrp], sectors);
ddcf35d3 1746 part_inc_in_flight(q, part, op_is_write(op));
394ffa50
GZ
1747
1748 part_stat_unlock();
1749}
1750EXPORT_SYMBOL(generic_start_io_acct);
1751
ddcf35d3 1752void generic_end_io_acct(struct request_queue *q, int req_op,
d62e26b3 1753 struct hd_struct *part, unsigned long start_time)
394ffa50 1754{
5b18b5a7
MP
1755 unsigned long now = jiffies;
1756 unsigned long duration = now - start_time;
ddcf35d3 1757 const int sgrp = op_stat_group(req_op);
394ffa50 1758
112f158f
MS
1759 part_stat_lock();
1760
5b18b5a7 1761 update_io_ticks(part, now);
112f158f 1762 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
5b18b5a7 1763 part_stat_add(part, time_in_queue, duration);
ddcf35d3 1764 part_dec_in_flight(q, part, op_is_write(req_op));
394ffa50
GZ
1765
1766 part_stat_unlock();
1767}
1768EXPORT_SYMBOL(generic_end_io_acct);
1769
2d4dc890
IL
1770#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1771void bio_flush_dcache_pages(struct bio *bi)
1772{
7988613b
KO
1773 struct bio_vec bvec;
1774 struct bvec_iter iter;
2d4dc890 1775
7988613b
KO
1776 bio_for_each_segment(bvec, bi, iter)
1777 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1778}
1779EXPORT_SYMBOL(bio_flush_dcache_pages);
1780#endif
1781
c4cf5261
JA
1782static inline bool bio_remaining_done(struct bio *bio)
1783{
1784 /*
1785 * If we're not chaining, then ->__bi_remaining is always 1 and
1786 * we always end io on the first invocation.
1787 */
1788 if (!bio_flagged(bio, BIO_CHAIN))
1789 return true;
1790
1791 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1792
326e1dbb 1793 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1794 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1795 return true;
326e1dbb 1796 }
c4cf5261
JA
1797
1798 return false;
1799}
1800
1da177e4
LT
1801/**
1802 * bio_endio - end I/O on a bio
1803 * @bio: bio
1da177e4
LT
1804 *
1805 * Description:
4246a0b6
CH
1806 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1807 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1808 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1809 *
1810 * bio_endio() can be called several times on a bio that has been chained
1811 * using bio_chain(). The ->bi_end_io() function will only be called the
1812 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1813 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1814 **/
4246a0b6 1815void bio_endio(struct bio *bio)
1da177e4 1816{
ba8c6967 1817again:
2b885517 1818 if (!bio_remaining_done(bio))
ba8c6967 1819 return;
7c20f116
CH
1820 if (!bio_integrity_endio(bio))
1821 return;
1da177e4 1822
67b42d0b
JB
1823 if (bio->bi_disk)
1824 rq_qos_done_bio(bio->bi_disk->queue, bio);
1825
ba8c6967
CH
1826 /*
1827 * Need to have a real endio function for chained bios, otherwise
1828 * various corner cases will break (like stacking block devices that
1829 * save/restore bi_end_io) - however, we want to avoid unbounded
1830 * recursion and blowing the stack. Tail call optimization would
1831 * handle this, but compiling with frame pointers also disables
1832 * gcc's sibling call optimization.
1833 */
1834 if (bio->bi_end_io == bio_chain_endio) {
1835 bio = __bio_chain_endio(bio);
1836 goto again;
196d38bc 1837 }
ba8c6967 1838
74d46992
CH
1839 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1840 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1841 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1842 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1843 }
1844
9e234eea 1845 blk_throtl_bio_endio(bio);
b222dd2f
SL
1846 /* release cgroup info */
1847 bio_uninit(bio);
ba8c6967
CH
1848 if (bio->bi_end_io)
1849 bio->bi_end_io(bio);
1da177e4 1850}
a112a71d 1851EXPORT_SYMBOL(bio_endio);
1da177e4 1852
20d0189b
KO
1853/**
1854 * bio_split - split a bio
1855 * @bio: bio to split
1856 * @sectors: number of sectors to split from the front of @bio
1857 * @gfp: gfp mask
1858 * @bs: bio set to allocate from
1859 *
1860 * Allocates and returns a new bio which represents @sectors from the start of
1861 * @bio, and updates @bio to represent the remaining sectors.
