]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
mm/page_owner: use stackdepot to store stacktrace
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ef70b6f4
MG
289 int nid = early_pfn_to_nid(pfn);
290
291 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
292 return true;
293
294 return false;
295}
296
7e18adb4
MG
297static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
298{
299 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
300 return true;
301
302 return false;
303}
304
3a80a7fa
MG
305/*
306 * Returns false when the remaining initialisation should be deferred until
307 * later in the boot cycle when it can be parallelised.
308 */
309static inline bool update_defer_init(pg_data_t *pgdat,
310 unsigned long pfn, unsigned long zone_end,
311 unsigned long *nr_initialised)
312{
987b3095
LZ
313 unsigned long max_initialise;
314
3a80a7fa
MG
315 /* Always populate low zones for address-contrained allocations */
316 if (zone_end < pgdat_end_pfn(pgdat))
317 return true;
987b3095
LZ
318 /*
319 * Initialise at least 2G of a node but also take into account that
320 * two large system hashes that can take up 1GB for 0.25TB/node.
321 */
322 max_initialise = max(2UL << (30 - PAGE_SHIFT),
323 (pgdat->node_spanned_pages >> 8));
3a80a7fa 324
3a80a7fa 325 (*nr_initialised)++;
987b3095 326 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
327 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
328 pgdat->first_deferred_pfn = pfn;
329 return false;
330 }
331
332 return true;
333}
334#else
335static inline void reset_deferred_meminit(pg_data_t *pgdat)
336{
337}
338
339static inline bool early_page_uninitialised(unsigned long pfn)
340{
341 return false;
342}
343
7e18adb4
MG
344static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
345{
346 return false;
347}
348
3a80a7fa
MG
349static inline bool update_defer_init(pg_data_t *pgdat,
350 unsigned long pfn, unsigned long zone_end,
351 unsigned long *nr_initialised)
352{
353 return true;
354}
355#endif
356
0b423ca2
MG
357/* Return a pointer to the bitmap storing bits affecting a block of pages */
358static inline unsigned long *get_pageblock_bitmap(struct page *page,
359 unsigned long pfn)
360{
361#ifdef CONFIG_SPARSEMEM
362 return __pfn_to_section(pfn)->pageblock_flags;
363#else
364 return page_zone(page)->pageblock_flags;
365#endif /* CONFIG_SPARSEMEM */
366}
367
368static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
369{
370#ifdef CONFIG_SPARSEMEM
371 pfn &= (PAGES_PER_SECTION-1);
372 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
373#else
374 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
375 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
376#endif /* CONFIG_SPARSEMEM */
377}
378
379/**
380 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
381 * @page: The page within the block of interest
382 * @pfn: The target page frame number
383 * @end_bitidx: The last bit of interest to retrieve
384 * @mask: mask of bits that the caller is interested in
385 *
386 * Return: pageblock_bits flags
387 */
388static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
389 unsigned long pfn,
390 unsigned long end_bitidx,
391 unsigned long mask)
392{
393 unsigned long *bitmap;
394 unsigned long bitidx, word_bitidx;
395 unsigned long word;
396
397 bitmap = get_pageblock_bitmap(page, pfn);
398 bitidx = pfn_to_bitidx(page, pfn);
399 word_bitidx = bitidx / BITS_PER_LONG;
400 bitidx &= (BITS_PER_LONG-1);
401
402 word = bitmap[word_bitidx];
403 bitidx += end_bitidx;
404 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
405}
406
407unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
408 unsigned long end_bitidx,
409 unsigned long mask)
410{
411 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
412}
413
414static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
415{
416 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
417}
418
419/**
420 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
421 * @page: The page within the block of interest
422 * @flags: The flags to set
423 * @pfn: The target page frame number
424 * @end_bitidx: The last bit of interest
425 * @mask: mask of bits that the caller is interested in
426 */
427void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
428 unsigned long pfn,
429 unsigned long end_bitidx,
430 unsigned long mask)
431{
432 unsigned long *bitmap;
433 unsigned long bitidx, word_bitidx;
434 unsigned long old_word, word;
435
436 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
437
438 bitmap = get_pageblock_bitmap(page, pfn);
439 bitidx = pfn_to_bitidx(page, pfn);
440 word_bitidx = bitidx / BITS_PER_LONG;
441 bitidx &= (BITS_PER_LONG-1);
442
443 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
444
445 bitidx += end_bitidx;
446 mask <<= (BITS_PER_LONG - bitidx - 1);
447 flags <<= (BITS_PER_LONG - bitidx - 1);
448
449 word = READ_ONCE(bitmap[word_bitidx]);
450 for (;;) {
451 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
452 if (word == old_word)
453 break;
454 word = old_word;
455 }
456}
3a80a7fa 457
ee6f509c 458void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 459{
5d0f3f72
KM
460 if (unlikely(page_group_by_mobility_disabled &&
461 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
462 migratetype = MIGRATE_UNMOVABLE;
463
b2a0ac88
MG
464 set_pageblock_flags_group(page, (unsigned long)migratetype,
465 PB_migrate, PB_migrate_end);
466}
467
13e7444b 468#ifdef CONFIG_DEBUG_VM
c6a57e19 469static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 470{
bdc8cb98
DH
471 int ret = 0;
472 unsigned seq;
473 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 474 unsigned long sp, start_pfn;
c6a57e19 475
bdc8cb98
DH
476 do {
477 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
478 start_pfn = zone->zone_start_pfn;
479 sp = zone->spanned_pages;
108bcc96 480 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
481 ret = 1;
482 } while (zone_span_seqretry(zone, seq));
483
b5e6a5a2 484 if (ret)
613813e8
DH
485 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
486 pfn, zone_to_nid(zone), zone->name,
487 start_pfn, start_pfn + sp);
b5e6a5a2 488
bdc8cb98 489 return ret;
c6a57e19
DH
490}
491
492static int page_is_consistent(struct zone *zone, struct page *page)
493{
14e07298 494 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 495 return 0;
1da177e4 496 if (zone != page_zone(page))
c6a57e19
DH
497 return 0;
498
499 return 1;
500}
501/*
502 * Temporary debugging check for pages not lying within a given zone.
503 */
504static int bad_range(struct zone *zone, struct page *page)
505{
506 if (page_outside_zone_boundaries(zone, page))
1da177e4 507 return 1;
c6a57e19
DH
508 if (!page_is_consistent(zone, page))
509 return 1;
510
1da177e4
LT
511 return 0;
512}
13e7444b
NP
513#else
514static inline int bad_range(struct zone *zone, struct page *page)
515{
516 return 0;
517}
518#endif
519
d230dec1
KS
520static void bad_page(struct page *page, const char *reason,
521 unsigned long bad_flags)
1da177e4 522{
d936cf9b
HD
523 static unsigned long resume;
524 static unsigned long nr_shown;
525 static unsigned long nr_unshown;
526
527 /*
528 * Allow a burst of 60 reports, then keep quiet for that minute;
529 * or allow a steady drip of one report per second.
530 */
531 if (nr_shown == 60) {
532 if (time_before(jiffies, resume)) {
533 nr_unshown++;
534 goto out;
535 }
536 if (nr_unshown) {
ff8e8116 537 pr_alert(
1e9e6365 538 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
539 nr_unshown);
540 nr_unshown = 0;
541 }
542 nr_shown = 0;
543 }
544 if (nr_shown++ == 0)
545 resume = jiffies + 60 * HZ;
546
ff8e8116 547 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 548 current->comm, page_to_pfn(page));
ff8e8116
VB
549 __dump_page(page, reason);
550 bad_flags &= page->flags;
551 if (bad_flags)
552 pr_alert("bad because of flags: %#lx(%pGp)\n",
553 bad_flags, &bad_flags);
4e462112 554 dump_page_owner(page);
3dc14741 555
4f31888c 556 print_modules();
1da177e4 557 dump_stack();
d936cf9b 558out:
8cc3b392 559 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 560 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 561 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
562}
563
1da177e4
LT
564/*
565 * Higher-order pages are called "compound pages". They are structured thusly:
566 *
1d798ca3 567 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 568 *
1d798ca3
KS
569 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
570 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 571 *
1d798ca3
KS
572 * The first tail page's ->compound_dtor holds the offset in array of compound
573 * page destructors. See compound_page_dtors.
1da177e4 574 *
1d798ca3 575 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 576 * This usage means that zero-order pages may not be compound.
1da177e4 577 */
d98c7a09 578
9a982250 579void free_compound_page(struct page *page)
d98c7a09 580{
d85f3385 581 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
582}
583
d00181b9 584void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
585{
586 int i;
587 int nr_pages = 1 << order;
588
f1e61557 589 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
590 set_compound_order(page, order);
591 __SetPageHead(page);
592 for (i = 1; i < nr_pages; i++) {
593 struct page *p = page + i;
58a84aa9 594 set_page_count(p, 0);
1c290f64 595 p->mapping = TAIL_MAPPING;
1d798ca3 596 set_compound_head(p, page);
18229df5 597 }
53f9263b 598 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
599}
600
c0a32fc5
SG
601#ifdef CONFIG_DEBUG_PAGEALLOC
602unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
603bool _debug_pagealloc_enabled __read_mostly
604 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 605EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
606bool _debug_guardpage_enabled __read_mostly;
607
031bc574
JK
608static int __init early_debug_pagealloc(char *buf)
609{
610 if (!buf)
611 return -EINVAL;
2a138dc7 612 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
613}
614early_param("debug_pagealloc", early_debug_pagealloc);
615
e30825f1
JK
616static bool need_debug_guardpage(void)
617{
031bc574
JK
618 /* If we don't use debug_pagealloc, we don't need guard page */
619 if (!debug_pagealloc_enabled())
620 return false;
621
e30825f1
JK
622 return true;
623}
624
625static void init_debug_guardpage(void)
626{
031bc574
JK
627 if (!debug_pagealloc_enabled())
628 return;
629
e30825f1
JK
630 _debug_guardpage_enabled = true;
631}
632
633struct page_ext_operations debug_guardpage_ops = {
634 .need = need_debug_guardpage,
635 .init = init_debug_guardpage,
636};
c0a32fc5
SG
637
638static int __init debug_guardpage_minorder_setup(char *buf)
639{
640 unsigned long res;
641
642 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 643 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
644 return 0;
645 }
646 _debug_guardpage_minorder = res;
1170532b 647 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
648 return 0;
649}
650__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
651
2847cf95
JK
652static inline void set_page_guard(struct zone *zone, struct page *page,
653 unsigned int order, int migratetype)
c0a32fc5 654{
e30825f1
JK
655 struct page_ext *page_ext;
656
657 if (!debug_guardpage_enabled())
658 return;
659
660 page_ext = lookup_page_ext(page);
f86e4271
YS
661 if (unlikely(!page_ext))
662 return;
663
e30825f1
JK
664 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
665
2847cf95
JK
666 INIT_LIST_HEAD(&page->lru);
667 set_page_private(page, order);
668 /* Guard pages are not available for any usage */
669 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
670}
671
2847cf95
JK
672static inline void clear_page_guard(struct zone *zone, struct page *page,
673 unsigned int order, int migratetype)
c0a32fc5 674{
e30825f1
JK
675 struct page_ext *page_ext;
676
677 if (!debug_guardpage_enabled())
678 return;
679
680 page_ext = lookup_page_ext(page);
f86e4271
YS
681 if (unlikely(!page_ext))
682 return;
683
e30825f1
JK
684 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
685
2847cf95
JK
686 set_page_private(page, 0);
687 if (!is_migrate_isolate(migratetype))
688 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
689}
690#else
e30825f1 691struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
692static inline void set_page_guard(struct zone *zone, struct page *page,
693 unsigned int order, int migratetype) {}
694static inline void clear_page_guard(struct zone *zone, struct page *page,
695 unsigned int order, int migratetype) {}
c0a32fc5
SG
696#endif
697
7aeb09f9 698static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 699{
4c21e2f2 700 set_page_private(page, order);
676165a8 701 __SetPageBuddy(page);
1da177e4
LT
702}
703
704static inline void rmv_page_order(struct page *page)
705{
676165a8 706 __ClearPageBuddy(page);
4c21e2f2 707 set_page_private(page, 0);
1da177e4
LT
708}
709
1da177e4
LT
710/*
711 * This function checks whether a page is free && is the buddy
712 * we can do coalesce a page and its buddy if
13e7444b 713 * (a) the buddy is not in a hole &&
676165a8 714 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
715 * (c) a page and its buddy have the same order &&
716 * (d) a page and its buddy are in the same zone.
676165a8 717 *
cf6fe945
WSH
718 * For recording whether a page is in the buddy system, we set ->_mapcount
719 * PAGE_BUDDY_MAPCOUNT_VALUE.
720 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
721 * serialized by zone->lock.
1da177e4 722 *
676165a8 723 * For recording page's order, we use page_private(page).
1da177e4 724 */
cb2b95e1 725static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 726 unsigned int order)
1da177e4 727{
14e07298 728 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 729 return 0;
13e7444b 730
c0a32fc5 731 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
732 if (page_zone_id(page) != page_zone_id(buddy))
733 return 0;
734
4c5018ce
WY
735 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
736
c0a32fc5
SG
737 return 1;
738 }
739
cb2b95e1 740 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
741 /*
742 * zone check is done late to avoid uselessly
743 * calculating zone/node ids for pages that could
744 * never merge.
745 */
746 if (page_zone_id(page) != page_zone_id(buddy))
747 return 0;
748
4c5018ce
WY
749 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
750
6aa3001b 751 return 1;
676165a8 752 }
6aa3001b 753 return 0;
1da177e4
LT
754}
755
756/*
757 * Freeing function for a buddy system allocator.
758 *
759 * The concept of a buddy system is to maintain direct-mapped table
760 * (containing bit values) for memory blocks of various "orders".
761 * The bottom level table contains the map for the smallest allocatable
762 * units of memory (here, pages), and each level above it describes
763 * pairs of units from the levels below, hence, "buddies".
764 * At a high level, all that happens here is marking the table entry
765 * at the bottom level available, and propagating the changes upward
766 * as necessary, plus some accounting needed to play nicely with other
767 * parts of the VM system.
768 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
769 * free pages of length of (1 << order) and marked with _mapcount
770 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
771 * field.
1da177e4 772 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
773 * other. That is, if we allocate a small block, and both were
774 * free, the remainder of the region must be split into blocks.
1da177e4 775 * If a block is freed, and its buddy is also free, then this
5f63b720 776 * triggers coalescing into a block of larger size.
1da177e4 777 *
6d49e352 778 * -- nyc
1da177e4
LT
779 */
780
48db57f8 781static inline void __free_one_page(struct page *page,
dc4b0caf 782 unsigned long pfn,
ed0ae21d
MG
783 struct zone *zone, unsigned int order,
784 int migratetype)
1da177e4
LT
785{
786 unsigned long page_idx;
6dda9d55 787 unsigned long combined_idx;
43506fad 788 unsigned long uninitialized_var(buddy_idx);
6dda9d55 789 struct page *buddy;
d9dddbf5
VB
790 unsigned int max_order;
791
792 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 793
d29bb978 794 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 795 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 796
ed0ae21d 797 VM_BUG_ON(migratetype == -1);
d9dddbf5 798 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 799 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 800
d9dddbf5 801 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 802
309381fe
SL
803 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
804 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 805
d9dddbf5 806continue_merging:
3c605096 807 while (order < max_order - 1) {
43506fad
KC
808 buddy_idx = __find_buddy_index(page_idx, order);
809 buddy = page + (buddy_idx - page_idx);
cb2b95e1 810 if (!page_is_buddy(page, buddy, order))
d9dddbf5 811 goto done_merging;
c0a32fc5
SG
812 /*
813 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
814 * merge with it and move up one order.
815 */
816 if (page_is_guard(buddy)) {
2847cf95 817 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
818 } else {
819 list_del(&buddy->lru);
820 zone->free_area[order].nr_free--;
821 rmv_page_order(buddy);
822 }
43506fad 823 combined_idx = buddy_idx & page_idx;
1da177e4
LT
824 page = page + (combined_idx - page_idx);
825 page_idx = combined_idx;
826 order++;
827 }
d9dddbf5
VB
828 if (max_order < MAX_ORDER) {
829 /* If we are here, it means order is >= pageblock_order.
830 * We want to prevent merge between freepages on isolate
831 * pageblock and normal pageblock. Without this, pageblock
832 * isolation could cause incorrect freepage or CMA accounting.
833 *
834 * We don't want to hit this code for the more frequent
835 * low-order merging.
