]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - lib/genalloc.c
Linux 6.9-rc7
[thirdparty/kernel/linux.git] / lib / genalloc.c
CommitLineData
40b0b3f8 1// SPDX-License-Identifier: GPL-2.0-only
f14f75b8 2/*
7f184275
HY
3 * Basic general purpose allocator for managing special purpose
4 * memory, for example, memory that is not managed by the regular
5 * kmalloc/kfree interface. Uses for this includes on-device special
6 * memory, uncached memory etc.
7 *
8 * It is safe to use the allocator in NMI handlers and other special
9 * unblockable contexts that could otherwise deadlock on locks. This
10 * is implemented by using atomic operations and retries on any
11 * conflicts. The disadvantage is that there may be livelocks in
12 * extreme cases. For better scalability, one allocator can be used
13 * for each CPU.
14 *
15 * The lockless operation only works if there is enough memory
16 * available. If new memory is added to the pool a lock has to be
17 * still taken. So any user relying on locklessness has to ensure
18 * that sufficient memory is preallocated.
19 *
20 * The basic atomic operation of this allocator is cmpxchg on long.
21 * On architectures that don't have NMI-safe cmpxchg implementation,
22 * the allocator can NOT be used in NMI handler. So code uses the
23 * allocator in NMI handler should depend on
24 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
f14f75b8 25 *
f14f75b8 26 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
f14f75b8
JS
27 */
28
5a0e3ad6 29#include <linux/slab.h>
8bc3bcc9 30#include <linux/export.h>
243797f5 31#include <linux/bitmap.h>
7f184275
HY
32#include <linux/rculist.h>
33#include <linux/interrupt.h>
f14f75b8 34#include <linux/genalloc.h>
077ca040
RH
35#include <linux/of.h>
36#include <linux/of_platform.h>
37#include <linux/platform_device.h>
35004f2e 38#include <linux/vmalloc.h>
f14f75b8 39
674470d9
JS
40static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
41{
42 return chunk->end_addr - chunk->start_addr + 1;
43}
44
030c6ff6
UB
45static inline int
46set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
7f184275 47{
030c6ff6 48 unsigned long val = READ_ONCE(*addr);
7f184275 49
7f184275 50 do {
7f184275
HY
51 if (val & mask_to_set)
52 return -EBUSY;
53 cpu_relax();
030c6ff6 54 } while (!try_cmpxchg(addr, &val, val | mask_to_set));
7f184275
HY
55
56 return 0;
57}
58
030c6ff6
UB
59static inline int
60clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
7f184275 61{
030c6ff6 62 unsigned long val = READ_ONCE(*addr);
7f184275 63
7f184275 64 do {
7f184275
HY
65 if ((val & mask_to_clear) != mask_to_clear)
66 return -EBUSY;
67 cpu_relax();
030c6ff6 68 } while (!try_cmpxchg(addr, &val, val & ~mask_to_clear));
7f184275
HY
69
70 return 0;
71}
72
73/*
74 * bitmap_set_ll - set the specified number of bits at the specified position
75 * @map: pointer to a bitmap
76 * @start: a bit position in @map
77 * @nr: number of bits to set
78 *
79 * Set @nr bits start from @start in @map lock-lessly. Several users
80 * can set/clear the same bitmap simultaneously without lock. If two
81 * users set the same bit, one user will return remain bits, otherwise
82 * return 0.
83 */
0e24465d
HS
84static unsigned long
85bitmap_set_ll(unsigned long *map, unsigned long start, unsigned long nr)
7f184275
HY
86{
87 unsigned long *p = map + BIT_WORD(start);
36845663 88 const unsigned long size = start + nr;
7f184275
HY
89 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
90 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
91
36845663 92 while (nr >= bits_to_set) {
7f184275
HY
93 if (set_bits_ll(p, mask_to_set))
94 return nr;
95 nr -= bits_to_set;
96 bits_to_set = BITS_PER_LONG;
97 mask_to_set = ~0UL;
98 p++;
99 }
100 if (nr) {
101 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
102 if (set_bits_ll(p, mask_to_set))
103 return nr;
104 }
105
106 return 0;
107}
108
109/*
110 * bitmap_clear_ll - clear the specified number of bits at the specified position
111 * @map: pointer to a bitmap
112 * @start: a bit position in @map
113 * @nr: number of bits to set
114 *
115 * Clear @nr bits start from @start in @map lock-lessly. Several users
116 * can set/clear the same bitmap simultaneously without lock. If two
117 * users clear the same bit, one user will return remain bits,
118 * otherwise return 0.
119 */
36845663
HS
120static unsigned long
121bitmap_clear_ll(unsigned long *map, unsigned long start, unsigned long nr)
7f184275
HY
122{
123 unsigned long *p = map + BIT_WORD(start);
36845663 124 const unsigned long size = start + nr;
7f184275
HY
125 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
126 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
127
36845663 128 while (nr >= bits_to_clear) {
7f184275
HY
129 if (clear_bits_ll(p, mask_to_clear))
130 return nr;
131 nr -= bits_to_clear;
132 bits_to_clear = BITS_PER_LONG;
133 mask_to_clear = ~0UL;
134 p++;
135 }
136 if (nr) {
137 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
138 if (clear_bits_ll(p, mask_to_clear))
139 return nr;
140 }
141
142 return 0;
143}
f14f75b8 144
a58cbd7c
DN
145/**
146 * gen_pool_create - create a new special memory pool
929f9727
DN
147 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
148 * @nid: node id of the node the pool structure should be allocated on, or -1
a58cbd7c
DN
149 *
150 * Create a new special memory pool that can be used to manage special purpose
151 * memory not managed by the regular kmalloc/kfree interface.
929f9727
DN
152 */
153struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
f14f75b8 154{
929f9727 155 struct gen_pool *pool;
f14f75b8 156
929f9727
DN
157 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
158 if (pool != NULL) {
7f184275 159 spin_lock_init(&pool->lock);
929f9727
DN
160 INIT_LIST_HEAD(&pool->chunks);
161 pool->min_alloc_order = min_alloc_order;
ca279cf1
BG
162 pool->algo = gen_pool_first_fit;
163 pool->data = NULL;
c98c3635 164 pool->name = NULL;
929f9727
DN
165 }
166 return pool;
f14f75b8
JS
167}
168EXPORT_SYMBOL(gen_pool_create);
169
a58cbd7c 170/**
795ee306 171 * gen_pool_add_owner- add a new chunk of special memory to the pool
929f9727 172 * @pool: pool to add new memory chunk to
3c8f370d
JCPV
173 * @virt: virtual starting address of memory chunk to add to pool
174 * @phys: physical starting address of memory chunk to add to pool
929f9727
DN
175 * @size: size in bytes of the memory chunk to add to pool
176 * @nid: node id of the node the chunk structure and bitmap should be
177 * allocated on, or -1
795ee306 178 * @owner: private data the publisher would like to recall at alloc time
a58cbd7c
DN
179 *
180 * Add a new chunk of special memory to the specified pool.
3c8f370d
JCPV
181 *
182 * Returns 0 on success or a -ve errno on failure.
f14f75b8 183 */
795ee306
DW
184int gen_pool_add_owner(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
185 size_t size, int nid, void *owner)
f14f75b8 186{
929f9727 187 struct gen_pool_chunk *chunk;
36845663
HS
188 unsigned long nbits = size >> pool->min_alloc_order;
189 unsigned long nbytes = sizeof(struct gen_pool_chunk) +
eedce141 190 BITS_TO_LONGS(nbits) * sizeof(long);
f14f75b8 191
6862d2fc 192 chunk = vzalloc_node(nbytes, nid);
929f9727 193 if (unlikely(chunk == NULL))
3c8f370d 194 return -ENOMEM;
f14f75b8 195
3c8f370d
JCPV
196 chunk->phys_addr = phys;
197 chunk->start_addr = virt;
674470d9 198 chunk->end_addr = virt + size - 1;
795ee306 199 chunk->owner = owner;
36a3d1dd 200 atomic_long_set(&chunk->avail, size);
f14f75b8 201
7f184275
HY
202 spin_lock(&pool->lock);
203 list_add_rcu(&chunk->next_chunk, &pool->chunks);
204 spin_unlock(&pool->lock);
929f9727
DN
205
206 return 0;
f14f75b8 207}
795ee306 208EXPORT_SYMBOL(gen_pool_add_owner);
3c8f370d
JCPV
209
210/**
211 * gen_pool_virt_to_phys - return the physical address of memory
212 * @pool: pool to allocate from
213 * @addr: starting address of memory
214 *
215 * Returns the physical address on success, or -1 on error.
216 */
217phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
218{
3c8f370d 219 struct gen_pool_chunk *chunk;
7f184275 220 phys_addr_t paddr = -1;
3c8f370d 221
7f184275
HY
222 rcu_read_lock();
223 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
674470d9 224 if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
7f184275
HY
225 paddr = chunk->phys_addr + (addr - chunk->start_addr);
226 break;
227 }
3c8f370d 228 }
7f184275 229 rcu_read_unlock();
3c8f370d 230
7f184275 231 return paddr;
3c8f370d
JCPV
232}
233EXPORT_SYMBOL(gen_pool_virt_to_phys);
f14f75b8 234
a58cbd7c
DN
235/**
236 * gen_pool_destroy - destroy a special memory pool
322acc96 237 * @pool: pool to destroy
a58cbd7c
DN
238 *
239 * Destroy the specified special memory pool. Verifies that there are no
240 * outstanding allocations.
322acc96
SW
241 */
242void gen_pool_destroy(struct gen_pool *pool)
243{
244 struct list_head *_chunk, *_next_chunk;
245 struct gen_pool_chunk *chunk;
246 int order = pool->min_alloc_order;
36845663 247 unsigned long bit, end_bit;
322acc96 248
322acc96
SW
249 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
250 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
251 list_del(&chunk->next_chunk);
252
674470d9 253 end_bit = chunk_size(chunk) >> order;
b5c7e7ec 254 bit = find_first_bit(chunk->bits, end_bit);
322acc96
SW
255 BUG_ON(bit < end_bit);
256
6862d2fc 257 vfree(chunk);
322acc96 258 }
c98c3635 259 kfree_const(pool->name);
322acc96 260 kfree(pool);
322acc96
SW
261}
262EXPORT_SYMBOL(gen_pool_destroy);
263
a58cbd7c 264/**
795ee306 265 * gen_pool_alloc_algo_owner - allocate special memory from the pool
de2dd0eb
ZQ
266 * @pool: pool to allocate from
267 * @size: number of bytes to allocate from the pool
268 * @algo: algorithm passed from caller
269 * @data: data passed to algorithm
795ee306 270 * @owner: optionally retrieve the chunk owner
de2dd0eb
ZQ
271 *
272 * Allocate the requested number of bytes from the specified pool.
273 * Uses the pool allocation function (with first-fit algorithm by default).
274 * Can not be used in NMI handler on architectures without
275 * NMI-safe cmpxchg implementation.
276 */
795ee306
DW
277unsigned long gen_pool_alloc_algo_owner(struct gen_pool *pool, size_t size,
278 genpool_algo_t algo, void *data, void **owner)
f14f75b8 279{
929f9727 280 struct gen_pool_chunk *chunk;
7f184275 281 unsigned long addr = 0;
929f9727 282 int order = pool->min_alloc_order;
36845663 283 unsigned long nbits, start_bit, end_bit, remain;
7f184275
HY
284
285#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
286 BUG_ON(in_nmi());
287#endif
f14f75b8 288
795ee306
DW
289 if (owner)
290 *owner = NULL;
291
929f9727
DN
292 if (size == 0)
293 return 0;
f14f75b8 294
929f9727 295 nbits = (size + (1UL << order) - 1) >> order;
7f184275
HY
296 rcu_read_lock();
297 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
36a3d1dd 298 if (size > atomic_long_read(&chunk->avail))
7f184275 299 continue;
929f9727 300
62e931fa 301 start_bit = 0;
674470d9 302 end_bit = chunk_size(chunk) >> order;
7f184275 303retry:
de2dd0eb 304 start_bit = algo(chunk->bits, end_bit, start_bit,
52fbf113 305 nbits, data, pool, chunk->start_addr);
7f184275 306 if (start_bit >= end_bit)
243797f5 307 continue;
7f184275
HY
308 remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
309 if (remain) {
310 remain = bitmap_clear_ll(chunk->bits, start_bit,
311 nbits - remain);
312 BUG_ON(remain);
313 goto retry;
f14f75b8 314 }
243797f5
AM
315
316 addr = chunk->start_addr + ((unsigned long)start_bit << order);
7f184275 317 size = nbits << order;
36a3d1dd 318 atomic_long_sub(size, &chunk->avail);
795ee306
DW
319 if (owner)
320 *owner = chunk->owner;
7f184275 321 break;
929f9727 322 }
7f184275
HY
323 rcu_read_unlock();
324 return addr;
929f9727 325}
795ee306 326EXPORT_SYMBOL(gen_pool_alloc_algo_owner);
f14f75b8 327
684f0d3d
NC
328/**
329 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
330 * @pool: pool to allocate from
331 * @size: number of bytes to allocate from the pool
da83a722 332 * @dma: dma-view physical address return value. Use %NULL if unneeded.
684f0d3d
NC
333 *
334 * Allocate the requested number of bytes from the specified pool.
335 * Uses the pool allocation function (with first-fit algorithm by default).
336 * Can not be used in NMI handler on architectures without
337 * NMI-safe cmpxchg implementation.
da83a722
FN
338 *
339 * Return: virtual address of the allocated memory, or %NULL on failure
684f0d3d
NC
340 */
341void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
cf394fc5
FN
342{
343 return gen_pool_dma_alloc_algo(pool, size, dma, pool->algo, pool->data);
344}
345EXPORT_SYMBOL(gen_pool_dma_alloc);
346
347/**
348 * gen_pool_dma_alloc_algo - allocate special memory from the pool for DMA
349 * usage with the given pool algorithm
350 * @pool: pool to allocate from
351 * @size: number of bytes to allocate from the pool
352 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
353 * @algo: algorithm passed from caller
354 * @data: data passed to algorithm
355 *
356 * Allocate the requested number of bytes from the specified pool. Uses the
357 * given pool allocation function. Can not be used in NMI handler on
358 * architectures without NMI-safe cmpxchg implementation.
359 *
360 * Return: virtual address of the allocated memory, or %NULL on failure
361 */
362void *gen_pool_dma_alloc_algo(struct gen_pool *pool, size_t size,
363 dma_addr_t *dma, genpool_algo_t algo, void *data)
684f0d3d
NC
364{
365 unsigned long vaddr;
366
367 if (!pool)
368 return NULL;
369
cf394fc5 370 vaddr = gen_pool_alloc_algo(pool, size, algo, data);
684f0d3d
NC
371 if (!vaddr)
372 return NULL;
373
0368dfd0
LP
374 if (dma)
375 *dma = gen_pool_virt_to_phys(pool, vaddr);
684f0d3d
NC
376
377 return (void *)vaddr;
378}
cf394fc5
FN
379EXPORT_SYMBOL(gen_pool_dma_alloc_algo);
380
381/**
382 * gen_pool_dma_alloc_align - allocate special memory from the pool for DMA
383 * usage with the given alignment
384 * @pool: pool to allocate from
385 * @size: number of bytes to allocate from the pool
386 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
387 * @align: alignment in bytes for starting address
388 *
389 * Allocate the requested number bytes from the specified pool, with the given
390 * alignment restriction. Can not be used in NMI handler on architectures
391 * without NMI-safe cmpxchg implementation.
392 *
393 * Return: virtual address of the allocated memory, or %NULL on failure
394 */
395void *gen_pool_dma_alloc_align(struct gen_pool *pool, size_t size,
396 dma_addr_t *dma, int align)
397{
398 struct genpool_data_align data = { .align = align };
399
400 return gen_pool_dma_alloc_algo(pool, size, dma,
401 gen_pool_first_fit_align, &data);
402}
403EXPORT_SYMBOL(gen_pool_dma_alloc_align);
684f0d3d 404
da83a722
FN
405/**
406 * gen_pool_dma_zalloc - allocate special zeroed memory from the pool for
407 * DMA usage
408 * @pool: pool to allocate from
409 * @size: number of bytes to allocate from the pool
410 * @dma: dma-view physical address return value. Use %NULL if unneeded.
411 *
412 * Allocate the requested number of zeroed bytes from the specified pool.
413 * Uses the pool allocation function (with first-fit algorithm by default).
414 * Can not be used in NMI handler on architectures without
415 * NMI-safe cmpxchg implementation.
416 *
417 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
418 */
419void *gen_pool_dma_zalloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
420{
cf394fc5
FN
421 return gen_pool_dma_zalloc_algo(pool, size, dma, pool->algo, pool->data);
422}
423EXPORT_SYMBOL(gen_pool_dma_zalloc);
424
425/**
426 * gen_pool_dma_zalloc_algo - allocate special zeroed memory from the pool for
427 * DMA usage with the given pool algorithm
428 * @pool: pool to allocate from
429 * @size: number of bytes to allocate from the pool
430 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
431 * @algo: algorithm passed from caller
432 * @data: data passed to algorithm
433 *
434 * Allocate the requested number of zeroed bytes from the specified pool. Uses
435 * the given pool allocation function. Can not be used in NMI handler on
436 * architectures without NMI-safe cmpxchg implementation.
437 *
438 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
439 */
440void *gen_pool_dma_zalloc_algo(struct gen_pool *pool, size_t size,
441 dma_addr_t *dma, genpool_algo_t algo, void *data)
442{
443 void *vaddr = gen_pool_dma_alloc_algo(pool, size, dma, algo, data);
da83a722
FN
444
445 if (vaddr)
446 memset(vaddr, 0, size);
447
448 return vaddr;
449}
cf394fc5
FN
450EXPORT_SYMBOL(gen_pool_dma_zalloc_algo);
451
452/**
453 * gen_pool_dma_zalloc_align - allocate special zeroed memory from the pool for
454 * DMA usage with the given alignment
455 * @pool: pool to allocate from
456 * @size: number of bytes to allocate from the pool
457 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
458 * @align: alignment in bytes for starting address
459 *
460 * Allocate the requested number of zeroed bytes from the specified pool,
461 * with the given alignment restriction. Can not be used in NMI handler on
462 * architectures without NMI-safe cmpxchg implementation.
463 *
464 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
465 */
466void *gen_pool_dma_zalloc_align(struct gen_pool *pool, size_t size,
467 dma_addr_t *dma, int align)
468{
469 struct genpool_data_align data = { .align = align };
470
471 return gen_pool_dma_zalloc_algo(pool, size, dma,
472 gen_pool_first_fit_align, &data);
473}
474EXPORT_SYMBOL(gen_pool_dma_zalloc_align);
684f0d3d 475
a58cbd7c 476/**
ea83df73 477 * gen_pool_free_owner - free allocated special memory back to the pool
929f9727
DN
478 * @pool: pool to free to
479 * @addr: starting address of memory to free back to pool
480 * @size: size in bytes of memory to free
795ee306 481 * @owner: private data stashed at gen_pool_add() time
a58cbd7c 482 *
7f184275
HY
483 * Free previously allocated special memory back to the specified
484 * pool. Can not be used in NMI handler on architectures without
485 * NMI-safe cmpxchg implementation.
929f9727 486 */
795ee306
DW
487void gen_pool_free_owner(struct gen_pool *pool, unsigned long addr, size_t size,
488 void **owner)
929f9727 489{
929f9727 490 struct gen_pool_chunk *chunk;
929f9727 491 int order = pool->min_alloc_order;
36845663 492 unsigned long start_bit, nbits, remain;
929f9727 493
7f184275
HY
494#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
495 BUG_ON(in_nmi());
496#endif
929f9727 497
795ee306
DW
498 if (owner)
499 *owner = NULL;
500
7f184275
HY
501 nbits = (size + (1UL << order) - 1) >> order;
502 rcu_read_lock();
503 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
674470d9
JS
504 if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
505 BUG_ON(addr + size - 1 > chunk->end_addr);
7f184275
HY
506 start_bit = (addr - chunk->start_addr) >> order;
507 remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
508 BUG_ON(remain);
509 size = nbits << order;
36a3d1dd 510 atomic_long_add(size, &chunk->avail);
795ee306
DW
511 if (owner)
512 *owner = chunk->owner;
7f184275
HY
513 rcu_read_unlock();
514 return;
f14f75b8 515 }
f14f75b8 516 }
7f184275
HY
517 rcu_read_unlock();
518 BUG();
f14f75b8 519}
795ee306 520EXPORT_SYMBOL(gen_pool_free_owner);
7f184275
HY
521
522/**
523 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
524 * @pool: the generic memory pool
525 * @func: func to call
526 * @data: additional data used by @func
527 *
528 * Call @func for every chunk of generic memory pool. The @func is
529 * called with rcu_read_lock held.
530 */
531void gen_pool_for_each_chunk(struct gen_pool *pool,
532 void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
533 void *data)
534{
535 struct gen_pool_chunk *chunk;
536
537 rcu_read_lock();
538 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
539 func(pool, chunk, data);
540 rcu_read_unlock();
541}
542EXPORT_SYMBOL(gen_pool_for_each_chunk);
543
9efb3a42 544/**
964975ac 545 * gen_pool_has_addr - checks if an address falls within the range of a pool
9efb3a42
LA
546 * @pool: the generic memory pool
547 * @start: start address
548 * @size: size of the region
549 *
550 * Check if the range of addresses falls within the specified pool. Returns
551 * true if the entire range is contained in the pool and false otherwise.
552 */
964975ac 553bool gen_pool_has_addr(struct gen_pool *pool, unsigned long start,
9efb3a42
LA
554 size_t size)
555{
556 bool found = false;
ad3d5d2f 557 unsigned long end = start + size - 1;
9efb3a42
LA
558 struct gen_pool_chunk *chunk;
559
560 rcu_read_lock();
561 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
562 if (start >= chunk->start_addr && start <= chunk->end_addr) {
563 if (end <= chunk->end_addr) {
564 found = true;
565 break;
566 }
567 }
568 }
569 rcu_read_unlock();
570 return found;
571}
964975ac 572EXPORT_SYMBOL(gen_pool_has_addr);
9efb3a42 573
7f184275
HY
574/**
575 * gen_pool_avail - get available free space of the pool
576 * @pool: pool to get available free space
577 *
578 * Return available free space of the specified pool.
579 */
580size_t gen_pool_avail(struct gen_pool *pool)
581{
582 struct gen_pool_chunk *chunk;
583 size_t avail = 0;
584
585 rcu_read_lock();
586 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
36a3d1dd 587 avail += atomic_long_read(&chunk->avail);
7f184275
HY
588 rcu_read_unlock();
589 return avail;
590}
591EXPORT_SYMBOL_GPL(gen_pool_avail);
592
593/**
594 * gen_pool_size - get size in bytes of memory managed by the pool
595 * @pool: pool to get size
596 *
597 * Return size in bytes of memory managed by the pool.
598 */
599size_t gen_pool_size(struct gen_pool *pool)
600{
601 struct gen_pool_chunk *chunk;
602 size_t size = 0;
603
604 rcu_read_lock();
605 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
674470d9 606 size += chunk_size(chunk);
7f184275
HY
607 rcu_read_unlock();
608 return size;
609}
610EXPORT_SYMBOL_GPL(gen_pool_size);
ca279cf1
BG
611
612/**
613 * gen_pool_set_algo - set the allocation algorithm
614 * @pool: pool to change allocation algorithm
615 * @algo: custom algorithm function
616 * @data: additional data used by @algo
617 *
618 * Call @algo for each memory allocation in the pool.
619 * If @algo is NULL use gen_pool_first_fit as default
620 * memory allocation function.
621 */
622void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
623{
624 rcu_read_lock();
625
626 pool->algo = algo;
627 if (!pool->algo)
628 pool->algo = gen_pool_first_fit;
629
630 pool->data = data;
631
632 rcu_read_unlock();
633}
634EXPORT_SYMBOL(gen_pool_set_algo);
635
636/**
637 * gen_pool_first_fit - find the first available region
638 * of memory matching the size requirement (no alignment constraint)
639 * @map: The address to base the search on
640 * @size: The bitmap size in bits
641 * @start: The bitnumber to start searching at
642 * @nr: The number of zeroed bits we're looking for
643 * @data: additional data - unused
de2dd0eb 644 * @pool: pool to find the fit region memory from
9d6ecac0 645 * @start_addr: not used in this function
ca279cf1
BG
646 */
647unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
de2dd0eb 648 unsigned long start, unsigned int nr, void *data,
52fbf113 649 struct gen_pool *pool, unsigned long start_addr)
ca279cf1
BG
650{
651 return bitmap_find_next_zero_area(map, size, start, nr, 0);
652}
653EXPORT_SYMBOL(gen_pool_first_fit);
654
de2dd0eb
ZQ
655/**
656 * gen_pool_first_fit_align - find the first available region
657 * of memory matching the size requirement (alignment constraint)
658 * @map: The address to base the search on
659 * @size: The bitmap size in bits
660 * @start: The bitnumber to start searching at
661 * @nr: The number of zeroed bits we're looking for
662 * @data: data for alignment
663 * @pool: pool to get order from
9d6ecac0 664 * @start_addr: start addr of alloction chunk
de2dd0eb
ZQ
665 */
666unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
667 unsigned long start, unsigned int nr, void *data,
52fbf113 668 struct gen_pool *pool, unsigned long start_addr)
de2dd0eb
ZQ
669{
670 struct genpool_data_align *alignment;
52fbf113 671 unsigned long align_mask, align_off;
de2dd0eb
ZQ
672 int order;
673
674 alignment = data;
675 order = pool->min_alloc_order;
676 align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
52fbf113
AS
677 align_off = (start_addr & (alignment->align - 1)) >> order;
678
679 return bitmap_find_next_zero_area_off(map, size, start, nr,
680 align_mask, align_off);
de2dd0eb
ZQ
681}
682EXPORT_SYMBOL(gen_pool_first_fit_align);
683
b26981c8
ZQ
684/**
685 * gen_pool_fixed_alloc - reserve a specific region
686 * @map: The address to base the search on
687 * @size: The bitmap size in bits
688 * @start: The bitnumber to start searching at
689 * @nr: The number of zeroed bits we're looking for
690 * @data: data for alignment
691 * @pool: pool to get order from
9d6ecac0 692 * @start_addr: not used in this function
b26981c8
ZQ
693 */
694unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
695 unsigned long start, unsigned int nr, void *data,
52fbf113 696 struct gen_pool *pool, unsigned long start_addr)
b26981c8
ZQ
697{
698 struct genpool_data_fixed *fixed_data;
699 int order;
700 unsigned long offset_bit;
701 unsigned long start_bit;
702
703 fixed_data = data;
704 order = pool->min_alloc_order;
705 offset_bit = fixed_data->offset >> order;
0e6e01ff 706 if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
b26981c8
ZQ
707 return size;
708
709 start_bit = bitmap_find_next_zero_area(map, size,
710 start + offset_bit, nr, 0);
711 if (start_bit != offset_bit)
712 start_bit = size;
713 return start_bit;
714}
715EXPORT_SYMBOL(gen_pool_fixed_alloc);
716
505e3be6
LA
717/**
718 * gen_pool_first_fit_order_align - find the first available region
719 * of memory matching the size requirement. The region will be aligned
720 * to the order of the size specified.
721 * @map: The address to base the search on
722 * @size: The bitmap size in bits
723 * @start: The bitnumber to start searching at
724 * @nr: The number of zeroed bits we're looking for
725 * @data: additional data - unused
de2dd0eb 726 * @pool: pool to find the fit region memory from
9d6ecac0 727 * @start_addr: not used in this function
505e3be6
LA
728 */
729unsigned long gen_pool_first_fit_order_align(unsigned long *map,
730 unsigned long size, unsigned long start,
52fbf113
AS
731 unsigned int nr, void *data, struct gen_pool *pool,
732 unsigned long start_addr)
505e3be6
LA
733{
734 unsigned long align_mask = roundup_pow_of_two(nr) - 1;
735
736 return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
737}
738EXPORT_SYMBOL(gen_pool_first_fit_order_align);
739
ca279cf1
BG
740/**
741 * gen_pool_best_fit - find the best fitting region of memory
ade29d4f 742 * matching the size requirement (no alignment constraint)
ca279cf1
BG
743 * @map: The address to base the search on
744 * @size: The bitmap size in bits
745 * @start: The bitnumber to start searching at
746 * @nr: The number of zeroed bits we're looking for
747 * @data: additional data - unused
de2dd0eb 748 * @pool: pool to find the fit region memory from
9d6ecac0 749 * @start_addr: not used in this function
ca279cf1
BG
750 *
751 * Iterate over the bitmap to find the smallest free region
752 * which we can allocate the memory.
753 */
754unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
de2dd0eb 755 unsigned long start, unsigned int nr, void *data,
52fbf113 756 struct gen_pool *pool, unsigned long start_addr)
ca279cf1
BG
757{
758 unsigned long start_bit = size;
759 unsigned long len = size + 1;
760 unsigned long index;
761
762 index = bitmap_find_next_zero_area(map, size, start, nr, 0);
763
764 while (index < size) {
36845663 765 unsigned long next_bit = find_next_bit(map, size, index + nr);
ca279cf1
BG
766 if ((next_bit - index) < len) {
767 len = next_bit - index;
768 start_bit = index;
769 if (len == nr)
770 return start_bit;
771 }
772 index = bitmap_find_next_zero_area(map, size,
773 next_bit + 1, nr, 0);
774 }
775
776 return start_bit;
777}
778EXPORT_SYMBOL(gen_pool_best_fit);
9375db07
PZ
779
780static void devm_gen_pool_release(struct device *dev, void *res)
781{
782 gen_pool_destroy(*(struct gen_pool **)res);
783}
784
c98c3635
VZ
785static int devm_gen_pool_match(struct device *dev, void *res, void *data)
786{
787 struct gen_pool **p = res;
788
789 /* NULL data matches only a pool without an assigned name */
790 if (!data && !(*p)->name)
791 return 1;
792
793 if (!data || !(*p)->name)
794 return 0;
795
796 return !strcmp((*p)->name, data);
797}
798
73858173
VZ
799/**
800 * gen_pool_get - Obtain the gen_pool (if any) for a device
801 * @dev: device to retrieve the gen_pool from
802 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
803 *
804 * Returns the gen_pool for the device if one is present, or NULL.
805 */
806struct gen_pool *gen_pool_get(struct device *dev, const char *name)
807{
808 struct gen_pool **p;
809
c98c3635
VZ
810 p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
811 (void *)name);
73858173
VZ
812 if (!p)
813 return NULL;
814 return *p;
815}
816EXPORT_SYMBOL_GPL(gen_pool_get);
817
9375db07
PZ
818/**
819 * devm_gen_pool_create - managed gen_pool_create
820 * @dev: device that provides the gen_pool
821 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
73858173
VZ
822 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
823 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
9375db07
PZ
824 *
825 * Create a new special memory pool that can be used to manage special purpose
826 * memory not managed by the regular kmalloc/kfree interface. The pool will be
827 * automatically destroyed by the device management code.
828 */
829struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
73858173 830 int nid, const char *name)
9375db07
PZ
831{
832 struct gen_pool **ptr, *pool;
c98c3635 833 const char *pool_name = NULL;
9375db07 834
73858173
VZ
835 /* Check that genpool to be created is uniquely addressed on device */
836 if (gen_pool_get(dev, name))
837 return ERR_PTR(-EINVAL);
838
c98c3635
VZ
839 if (name) {
840 pool_name = kstrdup_const(name, GFP_KERNEL);
841 if (!pool_name)
842 return ERR_PTR(-ENOMEM);
843 }
844
9375db07 845 ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
310ee9e8 846 if (!ptr)
c98c3635 847 goto free_pool_name;
9375db07
PZ
848
849 pool = gen_pool_create(min_alloc_order, nid);
c98c3635
VZ
850 if (!pool)
851 goto free_devres;
852
853 *ptr = pool;
854 pool->name = pool_name;
855 devres_add(dev, ptr);
9375db07
PZ
856
857 return pool;
c98c3635
VZ
858
859free_devres:
860 devres_free(ptr);
861free_pool_name:
862 kfree_const(pool_name);
863
864 return ERR_PTR(-ENOMEM);
9375db07 865}
b724aa21 866EXPORT_SYMBOL(devm_gen_pool_create);
9375db07 867
9375db07
PZ
868#ifdef CONFIG_OF
869/**
abdd4a70 870 * of_gen_pool_get - find a pool by phandle property
9375db07
PZ
871 * @np: device node
872 * @propname: property name containing phandle(s)
873 * @index: index into the phandle array
874 *
875 * Returns the pool that contains the chunk starting at the physical
876 * address of the device tree node pointed at by the phandle property,
877 * or NULL if not found.
878 */
abdd4a70 879struct gen_pool *of_gen_pool_get(struct device_node *np,
9375db07
PZ
880 const char *propname, int index)
881{
882 struct platform_device *pdev;
c98c3635
VZ
883 struct device_node *np_pool, *parent;
884 const char *name = NULL;
885 struct gen_pool *pool = NULL;
9375db07
PZ
886
887 np_pool = of_parse_phandle(np, propname, index);
888 if (!np_pool)
889 return NULL;
c98c3635 890
9375db07 891 pdev = of_find_device_by_node(np_pool);
c98c3635
VZ
892 if (!pdev) {
893 /* Check if named gen_pool is created by parent node device */
894 parent = of_get_parent(np_pool);
895 pdev = of_find_device_by_node(parent);
896 of_node_put(parent);
897
898 of_property_read_string(np_pool, "label", &name);
899 if (!name)
f8ea9502 900 name = of_node_full_name(np_pool);
c98c3635
VZ
901 }
902 if (pdev)
903 pool = gen_pool_get(&pdev->dev, name);
6f3aabd1 904 of_node_put(np_pool);
c98c3635
VZ
905
906 return pool;
9375db07 907}
abdd4a70 908EXPORT_SYMBOL_GPL(of_gen_pool_get);
9375db07 909#endif /* CONFIG_OF */