1862 *
f3f5da62
MP
1863 * Unless this is a discard request the newly allocated bio will point
1864 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1865 * @bio is not freed before the split.
20d0189b
KO
1866 */
1867struct bio *bio_split(struct bio *bio, int sectors,
1868 gfp_t gfp, struct bio_set *bs)
1869{
f341a4d3 1870 struct bio *split;
20d0189b
KO
1871
1872 BUG_ON(sectors <= 0);
1873 BUG_ON(sectors >= bio_sectors(bio));
1874
f9d03f96 1875 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1876 if (!split)
1877 return NULL;
1878
1879 split->bi_iter.bi_size = sectors << 9;
1880
1881 if (bio_integrity(split))
fbd08e76 1882 bio_integrity_trim(split);
20d0189b
KO
1883
1884 bio_advance(bio, split->bi_iter.bi_size);
1885
fbbaf700 1886 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1887 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1888
20d0189b
KO
1889 return split;
1890}
1891EXPORT_SYMBOL(bio_split);
1892
6678d83f
KO
1893/**
1894 * bio_trim - trim a bio
1895 * @bio: bio to trim
1896 * @offset: number of sectors to trim from the front of @bio
1897 * @size: size we want to trim @bio to, in sectors
1898 */
1899void bio_trim(struct bio *bio, int offset, int size)
1900{
1901 /* 'bio' is a cloned bio which we need to trim to match
1902 * the given offset and size.
6678d83f 1903 */
6678d83f
KO
1904
1905 size <<= 9;
4f024f37 1906 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1907 return;
1908
b7c44ed9 1909 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1910
1911 bio_advance(bio, offset << 9);
1912
4f024f37 1913 bio->bi_iter.bi_size = size;
376a78ab
DM
1914
1915 if (bio_integrity(bio))
fbd08e76 1916 bio_integrity_trim(bio);
376a78ab 1917
6678d83f
KO
1918}
1919EXPORT_SYMBOL_GPL(bio_trim);
1920
1da177e4
LT
1921/*
1922 * create memory pools for biovec's in a bio_set.
1923 * use the global biovec slabs created for general use.
1924 */
8aa6ba2f 1925int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1926{
ed996a52 1927 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1928
8aa6ba2f 1929 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1930}
1931
917a38c7
KO
1932/*
1933 * bioset_exit - exit a bioset initialized with bioset_init()
1934 *
1935 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1936 * kzalloc()).
1937 */
1938void bioset_exit(struct bio_set *bs)
1da177e4 1939{
df2cb6da
KO
1940 if (bs->rescue_workqueue)
1941 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1942 bs->rescue_workqueue = NULL;
df2cb6da 1943
8aa6ba2f
KO
1944 mempool_exit(&bs->bio_pool);
1945 mempool_exit(&bs->bvec_pool);
9f060e22 1946
7878cba9 1947 bioset_integrity_free(bs);
917a38c7
KO
1948 if (bs->bio_slab)
1949 bio_put_slab(bs);
1950 bs->bio_slab = NULL;
1951}
1952EXPORT_SYMBOL(bioset_exit);
1da177e4 1953
917a38c7
KO
1954/**
1955 * bioset_init - Initialize a bio_set
dad08527 1956 * @bs: pool to initialize
917a38c7
KO
1957 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1958 * @front_pad: Number of bytes to allocate in front of the returned bio
1959 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1960 * and %BIOSET_NEED_RESCUER
1961 *
dad08527
KO
1962 * Description:
1963 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1964 * to ask for a number of bytes to be allocated in front of the bio.
1965 * Front pad allocation is useful for embedding the bio inside
1966 * another structure, to avoid allocating extra data to go with the bio.
1967 * Note that the bio must be embedded at the END of that structure always,
1968 * or things will break badly.
1969 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1970 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1971 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1972 * dispatch queued requests when the mempool runs out of space.
1973 *
917a38c7
KO
1974 */
1975int bioset_init(struct bio_set *bs,
1976 unsigned int pool_size,
1977 unsigned int front_pad,
1978 int flags)
1979{
1980 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1981
1982 bs->front_pad = front_pad;
1983
1984 spin_lock_init(&bs->rescue_lock);
1985 bio_list_init(&bs->rescue_list);
1986 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1987
1988 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1989 if (!bs->bio_slab)
1990 return -ENOMEM;
1991
1992 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1993 goto bad;
1994
1995 if ((flags & BIOSET_NEED_BVECS) &&
1996 biovec_init_pool(&bs->bvec_pool, pool_size))
1997 goto bad;
1998
1999 if (!(flags & BIOSET_NEED_RESCUER))
2000 return 0;
2001
2002 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2003 if (!bs->rescue_workqueue)
2004 goto bad;
2005
2006 return 0;
2007bad:
2008 bioset_exit(bs);
2009 return -ENOMEM;
2010}
2011EXPORT_SYMBOL(bioset_init);
2012
28e89fd9
JA
2013/*
2014 * Initialize and setup a new bio_set, based on the settings from
2015 * another bio_set.
2016 */
2017int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2018{
2019 int flags;
2020
2021 flags = 0;
2022 if (src->bvec_pool.min_nr)
2023 flags |= BIOSET_NEED_BVECS;
2024 if (src->rescue_workqueue)
2025 flags |= BIOSET_NEED_RESCUER;
2026
2027 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2028}
2029EXPORT_SYMBOL(bioset_init_from_src);
2030
852c788f 2031#ifdef CONFIG_BLK_CGROUP
1d933cf0 2032
74b7c02a 2033/**
2268c0fe 2034 * bio_disassociate_blkg - puts back the blkg reference if associated
74b7c02a 2035 * @bio: target bio
74b7c02a 2036 *
2268c0fe 2037 * Helper to disassociate the blkg from @bio if a blkg is associated.
74b7c02a 2038 */
2268c0fe 2039void bio_disassociate_blkg(struct bio *bio)
74b7c02a 2040{
2268c0fe
DZ
2041 if (bio->bi_blkg) {
2042 blkg_put(bio->bi_blkg);
2043 bio->bi_blkg = NULL;
2044 }
74b7c02a 2045}
892ad71f 2046EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
74b7c02a 2047
a7b39b4e 2048/**
2268c0fe 2049 * __bio_associate_blkg - associate a bio with the a blkg
a7b39b4e 2050 * @bio: target bio
b5f2954d 2051 * @blkg: the blkg to associate
b5f2954d 2052 *
beea9da0
DZ
2053 * This tries to associate @bio with the specified @blkg. Association failure
2054 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2055 * be anything between @blkg and the root_blkg. This situation only happens
2056 * when a cgroup is dying and then the remaining bios will spill to the closest
2057 * alive blkg.
a7b39b4e 2058 *
beea9da0
DZ
2059 * A reference will be taken on the @blkg and will be released when @bio is
2060 * freed.
a7b39b4e 2061 */
2268c0fe 2062static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
a7b39b4e 2063{
2268c0fe
DZ
2064 bio_disassociate_blkg(bio);
2065
7754f669 2066 bio->bi_blkg = blkg_tryget_closest(blkg);
a7b39b4e
DZF
2067}
2068
d459d853 2069/**
fd42df30 2070 * bio_associate_blkg_from_css - associate a bio with a specified css
d459d853 2071 * @bio: target bio
fd42df30 2072 * @css: target css
d459d853 2073 *
fd42df30 2074 * Associate @bio with the blkg found by combining the css's blkg and the
fc5a828b
DZ
2075 * request_queue of the @bio. This falls back to the queue's root_blkg if
2076 * the association fails with the css.
d459d853 2077 */
fd42df30
DZ
2078void bio_associate_blkg_from_css(struct bio *bio,
2079 struct cgroup_subsys_state *css)
d459d853 2080{
fc5a828b
DZ
2081 struct request_queue *q = bio->bi_disk->queue;
2082 struct blkcg_gq *blkg;
2083
2084 rcu_read_lock();
2085
2086 if (!css || !css->parent)
2087 blkg = q->root_blkg;
2088 else
2089 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2090
2091 __bio_associate_blkg(bio, blkg);
2092
2093 rcu_read_unlock();
d459d853 2094}
fd42df30 2095EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
d459d853 2096
6a7f6d86 2097#ifdef CONFIG_MEMCG
852c788f 2098/**
6a7f6d86 2099 * bio_associate_blkg_from_page - associate a bio with the page's blkg
852c788f 2100 * @bio: target bio
6a7f6d86
DZ
2101 * @page: the page to lookup the blkcg from
2102 *
2103 * Associate @bio with the blkg from @page's owning memcg and the respective
fc5a828b
DZ
2104 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2105 * root_blkg.
852c788f 2106 */
6a7f6d86 2107void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
852c788f 2108{
6a7f6d86
DZ
2109 struct cgroup_subsys_state *css;
2110
6a7f6d86
DZ
2111 if (!page->mem_cgroup)
2112 return;
2113
fc5a828b
DZ
2114 rcu_read_lock();
2115
2116 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2117 bio_associate_blkg_from_css(bio, css);
2118
2119 rcu_read_unlock();
6a7f6d86
DZ
2120}
2121#endif /* CONFIG_MEMCG */
2122
2268c0fe
DZ
2123/**
2124 * bio_associate_blkg - associate a bio with a blkg
2125 * @bio: target bio
2126 *
2127 * Associate @bio with the blkg found from the bio's css and request_queue.
2128 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2129 * already associated, the css is reused and association redone as the
2130 * request_queue may have changed.
2131 */
2132void bio_associate_blkg(struct bio *bio)
2133{
fc5a828b 2134 struct cgroup_subsys_state *css;
2268c0fe
DZ
2135
2136 rcu_read_lock();
2137
db6638d7 2138 if (bio->bi_blkg)
fc5a828b 2139 css = &bio_blkcg(bio)->css;
db6638d7 2140 else
fc5a828b 2141 css = blkcg_css();
2268c0fe 2142
fc5a828b 2143 bio_associate_blkg_from_css(bio, css);
2268c0fe
DZ
2144
2145 rcu_read_unlock();
852c788f 2146}
5cdf2e3f 2147EXPORT_SYMBOL_GPL(bio_associate_blkg);
852c788f 2148
20bd723e 2149/**
db6638d7 2150 * bio_clone_blkg_association - clone blkg association from src to dst bio
20bd723e
PV
2151 * @dst: destination bio
2152 * @src: source bio
2153 */
db6638d7 2154void bio_clone_blkg_association(struct bio *dst, struct bio *src)
20bd723e 2155{
6ab21879
DZ
2156 rcu_read_lock();
2157
fc5a828b 2158 if (src->bi_blkg)
2268c0fe 2159 __bio_associate_blkg(dst, src->bi_blkg);
6ab21879
DZ
2160
2161 rcu_read_unlock();
20bd723e 2162}
db6638d7 2163EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
852c788f
TH
2164#endif /* CONFIG_BLK_CGROUP */
2165
1da177e4
LT
2166static void __init biovec_init_slabs(void)
2167{
2168 int i;
2169
ed996a52 2170 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2171 int size;
2172 struct biovec_slab *bvs = bvec_slabs + i;
2173
a7fcd37c
JA
2174 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2175 bvs->slab = NULL;
2176 continue;
2177 }
a7fcd37c 2178
1da177e4
LT
2179 size = bvs->nr_vecs * sizeof(struct bio_vec);
2180 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2181 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2182 }
2183}
2184
2185static int __init init_bio(void)
2186{
bb799ca0
JA
2187 bio_slab_max = 2;
2188 bio_slab_nr = 0;
6396bb22
KC
2189 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2190 GFP_KERNEL);
2b24e6f6
JT
2191
2192 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2193
bb799ca0
JA
2194 if (!bio_slabs)
2195 panic("bio: can't allocate bios\n");
1da177e4 2196
7878cba9 2197 bio_integrity_init();
1da177e4
LT
2198 biovec_init_slabs();
2199
f4f8154a 2200 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2201 panic("bio: can't allocate bios\n");
2202
f4f8154a 2203 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2204 panic("bio: can't create integrity pool\n");
2205
1da177e4
LT
2206 return 0;
2207}
1da177e4 2208subsys_initcall(init_bio);