836 */
837 if (unlikely(has_isolate_pageblock(zone))) {
838 int buddy_mt;
839
840 buddy_idx = __find_buddy_index(page_idx, order);
841 buddy = page + (buddy_idx - page_idx);
842 buddy_mt = get_pageblock_migratetype(buddy);
843
844 if (migratetype != buddy_mt
845 && (is_migrate_isolate(migratetype) ||
846 is_migrate_isolate(buddy_mt)))
847 goto done_merging;
848 }
849 max_order++;
850 goto continue_merging;
851 }
852
853done_merging:
1da177e4 854 set_page_order(page, order);
6dda9d55
CZ
855
856 /*
857 * If this is not the largest possible page, check if the buddy
858 * of the next-highest order is free. If it is, it's possible
859 * that pages are being freed that will coalesce soon. In case,
860 * that is happening, add the free page to the tail of the list
861 * so it's less likely to be used soon and more likely to be merged
862 * as a higher order page
863 */
b7f50cfa 864 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 865 struct page *higher_page, *higher_buddy;
43506fad
KC
866 combined_idx = buddy_idx & page_idx;
867 higher_page = page + (combined_idx - page_idx);
868 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 869 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
870 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
871 list_add_tail(&page->lru,
872 &zone->free_area[order].free_list[migratetype]);
873 goto out;
874 }
875 }
876
877 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
878out:
1da177e4
LT
879 zone->free_area[order].nr_free++;
880}
881
7bfec6f4
MG
882/*
883 * A bad page could be due to a number of fields. Instead of multiple branches,
884 * try and check multiple fields with one check. The caller must do a detailed
885 * check if necessary.
886 */
887static inline bool page_expected_state(struct page *page,
888 unsigned long check_flags)
889{
890 if (unlikely(atomic_read(&page->_mapcount) != -1))
891 return false;
892
893 if (unlikely((unsigned long)page->mapping |
894 page_ref_count(page) |
895#ifdef CONFIG_MEMCG
896 (unsigned long)page->mem_cgroup |
897#endif
898 (page->flags & check_flags)))
899 return false;
900
901 return true;
902}
903
bb552ac6 904static void free_pages_check_bad(struct page *page)
1da177e4 905{
7bfec6f4
MG
906 const char *bad_reason;
907 unsigned long bad_flags;
908
7bfec6f4
MG
909 bad_reason = NULL;
910 bad_flags = 0;
f0b791a3 911
53f9263b 912 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
913 bad_reason = "nonzero mapcount";
914 if (unlikely(page->mapping != NULL))
915 bad_reason = "non-NULL mapping";
fe896d18 916 if (unlikely(page_ref_count(page) != 0))
0139aa7b 917 bad_reason = "nonzero _refcount";
f0b791a3
DH
918 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
919 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
920 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
921 }
9edad6ea
JW
922#ifdef CONFIG_MEMCG
923 if (unlikely(page->mem_cgroup))
924 bad_reason = "page still charged to cgroup";
925#endif
7bfec6f4 926 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
927}
928
929static inline int free_pages_check(struct page *page)
930{
da838d4f 931 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 932 return 0;
bb552ac6
MG
933
934 /* Something has gone sideways, find it */
935 free_pages_check_bad(page);
7bfec6f4 936 return 1;
1da177e4
LT
937}
938
4db7548c
MG
939static int free_tail_pages_check(struct page *head_page, struct page *page)
940{
941 int ret = 1;
942
943 /*
944 * We rely page->lru.next never has bit 0 set, unless the page
945 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
946 */
947 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
948
949 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
950 ret = 0;
951 goto out;
952 }
953 switch (page - head_page) {
954 case 1:
955 /* the first tail page: ->mapping is compound_mapcount() */
956 if (unlikely(compound_mapcount(page))) {
957 bad_page(page, "nonzero compound_mapcount", 0);
958 goto out;
959 }
960 break;
961 case 2:
962 /*
963 * the second tail page: ->mapping is
964 * page_deferred_list().next -- ignore value.
965 */
966 break;
967 default:
968 if (page->mapping != TAIL_MAPPING) {
969 bad_page(page, "corrupted mapping in tail page", 0);
970 goto out;
971 }
972 break;
973 }
974 if (unlikely(!PageTail(page))) {
975 bad_page(page, "PageTail not set", 0);
976 goto out;
977 }
978 if (unlikely(compound_head(page) != head_page)) {
979 bad_page(page, "compound_head not consistent", 0);
980 goto out;
981 }
982 ret = 0;
983out:
984 page->mapping = NULL;
985 clear_compound_head(page);
986 return ret;
987}
988
e2769dbd
MG
989static __always_inline bool free_pages_prepare(struct page *page,
990 unsigned int order, bool check_free)
4db7548c 991{
e2769dbd 992 int bad = 0;
4db7548c 993
4db7548c
MG
994 VM_BUG_ON_PAGE(PageTail(page), page);
995
e2769dbd
MG
996 trace_mm_page_free(page, order);
997 kmemcheck_free_shadow(page, order);
e2769dbd
MG
998
999 /*
1000 * Check tail pages before head page information is cleared to
1001 * avoid checking PageCompound for order-0 pages.
1002 */
1003 if (unlikely(order)) {
1004 bool compound = PageCompound(page);
1005 int i;
1006
1007 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1008
e2769dbd
MG
1009 for (i = 1; i < (1 << order); i++) {
1010 if (compound)
1011 bad += free_tail_pages_check(page, page + i);
1012 if (unlikely(free_pages_check(page + i))) {
1013 bad++;
1014 continue;
1015 }
1016 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1017 }
1018 }
bda807d4 1019 if (PageMappingFlags(page))
4db7548c 1020 page->mapping = NULL;
e2769dbd
MG
1021 if (check_free)
1022 bad += free_pages_check(page);
1023 if (bad)
1024 return false;
4db7548c 1025
e2769dbd
MG
1026 page_cpupid_reset_last(page);
1027 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1028 reset_page_owner(page, order);
4db7548c
MG
1029
1030 if (!PageHighMem(page)) {
1031 debug_check_no_locks_freed(page_address(page),
e2769dbd 1032 PAGE_SIZE << order);
4db7548c 1033 debug_check_no_obj_freed(page_address(page),
e2769dbd 1034 PAGE_SIZE << order);
4db7548c 1035 }
e2769dbd
MG
1036 arch_free_page(page, order);
1037 kernel_poison_pages(page, 1 << order, 0);
1038 kernel_map_pages(page, 1 << order, 0);
29b52de1 1039 kasan_free_pages(page, order);
4db7548c 1040
4db7548c
MG
1041 return true;
1042}
1043
e2769dbd
MG
1044#ifdef CONFIG_DEBUG_VM
1045static inline bool free_pcp_prepare(struct page *page)
1046{
1047 return free_pages_prepare(page, 0, true);
1048}
1049
1050static inline bool bulkfree_pcp_prepare(struct page *page)
1051{
1052 return false;
1053}
1054#else
1055static bool free_pcp_prepare(struct page *page)
1056{
1057 return free_pages_prepare(page, 0, false);
1058}
1059
4db7548c
MG
1060static bool bulkfree_pcp_prepare(struct page *page)
1061{
1062 return free_pages_check(page);
1063}
1064#endif /* CONFIG_DEBUG_VM */
1065
1da177e4 1066/*
5f8dcc21 1067 * Frees a number of pages from the PCP lists
1da177e4 1068 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1069 * count is the number of pages to free.
1da177e4
LT
1070 *
1071 * If the zone was previously in an "all pages pinned" state then look to
1072 * see if this freeing clears that state.
1073 *
1074 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1075 * pinned" detection logic.
1076 */
5f8dcc21
MG
1077static void free_pcppages_bulk(struct zone *zone, int count,
1078 struct per_cpu_pages *pcp)
1da177e4 1079{
5f8dcc21 1080 int migratetype = 0;
a6f9edd6 1081 int batch_free = 0;
0d5d823a 1082 unsigned long nr_scanned;
3777999d 1083 bool isolated_pageblocks;
5f8dcc21 1084
c54ad30c 1085 spin_lock(&zone->lock);
3777999d 1086 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
1087 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1088 if (nr_scanned)
1089 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1090
e5b31ac2 1091 while (count) {
48db57f8 1092 struct page *page;
5f8dcc21
MG
1093 struct list_head *list;
1094
1095 /*
a6f9edd6
MG
1096 * Remove pages from lists in a round-robin fashion. A
1097 * batch_free count is maintained that is incremented when an
1098 * empty list is encountered. This is so more pages are freed
1099 * off fuller lists instead of spinning excessively around empty
1100 * lists
5f8dcc21
MG
1101 */
1102 do {
a6f9edd6 1103 batch_free++;
5f8dcc21
MG
1104 if (++migratetype == MIGRATE_PCPTYPES)
1105 migratetype = 0;
1106 list = &pcp->lists[migratetype];
1107 } while (list_empty(list));
48db57f8 1108
1d16871d
NK
1109 /* This is the only non-empty list. Free them all. */
1110 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1111 batch_free = count;
1d16871d 1112
a6f9edd6 1113 do {
770c8aaa
BZ
1114 int mt; /* migratetype of the to-be-freed page */
1115
a16601c5 1116 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1117 /* must delete as __free_one_page list manipulates */
1118 list_del(&page->lru);
aa016d14 1119
bb14c2c7 1120 mt = get_pcppage_migratetype(page);
aa016d14
VB
1121 /* MIGRATE_ISOLATE page should not go to pcplists */
1122 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1123 /* Pageblock could have been isolated meanwhile */
3777999d 1124 if (unlikely(isolated_pageblocks))
51bb1a40 1125 mt = get_pageblock_migratetype(page);
51bb1a40 1126
4db7548c
MG
1127 if (bulkfree_pcp_prepare(page))
1128 continue;
1129
dc4b0caf 1130 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1131 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1132 } while (--count && --batch_free && !list_empty(list));
1da177e4 1133 }
c54ad30c 1134 spin_unlock(&zone->lock);
1da177e4
LT
1135}
1136
dc4b0caf
MG
1137static void free_one_page(struct zone *zone,
1138 struct page *page, unsigned long pfn,
7aeb09f9 1139 unsigned int order,
ed0ae21d 1140 int migratetype)
1da177e4 1141{
0d5d823a 1142 unsigned long nr_scanned;
006d22d9 1143 spin_lock(&zone->lock);
0d5d823a
MG
1144 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1145 if (nr_scanned)
1146 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1147
ad53f92e
JK
1148 if (unlikely(has_isolate_pageblock(zone) ||
1149 is_migrate_isolate(migratetype))) {
1150 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1151 }
dc4b0caf 1152 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1153 spin_unlock(&zone->lock);
48db57f8
NP
1154}
1155
1e8ce83c
RH
1156static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1157 unsigned long zone, int nid)
1158{
1e8ce83c 1159 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1160 init_page_count(page);
1161 page_mapcount_reset(page);
1162 page_cpupid_reset_last(page);
1e8ce83c 1163
1e8ce83c
RH
1164 INIT_LIST_HEAD(&page->lru);
1165#ifdef WANT_PAGE_VIRTUAL
1166 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1167 if (!is_highmem_idx(zone))
1168 set_page_address(page, __va(pfn << PAGE_SHIFT));
1169#endif
1170}
1171
1172static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1173 int nid)
1174{
1175 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1176}
1177
7e18adb4
MG
1178#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1179static void init_reserved_page(unsigned long pfn)
1180{
1181 pg_data_t *pgdat;
1182 int nid, zid;
1183
1184 if (!early_page_uninitialised(pfn))
1185 return;
1186
1187 nid = early_pfn_to_nid(pfn);
1188 pgdat = NODE_DATA(nid);
1189
1190 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1191 struct zone *zone = &pgdat->node_zones[zid];
1192
1193 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1194 break;
1195 }
1196 __init_single_pfn(pfn, zid, nid);
1197}
1198#else
1199static inline void init_reserved_page(unsigned long pfn)
1200{
1201}
1202#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1203
92923ca3
NZ
1204/*
1205 * Initialised pages do not have PageReserved set. This function is
1206 * called for each range allocated by the bootmem allocator and
1207 * marks the pages PageReserved. The remaining valid pages are later
1208 * sent to the buddy page allocator.
1209 */
4b50bcc7 1210void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1211{
1212 unsigned long start_pfn = PFN_DOWN(start);
1213 unsigned long end_pfn = PFN_UP(end);
1214
7e18adb4
MG
1215 for (; start_pfn < end_pfn; start_pfn++) {
1216 if (pfn_valid(start_pfn)) {
1217 struct page *page = pfn_to_page(start_pfn);
1218
1219 init_reserved_page(start_pfn);
1d798ca3
KS
1220
1221 /* Avoid false-positive PageTail() */
1222 INIT_LIST_HEAD(&page->lru);
1223
7e18adb4
MG
1224 SetPageReserved(page);
1225 }
1226 }
92923ca3
NZ
1227}
1228
ec95f53a
KM
1229static void __free_pages_ok(struct page *page, unsigned int order)
1230{
1231 unsigned long flags;
95e34412 1232 int migratetype;
dc4b0caf 1233 unsigned long pfn = page_to_pfn(page);
ec95f53a 1234
e2769dbd 1235 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1236 return;
1237
cfc47a28 1238 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1239 local_irq_save(flags);
f8891e5e 1240 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1241 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1242 local_irq_restore(flags);
1da177e4
LT
1243}
1244
949698a3 1245static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1246{
c3993076 1247 unsigned int nr_pages = 1 << order;
e2d0bd2b 1248 struct page *p = page;
c3993076 1249 unsigned int loop;
a226f6c8 1250
e2d0bd2b
YL
1251 prefetchw(p);
1252 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1253 prefetchw(p + 1);
c3993076
JW
1254 __ClearPageReserved(p);
1255 set_page_count(p, 0);
a226f6c8 1256 }
e2d0bd2b
YL
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
c3993076 1259
e2d0bd2b 1260 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1261 set_page_refcounted(page);
1262 __free_pages(page, order);
a226f6c8
DH
1263}
1264
75a592a4
MG
1265#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1266 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1267
75a592a4
MG
1268static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1269
1270int __meminit early_pfn_to_nid(unsigned long pfn)
1271{
7ace9917 1272 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1273 int nid;
1274
7ace9917 1275 spin_lock(&early_pfn_lock);
75a592a4 1276 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1277 if (nid < 0)
e4568d38 1278 nid = first_online_node;
7ace9917
MG
1279 spin_unlock(&early_pfn_lock);
1280
1281 return nid;
75a592a4
MG
1282}
1283#endif
1284
1285#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1286static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1287 struct mminit_pfnnid_cache *state)
1288{
1289 int nid;
1290
1291 nid = __early_pfn_to_nid(pfn, state);
1292 if (nid >= 0 && nid != node)
1293 return false;
1294 return true;
1295}
1296
1297/* Only safe to use early in boot when initialisation is single-threaded */
1298static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1299{
1300 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1301}
1302
1303#else
1304
1305static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1306{
1307 return true;
1308}
1309static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1310 struct mminit_pfnnid_cache *state)
1311{
1312 return true;
1313}
1314#endif
1315
1316
0e1cc95b 1317void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1318 unsigned int order)
1319{
1320 if (early_page_uninitialised(pfn))
1321 return;
949698a3 1322 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1323}
1324
7cf91a98
JK
1325/*
1326 * Check that the whole (or subset of) a pageblock given by the interval of
1327 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1328 * with the migration of free compaction scanner. The scanners then need to
1329 * use only pfn_valid_within() check for arches that allow holes within
1330 * pageblocks.
1331 *
1332 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1333 *
1334 * It's possible on some configurations to have a setup like node0 node1 node0
1335 * i.e. it's possible that all pages within a zones range of pages do not
1336 * belong to a single zone. We assume that a border between node0 and node1
1337 * can occur within a single pageblock, but not a node0 node1 node0
1338 * interleaving within a single pageblock. It is therefore sufficient to check
1339 * the first and last page of a pageblock and avoid checking each individual
1340 * page in a pageblock.
1341 */
1342struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1343 unsigned long end_pfn, struct zone *zone)
1344{
1345 struct page *start_page;
1346 struct page *end_page;
1347
1348 /* end_pfn is one past the range we are checking */
1349 end_pfn--;
1350
1351 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1352 return NULL;
1353
1354 start_page = pfn_to_page(start_pfn);
1355
1356 if (page_zone(start_page) != zone)
1357 return NULL;
1358
1359 end_page = pfn_to_page(end_pfn);
1360
1361 /* This gives a shorter code than deriving page_zone(end_page) */
1362 if (page_zone_id(start_page) != page_zone_id(end_page))
1363 return NULL;
1364
1365 return start_page;
1366}
1367
1368void set_zone_contiguous(struct zone *zone)
1369{
1370 unsigned long block_start_pfn = zone->zone_start_pfn;
1371 unsigned long block_end_pfn;
1372
1373 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1374 for (; block_start_pfn < zone_end_pfn(zone);
1375 block_start_pfn = block_end_pfn,
1376 block_end_pfn += pageblock_nr_pages) {
1377
1378 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1379
1380 if (!__pageblock_pfn_to_page(block_start_pfn,
1381 block_end_pfn, zone))
1382 return;
1383 }
1384
1385 /* We confirm that there is no hole */
1386 zone->contiguous = true;
1387}
1388
1389void clear_zone_contiguous(struct zone *zone)
1390{
1391 zone->contiguous = false;
1392}
1393
7e18adb4 1394#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1395static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1396 unsigned long pfn, int nr_pages)
1397{
1398 int i;
1399
1400 if (!page)
1401 return;
1402
1403 /* Free a large naturally-aligned chunk if possible */
1404 if (nr_pages == MAX_ORDER_NR_PAGES &&
1405 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1406 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1407 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1408 return;
1409 }
1410
949698a3
LZ
1411 for (i = 0; i < nr_pages; i++, page++)
1412 __free_pages_boot_core(page, 0);
a4de83dd
MG
1413}
1414
d3cd131d
NS
1415/* Completion tracking for deferred_init_memmap() threads */
1416static atomic_t pgdat_init_n_undone __initdata;
1417static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1418
1419static inline void __init pgdat_init_report_one_done(void)
1420{
1421 if (atomic_dec_and_test(&pgdat_init_n_undone))
1422 complete(&pgdat_init_all_done_comp);
1423}
0e1cc95b 1424
7e18adb4 1425/* Initialise remaining memory on a node */
0e1cc95b 1426static int __init deferred_init_memmap(void *data)
7e18adb4 1427{
0e1cc95b
MG
1428 pg_data_t *pgdat = data;
1429 int nid = pgdat->node_id;
7e18adb4
MG
1430 struct mminit_pfnnid_cache nid_init_state = { };
1431 unsigned long start = jiffies;
1432 unsigned long nr_pages = 0;
1433 unsigned long walk_start, walk_end;
1434 int i, zid;
1435 struct zone *zone;
7e18adb4 1436 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1437 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1438
0e1cc95b 1439 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1440 pgdat_init_report_one_done();
0e1cc95b
MG
1441 return 0;
1442 }
1443
1444 /* Bind memory initialisation thread to a local node if possible */
1445 if (!cpumask_empty(cpumask))
1446 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1447
1448 /* Sanity check boundaries */
1449 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1450 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1451 pgdat->first_deferred_pfn = ULONG_MAX;
1452
1453 /* Only the highest zone is deferred so find it */
1454 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1455 zone = pgdat->node_zones + zid;
1456 if (first_init_pfn < zone_end_pfn(zone))
1457 break;
1458 }
1459
1460 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1461 unsigned long pfn, end_pfn;
54608c3f 1462 struct page *page = NULL;
a4de83dd
MG
1463 struct page *free_base_page = NULL;
1464 unsigned long free_base_pfn = 0;
1465 int nr_to_free = 0;
7e18adb4
MG
1466
1467 end_pfn = min(walk_end, zone_end_pfn(zone));
1468 pfn = first_init_pfn;
1469 if (pfn < walk_start)
1470 pfn = walk_start;
1471 if (pfn < zone->zone_start_pfn)
1472 pfn = zone->zone_start_pfn;
1473
1474 for (; pfn < end_pfn; pfn++) {
54608c3f 1475 if (!pfn_valid_within(pfn))
a4de83dd 1476 goto free_range;
7e18adb4 1477
54608c3f
MG
1478 /*
1479 * Ensure pfn_valid is checked every
1480 * MAX_ORDER_NR_PAGES for memory holes
1481 */
1482 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1483 if (!pfn_valid(pfn)) {
1484 page = NULL;
a4de83dd 1485 goto free_range;
54608c3f
MG
1486 }
1487 }
1488
1489 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1490 page = NULL;
a4de83dd 1491 goto free_range;
54608c3f
MG
1492 }
1493
1494 /* Minimise pfn page lookups and scheduler checks */
1495 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1496 page++;
1497 } else {
a4de83dd
MG
1498 nr_pages += nr_to_free;
1499 deferred_free_range(free_base_page,
1500 free_base_pfn, nr_to_free);
1501 free_base_page = NULL;
1502 free_base_pfn = nr_to_free = 0;
1503
54608c3f
MG
1504 page = pfn_to_page(pfn);
1505 cond_resched();
1506 }
7e18adb4
MG
1507
1508 if (page->flags) {
1509 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1510 goto free_range;
7e18adb4
MG
1511 }
1512
1513 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1514 if (!free_base_page) {
1515 free_base_page = page;
1516 free_base_pfn = pfn;
1517 nr_to_free = 0;
1518 }
1519 nr_to_free++;
1520
1521 /* Where possible, batch up pages for a single free */
1522 continue;
1523free_range:
1524 /* Free the current block of pages to allocator */
1525 nr_pages += nr_to_free;
1526 deferred_free_range(free_base_page, free_base_pfn,
1527 nr_to_free);
1528 free_base_page = NULL;
1529 free_base_pfn = nr_to_free = 0;
7e18adb4 1530 }
a4de83dd 1531
7e18adb4
MG
1532 first_init_pfn = max(end_pfn, first_init_pfn);
1533 }
1534
1535 /* Sanity check that the next zone really is unpopulated */
1536 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1537
0e1cc95b 1538 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1539 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1540
1541 pgdat_init_report_one_done();
0e1cc95b
MG
1542 return 0;
1543}
7cf91a98 1544#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1545
1546void __init page_alloc_init_late(void)
1547{
7cf91a98
JK
1548 struct zone *zone;
1549
1550#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1551 int nid;
1552
d3cd131d
NS
1553 /* There will be num_node_state(N_MEMORY) threads */
1554 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1555 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1556 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1557 }
1558
1559 /* Block until all are initialised */
d3cd131d 1560 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1561
1562 /* Reinit limits that are based on free pages after the kernel is up */
1563 files_maxfiles_init();
7cf91a98
JK
1564#endif
1565
1566 for_each_populated_zone(zone)
1567 set_zone_contiguous(zone);
7e18adb4 1568}
7e18adb4 1569
47118af0 1570#ifdef CONFIG_CMA
9cf510a5 1571/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1572void __init init_cma_reserved_pageblock(struct page *page)
1573{
1574 unsigned i = pageblock_nr_pages;
1575 struct page *p = page;
1576
1577 do {
1578 __ClearPageReserved(p);
1579 set_page_count(p, 0);
1580 } while (++p, --i);
1581
47118af0 1582 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1583
1584 if (pageblock_order >= MAX_ORDER) {
1585 i = pageblock_nr_pages;
1586 p = page;
1587 do {
1588 set_page_refcounted(p);
1589 __free_pages(p, MAX_ORDER - 1);
1590 p += MAX_ORDER_NR_PAGES;
1591 } while (i -= MAX_ORDER_NR_PAGES);
1592 } else {
1593 set_page_refcounted(page);
1594 __free_pages(page, pageblock_order);
1595 }
1596
3dcc0571 1597 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1598}
1599#endif
1da177e4
LT
1600
1601/*
1602 * The order of subdivision here is critical for the IO subsystem.
1603 * Please do not alter this order without good reasons and regression
1604 * testing. Specifically, as large blocks of memory are subdivided,
1605 * the order in which smaller blocks are delivered depends on the order
1606 * they're subdivided in this function. This is the primary factor
1607 * influencing the order in which pages are delivered to the IO
1608 * subsystem according to empirical testing, and this is also justified
1609 * by considering the behavior of a buddy system containing a single
1610 * large block of memory acted on by a series of small allocations.
1611 * This behavior is a critical factor in sglist merging's success.
1612 *
6d49e352 1613 * -- nyc
1da177e4 1614 */
085cc7d5 1615static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1616 int low, int high, struct free_area *area,
1617 int migratetype)
1da177e4
LT
1618{
1619 unsigned long size = 1 << high;
1620
1621 while (high > low) {
1622 area--;
1623 high--;
1624 size >>= 1;
309381fe 1625 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1626
2847cf95 1627 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1628 debug_guardpage_enabled() &&
2847cf95 1629 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1630 /*
1631 * Mark as guard pages (or page), that will allow to
1632 * merge back to allocator when buddy will be freed.
1633 * Corresponding page table entries will not be touched,
1634 * pages will stay not present in virtual address space
1635 */
2847cf95 1636 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1637 continue;
1638 }
b2a0ac88 1639 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1640 area->nr_free++;
1641 set_page_order(&page[size], high);
1642 }
1da177e4
LT
1643}
1644
4e611801 1645static void check_new_page_bad(struct page *page)
1da177e4 1646{
4e611801
VB
1647 const char *bad_reason = NULL;
1648 unsigned long bad_flags = 0;
7bfec6f4 1649
53f9263b 1650 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1651 bad_reason = "nonzero mapcount";
1652 if (unlikely(page->mapping != NULL))
1653 bad_reason = "non-NULL mapping";
fe896d18 1654 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1655 bad_reason = "nonzero _count";
f4c18e6f
NH
1656 if (unlikely(page->flags & __PG_HWPOISON)) {
1657 bad_reason = "HWPoisoned (hardware-corrupted)";
1658 bad_flags = __PG_HWPOISON;
e570f56c
NH
1659 /* Don't complain about hwpoisoned pages */
1660 page_mapcount_reset(page); /* remove PageBuddy */
1661 return;
f4c18e6f 1662 }
f0b791a3
DH
1663 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1664 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1665 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1666 }
9edad6ea
JW
1667#ifdef CONFIG_MEMCG
1668 if (unlikely(page->mem_cgroup))
1669 bad_reason = "page still charged to cgroup";
1670#endif
4e611801
VB
1671 bad_page(page, bad_reason, bad_flags);
1672}
1673
1674/*
1675 * This page is about to be returned from the page allocator
1676 */
1677static inline int check_new_page(struct page *page)
1678{
1679 if (likely(page_expected_state(page,
1680 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1681 return 0;
1682
1683 check_new_page_bad(page);
1684 return 1;
2a7684a2
WF
1685}
1686
1414c7f4
LA
1687static inline bool free_pages_prezeroed(bool poisoned)
1688{
1689 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1690 page_poisoning_enabled() && poisoned;
1691}
1692
479f854a
MG
1693#ifdef CONFIG_DEBUG_VM
1694static bool check_pcp_refill(struct page *page)
1695{
1696 return false;
1697}
1698
1699static bool check_new_pcp(struct page *page)
1700{
1701 return check_new_page(page);
1702}
1703#else
1704static bool check_pcp_refill(struct page *page)
1705{
1706 return check_new_page(page);
1707}
1708static bool check_new_pcp(struct page *page)
1709{
1710 return false;
1711}
1712#endif /* CONFIG_DEBUG_VM */
1713
1714static bool check_new_pages(struct page *page, unsigned int order)
1715{
1716 int i;
1717 for (i = 0; i < (1 << order); i++) {
1718 struct page *p = page + i;
1719
1720 if (unlikely(check_new_page(p)))
1721 return true;
1722 }
1723
1724 return false;
1725}
1726
1727static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1728 unsigned int alloc_flags)
2a7684a2
WF
1729{
1730 int i;
1414c7f4 1731 bool poisoned = true;
2a7684a2
WF
1732
1733 for (i = 0; i < (1 << order); i++) {
1734 struct page *p = page + i;
1414c7f4
LA
1735 if (poisoned)
1736 poisoned &= page_is_poisoned(p);
2a7684a2 1737 }
689bcebf 1738
4c21e2f2 1739 set_page_private(page, 0);
7835e98b 1740 set_page_refcounted(page);
cc102509
NP
1741
1742 arch_alloc_page(page, order);
1da177e4 1743 kernel_map_pages(page, 1 << order, 1);
8823b1db 1744 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1745 kasan_alloc_pages(page, order);
17cf4406 1746
1414c7f4 1747 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1748 for (i = 0; i < (1 << order); i++)
1749 clear_highpage(page + i);
17cf4406
NP
1750
1751 if (order && (gfp_flags & __GFP_COMP))
1752 prep_compound_page(page, order);
1753
48c96a36
JK
1754 set_page_owner(page, order, gfp_flags);
1755
75379191 1756 /*
2f064f34 1757 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1758 * allocate the page. The expectation is that the caller is taking
1759 * steps that will free more memory. The caller should avoid the page
1760 * being used for !PFMEMALLOC purposes.
1761 */
2f064f34
MH
1762 if (alloc_flags & ALLOC_NO_WATERMARKS)
1763 set_page_pfmemalloc(page);
1764 else
1765 clear_page_pfmemalloc(page);
1da177e4
LT
1766}
1767
56fd56b8
MG
1768/*
1769 * Go through the free lists for the given migratetype and remove
1770 * the smallest available page from the freelists
1771 */
728ec980
MG
1772static inline
1773struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1774 int migratetype)
1775{
1776 unsigned int current_order;
b8af2941 1777 struct free_area *area;
56fd56b8
MG
1778 struct page *page;
1779
1780 /* Find a page of the appropriate size in the preferred list */
1781 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1782 area = &(zone->free_area[current_order]);
a16601c5 1783 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1784 struct page, lru);
a16601c5
GT
1785 if (!page)
1786 continue;
56fd56b8
MG
1787 list_del(&page->lru);
1788 rmv_page_order(page);
1789 area->nr_free--;
56fd56b8 1790 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1791 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1792 return page;
1793 }
1794
1795 return NULL;
1796}
1797
1798
b2a0ac88
MG
1799/*
1800 * This array describes the order lists are fallen back to when
1801 * the free lists for the desirable migrate type are depleted
1802 */
47118af0 1803static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1804 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1805 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1806 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1807#ifdef CONFIG_CMA
974a786e 1808 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1809#endif
194159fb 1810#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1811 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1812#endif
b2a0ac88
MG
1813};
1814
dc67647b
JK
1815#ifdef CONFIG_CMA
1816static struct page *__rmqueue_cma_fallback(struct zone *zone,
1817 unsigned int order)
1818{
1819 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1820}
1821#else
1822static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1823 unsigned int order) { return NULL; }
1824#endif
1825
c361be55
MG
1826/*
1827 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1828 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1829 * boundary. If alignment is required, use move_freepages_block()
1830 */
435b405c 1831int move_freepages(struct zone *zone,
b69a7288
AB
1832 struct page *start_page, struct page *end_page,
1833 int migratetype)
c361be55
MG
1834{
1835 struct page *page;
d00181b9 1836 unsigned int order;
d100313f 1837 int pages_moved = 0;
c361be55
MG
1838
1839#ifndef CONFIG_HOLES_IN_ZONE
1840 /*
1841 * page_zone is not safe to call in this context when
1842 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1843 * anyway as we check zone boundaries in move_freepages_block().
1844 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1845 * grouping pages by mobility
c361be55 1846 */
97ee4ba7 1847 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1848#endif
1849
1850 for (page = start_page; page <= end_page;) {
344c790e 1851 /* Make sure we are not inadvertently changing nodes */
309381fe 1852 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1853
c361be55
MG
1854 if (!pfn_valid_within(page_to_pfn(page))) {
1855 page++;
1856 continue;
1857 }
1858
1859 if (!PageBuddy(page)) {
1860 page++;
1861 continue;
1862 }
1863
1864 order = page_order(page);
84be48d8
KS
1865 list_move(&page->lru,
1866 &zone->free_area[order].free_list[migratetype]);
c361be55 1867 page += 1 << order;
d100313f 1868 pages_moved += 1 << order;
c361be55
MG
1869 }
1870
d100313f 1871 return pages_moved;
c361be55
MG
1872}
1873
ee6f509c 1874int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1875 int migratetype)
c361be55
MG
1876{
1877 unsigned long start_pfn, end_pfn;
1878 struct page *start_page, *end_page;
1879
1880 start_pfn = page_to_pfn(page);
d9c23400 1881 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1882 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1883 end_page = start_page + pageblock_nr_pages - 1;
1884 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1885
1886 /* Do not cross zone boundaries */
108bcc96 1887 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1888 start_page = page;
108bcc96 1889 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1890 return 0;
1891
1892 return move_freepages(zone, start_page, end_page, migratetype);
1893}
1894
2f66a68f
MG
1895static void change_pageblock_range(struct page *pageblock_page,
1896 int start_order, int migratetype)
1897{
1898 int nr_pageblocks = 1 << (start_order - pageblock_order);
1899
1900 while (nr_pageblocks--) {
1901 set_pageblock_migratetype(pageblock_page, migratetype);
1902 pageblock_page += pageblock_nr_pages;
1903 }
1904}
1905
fef903ef 1906/*
9c0415eb
VB
1907 * When we are falling back to another migratetype during allocation, try to
1908 * steal extra free pages from the same pageblocks to satisfy further
1909 * allocations, instead of polluting multiple pageblocks.
1910 *
1911 * If we are stealing a relatively large buddy page, it is likely there will
1912 * be more free pages in the pageblock, so try to steal them all. For
1913 * reclaimable and unmovable allocations, we steal regardless of page size,
1914 * as fragmentation caused by those allocations polluting movable pageblocks
1915 * is worse than movable allocations stealing from unmovable and reclaimable
1916 * pageblocks.
fef903ef 1917 */
4eb7dce6
JK
1918static bool can_steal_fallback(unsigned int order, int start_mt)
1919{
1920 /*
1921 * Leaving this order check is intended, although there is
1922 * relaxed order check in next check. The reason is that
1923 * we can actually steal whole pageblock if this condition met,
1924 * but, below check doesn't guarantee it and that is just heuristic
1925 * so could be changed anytime.
1926 */
1927 if (order >= pageblock_order)
1928 return true;
1929
1930 if (order >= pageblock_order / 2 ||
1931 start_mt == MIGRATE_RECLAIMABLE ||
1932 start_mt == MIGRATE_UNMOVABLE ||
1933 page_group_by_mobility_disabled)
1934 return true;
1935
1936 return false;
1937}
1938
1939/*
1940 * This function implements actual steal behaviour. If order is large enough,
1941 * we can steal whole pageblock. If not, we first move freepages in this
1942 * pageblock and check whether half of pages are moved or not. If half of
1943 * pages are moved, we can change migratetype of pageblock and permanently
1944 * use it's pages as requested migratetype in the future.
1945 */
1946static void steal_suitable_fallback(struct zone *zone, struct page *page,
1947 int start_type)
fef903ef 1948{
d00181b9 1949 unsigned int current_order = page_order(page);
4eb7dce6 1950 int pages;
fef903ef 1951
fef903ef
SB
1952 /* Take ownership for orders >= pageblock_order */
1953 if (current_order >= pageblock_order) {
1954 change_pageblock_range(page, current_order, start_type);
3a1086fb 1955 return;
fef903ef
SB
1956 }
1957
4eb7dce6 1958 pages = move_freepages_block(zone, page, start_type);
fef903ef 1959
4eb7dce6
JK
1960 /* Claim the whole block if over half of it is free */
1961 if (pages >= (1 << (pageblock_order-1)) ||
1962 page_group_by_mobility_disabled)
1963 set_pageblock_migratetype(page, start_type);
1964}
1965
2149cdae
JK
1966/*
1967 * Check whether there is a suitable fallback freepage with requested order.
1968 * If only_stealable is true, this function returns fallback_mt only if
1969 * we can steal other freepages all together. This would help to reduce
1970 * fragmentation due to mixed migratetype pages in one pageblock.
1971 */
1972int find_suitable_fallback(struct free_area *area, unsigned int order,
1973 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1974{
1975 int i;
1976 int fallback_mt;
1977
1978 if (area->nr_free == 0)
1979 return -1;
1980
1981 *can_steal = false;
1982 for (i = 0;; i++) {
1983 fallback_mt = fallbacks[migratetype][i];
974a786e 1984 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1985 break;
1986
1987 if (list_empty(&area->free_list[fallback_mt]))
1988 continue;
fef903ef 1989
4eb7dce6
JK
1990 if (can_steal_fallback(order, migratetype))
1991 *can_steal = true;
1992
2149cdae
JK
1993 if (!only_stealable)
1994 return fallback_mt;
1995
1996 if (*can_steal)
1997 return fallback_mt;
fef903ef 1998 }
4eb7dce6
JK
1999
2000 return -1;
fef903ef
SB
2001}
2002
0aaa29a5
MG
2003/*
2004 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2005 * there are no empty page blocks that contain a page with a suitable order
2006 */
2007static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2008 unsigned int alloc_order)
2009{
2010 int mt;
2011 unsigned long max_managed, flags;
2012
2013 /*
2014 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2015 * Check is race-prone but harmless.
2016 */
2017 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2018 if (zone->nr_reserved_highatomic >= max_managed)
2019 return;
2020
2021 spin_lock_irqsave(&zone->lock, flags);
2022
2023 /* Recheck the nr_reserved_highatomic limit under the lock */
2024 if (zone->nr_reserved_highatomic >= max_managed)
2025 goto out_unlock;
2026
2027 /* Yoink! */
2028 mt = get_pageblock_migratetype(page);
2029 if (mt != MIGRATE_HIGHATOMIC &&
2030 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2031 zone->nr_reserved_highatomic += pageblock_nr_pages;
2032 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2033 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2034 }
2035
2036out_unlock:
2037 spin_unlock_irqrestore(&zone->lock, flags);
2038}
2039
2040/*
2041 * Used when an allocation is about to fail under memory pressure. This
2042 * potentially hurts the reliability of high-order allocations when under
2043 * intense memory pressure but failed atomic allocations should be easier
2044 * to recover from than an OOM.
2045 */
2046static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2047{
2048 struct zonelist *zonelist = ac->zonelist;
2049 unsigned long flags;
2050 struct zoneref *z;
2051 struct zone *zone;
2052 struct page *page;
2053 int order;
2054
2055 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2056 ac->nodemask) {
2057 /* Preserve at least one pageblock */
2058 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2059 continue;
2060
2061 spin_lock_irqsave(&zone->lock, flags);
2062 for (order = 0; order < MAX_ORDER; order++) {
2063 struct free_area *area = &(zone->free_area[order]);
2064
a16601c5
GT
2065 page = list_first_entry_or_null(
2066 &area->free_list[MIGRATE_HIGHATOMIC],
2067 struct page, lru);
2068 if (!page)
0aaa29a5
MG
2069 continue;
2070
0aaa29a5
MG
2071 /*
2072 * It should never happen but changes to locking could
2073 * inadvertently allow a per-cpu drain to add pages
2074 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2075 * and watch for underflows.
2076 */
2077 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2078 zone->nr_reserved_highatomic);
2079
2080 /*
2081 * Convert to ac->migratetype and avoid the normal
2082 * pageblock stealing heuristics. Minimally, the caller
2083 * is doing the work and needs the pages. More
2084 * importantly, if the block was always converted to
2085 * MIGRATE_UNMOVABLE or another type then the number
2086 * of pageblocks that cannot be completely freed
2087 * may increase.
2088 */
2089 set_pageblock_migratetype(page, ac->migratetype);
2090 move_freepages_block(zone, page, ac->migratetype);
2091 spin_unlock_irqrestore(&zone->lock, flags);
2092 return;
2093 }
2094 spin_unlock_irqrestore(&zone->lock, flags);
2095 }
2096}
2097
b2a0ac88 2098/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2099static inline struct page *
7aeb09f9 2100__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2101{
b8af2941 2102 struct free_area *area;
7aeb09f9 2103 unsigned int current_order;
b2a0ac88 2104 struct page *page;
4eb7dce6
JK
2105 int fallback_mt;
2106 bool can_steal;
b2a0ac88
MG
2107
2108 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2109 for (current_order = MAX_ORDER-1;
2110 current_order >= order && current_order <= MAX_ORDER-1;
2111 --current_order) {
4eb7dce6
JK
2112 area = &(zone->free_area[current_order]);
2113 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2114 start_migratetype, false, &can_steal);
4eb7dce6
JK
2115 if (fallback_mt == -1)
2116 continue;
b2a0ac88 2117
a16601c5 2118 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2119 struct page, lru);
2120 if (can_steal)
2121 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2122
4eb7dce6
JK
2123 /* Remove the page from the freelists */
2124 area->nr_free--;
2125 list_del(&page->lru);
2126 rmv_page_order(page);
3a1086fb 2127
4eb7dce6
JK
2128 expand(zone, page, order, current_order, area,
2129 start_migratetype);
2130 /*
bb14c2c7 2131 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2132 * migratetype depending on the decisions in
bb14c2c7
VB
2133 * find_suitable_fallback(). This is OK as long as it does not
2134 * differ for MIGRATE_CMA pageblocks. Those can be used as
2135 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2136 */
bb14c2c7 2137 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2138
4eb7dce6
JK
2139 trace_mm_page_alloc_extfrag(page, order, current_order,
2140 start_migratetype, fallback_mt);
e0fff1bd 2141
4eb7dce6 2142 return page;
b2a0ac88
MG
2143 }
2144
728ec980 2145 return NULL;
b2a0ac88
MG
2146}
2147
56fd56b8 2148/*
1da177e4
LT
2149 * Do the hard work of removing an element from the buddy allocator.
2150 * Call me with the zone->lock already held.
2151 */
b2a0ac88 2152static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2153 int migratetype)
1da177e4 2154{
1da177e4
LT
2155 struct page *page;
2156
56fd56b8 2157 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2158 if (unlikely(!page)) {
dc67647b
JK
2159 if (migratetype == MIGRATE_MOVABLE)
2160 page = __rmqueue_cma_fallback(zone, order);
2161
2162 if (!page)
2163 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2164 }
2165
0d3d062a 2166 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2167 return page;
1da177e4
LT
2168}
2169
5f63b720 2170/*
1da177e4
LT
2171 * Obtain a specified number of elements from the buddy allocator, all under
2172 * a single hold of the lock, for efficiency. Add them to the supplied list.
2173 * Returns the number of new pages which were placed at *list.
2174 */
5f63b720 2175static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2176 unsigned long count, struct list_head *list,
b745bc85 2177 int migratetype, bool cold)
1da177e4 2178{
5bcc9f86 2179 int i;
5f63b720 2180
c54ad30c 2181 spin_lock(&zone->lock);
1da177e4 2182 for (i = 0; i < count; ++i) {
6ac0206b 2183 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2184 if (unlikely(page == NULL))
1da177e4 2185 break;
81eabcbe 2186
479f854a
MG
2187 if (unlikely(check_pcp_refill(page)))
2188 continue;
2189
81eabcbe
MG
2190 /*
2191 * Split buddy pages returned by expand() are received here
2192 * in physical page order. The page is added to the callers and
2193 * list and the list head then moves forward. From the callers
2194 * perspective, the linked list is ordered by page number in
2195 * some conditions. This is useful for IO devices that can
2196 * merge IO requests if the physical pages are ordered
2197 * properly.
2198 */
b745bc85 2199 if (likely(!cold))
e084b2d9
MG
2200 list_add(&page->lru, list);
2201 else
2202 list_add_tail(&page->lru, list);
81eabcbe 2203 list = &page->lru;
bb14c2c7 2204 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2205 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2206 -(1 << order));
1da177e4 2207 }
f2260e6b 2208 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2209 spin_unlock(&zone->lock);
085cc7d5 2210 return i;
1da177e4
LT
2211}
2212
4ae7c039 2213#ifdef CONFIG_NUMA
8fce4d8e 2214/*
4037d452
CL
2215 * Called from the vmstat counter updater to drain pagesets of this
2216 * currently executing processor on remote nodes after they have
2217 * expired.
2218 *
879336c3
CL
2219 * Note that this function must be called with the thread pinned to
2220 * a single processor.
8fce4d8e 2221 */
4037d452 2222void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2223{
4ae7c039 2224 unsigned long flags;
7be12fc9 2225 int to_drain, batch;
4ae7c039 2226
4037d452 2227 local_irq_save(flags);
4db0c3c2 2228 batch = READ_ONCE(pcp->batch);
7be12fc9 2229 to_drain = min(pcp->count, batch);
2a13515c
KM
2230 if (to_drain > 0) {
2231 free_pcppages_bulk(zone, to_drain, pcp);
2232 pcp->count -= to_drain;
2233 }
4037d452 2234 local_irq_restore(flags);
4ae7c039
CL
2235}
2236#endif
2237
9f8f2172 2238/*
93481ff0 2239 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2240 *
2241 * The processor must either be the current processor and the
2242 * thread pinned to the current processor or a processor that
2243 * is not online.
2244 */
93481ff0 2245static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2246{
c54ad30c 2247 unsigned long flags;
93481ff0
VB
2248 struct per_cpu_pageset *pset;
2249 struct per_cpu_pages *pcp;
1da177e4 2250
93481ff0
VB
2251 local_irq_save(flags);
2252 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2253
93481ff0
VB
2254 pcp = &pset->pcp;
2255 if (pcp->count) {
2256 free_pcppages_bulk(zone, pcp->count, pcp);
2257 pcp->count = 0;
2258 }
2259 local_irq_restore(flags);
2260}
3dfa5721 2261
93481ff0
VB
2262/*
2263 * Drain pcplists of all zones on the indicated processor.
2264 *
2265 * The processor must either be the current processor and the
2266 * thread pinned to the current processor or a processor that
2267 * is not online.
2268 */
2269static void drain_pages(unsigned int cpu)
2270{
2271 struct zone *zone;
2272
2273 for_each_populated_zone(zone) {
2274 drain_pages_zone(cpu, zone);
1da177e4
LT
2275 }
2276}
1da177e4 2277
9f8f2172
CL
2278/*
2279 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2280 *
2281 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2282 * the single zone's pages.
9f8f2172 2283 */
93481ff0 2284void drain_local_pages(struct zone *zone)
9f8f2172 2285{
93481ff0
VB
2286 int cpu = smp_processor_id();
2287
2288 if (zone)
2289 drain_pages_zone(cpu, zone);
2290 else
2291 drain_pages(cpu);
9f8f2172
CL
2292}
2293
2294/*
74046494
GBY
2295 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2296 *
93481ff0
VB
2297 * When zone parameter is non-NULL, spill just the single zone's pages.
2298 *
74046494
GBY
2299 * Note that this code is protected against sending an IPI to an offline
2300 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2301 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2302 * nothing keeps CPUs from showing up after we populated the cpumask and
2303 * before the call to on_each_cpu_mask().
9f8f2172 2304 */
93481ff0 2305void drain_all_pages(struct zone *zone)
9f8f2172 2306{
74046494 2307 int cpu;
74046494
GBY
2308
2309 /*
2310 * Allocate in the BSS so we wont require allocation in
2311 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2312 */
2313 static cpumask_t cpus_with_pcps;
2314
2315 /*
2316 * We don't care about racing with CPU hotplug event
2317 * as offline notification will cause the notified
2318 * cpu to drain that CPU pcps and on_each_cpu_mask
2319 * disables preemption as part of its processing
2320 */
2321 for_each_online_cpu(cpu) {
93481ff0
VB
2322 struct per_cpu_pageset *pcp;
2323 struct zone *z;
74046494 2324 bool has_pcps = false;
93481ff0
VB
2325
2326 if (zone) {
74046494 2327 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2328 if (pcp->pcp.count)
74046494 2329 has_pcps = true;
93481ff0
VB
2330 } else {
2331 for_each_populated_zone(z) {
2332 pcp = per_cpu_ptr(z->pageset, cpu);
2333 if (pcp->pcp.count) {
2334 has_pcps = true;
2335 break;
2336 }
74046494
GBY
2337 }
2338 }
93481ff0 2339
74046494
GBY
2340 if (has_pcps)
2341 cpumask_set_cpu(cpu, &cpus_with_pcps);
2342 else
2343 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2344 }
93481ff0
VB
2345 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2346 zone, 1);
9f8f2172
CL
2347}
2348
296699de 2349#ifdef CONFIG_HIBERNATION
1da177e4
LT
2350
2351void mark_free_pages(struct zone *zone)
2352{
f623f0db
RW
2353 unsigned long pfn, max_zone_pfn;
2354 unsigned long flags;
7aeb09f9 2355 unsigned int order, t;
86760a2c 2356 struct page *page;
1da177e4 2357
8080fc03 2358 if (zone_is_empty(zone))
1da177e4
LT
2359 return;
2360
2361 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2362
108bcc96 2363 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2364 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2365 if (pfn_valid(pfn)) {
86760a2c 2366 page = pfn_to_page(pfn);
ba6b0979
JK
2367
2368 if (page_zone(page) != zone)
2369 continue;
2370
7be98234
RW
2371 if (!swsusp_page_is_forbidden(page))
2372 swsusp_unset_page_free(page);
f623f0db 2373 }
1da177e4 2374
b2a0ac88 2375 for_each_migratetype_order(order, t) {
86760a2c
GT
2376 list_for_each_entry(page,
2377 &zone->free_area[order].free_list[t], lru) {
f623f0db 2378 unsigned long i;
1da177e4 2379
86760a2c 2380 pfn = page_to_pfn(page);
f623f0db 2381 for (i = 0; i < (1UL << order); i++)
7be98234 2382 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2383 }
b2a0ac88 2384 }
1da177e4
LT
2385 spin_unlock_irqrestore(&zone->lock, flags);
2386}
e2c55dc8 2387#endif /* CONFIG_PM */
1da177e4 2388
1da177e4
LT
2389/*
2390 * Free a 0-order page
b745bc85 2391 * cold == true ? free a cold page : free a hot page
1da177e4 2392 */
b745bc85 2393void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2394{
2395 struct zone *zone = page_zone(page);
2396 struct per_cpu_pages *pcp;
2397 unsigned long flags;
dc4b0caf 2398 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2399 int migratetype;
1da177e4 2400
4db7548c 2401 if (!free_pcp_prepare(page))
689bcebf
HD
2402 return;
2403
dc4b0caf 2404 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2405 set_pcppage_migratetype(page, migratetype);
1da177e4 2406 local_irq_save(flags);
f8891e5e 2407 __count_vm_event(PGFREE);
da456f14 2408
5f8dcc21
MG
2409 /*
2410 * We only track unmovable, reclaimable and movable on pcp lists.
2411 * Free ISOLATE pages back to the allocator because they are being
2412 * offlined but treat RESERVE as movable pages so we can get those
2413 * areas back if necessary. Otherwise, we may have to free
2414 * excessively into the page allocator
2415 */
2416 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2417 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2418 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2419 goto out;
2420 }
2421 migratetype = MIGRATE_MOVABLE;
2422 }
2423
99dcc3e5 2424 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2425 if (!cold)
5f8dcc21 2426 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2427 else
2428 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2429 pcp->count++;
48db57f8 2430 if (pcp->count >= pcp->high) {
4db0c3c2 2431 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2432 free_pcppages_bulk(zone, batch, pcp);
2433 pcp->count -= batch;
48db57f8 2434 }
5f8dcc21
MG
2435
2436out:
1da177e4 2437 local_irq_restore(flags);
1da177e4
LT
2438}
2439
cc59850e
KK
2440/*
2441 * Free a list of 0-order pages
2442 */
b745bc85 2443void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2444{
2445 struct page *page, *next;
2446
2447 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2448 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2449 free_hot_cold_page(page, cold);
2450 }
2451}
2452
8dfcc9ba
NP
2453/*
2454 * split_page takes a non-compound higher-order page, and splits it into
2455 * n (1<<order) sub-pages: page[0..n]
2456 * Each sub-page must be freed individually.
2457 *
2458 * Note: this is probably too low level an operation for use in drivers.
2459 * Please consult with lkml before using this in your driver.
2460 */
2461void split_page(struct page *page, unsigned int order)
2462{
2463 int i;
2464
309381fe
SL
2465 VM_BUG_ON_PAGE(PageCompound(page), page);
2466 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2467
2468#ifdef CONFIG_KMEMCHECK
2469 /*
2470 * Split shadow pages too, because free(page[0]) would
2471 * otherwise free the whole shadow.
2472 */
2473 if (kmemcheck_page_is_tracked(page))
2474 split_page(virt_to_page(page[0].shadow), order);
2475#endif
2476
a9627bc5 2477 for (i = 1; i < (1 << order); i++)
7835e98b 2478 set_page_refcounted(page + i);
a9627bc5 2479 split_page_owner(page, order);
8dfcc9ba 2480}
5853ff23 2481EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2482
3c605096 2483int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2484{
748446bb
MG
2485 unsigned long watermark;
2486 struct zone *zone;
2139cbe6 2487 int mt;
748446bb
MG
2488
2489 BUG_ON(!PageBuddy(page));
2490
2491 zone = page_zone(page);
2e30abd1 2492 mt = get_pageblock_migratetype(page);
748446bb 2493
194159fb 2494 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2495 /* Obey watermarks as if the page was being allocated */
2496 watermark = low_wmark_pages(zone) + (1 << order);
2497 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2498 return 0;
2499
8fb74b9f 2500 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2501 }
748446bb
MG
2502
2503 /* Remove page from free list */
2504 list_del(&page->lru);
2505 zone->free_area[order].nr_free--;
2506 rmv_page_order(page);
2139cbe6 2507
8fb74b9f 2508 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2509 if (order >= pageblock_order - 1) {
2510 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2511 for (; page < endpage; page += pageblock_nr_pages) {
2512 int mt = get_pageblock_migratetype(page);
194159fb 2513 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2514 set_pageblock_migratetype(page,
2515 MIGRATE_MOVABLE);
2516 }
748446bb
MG
2517 }
2518
f3a14ced 2519
8fb74b9f 2520 return 1UL << order;
1fb3f8ca
MG
2521}
2522
060e7417
MG
2523/*
2524 * Update NUMA hit/miss statistics
2525 *
2526 * Must be called with interrupts disabled.
2527 *
2528 * When __GFP_OTHER_NODE is set assume the node of the preferred
2529 * zone is the local node. This is useful for daemons who allocate
2530 * memory on behalf of other processes.
2531 */
2532static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2533 gfp_t flags)
2534{
2535#ifdef CONFIG_NUMA
2536 int local_nid = numa_node_id();
2537 enum zone_stat_item local_stat = NUMA_LOCAL;
2538
2539 if (unlikely(flags & __GFP_OTHER_NODE)) {
2540 local_stat = NUMA_OTHER;
2541 local_nid = preferred_zone->node;
2542 }
2543
2544 if (z->node == local_nid) {
2545 __inc_zone_state(z, NUMA_HIT);
2546 __inc_zone_state(z, local_stat);
2547 } else {
2548 __inc_zone_state(z, NUMA_MISS);
2549 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2550 }
2551#endif
2552}
2553
1da177e4 2554/*
75379191 2555 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2556 */
0a15c3e9
MG
2557static inline
2558struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2559 struct zone *zone, unsigned int order,
c603844b
MG
2560 gfp_t gfp_flags, unsigned int alloc_flags,
2561 int migratetype)
1da177e4
LT
2562{
2563 unsigned long flags;
689bcebf 2564 struct page *page;
b745bc85 2565 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2566
48db57f8 2567 if (likely(order == 0)) {
1da177e4 2568 struct per_cpu_pages *pcp;
5f8dcc21 2569 struct list_head *list;
1da177e4 2570
1da177e4 2571 local_irq_save(flags);
479f854a
MG
2572 do {
2573 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2574 list = &pcp->lists[migratetype];
2575 if (list_empty(list)) {
2576 pcp->count += rmqueue_bulk(zone, 0,
2577 pcp->batch, list,
2578 migratetype, cold);
2579 if (unlikely(list_empty(list)))
2580 goto failed;
2581 }
b92a6edd 2582
479f854a
MG
2583 if (cold)
2584 page = list_last_entry(list, struct page, lru);
2585 else
2586 page = list_first_entry(list, struct page, lru);
5f8dcc21 2587
83b9355b
VB
2588 __dec_zone_state(zone, NR_ALLOC_BATCH);
2589 list_del(&page->lru);
2590 pcp->count--;
2591
2592 } while (check_new_pcp(page));
7fb1d9fc 2593 } else {
0f352e53
MH
2594 /*
2595 * We most definitely don't want callers attempting to
2596 * allocate greater than order-1 page units with __GFP_NOFAIL.
2597 */
2598 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2599 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2600
479f854a
MG
2601 do {
2602 page = NULL;
2603 if (alloc_flags & ALLOC_HARDER) {
2604 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2605 if (page)
2606 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2607 }
2608 if (!page)
2609 page = __rmqueue(zone, order, migratetype);
2610 } while (page && check_new_pages(page, order));
a74609fa
NP
2611 spin_unlock(&zone->lock);
2612 if (!page)
2613 goto failed;
754078eb 2614 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2615 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2616 get_pcppage_migratetype(page));
1da177e4
LT
2617 }
2618
abe5f972 2619 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2620 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2621 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2622
f8891e5e 2623 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2624 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2625 local_irq_restore(flags);
1da177e4 2626
309381fe 2627 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2628 return page;
a74609fa
NP
2629
2630failed:
2631 local_irq_restore(flags);
a74609fa 2632 return NULL;
1da177e4
LT
2633}
2634
933e312e
AM
2635#ifdef CONFIG_FAIL_PAGE_ALLOC
2636
b2588c4b 2637static struct {
933e312e
AM
2638 struct fault_attr attr;
2639
621a5f7a 2640 bool ignore_gfp_highmem;
71baba4b 2641 bool ignore_gfp_reclaim;
54114994 2642 u32 min_order;
933e312e
AM
2643} fail_page_alloc = {
2644 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2645 .ignore_gfp_reclaim = true,
621a5f7a 2646 .ignore_gfp_highmem = true,
54114994 2647 .min_order = 1,
933e312e
AM
2648};
2649
2650static int __init setup_fail_page_alloc(char *str)
2651{
2652 return setup_fault_attr(&fail_page_alloc.attr, str);
2653}
2654__setup("fail_page_alloc=", setup_fail_page_alloc);
2655
deaf386e 2656static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2657{
54114994 2658 if (order < fail_page_alloc.min_order)
deaf386e 2659 return false;
933e312e 2660 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2661 return false;
933e312e 2662 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2663 return false;
71baba4b
MG
2664 if (fail_page_alloc.ignore_gfp_reclaim &&
2665 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2666 return false;
933e312e
AM
2667
2668 return should_fail(&fail_page_alloc.attr, 1 << order);
2669}
2670
2671#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2672
2673static int __init fail_page_alloc_debugfs(void)
2674{
f4ae40a6 2675 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2676 struct dentry *dir;
933e312e 2677
dd48c085
AM
2678 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2679 &fail_page_alloc.attr);
2680 if (IS_ERR(dir))
2681 return PTR_ERR(dir);
933e312e 2682
b2588c4b 2683 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2684 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2685 goto fail;
2686 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2687 &fail_page_alloc.ignore_gfp_highmem))
2688 goto fail;
2689 if (!debugfs_create_u32("min-order", mode, dir,
2690 &fail_page_alloc.min_order))
2691 goto fail;
2692
2693 return 0;
2694fail:
dd48c085 2695 debugfs_remove_recursive(dir);
933e312e 2696
b2588c4b 2697 return -ENOMEM;
933e312e
AM
2698}
2699
2700late_initcall(fail_page_alloc_debugfs);
2701
2702#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2703
2704#else /* CONFIG_FAIL_PAGE_ALLOC */
2705
deaf386e 2706static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2707{
deaf386e 2708 return false;
933e312e
AM
2709}
2710
2711#endif /* CONFIG_FAIL_PAGE_ALLOC */
2712
1da177e4 2713/*
97a16fc8
MG
2714 * Return true if free base pages are above 'mark'. For high-order checks it
2715 * will return true of the order-0 watermark is reached and there is at least
2716 * one free page of a suitable size. Checking now avoids taking the zone lock
2717 * to check in the allocation paths if no pages are free.
1da177e4 2718 */
86a294a8
MH
2719bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2720 int classzone_idx, unsigned int alloc_flags,
2721 long free_pages)
1da177e4 2722{
d23ad423 2723 long min = mark;
1da177e4 2724 int o;
c603844b 2725 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2726
0aaa29a5 2727 /* free_pages may go negative - that's OK */
df0a6daa 2728 free_pages -= (1 << order) - 1;
0aaa29a5 2729
7fb1d9fc 2730 if (alloc_flags & ALLOC_HIGH)
1da177e4 2731 min -= min / 2;
0aaa29a5
MG
2732
2733 /*
2734 * If the caller does not have rights to ALLOC_HARDER then subtract
2735 * the high-atomic reserves. This will over-estimate the size of the
2736 * atomic reserve but it avoids a search.
2737 */
97a16fc8 2738 if (likely(!alloc_harder))
0aaa29a5
MG
2739 free_pages -= z->nr_reserved_highatomic;
2740 else
1da177e4 2741 min -= min / 4;
e2b19197 2742
d95ea5d1
BZ
2743#ifdef CONFIG_CMA
2744 /* If allocation can't use CMA areas don't use free CMA pages */
2745 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2746 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2747#endif
026b0814 2748
97a16fc8
MG
2749 /*
2750 * Check watermarks for an order-0 allocation request. If these
2751 * are not met, then a high-order request also cannot go ahead
2752 * even if a suitable page happened to be free.
2753 */
2754 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2755 return false;
1da177e4 2756
97a16fc8
MG
2757 /* If this is an order-0 request then the watermark is fine */
2758 if (!order)
2759 return true;
2760
2761 /* For a high-order request, check at least one suitable page is free */
2762 for (o = order; o < MAX_ORDER; o++) {
2763 struct free_area *area = &z->free_area[o];
2764 int mt;
2765
2766 if (!area->nr_free)
2767 continue;
2768
2769 if (alloc_harder)
2770 return true;
1da177e4 2771
97a16fc8
MG
2772 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2773 if (!list_empty(&area->free_list[mt]))
2774 return true;
2775 }
2776
2777#ifdef CONFIG_CMA
2778 if ((alloc_flags & ALLOC_CMA) &&
2779 !list_empty(&area->free_list[MIGRATE_CMA])) {
2780 return true;
2781 }
2782#endif
1da177e4 2783 }
97a16fc8 2784 return false;
88f5acf8
MG
2785}
2786
7aeb09f9 2787bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2788 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2789{
2790 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2791 zone_page_state(z, NR_FREE_PAGES));
2792}
2793
48ee5f36
MG
2794static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2795 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2796{
2797 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2798 long cma_pages = 0;
2799
2800#ifdef CONFIG_CMA
2801 /* If allocation can't use CMA areas don't use free CMA pages */
2802 if (!(alloc_flags & ALLOC_CMA))
2803 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2804#endif
2805
2806 /*
2807 * Fast check for order-0 only. If this fails then the reserves
2808 * need to be calculated. There is a corner case where the check
2809 * passes but only the high-order atomic reserve are free. If
2810 * the caller is !atomic then it'll uselessly search the free
2811 * list. That corner case is then slower but it is harmless.
2812 */
2813 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2814 return true;
2815
2816 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2817 free_pages);
2818}
2819
7aeb09f9 2820bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2821 unsigned long mark, int classzone_idx)
88f5acf8
MG
2822{
2823 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2824
2825 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2826 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2827
e2b19197 2828 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2829 free_pages);
1da177e4
LT
2830}
2831
9276b1bc 2832#ifdef CONFIG_NUMA
81c0a2bb
JW
2833static bool zone_local(struct zone *local_zone, struct zone *zone)
2834{
fff4068c 2835 return local_zone->node == zone->node;
81c0a2bb
JW
2836}
2837
957f822a
DR
2838static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2839{
5f7a75ac
MG
2840 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2841 RECLAIM_DISTANCE;
957f822a 2842}
9276b1bc 2843#else /* CONFIG_NUMA */
81c0a2bb
JW
2844static bool zone_local(struct zone *local_zone, struct zone *zone)
2845{
2846 return true;
2847}
2848
957f822a
DR
2849static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2850{
2851 return true;
2852}
9276b1bc
PJ
2853#endif /* CONFIG_NUMA */
2854
4ffeaf35
MG
2855static void reset_alloc_batches(struct zone *preferred_zone)
2856{
2857 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2858
2859 do {
2860 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2861 high_wmark_pages(zone) - low_wmark_pages(zone) -
2862 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2863 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2864 } while (zone++ != preferred_zone);
2865}
2866
7fb1d9fc 2867/*
0798e519 2868 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2869 * a page.
2870 */
2871static struct page *
a9263751
VB
2872get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2873 const struct alloc_context *ac)
753ee728 2874{
c33d6c06 2875 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2876 struct zone *zone;
30534755
MG
2877 bool fair_skipped = false;
2878 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2879
9276b1bc 2880zonelist_scan:
7fb1d9fc 2881 /*
9276b1bc 2882 * Scan zonelist, looking for a zone with enough free.
344736f2 2883 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2884 */
c33d6c06 2885 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2886 ac->nodemask) {
be06af00 2887 struct page *page;
e085dbc5
JW
2888 unsigned long mark;
2889
664eedde
MG
2890 if (cpusets_enabled() &&
2891 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2892 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2893 continue;
81c0a2bb
JW
2894 /*
2895 * Distribute pages in proportion to the individual
2896 * zone size to ensure fair page aging. The zone a
2897 * page was allocated in should have no effect on the
2898 * time the page has in memory before being reclaimed.
81c0a2bb 2899 */
30534755 2900 if (apply_fair) {
57054651 2901 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2902 fair_skipped = true;
3a025760 2903 continue;
4ffeaf35 2904 }
c33d6c06 2905 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2906 if (fair_skipped)
2907 goto reset_fair;
2908 apply_fair = false;
2909 }
81c0a2bb 2910 }
a756cf59
JW
2911 /*
2912 * When allocating a page cache page for writing, we
2913 * want to get it from a zone that is within its dirty
2914 * limit, such that no single zone holds more than its
2915 * proportional share of globally allowed dirty pages.
2916 * The dirty limits take into account the zone's
2917 * lowmem reserves and high watermark so that kswapd
2918 * should be able to balance it without having to
2919 * write pages from its LRU list.
2920 *
2921 * This may look like it could increase pressure on
2922 * lower zones by failing allocations in higher zones
2923 * before they are full. But the pages that do spill
2924 * over are limited as the lower zones are protected
2925 * by this very same mechanism. It should not become
2926 * a practical burden to them.
2927 *
2928 * XXX: For now, allow allocations to potentially
2929 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2930 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2931 * which is important when on a NUMA setup the allowed
2932 * zones are together not big enough to reach the
2933 * global limit. The proper fix for these situations
2934 * will require awareness of zones in the
2935 * dirty-throttling and the flusher threads.
2936 */
c9ab0c4f 2937 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2938 continue;
7fb1d9fc 2939
e085dbc5 2940 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2941 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2942 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2943 int ret;
2944
5dab2911
MG
2945 /* Checked here to keep the fast path fast */
2946 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2947 if (alloc_flags & ALLOC_NO_WATERMARKS)
2948 goto try_this_zone;
2949
957f822a 2950 if (zone_reclaim_mode == 0 ||
c33d6c06 2951 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2952 continue;
2953
fa5e084e
MG
2954 ret = zone_reclaim(zone, gfp_mask, order);
2955 switch (ret) {
2956 case ZONE_RECLAIM_NOSCAN:
2957 /* did not scan */
cd38b115 2958 continue;
fa5e084e
MG
2959 case ZONE_RECLAIM_FULL:
2960 /* scanned but unreclaimable */
cd38b115 2961 continue;
fa5e084e
MG
2962 default:
2963 /* did we reclaim enough */
fed2719e 2964 if (zone_watermark_ok(zone, order, mark,
93ea9964 2965 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2966 goto try_this_zone;
2967
fed2719e 2968 continue;
0798e519 2969 }
7fb1d9fc
RS
2970 }
2971
fa5e084e 2972try_this_zone:
c33d6c06 2973 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2974 gfp_mask, alloc_flags, ac->migratetype);
75379191 2975 if (page) {
479f854a 2976 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2977
2978 /*
2979 * If this is a high-order atomic allocation then check
2980 * if the pageblock should be reserved for the future
2981 */
2982 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2983 reserve_highatomic_pageblock(page, zone, order);
2984
75379191
VB
2985 return page;
2986 }
54a6eb5c 2987 }
9276b1bc 2988
4ffeaf35
MG
2989 /*
2990 * The first pass makes sure allocations are spread fairly within the
2991 * local node. However, the local node might have free pages left
2992 * after the fairness batches are exhausted, and remote zones haven't
2993 * even been considered yet. Try once more without fairness, and
2994 * include remote zones now, before entering the slowpath and waking
2995 * kswapd: prefer spilling to a remote zone over swapping locally.
2996 */
30534755
MG
2997 if (fair_skipped) {
2998reset_fair:
2999 apply_fair = false;
3000 fair_skipped = false;
c33d6c06 3001 reset_alloc_batches(ac->preferred_zoneref->zone);
0d0bd894 3002 z = ac->preferred_zoneref;
4ffeaf35 3003 goto zonelist_scan;
30534755 3004 }
4ffeaf35
MG
3005
3006 return NULL;
753ee728
MH
3007}
3008
29423e77
DR
3009/*
3010 * Large machines with many possible nodes should not always dump per-node
3011 * meminfo in irq context.
3012 */
3013static inline bool should_suppress_show_mem(void)
3014{
3015 bool ret = false;
3016
3017#if NODES_SHIFT > 8
3018 ret = in_interrupt();
3019#endif
3020 return ret;
3021}
3022
a238ab5b
DH
3023static DEFINE_RATELIMIT_STATE(nopage_rs,
3024 DEFAULT_RATELIMIT_INTERVAL,
3025 DEFAULT_RATELIMIT_BURST);
3026
d00181b9 3027void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 3028{
a238ab5b
DH
3029 unsigned int filter = SHOW_MEM_FILTER_NODES;
3030
c0a32fc5
SG
3031 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3032 debug_guardpage_minorder() > 0)
a238ab5b
DH
3033 return;
3034
3035 /*
3036 * This documents exceptions given to allocations in certain
3037 * contexts that are allowed to allocate outside current's set
3038 * of allowed nodes.
3039 */
3040 if (!(gfp_mask & __GFP_NOMEMALLOC))
3041 if (test_thread_flag(TIF_MEMDIE) ||
3042 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3043 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3044 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3045 filter &= ~SHOW_MEM_FILTER_NODES;
3046
3047 if (fmt) {
3ee9a4f0
JP
3048 struct va_format vaf;
3049 va_list args;
3050
a238ab5b 3051 va_start(args, fmt);
3ee9a4f0
JP
3052
3053 vaf.fmt = fmt;
3054 vaf.va = &args;
3055
3056 pr_warn("%pV", &vaf);
3057
a238ab5b
DH
3058 va_end(args);
3059 }
3060
c5c990e8
VB
3061 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3062 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3063 dump_stack();
3064 if (!should_suppress_show_mem())
3065 show_mem(filter);
3066}
3067
11e33f6a
MG
3068static inline struct page *
3069__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3070 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3071{
6e0fc46d
DR
3072 struct oom_control oc = {
3073 .zonelist = ac->zonelist,
3074 .nodemask = ac->nodemask,
2a966b77 3075 .memcg = NULL,
6e0fc46d
DR
3076 .gfp_mask = gfp_mask,
3077 .order = order,
6e0fc46d 3078 };
11e33f6a
MG
3079 struct page *page;
3080
9879de73
JW
3081 *did_some_progress = 0;
3082
9879de73 3083 /*
dc56401f
JW
3084 * Acquire the oom lock. If that fails, somebody else is
3085 * making progress for us.
9879de73 3086 */
dc56401f 3087 if (!mutex_trylock(&oom_lock)) {
9879de73 3088 *did_some_progress = 1;
11e33f6a 3089 schedule_timeout_uninterruptible(1);
1da177e4
LT
3090 return NULL;
3091 }
6b1de916 3092
11e33f6a
MG
3093 /*
3094 * Go through the zonelist yet one more time, keep very high watermark
3095 * here, this is only to catch a parallel oom killing, we must fail if
3096 * we're still under heavy pressure.
3097 */
a9263751
VB
3098 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3099 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3100 if (page)
11e33f6a
MG
3101 goto out;
3102
4365a567 3103 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3104 /* Coredumps can quickly deplete all memory reserves */
3105 if (current->flags & PF_DUMPCORE)
3106 goto out;
4365a567
KH
3107 /* The OOM killer will not help higher order allocs */
3108 if (order > PAGE_ALLOC_COSTLY_ORDER)
3109 goto out;
03668b3c 3110 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3111 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3112 goto out;
9083905a
JW
3113 if (pm_suspended_storage())
3114 goto out;
3da88fb3
MH
3115 /*
3116 * XXX: GFP_NOFS allocations should rather fail than rely on
3117 * other request to make a forward progress.
3118 * We are in an unfortunate situation where out_of_memory cannot
3119 * do much for this context but let's try it to at least get
3120 * access to memory reserved if the current task is killed (see
3121 * out_of_memory). Once filesystems are ready to handle allocation
3122 * failures more gracefully we should just bail out here.
3123 */
3124
4167e9b2 3125 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3126 if (gfp_mask & __GFP_THISNODE)
3127 goto out;
3128 }
11e33f6a 3129 /* Exhausted what can be done so it's blamo time */
5020e285 3130 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3131 *did_some_progress = 1;
5020e285
MH
3132
3133 if (gfp_mask & __GFP_NOFAIL) {
3134 page = get_page_from_freelist(gfp_mask, order,
3135 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3136 /*
3137 * fallback to ignore cpuset restriction if our nodes
3138 * are depleted
3139 */
3140 if (!page)
3141 page = get_page_from_freelist(gfp_mask, order,
3142 ALLOC_NO_WATERMARKS, ac);
3143 }
3144 }
11e33f6a 3145out:
dc56401f 3146 mutex_unlock(&oom_lock);
11e33f6a
MG
3147 return page;
3148}
3149
33c2d214
MH
3150
3151/*
3152 * Maximum number of compaction retries wit a progress before OOM
3153 * killer is consider as the only way to move forward.
3154 */
3155#define MAX_COMPACT_RETRIES 16
3156
56de7263
MG
3157#ifdef CONFIG_COMPACTION
3158/* Try memory compaction for high-order allocations before reclaim */
3159static struct page *
3160__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3161 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3162 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3163{
98dd3b48 3164 struct page *page;
c5d01d0d 3165 int contended_compaction;
53853e2d
VB
3166
3167 if (!order)
66199712 3168 return NULL;
66199712 3169
c06b1fca 3170 current->flags |= PF_MEMALLOC;
c5d01d0d
MH
3171 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3172 mode, &contended_compaction);
c06b1fca 3173 current->flags &= ~PF_MEMALLOC;
56de7263 3174
c5d01d0d 3175 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3176 return NULL;
53853e2d 3177
98dd3b48
VB
3178 /*
3179 * At least in one zone compaction wasn't deferred or skipped, so let's
3180 * count a compaction stall
3181 */
3182 count_vm_event(COMPACTSTALL);
8fb74b9f 3183
a9263751
VB
3184 page = get_page_from_freelist(gfp_mask, order,
3185 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3186
98dd3b48
VB
3187 if (page) {
3188 struct zone *zone = page_zone(page);
53853e2d 3189
98dd3b48
VB
3190 zone->compact_blockskip_flush = false;
3191 compaction_defer_reset(zone, order, true);
3192 count_vm_event(COMPACTSUCCESS);
3193 return page;
3194 }
56de7263 3195
98dd3b48
VB
3196 /*
3197 * It's bad if compaction run occurs and fails. The most likely reason
3198 * is that pages exist, but not enough to satisfy watermarks.
3199 */
3200 count_vm_event(COMPACTFAIL);
66199712 3201
c5d01d0d
MH
3202 /*
3203 * In all zones where compaction was attempted (and not
3204 * deferred or skipped), lock contention has been detected.
3205 * For THP allocation we do not want to disrupt the others
3206 * so we fallback to base pages instead.
3207 */
3208 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3209 *compact_result = COMPACT_CONTENDED;
3210
3211 /*
3212 * If compaction was aborted due to need_resched(), we do not
3213 * want to further increase allocation latency, unless it is
3214 * khugepaged trying to collapse.
3215 */
3216 if (contended_compaction == COMPACT_CONTENDED_SCHED
3217 && !(current->flags & PF_KTHREAD))
3218 *compact_result = COMPACT_CONTENDED;
3219
98dd3b48 3220 cond_resched();
56de7263
MG
3221
3222 return NULL;
3223}
33c2d214
MH
3224
3225static inline bool
86a294a8
MH
3226should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3227 enum compact_result compact_result, enum migrate_mode *migrate_mode,
33c2d214
MH
3228 int compaction_retries)
3229{
7854ea6c
MH
3230 int max_retries = MAX_COMPACT_RETRIES;
3231
33c2d214
MH
3232 if (!order)
3233 return false;
3234
3235 /*
3236 * compaction considers all the zone as desperately out of memory
3237 * so it doesn't really make much sense to retry except when the
3238 * failure could be caused by weak migration mode.
3239 */
3240 if (compaction_failed(compact_result)) {
3241 if (*migrate_mode == MIGRATE_ASYNC) {
3242 *migrate_mode = MIGRATE_SYNC_LIGHT;
3243 return true;
3244 }
3245 return false;
3246 }
3247
3248 /*
7854ea6c
MH
3249 * make sure the compaction wasn't deferred or didn't bail out early
3250 * due to locks contention before we declare that we should give up.
86a294a8
MH
3251 * But do not retry if the given zonelist is not suitable for
3252 * compaction.
33c2d214 3253 */
7854ea6c 3254 if (compaction_withdrawn(compact_result))
86a294a8 3255 return compaction_zonelist_suitable(ac, order, alloc_flags);
7854ea6c
MH
3256
3257 /*
3258 * !costly requests are much more important than __GFP_REPEAT
3259 * costly ones because they are de facto nofail and invoke OOM
3260 * killer to move on while costly can fail and users are ready
3261 * to cope with that. 1/4 retries is rather arbitrary but we
3262 * would need much more detailed feedback from compaction to
3263 * make a better decision.
3264 */
3265 if (order > PAGE_ALLOC_COSTLY_ORDER)
3266 max_retries /= 4;
3267 if (compaction_retries <= max_retries)
3268 return true;
33c2d214
MH
3269
3270 return false;
3271}
56de7263
MG
3272#else
3273static inline struct page *
3274__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3275 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3276 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3277{
33c2d214 3278 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3279 return NULL;
3280}
33c2d214
MH
3281
3282static inline bool
86a294a8
MH
3283should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3284 enum compact_result compact_result,
33c2d214
MH
3285 enum migrate_mode *migrate_mode,
3286 int compaction_retries)
3287{
31e49bfd
MH
3288 struct zone *zone;
3289 struct zoneref *z;
3290
3291 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3292 return false;
3293
3294 /*
3295 * There are setups with compaction disabled which would prefer to loop
3296 * inside the allocator rather than hit the oom killer prematurely.
3297 * Let's give them a good hope and keep retrying while the order-0
3298 * watermarks are OK.
3299 */
3300 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3301 ac->nodemask) {
3302 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3303 ac_classzone_idx(ac), alloc_flags))
3304 return true;
3305 }
33c2d214
MH
3306 return false;
3307}
56de7263
MG
3308#endif /* CONFIG_COMPACTION */
3309
bba90710
MS
3310/* Perform direct synchronous page reclaim */
3311static int
a9263751
VB
3312__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3313 const struct alloc_context *ac)
11e33f6a 3314{
11e33f6a 3315 struct reclaim_state reclaim_state;
bba90710 3316 int progress;
11e33f6a
MG
3317
3318 cond_resched();
3319
3320 /* We now go into synchronous reclaim */
3321 cpuset_memory_pressure_bump();
c06b1fca 3322 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3323 lockdep_set_current_reclaim_state(gfp_mask);
3324 reclaim_state.reclaimed_slab = 0;
c06b1fca 3325 current->reclaim_state = &reclaim_state;
11e33f6a 3326
a9263751
VB
3327 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3328 ac->nodemask);
11e33f6a 3329
c06b1fca 3330 current->reclaim_state = NULL;
11e33f6a 3331 lockdep_clear_current_reclaim_state();
c06b1fca 3332 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3333
3334 cond_resched();
3335
bba90710
MS
3336 return progress;
3337}
3338
3339/* The really slow allocator path where we enter direct reclaim */
3340static inline struct page *
3341__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3342 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3343 unsigned long *did_some_progress)
bba90710
MS
3344{
3345 struct page *page = NULL;
3346 bool drained = false;
3347
a9263751 3348 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3349 if (unlikely(!(*did_some_progress)))
3350 return NULL;
11e33f6a 3351
9ee493ce 3352retry:
a9263751
VB
3353 page = get_page_from_freelist(gfp_mask, order,
3354 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3355
3356 /*
3357 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3358 * pages are pinned on the per-cpu lists or in high alloc reserves.
3359 * Shrink them them and try again
9ee493ce
MG
3360 */
3361 if (!page && !drained) {
0aaa29a5 3362 unreserve_highatomic_pageblock(ac);
93481ff0 3363 drain_all_pages(NULL);
9ee493ce
MG
3364 drained = true;
3365 goto retry;
3366 }
3367
11e33f6a
MG
3368 return page;
3369}
3370
a9263751 3371static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3372{
3373 struct zoneref *z;
3374 struct zone *zone;
3375
a9263751
VB
3376 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3377 ac->high_zoneidx, ac->nodemask)
93ea9964 3378 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3379}
3380
c603844b 3381static inline unsigned int
341ce06f
PZ
3382gfp_to_alloc_flags(gfp_t gfp_mask)
3383{
c603844b 3384 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3385
a56f57ff 3386 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3387 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3388
341ce06f
PZ
3389 /*
3390 * The caller may dip into page reserves a bit more if the caller
3391 * cannot run direct reclaim, or if the caller has realtime scheduling
3392 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3393 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3394 */
e6223a3b 3395 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3396
d0164adc 3397 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3398 /*
b104a35d
DR
3399 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3400 * if it can't schedule.
5c3240d9 3401 */
b104a35d 3402 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3403 alloc_flags |= ALLOC_HARDER;
523b9458 3404 /*
b104a35d 3405 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3406 * comment for __cpuset_node_allowed().
523b9458 3407 */
341ce06f 3408 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3409 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3410 alloc_flags |= ALLOC_HARDER;
3411
b37f1dd0
MG
3412 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3413 if (gfp_mask & __GFP_MEMALLOC)
3414 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3415 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3416 alloc_flags |= ALLOC_NO_WATERMARKS;
3417 else if (!in_interrupt() &&
3418 ((current->flags & PF_MEMALLOC) ||
3419 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3420 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3421 }
d95ea5d1 3422#ifdef CONFIG_CMA
43e7a34d 3423 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3424 alloc_flags |= ALLOC_CMA;
3425#endif
341ce06f
PZ
3426 return alloc_flags;
3427}
3428
072bb0aa
MG
3429bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3430{
b37f1dd0 3431 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3432}
3433
d0164adc
MG
3434static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3435{
3436 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3437}
3438
0a0337e0
MH
3439/*
3440 * Maximum number of reclaim retries without any progress before OOM killer
3441 * is consider as the only way to move forward.
3442 */
3443#define MAX_RECLAIM_RETRIES 16
3444
3445/*
3446 * Checks whether it makes sense to retry the reclaim to make a forward progress
3447 * for the given allocation request.
3448 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3449 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3450 * any progress in a row) is considered as well as the reclaimable pages on the
3451 * applicable zone list (with a backoff mechanism which is a function of
3452 * no_progress_loops).
0a0337e0
MH
3453 *
3454 * Returns true if a retry is viable or false to enter the oom path.
3455 */
3456static inline bool
3457should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3458 struct alloc_context *ac, int alloc_flags,
7854ea6c 3459 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3460{
3461 struct zone *zone;
3462 struct zoneref *z;
3463
3464 /*
3465 * Make sure we converge to OOM if we cannot make any progress
3466 * several times in the row.
3467 */
3468 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3469 return false;
3470
0a0337e0
MH
3471 /*
3472 * Keep reclaiming pages while there is a chance this will lead somewhere.
3473 * If none of the target zones can satisfy our allocation request even
3474 * if all reclaimable pages are considered then we are screwed and have
3475 * to go OOM.
3476 */
3477 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3478 ac->nodemask) {
3479 unsigned long available;
ede37713 3480 unsigned long reclaimable;
0a0337e0 3481
ede37713 3482 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3483 available -= DIV_ROUND_UP(no_progress_loops * available,
3484 MAX_RECLAIM_RETRIES);
3485 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3486
3487 /*
3488 * Would the allocation succeed if we reclaimed the whole
3489 * available?
3490 */
3491 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
ede37713
MH
3492 ac_classzone_idx(ac), alloc_flags, available)) {
3493 /*
3494 * If we didn't make any progress and have a lot of
3495 * dirty + writeback pages then we should wait for
3496 * an IO to complete to slow down the reclaim and
3497 * prevent from pre mature OOM
3498 */
3499 if (!did_some_progress) {
3500 unsigned long writeback;
3501 unsigned long dirty;
3502
3503 writeback = zone_page_state_snapshot(zone,
3504 NR_WRITEBACK);
3505 dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3506
3507 if (2*(writeback + dirty) > reclaimable) {
3508 congestion_wait(BLK_RW_ASYNC, HZ/10);
3509 return true;
3510 }
3511 }
3512
3513 /*
3514 * Memory allocation/reclaim might be called from a WQ
3515 * context and the current implementation of the WQ
3516 * concurrency control doesn't recognize that
3517 * a particular WQ is congested if the worker thread is
3518 * looping without ever sleeping. Therefore we have to
3519 * do a short sleep here rather than calling
3520 * cond_resched().
3521 */
3522 if (current->flags & PF_WQ_WORKER)
3523 schedule_timeout_uninterruptible(1);
3524 else
3525 cond_resched();
3526
0a0337e0
MH
3527 return true;
3528 }
3529 }
3530
3531 return false;
3532}
3533
11e33f6a
MG
3534static inline struct page *
3535__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3536 struct alloc_context *ac)
11e33f6a 3537{
d0164adc 3538 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3539 struct page *page = NULL;
c603844b 3540 unsigned int alloc_flags;
11e33f6a 3541 unsigned long did_some_progress;
e0b9daeb 3542 enum migrate_mode migration_mode = MIGRATE_ASYNC;
c5d01d0d 3543 enum compact_result compact_result;
33c2d214 3544 int compaction_retries = 0;
0a0337e0 3545 int no_progress_loops = 0;
1da177e4 3546
72807a74
MG
3547 /*
3548 * In the slowpath, we sanity check order to avoid ever trying to
3549 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3550 * be using allocators in order of preference for an area that is
3551 * too large.
3552 */
1fc28b70
MG
3553 if (order >= MAX_ORDER) {
3554 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3555 return NULL;
1fc28b70 3556 }
1da177e4 3557
d0164adc
MG
3558 /*
3559 * We also sanity check to catch abuse of atomic reserves being used by
3560 * callers that are not in atomic context.
3561 */
3562 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3563 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3564 gfp_mask &= ~__GFP_ATOMIC;
3565
9879de73 3566retry:
d0164adc 3567 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3568 wake_all_kswapds(order, ac);
1da177e4 3569
9bf2229f 3570 /*
7fb1d9fc
RS
3571 * OK, we're below the kswapd watermark and have kicked background
3572 * reclaim. Now things get more complex, so set up alloc_flags according
3573 * to how we want to proceed.
9bf2229f 3574 */
341ce06f 3575 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3576
e46e7b77
MG
3577 /*
3578 * Reset the zonelist iterators if memory policies can be ignored.
3579 * These allocations are high priority and system rather than user
3580 * orientated.
3581 */
3582 if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
3583 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3584 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3585 ac->high_zoneidx, ac->nodemask);
3586 }
3587
341ce06f 3588 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3589 page = get_page_from_freelist(gfp_mask, order,
3590 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3591 if (page)
3592 goto got_pg;
1da177e4 3593
11e33f6a 3594 /* Allocate without watermarks if the context allows */
341ce06f 3595 if (alloc_flags & ALLOC_NO_WATERMARKS) {
33d53103
MH
3596 page = get_page_from_freelist(gfp_mask, order,
3597 ALLOC_NO_WATERMARKS, ac);
3598 if (page)
3599 goto got_pg;
1da177e4
LT
3600 }
3601
d0164adc
MG
3602 /* Caller is not willing to reclaim, we can't balance anything */
3603 if (!can_direct_reclaim) {
aed0a0e3 3604 /*
33d53103
MH
3605 * All existing users of the __GFP_NOFAIL are blockable, so warn
3606 * of any new users that actually allow this type of allocation
3607 * to fail.
aed0a0e3
DR
3608 */
3609 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3610 goto nopage;
aed0a0e3 3611 }
1da177e4 3612
341ce06f 3613 /* Avoid recursion of direct reclaim */
33d53103
MH
3614 if (current->flags & PF_MEMALLOC) {
3615 /*
3616 * __GFP_NOFAIL request from this context is rather bizarre
3617 * because we cannot reclaim anything and only can loop waiting
3618 * for somebody to do a work for us.
3619 */
3620 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3621 cond_resched();
3622 goto retry;
3623 }
341ce06f 3624 goto nopage;
33d53103 3625 }
341ce06f 3626
6583bb64
DR
3627 /* Avoid allocations with no watermarks from looping endlessly */
3628 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3629 goto nopage;
3630
77f1fe6b
MG
3631 /*
3632 * Try direct compaction. The first pass is asynchronous. Subsequent
3633 * attempts after direct reclaim are synchronous
3634 */
a9263751
VB
3635 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3636 migration_mode,
c5d01d0d 3637 &compact_result);
56de7263
MG
3638 if (page)
3639 goto got_pg;
75f30861 3640
1f9efdef 3641 /* Checks for THP-specific high-order allocations */
d0164adc 3642 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3643 /*
3644 * If compaction is deferred for high-order allocations, it is
3645 * because sync compaction recently failed. If this is the case
3646 * and the caller requested a THP allocation, we do not want
3647 * to heavily disrupt the system, so we fail the allocation
3648 * instead of entering direct reclaim.
3649 */
c5d01d0d 3650 if (compact_result == COMPACT_DEFERRED)
1f9efdef
VB
3651 goto nopage;
3652
3653 /*
c5d01d0d
MH
3654 * Compaction is contended so rather back off than cause
3655 * excessive stalls.
1f9efdef 3656 */
c5d01d0d 3657 if(compact_result == COMPACT_CONTENDED)
1f9efdef
VB
3658 goto nopage;
3659 }
66199712 3660
33c2d214
MH
3661 if (order && compaction_made_progress(compact_result))
3662 compaction_retries++;
8fe78048 3663
11e33f6a 3664 /* Try direct reclaim and then allocating */
a9263751
VB
3665 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3666 &did_some_progress);
11e33f6a
MG
3667 if (page)
3668 goto got_pg;
1da177e4 3669
9083905a
JW
3670 /* Do not loop if specifically requested */
3671 if (gfp_mask & __GFP_NORETRY)
3672 goto noretry;
3673
0a0337e0
MH
3674 /*
3675 * Do not retry costly high order allocations unless they are
3676 * __GFP_REPEAT
3677 */
3678 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3679 goto noretry;
3680
7854ea6c
MH
3681 /*
3682 * Costly allocations might have made a progress but this doesn't mean
3683 * their order will become available due to high fragmentation so
3684 * always increment the no progress counter for them
3685 */
3686 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3687 no_progress_loops = 0;
7854ea6c 3688 else
0a0337e0 3689 no_progress_loops++;
1da177e4 3690
0a0337e0 3691 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3692 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3693 goto retry;
3694
33c2d214
MH
3695 /*
3696 * It doesn't make any sense to retry for the compaction if the order-0
3697 * reclaim is not able to make any progress because the current
3698 * implementation of the compaction depends on the sufficient amount
3699 * of free memory (see __compaction_suitable)
3700 */
3701 if (did_some_progress > 0 &&
86a294a8
MH
3702 should_compact_retry(ac, order, alloc_flags,
3703 compact_result, &migration_mode,
3704 compaction_retries))
33c2d214
MH
3705 goto retry;
3706
9083905a
JW
3707 /* Reclaim has failed us, start killing things */
3708 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3709 if (page)
3710 goto got_pg;
3711
3712 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3713 if (did_some_progress) {
3714 no_progress_loops = 0;
9083905a 3715 goto retry;
0a0337e0 3716 }
9083905a
JW
3717
3718noretry:
3719 /*
33c2d214
MH
3720 * High-order allocations do not necessarily loop after direct reclaim
3721 * and reclaim/compaction depends on compaction being called after
3722 * reclaim so call directly if necessary.
3723 * It can become very expensive to allocate transparent hugepages at
3724 * fault, so use asynchronous memory compaction for THP unless it is
3725 * khugepaged trying to collapse. All other requests should tolerate
3726 * at least light sync migration.
9083905a 3727 */
33c2d214
MH
3728 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3729 migration_mode = MIGRATE_ASYNC;
3730 else
3731 migration_mode = MIGRATE_SYNC_LIGHT;
9083905a
JW
3732 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3733 ac, migration_mode,
c5d01d0d 3734 &compact_result);
9083905a
JW
3735 if (page)
3736 goto got_pg;
1da177e4 3737nopage:
a238ab5b 3738 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3739got_pg:
072bb0aa 3740 return page;
1da177e4 3741}
11e33f6a
MG
3742
3743/*
3744 * This is the 'heart' of the zoned buddy allocator.
3745 */
3746struct page *
3747__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3748 struct zonelist *zonelist, nodemask_t *nodemask)
3749{
5bb1b169 3750 struct page *page;
cc9a6c87 3751 unsigned int cpuset_mems_cookie;
c603844b 3752 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3753 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3754 struct alloc_context ac = {
3755 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3756 .zonelist = zonelist,
a9263751
VB
3757 .nodemask = nodemask,
3758 .migratetype = gfpflags_to_migratetype(gfp_mask),
3759 };
11e33f6a 3760
682a3385 3761 if (cpusets_enabled()) {
83d4ca81 3762 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3763 alloc_flags |= ALLOC_CPUSET;
3764 if (!ac.nodemask)
3765 ac.nodemask = &cpuset_current_mems_allowed;
3766 }
3767
dcce284a
BH
3768 gfp_mask &= gfp_allowed_mask;
3769
11e33f6a
MG
3770 lockdep_trace_alloc(gfp_mask);
3771
d0164adc 3772 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3773
3774 if (should_fail_alloc_page(gfp_mask, order))
3775 return NULL;
3776
3777 /*
3778 * Check the zones suitable for the gfp_mask contain at least one
3779 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3780 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3781 */
3782 if (unlikely(!zonelist->_zonerefs->zone))
3783 return NULL;
3784
a9263751 3785 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3786 alloc_flags |= ALLOC_CMA;
3787
cc9a6c87 3788retry_cpuset:
d26914d1 3789 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3790
c9ab0c4f
MG
3791 /* Dirty zone balancing only done in the fast path */
3792 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3793
e46e7b77
MG
3794 /*
3795 * The preferred zone is used for statistics but crucially it is
3796 * also used as the starting point for the zonelist iterator. It
3797 * may get reset for allocations that ignore memory policies.
3798 */
c33d6c06
MG
3799 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3800 ac.high_zoneidx, ac.nodemask);
3801 if (!ac.preferred_zoneref) {
5bb1b169 3802 page = NULL;
4fcb0971 3803 goto no_zone;
5bb1b169
MG
3804 }
3805
5117f45d 3806 /* First allocation attempt */
a9263751 3807 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3808 if (likely(page))
3809 goto out;
11e33f6a 3810
4fcb0971
MG
3811 /*
3812 * Runtime PM, block IO and its error handling path can deadlock
3813 * because I/O on the device might not complete.
3814 */
3815 alloc_mask = memalloc_noio_flags(gfp_mask);
3816 ac.spread_dirty_pages = false;
23f086f9 3817
4741526b
MG
3818 /*
3819 * Restore the original nodemask if it was potentially replaced with
3820 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3821 */
3822 if (cpusets_enabled())
3823 ac.nodemask = nodemask;
4fcb0971 3824 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3825
4fcb0971 3826no_zone:
cc9a6c87
MG
3827 /*
3828 * When updating a task's mems_allowed, it is possible to race with
3829 * parallel threads in such a way that an allocation can fail while
3830 * the mask is being updated. If a page allocation is about to fail,
3831 * check if the cpuset changed during allocation and if so, retry.
3832 */
83d4ca81
MG
3833 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3834 alloc_mask = gfp_mask;
cc9a6c87 3835 goto retry_cpuset;
83d4ca81 3836 }
cc9a6c87 3837
4fcb0971
MG
3838out:
3839 if (kmemcheck_enabled && page)
3840 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3841
3842 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3843
11e33f6a 3844 return page;
1da177e4 3845}
d239171e 3846EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3847
3848/*
3849 * Common helper functions.
3850 */
920c7a5d 3851unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3852{
945a1113
AM
3853 struct page *page;
3854
3855 /*
3856 * __get_free_pages() returns a 32-bit address, which cannot represent
3857 * a highmem page
3858 */
3859 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3860
1da177e4
LT
3861 page = alloc_pages(gfp_mask, order);
3862 if (!page)
3863 return 0;
3864 return (unsigned long) page_address(page);
3865}
1da177e4
LT
3866EXPORT_SYMBOL(__get_free_pages);
3867
920c7a5d 3868unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3869{
945a1113 3870 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3871}
1da177e4
LT
3872EXPORT_SYMBOL(get_zeroed_page);
3873
920c7a5d 3874void __free_pages(struct page *page, unsigned int order)
1da177e4 3875{
b5810039 3876 if (put_page_testzero(page)) {
1da177e4 3877 if (order == 0)
b745bc85 3878 free_hot_cold_page(page, false);
1da177e4
LT
3879 else
3880 __free_pages_ok(page, order);
3881 }
3882}
3883
3884EXPORT_SYMBOL(__free_pages);
3885
920c7a5d 3886void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3887{
3888 if (addr != 0) {
725d704e 3889 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3890 __free_pages(virt_to_page((void *)addr), order);
3891 }
3892}
3893
3894EXPORT_SYMBOL(free_pages);
3895
b63ae8ca
AD
3896/*
3897 * Page Fragment:
3898 * An arbitrary-length arbitrary-offset area of memory which resides
3899 * within a 0 or higher order page. Multiple fragments within that page
3900 * are individually refcounted, in the page's reference counter.
3901 *
3902 * The page_frag functions below provide a simple allocation framework for
3903 * page fragments. This is used by the network stack and network device
3904 * drivers to provide a backing region of memory for use as either an
3905 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3906 */
3907static struct page *__page_frag_refill(struct page_frag_cache *nc,
3908 gfp_t gfp_mask)
3909{
3910 struct page *page = NULL;
3911 gfp_t gfp = gfp_mask;
3912
3913#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3914 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3915 __GFP_NOMEMALLOC;
3916 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3917 PAGE_FRAG_CACHE_MAX_ORDER);
3918 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3919#endif
3920 if (unlikely(!page))
3921 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3922
3923 nc->va = page ? page_address(page) : NULL;
3924
3925 return page;
3926}
3927
3928void *__alloc_page_frag(struct page_frag_cache *nc,
3929 unsigned int fragsz, gfp_t gfp_mask)
3930{
3931 unsigned int size = PAGE_SIZE;
3932 struct page *page;
3933 int offset;
3934
3935 if (unlikely(!nc->va)) {
3936refill:
3937 page = __page_frag_refill(nc, gfp_mask);
3938 if (!page)
3939 return NULL;
3940
3941#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3942 /* if size can vary use size else just use PAGE_SIZE */
3943 size = nc->size;
3944#endif
3945 /* Even if we own the page, we do not use atomic_set().
3946 * This would break get_page_unless_zero() users.
3947 */
fe896d18 3948 page_ref_add(page, size - 1);
b63ae8ca
AD
3949
3950 /* reset page count bias and offset to start of new frag */
2f064f34 3951 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3952 nc->pagecnt_bias = size;
3953 nc->offset = size;
3954 }
3955
3956 offset = nc->offset - fragsz;
3957 if (unlikely(offset < 0)) {
3958 page = virt_to_page(nc->va);
3959
fe896d18 3960 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3961 goto refill;
3962
3963#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3964 /* if size can vary use size else just use PAGE_SIZE */
3965 size = nc->size;
3966#endif
3967 /* OK, page count is 0, we can safely set it */
fe896d18 3968 set_page_count(page, size);
b63ae8ca
AD
3969
3970 /* reset page count bias and offset to start of new frag */
3971 nc->pagecnt_bias = size;
3972 offset = size - fragsz;
3973 }
3974
3975 nc->pagecnt_bias--;
3976 nc->offset = offset;
3977
3978 return nc->va + offset;
3979}
3980EXPORT_SYMBOL(__alloc_page_frag);
3981
3982/*
3983 * Frees a page fragment allocated out of either a compound or order 0 page.
3984 */
3985void __free_page_frag(void *addr)
3986{
3987 struct page *page = virt_to_head_page(addr);
3988
3989 if (unlikely(put_page_testzero(page)))
3990 __free_pages_ok(page, compound_order(page));
3991}
3992EXPORT_SYMBOL(__free_page_frag);
3993
6a1a0d3b 3994/*
52383431 3995 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3996 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3997 * equivalent to alloc_pages.
6a1a0d3b 3998 *
52383431
VD
3999 * It should be used when the caller would like to use kmalloc, but since the
4000 * allocation is large, it has to fall back to the page allocator.
4001 */
4002struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
4003{
4004 struct page *page;
52383431 4005
52383431 4006 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
4007 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4008 __free_pages(page, order);
4009 page = NULL;
4010 }
52383431
VD
4011 return page;
4012}
4013
4014struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
4015{
4016 struct page *page;
52383431 4017
52383431 4018 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
4019 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4020 __free_pages(page, order);
4021 page = NULL;
4022 }
52383431
VD
4023 return page;
4024}
4025
4026/*
4027 * __free_kmem_pages and free_kmem_pages will free pages allocated with
4028 * alloc_kmem_pages.
6a1a0d3b 4029 */
52383431 4030void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 4031{
d05e83a6 4032 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
4033 __free_pages(page, order);
4034}
4035
52383431 4036void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
4037{
4038 if (addr != 0) {
4039 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 4040 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
4041 }
4042}
4043
d00181b9
KS
4044static void *make_alloc_exact(unsigned long addr, unsigned int order,
4045 size_t size)
ee85c2e1
AK
4046{
4047 if (addr) {
4048 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4049 unsigned long used = addr + PAGE_ALIGN(size);
4050
4051 split_page(virt_to_page((void *)addr), order);
4052 while (used < alloc_end) {
4053 free_page(used);
4054 used += PAGE_SIZE;
4055 }
4056 }
4057 return (void *)addr;
4058}
4059
2be0ffe2
TT
4060/**
4061 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4062 * @size: the number of bytes to allocate
4063 * @gfp_mask: GFP flags for the allocation
4064 *
4065 * This function is similar to alloc_pages(), except that it allocates the
4066 * minimum number of pages to satisfy the request. alloc_pages() can only
4067 * allocate memory in power-of-two pages.
4068 *
4069 * This function is also limited by MAX_ORDER.
4070 *
4071 * Memory allocated by this function must be released by free_pages_exact().
4072 */
4073void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4074{
4075 unsigned int order = get_order(size);
4076 unsigned long addr;
4077
4078 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4079 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4080}
4081EXPORT_SYMBOL(alloc_pages_exact);
4082
ee85c2e1
AK
4083/**
4084 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4085 * pages on a node.
b5e6ab58 4086 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4087 * @size: the number of bytes to allocate
4088 * @gfp_mask: GFP flags for the allocation
4089 *
4090 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4091 * back.
ee85c2e1 4092 */
e1931811 4093void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4094{
d00181b9 4095 unsigned int order = get_order(size);
ee85c2e1
AK
4096 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4097 if (!p)
4098 return NULL;
4099 return make_alloc_exact((unsigned long)page_address(p), order, size);
4100}
ee85c2e1 4101
2be0ffe2
TT
4102/**
4103 * free_pages_exact - release memory allocated via alloc_pages_exact()
4104 * @virt: the value returned by alloc_pages_exact.
4105 * @size: size of allocation, same value as passed to alloc_pages_exact().
4106 *
4107 * Release the memory allocated by a previous call to alloc_pages_exact.
4108 */
4109void free_pages_exact(void *virt, size_t size)
4110{
4111 unsigned long addr = (unsigned long)virt;
4112 unsigned long end = addr + PAGE_ALIGN(size);
4113
4114 while (addr < end) {
4115 free_page(addr);
4116 addr += PAGE_SIZE;
4117 }
4118}
4119EXPORT_SYMBOL(free_pages_exact);
4120
e0fb5815
ZY
4121/**
4122 * nr_free_zone_pages - count number of pages beyond high watermark
4123 * @offset: The zone index of the highest zone
4124 *
4125 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4126 * high watermark within all zones at or below a given zone index. For each
4127 * zone, the number of pages is calculated as:
834405c3 4128 * managed_pages - high_pages
e0fb5815 4129 */
ebec3862 4130static unsigned long nr_free_zone_pages(int offset)
1da177e4 4131{
dd1a239f 4132 struct zoneref *z;
54a6eb5c
MG
4133 struct zone *zone;
4134
e310fd43 4135 /* Just pick one node, since fallback list is circular */
ebec3862 4136 unsigned long sum = 0;
1da177e4 4137
0e88460d 4138 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4139
54a6eb5c 4140 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4141 unsigned long size = zone->managed_pages;
41858966 4142 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4143 if (size > high)
4144 sum += size - high;
1da177e4
LT
4145 }
4146
4147 return sum;
4148}
4149
e0fb5815
ZY
4150/**
4151 * nr_free_buffer_pages - count number of pages beyond high watermark
4152 *
4153 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4154 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4155 */
ebec3862 4156unsigned long nr_free_buffer_pages(void)
1da177e4 4157{
af4ca457 4158 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4159}
c2f1a551 4160EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4161
e0fb5815
ZY
4162/**
4163 * nr_free_pagecache_pages - count number of pages beyond high watermark
4164 *
4165 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4166 * high watermark within all zones.
1da177e4 4167 */
ebec3862 4168unsigned long nr_free_pagecache_pages(void)
1da177e4 4169{
2a1e274a 4170 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4171}
08e0f6a9
CL
4172
4173static inline void show_node(struct zone *zone)
1da177e4 4174{
e5adfffc 4175 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4176 printk("Node %d ", zone_to_nid(zone));
1da177e4 4177}
1da177e4 4178
d02bd27b
IR
4179long si_mem_available(void)
4180{
4181 long available;
4182 unsigned long pagecache;
4183 unsigned long wmark_low = 0;
4184 unsigned long pages[NR_LRU_LISTS];
4185 struct zone *zone;
4186 int lru;
4187
4188 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4189 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4190
4191 for_each_zone(zone)
4192 wmark_low += zone->watermark[WMARK_LOW];
4193
4194 /*
4195 * Estimate the amount of memory available for userspace allocations,
4196 * without causing swapping.
4197 */
4198 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4199
4200 /*
4201 * Not all the page cache can be freed, otherwise the system will
4202 * start swapping. Assume at least half of the page cache, or the
4203 * low watermark worth of cache, needs to stay.
4204 */
4205 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4206 pagecache -= min(pagecache / 2, wmark_low);
4207 available += pagecache;
4208
4209 /*
4210 * Part of the reclaimable slab consists of items that are in use,
4211 * and cannot be freed. Cap this estimate at the low watermark.
4212 */
4213 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4214 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4215
4216 if (available < 0)
4217 available = 0;
4218 return available;
4219}
4220EXPORT_SYMBOL_GPL(si_mem_available);
4221
1da177e4
LT
4222void si_meminfo(struct sysinfo *val)
4223{
4224 val->totalram = totalram_pages;
cc7452b6 4225 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 4226 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4227 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4228 val->totalhigh = totalhigh_pages;
4229 val->freehigh = nr_free_highpages();
1da177e4
LT
4230 val->mem_unit = PAGE_SIZE;
4231}
4232
4233EXPORT_SYMBOL(si_meminfo);
4234
4235#ifdef CONFIG_NUMA
4236void si_meminfo_node(struct sysinfo *val, int nid)
4237{
cdd91a77
JL
4238 int zone_type; /* needs to be signed */
4239 unsigned long managed_pages = 0;
fc2bd799
JK
4240 unsigned long managed_highpages = 0;
4241 unsigned long free_highpages = 0;
1da177e4
LT
4242 pg_data_t *pgdat = NODE_DATA(nid);
4243
cdd91a77
JL
4244 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4245 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4246 val->totalram = managed_pages;
cc7452b6 4247 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 4248 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4249#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4250 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4251 struct zone *zone = &pgdat->node_zones[zone_type];
4252
4253 if (is_highmem(zone)) {
4254 managed_highpages += zone->managed_pages;
4255 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4256 }
4257 }
4258 val->totalhigh = managed_highpages;
4259 val->freehigh = free_highpages;
98d2b0eb 4260#else
fc2bd799
JK
4261 val->totalhigh = managed_highpages;
4262 val->freehigh = free_highpages;
98d2b0eb 4263#endif
1da177e4
LT
4264 val->mem_unit = PAGE_SIZE;
4265}
4266#endif
4267
ddd588b5 4268/*
7bf02ea2
DR
4269 * Determine whether the node should be displayed or not, depending on whether
4270 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4271 */
7bf02ea2 4272bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4273{
4274 bool ret = false;
cc9a6c87 4275 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4276
4277 if (!(flags & SHOW_MEM_FILTER_NODES))
4278 goto out;
4279
cc9a6c87 4280 do {
d26914d1 4281 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4282 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4283 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4284out:
4285 return ret;
4286}
4287
1da177e4
LT
4288#define K(x) ((x) << (PAGE_SHIFT-10))
4289
377e4f16
RV
4290static void show_migration_types(unsigned char type)
4291{
4292 static const char types[MIGRATE_TYPES] = {
4293 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4294 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4295 [MIGRATE_RECLAIMABLE] = 'E',
4296 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4297#ifdef CONFIG_CMA
4298 [MIGRATE_CMA] = 'C',
4299#endif
194159fb 4300#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4301 [MIGRATE_ISOLATE] = 'I',
194159fb 4302#endif
377e4f16
RV
4303 };
4304 char tmp[MIGRATE_TYPES + 1];
4305 char *p = tmp;
4306 int i;
4307
4308 for (i = 0; i < MIGRATE_TYPES; i++) {
4309 if (type & (1 << i))
4310 *p++ = types[i];
4311 }
4312
4313 *p = '\0';
4314 printk("(%s) ", tmp);
4315}
4316
1da177e4
LT
4317/*
4318 * Show free area list (used inside shift_scroll-lock stuff)
4319 * We also calculate the percentage fragmentation. We do this by counting the
4320 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4321 *
4322 * Bits in @filter:
4323 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4324 * cpuset.
1da177e4 4325 */
7bf02ea2 4326void show_free_areas(unsigned int filter)
1da177e4 4327{
d1bfcdb8 4328 unsigned long free_pcp = 0;
c7241913 4329 int cpu;
1da177e4
LT
4330 struct zone *zone;
4331
ee99c71c 4332 for_each_populated_zone(zone) {
7bf02ea2 4333 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4334 continue;
d1bfcdb8 4335
761b0677
KK
4336 for_each_online_cpu(cpu)
4337 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4338 }
4339
a731286d
KM
4340 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4341 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4342 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4343 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4344 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4345 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 4346 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 4347 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
4348 global_page_state(NR_ISOLATED_ANON),
4349 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 4350 global_page_state(NR_INACTIVE_FILE),
a731286d 4351 global_page_state(NR_ISOLATED_FILE),
7b854121 4352 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4353 global_page_state(NR_FILE_DIRTY),
ce866b34 4354 global_page_state(NR_WRITEBACK),
fd39fc85 4355 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4356 global_page_state(NR_SLAB_RECLAIMABLE),
4357 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4358 global_page_state(NR_FILE_MAPPED),
4b02108a 4359 global_page_state(NR_SHMEM),
a25700a5 4360 global_page_state(NR_PAGETABLE),
d1ce749a 4361 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4362 global_page_state(NR_FREE_PAGES),
4363 free_pcp,
d1ce749a 4364 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4365
ee99c71c 4366 for_each_populated_zone(zone) {
1da177e4
LT
4367 int i;
4368
7bf02ea2 4369 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4370 continue;
d1bfcdb8
KK
4371
4372 free_pcp = 0;
4373 for_each_online_cpu(cpu)
4374 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4375
1da177e4
LT
4376 show_node(zone);
4377 printk("%s"
4378 " free:%lukB"
4379 " min:%lukB"
4380 " low:%lukB"
4381 " high:%lukB"
4f98a2fe
RR
4382 " active_anon:%lukB"
4383 " inactive_anon:%lukB"
4384 " active_file:%lukB"
4385 " inactive_file:%lukB"
7b854121 4386 " unevictable:%lukB"
a731286d
KM
4387 " isolated(anon):%lukB"
4388 " isolated(file):%lukB"
1da177e4 4389 " present:%lukB"
9feedc9d 4390 " managed:%lukB"
4a0aa73f
KM
4391 " mlocked:%lukB"
4392 " dirty:%lukB"
4393 " writeback:%lukB"
4394 " mapped:%lukB"
4b02108a 4395 " shmem:%lukB"
4a0aa73f
KM
4396 " slab_reclaimable:%lukB"
4397 " slab_unreclaimable:%lukB"
c6a7f572 4398 " kernel_stack:%lukB"
4a0aa73f
KM
4399 " pagetables:%lukB"
4400 " unstable:%lukB"
4401 " bounce:%lukB"
d1bfcdb8
KK
4402 " free_pcp:%lukB"
4403 " local_pcp:%ukB"
d1ce749a 4404 " free_cma:%lukB"
4a0aa73f 4405 " writeback_tmp:%lukB"
1da177e4
LT
4406 " pages_scanned:%lu"
4407 " all_unreclaimable? %s"
4408 "\n",
4409 zone->name,
88f5acf8 4410 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4411 K(min_wmark_pages(zone)),
4412 K(low_wmark_pages(zone)),
4413 K(high_wmark_pages(zone)),
4f98a2fe
RR
4414 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4415 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4416 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4417 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4418 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4419 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4420 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4421 K(zone->present_pages),
9feedc9d 4422 K(zone->managed_pages),
4a0aa73f
KM
4423 K(zone_page_state(zone, NR_MLOCK)),
4424 K(zone_page_state(zone, NR_FILE_DIRTY)),
4425 K(zone_page_state(zone, NR_WRITEBACK)),
4426 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4427 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4428 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4429 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4430 zone_page_state(zone, NR_KERNEL_STACK) *
4431 THREAD_SIZE / 1024,
4a0aa73f
KM
4432 K(zone_page_state(zone, NR_PAGETABLE)),
4433 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4434 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4435 K(free_pcp),
4436 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4437 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4438 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4439 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4440 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4441 );
4442 printk("lowmem_reserve[]:");
4443 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4444 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4445 printk("\n");
4446 }
4447
ee99c71c 4448 for_each_populated_zone(zone) {
d00181b9
KS
4449 unsigned int order;
4450 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4451 unsigned char types[MAX_ORDER];
1da177e4 4452
7bf02ea2 4453 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4454 continue;
1da177e4
LT
4455 show_node(zone);
4456 printk("%s: ", zone->name);
1da177e4
LT
4457
4458 spin_lock_irqsave(&zone->lock, flags);
4459 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4460 struct free_area *area = &zone->free_area[order];
4461 int type;
4462
4463 nr[order] = area->nr_free;
8f9de51a 4464 total += nr[order] << order;
377e4f16
RV
4465
4466 types[order] = 0;
4467 for (type = 0; type < MIGRATE_TYPES; type++) {
4468 if (!list_empty(&area->free_list[type]))
4469 types[order] |= 1 << type;
4470 }
1da177e4
LT
4471 }
4472 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4473 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4474 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4475 if (nr[order])
4476 show_migration_types(types[order]);
4477 }
1da177e4
LT
4478 printk("= %lukB\n", K(total));
4479 }
4480
949f7ec5
DR
4481 hugetlb_show_meminfo();
4482
e6f3602d
LW
4483 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4484
1da177e4
LT
4485 show_swap_cache_info();
4486}
4487
19770b32
MG
4488static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4489{
4490 zoneref->zone = zone;
4491 zoneref->zone_idx = zone_idx(zone);
4492}
4493
1da177e4
LT
4494/*
4495 * