]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - lib/genalloc.c
Linux 6.9-rc7
[thirdparty/kernel/linux.git] / lib / genalloc.c
1 /*
2 * Basic general purpose allocator for managing special purpose
3 * memory, for example, memory that is not managed by the regular
4 * kmalloc/kfree interface. Uses for this includes on-device special
5 * memory, uncached memory etc.
6 *
7 * It is safe to use the allocator in NMI handlers and other special
8 * unblockable contexts that could otherwise deadlock on locks. This
9 * is implemented by using atomic operations and retries on any
10 * conflicts. The disadvantage is that there may be livelocks in
11 * extreme cases. For better scalability, one allocator can be used
12 * for each CPU.
13 *
14 * The lockless operation only works if there is enough memory
15 * available. If new memory is added to the pool a lock has to be
16 * still taken. So any user relying on locklessness has to ensure
17 * that sufficient memory is preallocated.
18 *
19 * The basic atomic operation of this allocator is cmpxchg on long.
20 * On architectures that don't have NMI-safe cmpxchg implementation,
21 * the allocator can NOT be used in NMI handler. So code uses the
22 * allocator in NMI handler should depend on
23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
24 *
25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
26 *
27 * This source code is licensed under the GNU General Public License,
28 * Version 2. See the file COPYING for more details.
29 */
30
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 #include <linux/bitmap.h>
34 #include <linux/rculist.h>
35 #include <linux/interrupt.h>
36 #include <linux/genalloc.h>
37 #include <linux/of_device.h>
38 #include <linux/vmalloc.h>
39
40 static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
41 {
42 return chunk->end_addr - chunk->start_addr + 1;
43 }
44
45 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
46 {
47 unsigned long val, nval;
48
49 nval = *addr;
50 do {
51 val = nval;
52 if (val & mask_to_set)
53 return -EBUSY;
54 cpu_relax();
55 } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
56
57 return 0;
58 }
59
60 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
61 {
62 unsigned long val, nval;
63
64 nval = *addr;
65 do {
66 val = nval;
67 if ((val & mask_to_clear) != mask_to_clear)
68 return -EBUSY;
69 cpu_relax();
70 } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
71
72 return 0;
73 }
74
75 /*
76 * bitmap_set_ll - set the specified number of bits at the specified position
77 * @map: pointer to a bitmap
78 * @start: a bit position in @map
79 * @nr: number of bits to set
80 *
81 * Set @nr bits start from @start in @map lock-lessly. Several users
82 * can set/clear the same bitmap simultaneously without lock. If two
83 * users set the same bit, one user will return remain bits, otherwise
84 * return 0.
85 */
86 static int bitmap_set_ll(unsigned long *map, int start, int nr)
87 {
88 unsigned long *p = map + BIT_WORD(start);
89 const int size = start + nr;
90 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
91 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
92
93 while (nr - bits_to_set >= 0) {
94 if (set_bits_ll(p, mask_to_set))
95 return nr;
96 nr -= bits_to_set;
97 bits_to_set = BITS_PER_LONG;
98 mask_to_set = ~0UL;
99 p++;
100 }
101 if (nr) {
102 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
103 if (set_bits_ll(p, mask_to_set))
104 return nr;
105 }
106
107 return 0;
108 }
109
110 /*
111 * bitmap_clear_ll - clear the specified number of bits at the specified position
112 * @map: pointer to a bitmap
113 * @start: a bit position in @map
114 * @nr: number of bits to set
115 *
116 * Clear @nr bits start from @start in @map lock-lessly. Several users
117 * can set/clear the same bitmap simultaneously without lock. If two
118 * users clear the same bit, one user will return remain bits,
119 * otherwise return 0.
120 */
121 static int bitmap_clear_ll(unsigned long *map, int start, int nr)
122 {
123 unsigned long *p = map + BIT_WORD(start);
124 const int size = start + nr;
125 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
126 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
127
128 while (nr - bits_to_clear >= 0) {
129 if (clear_bits_ll(p, mask_to_clear))
130 return nr;
131 nr -= bits_to_clear;
132 bits_to_clear = BITS_PER_LONG;
133 mask_to_clear = ~0UL;
134 p++;
135 }
136 if (nr) {
137 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
138 if (clear_bits_ll(p, mask_to_clear))
139 return nr;
140 }
141
142 return 0;
143 }
144
145 /**
146 * gen_pool_create - create a new special memory pool
147 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
148 * @nid: node id of the node the pool structure should be allocated on, or -1
149 *
150 * Create a new special memory pool that can be used to manage special purpose
151 * memory not managed by the regular kmalloc/kfree interface.
152 */
153 struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
154 {
155 struct gen_pool *pool;
156
157 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
158 if (pool != NULL) {
159 spin_lock_init(&pool->lock);
160 INIT_LIST_HEAD(&pool->chunks);
161 pool->min_alloc_order = min_alloc_order;
162 pool->algo = gen_pool_first_fit;
163 pool->data = NULL;
164 pool->name = NULL;
165 }
166 return pool;
167 }
168 EXPORT_SYMBOL(gen_pool_create);
169
170 /**
171 * gen_pool_add_owner- add a new chunk of special memory to the pool
172 * @pool: pool to add new memory chunk to
173 * @virt: virtual starting address of memory chunk to add to pool
174 * @phys: physical starting address of memory chunk to add to pool
175 * @size: size in bytes of the memory chunk to add to pool
176 * @nid: node id of the node the chunk structure and bitmap should be
177 * allocated on, or -1
178 * @owner: private data the publisher would like to recall at alloc time
179 *
180 * Add a new chunk of special memory to the specified pool.
181 *
182 * Returns 0 on success or a -ve errno on failure.
183 */
184 int gen_pool_add_owner(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
185 size_t size, int nid, void *owner)
186 {
187 struct gen_pool_chunk *chunk;
188 int nbits = size >> pool->min_alloc_order;
189 int nbytes = sizeof(struct gen_pool_chunk) +
190 BITS_TO_LONGS(nbits) * sizeof(long);
191
192 chunk = vzalloc_node(nbytes, nid);
193 if (unlikely(chunk == NULL))
194 return -ENOMEM;
195
196 chunk->phys_addr = phys;
197 chunk->start_addr = virt;
198 chunk->end_addr = virt + size - 1;
199 chunk->owner = owner;
200 atomic_long_set(&chunk->avail, size);
201
202 spin_lock(&pool->lock);
203 list_add_rcu(&chunk->next_chunk, &pool->chunks);
204 spin_unlock(&pool->lock);
205
206 return 0;
207 }
208 EXPORT_SYMBOL(gen_pool_add_owner);
209
210 /**
211 * gen_pool_virt_to_phys - return the physical address of memory
212 * @pool: pool to allocate from
213 * @addr: starting address of memory
214 *
215 * Returns the physical address on success, or -1 on error.
216 */
217 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
218 {
219 struct gen_pool_chunk *chunk;
220 phys_addr_t paddr = -1;
221
222 rcu_read_lock();
223 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
224 if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
225 paddr = chunk->phys_addr + (addr - chunk->start_addr);
226 break;
227 }
228 }
229 rcu_read_unlock();
230
231 return paddr;
232 }
233 EXPORT_SYMBOL(gen_pool_virt_to_phys);
234
235 /**
236 * gen_pool_destroy - destroy a special memory pool
237 * @pool: pool to destroy
238 *
239 * Destroy the specified special memory pool. Verifies that there are no
240 * outstanding allocations.
241 */
242 void gen_pool_destroy(struct gen_pool *pool)
243 {
244 struct list_head *_chunk, *_next_chunk;
245 struct gen_pool_chunk *chunk;
246 int order = pool->min_alloc_order;
247 int bit, end_bit;
248
249 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
250 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
251 list_del(&chunk->next_chunk);
252
253 end_bit = chunk_size(chunk) >> order;
254 bit = find_next_bit(chunk->bits, end_bit, 0);
255 BUG_ON(bit < end_bit);
256
257 vfree(chunk);
258 }
259 kfree_const(pool->name);
260 kfree(pool);
261 }
262 EXPORT_SYMBOL(gen_pool_destroy);
263
264 /**
265 * gen_pool_alloc_algo_owner - allocate special memory from the pool
266 * @pool: pool to allocate from
267 * @size: number of bytes to allocate from the pool
268 * @algo: algorithm passed from caller
269 * @data: data passed to algorithm
270 * @owner: optionally retrieve the chunk owner
271 *
272 * Allocate the requested number of bytes from the specified pool.
273 * Uses the pool allocation function (with first-fit algorithm by default).
274 * Can not be used in NMI handler on architectures without
275 * NMI-safe cmpxchg implementation.
276 */
277 unsigned long gen_pool_alloc_algo_owner(struct gen_pool *pool, size_t size,
278 genpool_algo_t algo, void *data, void **owner)
279 {
280 struct gen_pool_chunk *chunk;
281 unsigned long addr = 0;
282 int order = pool->min_alloc_order;
283 int nbits, start_bit, end_bit, remain;
284
285 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
286 BUG_ON(in_nmi());
287 #endif
288
289 if (owner)
290 *owner = NULL;
291
292 if (size == 0)
293 return 0;
294
295 nbits = (size + (1UL << order) - 1) >> order;
296 rcu_read_lock();
297 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
298 if (size > atomic_long_read(&chunk->avail))
299 continue;
300
301 start_bit = 0;
302 end_bit = chunk_size(chunk) >> order;
303 retry:
304 start_bit = algo(chunk->bits, end_bit, start_bit,
305 nbits, data, pool, chunk->start_addr);
306 if (start_bit >= end_bit)
307 continue;
308 remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
309 if (remain) {
310 remain = bitmap_clear_ll(chunk->bits, start_bit,
311 nbits - remain);
312 BUG_ON(remain);
313 goto retry;
314 }
315
316 addr = chunk->start_addr + ((unsigned long)start_bit << order);
317 size = nbits << order;
318 atomic_long_sub(size, &chunk->avail);
319 if (owner)
320 *owner = chunk->owner;
321 break;
322 }
323 rcu_read_unlock();
324 return addr;
325 }
326 EXPORT_SYMBOL(gen_pool_alloc_algo_owner);
327
328 /**
329 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
330 * @pool: pool to allocate from
331 * @size: number of bytes to allocate from the pool
332 * @dma: dma-view physical address return value. Use NULL if unneeded.
333 *
334 * Allocate the requested number of bytes from the specified pool.
335 * Uses the pool allocation function (with first-fit algorithm by default).
336 * Can not be used in NMI handler on architectures without
337 * NMI-safe cmpxchg implementation.
338 */
339 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
340 {
341 unsigned long vaddr;
342
343 if (!pool)
344 return NULL;
345
346 vaddr = gen_pool_alloc(pool, size);
347 if (!vaddr)
348 return NULL;
349
350 if (dma)
351 *dma = gen_pool_virt_to_phys(pool, vaddr);
352
353 return (void *)vaddr;
354 }
355 EXPORT_SYMBOL(gen_pool_dma_alloc);
356
357 /**
358 * gen_pool_free - free allocated special memory back to the pool
359 * @pool: pool to free to
360 * @addr: starting address of memory to free back to pool
361 * @size: size in bytes of memory to free
362 * @owner: private data stashed at gen_pool_add() time
363 *
364 * Free previously allocated special memory back to the specified
365 * pool. Can not be used in NMI handler on architectures without
366 * NMI-safe cmpxchg implementation.
367 */
368 void gen_pool_free_owner(struct gen_pool *pool, unsigned long addr, size_t size,
369 void **owner)
370 {
371 struct gen_pool_chunk *chunk;
372 int order = pool->min_alloc_order;
373 int start_bit, nbits, remain;
374
375 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
376 BUG_ON(in_nmi());
377 #endif
378
379 if (owner)
380 *owner = NULL;
381
382 nbits = (size + (1UL << order) - 1) >> order;
383 rcu_read_lock();
384 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
385 if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
386 BUG_ON(addr + size - 1 > chunk->end_addr);
387 start_bit = (addr - chunk->start_addr) >> order;
388 remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
389 BUG_ON(remain);
390 size = nbits << order;
391 atomic_long_add(size, &chunk->avail);
392 if (owner)
393 *owner = chunk->owner;
394 rcu_read_unlock();
395 return;
396 }
397 }
398 rcu_read_unlock();
399 BUG();
400 }
401 EXPORT_SYMBOL(gen_pool_free_owner);
402
403 /**
404 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
405 * @pool: the generic memory pool
406 * @func: func to call
407 * @data: additional data used by @func
408 *
409 * Call @func for every chunk of generic memory pool. The @func is
410 * called with rcu_read_lock held.
411 */
412 void gen_pool_for_each_chunk(struct gen_pool *pool,
413 void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
414 void *data)
415 {
416 struct gen_pool_chunk *chunk;
417
418 rcu_read_lock();
419 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
420 func(pool, chunk, data);
421 rcu_read_unlock();
422 }
423 EXPORT_SYMBOL(gen_pool_for_each_chunk);
424
425 /**
426 * addr_in_gen_pool - checks if an address falls within the range of a pool
427 * @pool: the generic memory pool
428 * @start: start address
429 * @size: size of the region
430 *
431 * Check if the range of addresses falls within the specified pool. Returns
432 * true if the entire range is contained in the pool and false otherwise.
433 */
434 bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
435 size_t size)
436 {
437 bool found = false;
438 unsigned long end = start + size - 1;
439 struct gen_pool_chunk *chunk;
440
441 rcu_read_lock();
442 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
443 if (start >= chunk->start_addr && start <= chunk->end_addr) {
444 if (end <= chunk->end_addr) {
445 found = true;
446 break;
447 }
448 }
449 }
450 rcu_read_unlock();
451 return found;
452 }
453
454 /**
455 * gen_pool_avail - get available free space of the pool
456 * @pool: pool to get available free space
457 *
458 * Return available free space of the specified pool.
459 */
460 size_t gen_pool_avail(struct gen_pool *pool)
461 {
462 struct gen_pool_chunk *chunk;
463 size_t avail = 0;
464
465 rcu_read_lock();
466 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
467 avail += atomic_long_read(&chunk->avail);
468 rcu_read_unlock();
469 return avail;
470 }
471 EXPORT_SYMBOL_GPL(gen_pool_avail);
472
473 /**
474 * gen_pool_size - get size in bytes of memory managed by the pool
475 * @pool: pool to get size
476 *
477 * Return size in bytes of memory managed by the pool.
478 */
479 size_t gen_pool_size(struct gen_pool *pool)
480 {
481 struct gen_pool_chunk *chunk;
482 size_t size = 0;
483
484 rcu_read_lock();
485 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
486 size += chunk_size(chunk);
487 rcu_read_unlock();
488 return size;
489 }
490 EXPORT_SYMBOL_GPL(gen_pool_size);
491
492 /**
493 * gen_pool_set_algo - set the allocation algorithm
494 * @pool: pool to change allocation algorithm
495 * @algo: custom algorithm function
496 * @data: additional data used by @algo
497 *
498 * Call @algo for each memory allocation in the pool.
499 * If @algo is NULL use gen_pool_first_fit as default
500 * memory allocation function.
501 */
502 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
503 {
504 rcu_read_lock();
505
506 pool->algo = algo;
507 if (!pool->algo)
508 pool->algo = gen_pool_first_fit;
509
510 pool->data = data;
511
512 rcu_read_unlock();
513 }
514 EXPORT_SYMBOL(gen_pool_set_algo);
515
516 /**
517 * gen_pool_first_fit - find the first available region
518 * of memory matching the size requirement (no alignment constraint)
519 * @map: The address to base the search on
520 * @size: The bitmap size in bits
521 * @start: The bitnumber to start searching at
522 * @nr: The number of zeroed bits we're looking for
523 * @data: additional data - unused
524 * @pool: pool to find the fit region memory from
525 */
526 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
527 unsigned long start, unsigned int nr, void *data,
528 struct gen_pool *pool, unsigned long start_addr)
529 {
530 return bitmap_find_next_zero_area(map, size, start, nr, 0);
531 }
532 EXPORT_SYMBOL(gen_pool_first_fit);
533
534 /**
535 * gen_pool_first_fit_align - find the first available region
536 * of memory matching the size requirement (alignment constraint)
537 * @map: The address to base the search on
538 * @size: The bitmap size in bits
539 * @start: The bitnumber to start searching at
540 * @nr: The number of zeroed bits we're looking for
541 * @data: data for alignment
542 * @pool: pool to get order from
543 */
544 unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
545 unsigned long start, unsigned int nr, void *data,
546 struct gen_pool *pool, unsigned long start_addr)
547 {
548 struct genpool_data_align *alignment;
549 unsigned long align_mask, align_off;
550 int order;
551
552 alignment = data;
553 order = pool->min_alloc_order;
554 align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
555 align_off = (start_addr & (alignment->align - 1)) >> order;
556
557 return bitmap_find_next_zero_area_off(map, size, start, nr,
558 align_mask, align_off);
559 }
560 EXPORT_SYMBOL(gen_pool_first_fit_align);
561
562 /**
563 * gen_pool_fixed_alloc - reserve a specific region
564 * @map: The address to base the search on
565 * @size: The bitmap size in bits
566 * @start: The bitnumber to start searching at
567 * @nr: The number of zeroed bits we're looking for
568 * @data: data for alignment
569 * @pool: pool to get order from
570 */
571 unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
572 unsigned long start, unsigned int nr, void *data,
573 struct gen_pool *pool, unsigned long start_addr)
574 {
575 struct genpool_data_fixed *fixed_data;
576 int order;
577 unsigned long offset_bit;
578 unsigned long start_bit;
579
580 fixed_data = data;
581 order = pool->min_alloc_order;
582 offset_bit = fixed_data->offset >> order;
583 if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
584 return size;
585
586 start_bit = bitmap_find_next_zero_area(map, size,
587 start + offset_bit, nr, 0);
588 if (start_bit != offset_bit)
589 start_bit = size;
590 return start_bit;
591 }
592 EXPORT_SYMBOL(gen_pool_fixed_alloc);
593
594 /**
595 * gen_pool_first_fit_order_align - find the first available region
596 * of memory matching the size requirement. The region will be aligned
597 * to the order of the size specified.
598 * @map: The address to base the search on
599 * @size: The bitmap size in bits
600 * @start: The bitnumber to start searching at
601 * @nr: The number of zeroed bits we're looking for
602 * @data: additional data - unused
603 * @pool: pool to find the fit region memory from
604 */
605 unsigned long gen_pool_first_fit_order_align(unsigned long *map,
606 unsigned long size, unsigned long start,
607 unsigned int nr, void *data, struct gen_pool *pool,
608 unsigned long start_addr)
609 {
610 unsigned long align_mask = roundup_pow_of_two(nr) - 1;
611
612 return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
613 }
614 EXPORT_SYMBOL(gen_pool_first_fit_order_align);
615
616 /**
617 * gen_pool_best_fit - find the best fitting region of memory
618 * macthing the size requirement (no alignment constraint)
619 * @map: The address to base the search on
620 * @size: The bitmap size in bits
621 * @start: The bitnumber to start searching at
622 * @nr: The number of zeroed bits we're looking for
623 * @data: additional data - unused
624 * @pool: pool to find the fit region memory from
625 *
626 * Iterate over the bitmap to find the smallest free region
627 * which we can allocate the memory.
628 */
629 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
630 unsigned long start, unsigned int nr, void *data,
631 struct gen_pool *pool, unsigned long start_addr)
632 {
633 unsigned long start_bit = size;
634 unsigned long len = size + 1;
635 unsigned long index;
636
637 index = bitmap_find_next_zero_area(map, size, start, nr, 0);
638
639 while (index < size) {
640 int next_bit = find_next_bit(map, size, index + nr);
641 if ((next_bit - index) < len) {
642 len = next_bit - index;
643 start_bit = index;
644 if (len == nr)
645 return start_bit;
646 }
647 index = bitmap_find_next_zero_area(map, size,
648 next_bit + 1, nr, 0);
649 }
650
651 return start_bit;
652 }
653 EXPORT_SYMBOL(gen_pool_best_fit);
654
655 static void devm_gen_pool_release(struct device *dev, void *res)
656 {
657 gen_pool_destroy(*(struct gen_pool **)res);
658 }
659
660 static int devm_gen_pool_match(struct device *dev, void *res, void *data)
661 {
662 struct gen_pool **p = res;
663
664 /* NULL data matches only a pool without an assigned name */
665 if (!data && !(*p)->name)
666 return 1;
667
668 if (!data || !(*p)->name)
669 return 0;
670
671 return !strcmp((*p)->name, data);
672 }
673
674 /**
675 * gen_pool_get - Obtain the gen_pool (if any) for a device
676 * @dev: device to retrieve the gen_pool from
677 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
678 *
679 * Returns the gen_pool for the device if one is present, or NULL.
680 */
681 struct gen_pool *gen_pool_get(struct device *dev, const char *name)
682 {
683 struct gen_pool **p;
684
685 p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
686 (void *)name);
687 if (!p)
688 return NULL;
689 return *p;
690 }
691 EXPORT_SYMBOL_GPL(gen_pool_get);
692
693 /**
694 * devm_gen_pool_create - managed gen_pool_create
695 * @dev: device that provides the gen_pool
696 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
697 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
698 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
699 *
700 * Create a new special memory pool that can be used to manage special purpose
701 * memory not managed by the regular kmalloc/kfree interface. The pool will be
702 * automatically destroyed by the device management code.
703 */
704 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
705 int nid, const char *name)
706 {
707 struct gen_pool **ptr, *pool;
708 const char *pool_name = NULL;
709
710 /* Check that genpool to be created is uniquely addressed on device */
711 if (gen_pool_get(dev, name))
712 return ERR_PTR(-EINVAL);
713
714 if (name) {
715 pool_name = kstrdup_const(name, GFP_KERNEL);
716 if (!pool_name)
717 return ERR_PTR(-ENOMEM);
718 }
719
720 ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
721 if (!ptr)
722 goto free_pool_name;
723
724 pool = gen_pool_create(min_alloc_order, nid);
725 if (!pool)
726 goto free_devres;
727
728 *ptr = pool;
729 pool->name = pool_name;
730 devres_add(dev, ptr);
731
732 return pool;
733
734 free_devres:
735 devres_free(ptr);
736 free_pool_name:
737 kfree_const(pool_name);
738
739 return ERR_PTR(-ENOMEM);
740 }
741 EXPORT_SYMBOL(devm_gen_pool_create);
742
743 #ifdef CONFIG_OF
744 /**
745 * of_gen_pool_get - find a pool by phandle property
746 * @np: device node
747 * @propname: property name containing phandle(s)
748 * @index: index into the phandle array
749 *
750 * Returns the pool that contains the chunk starting at the physical
751 * address of the device tree node pointed at by the phandle property,
752 * or NULL if not found.
753 */
754 struct gen_pool *of_gen_pool_get(struct device_node *np,
755 const char *propname, int index)
756 {
757 struct platform_device *pdev;
758 struct device_node *np_pool, *parent;
759 const char *name = NULL;
760 struct gen_pool *pool = NULL;
761
762 np_pool = of_parse_phandle(np, propname, index);
763 if (!np_pool)
764 return NULL;
765
766 pdev = of_find_device_by_node(np_pool);
767 if (!pdev) {
768 /* Check if named gen_pool is created by parent node device */
769 parent = of_get_parent(np_pool);
770 pdev = of_find_device_by_node(parent);
771 of_node_put(parent);
772
773 of_property_read_string(np_pool, "label", &name);
774 if (!name)
775 name = np_pool->name;
776 }
777 if (pdev)
778 pool = gen_pool_get(&pdev->dev, name);
779 of_node_put(np_pool);
780
781 return pool;
782 }
783 EXPORT_SYMBOL_GPL(of_gen_pool_get);
784 #endif /* CONFIG_OF */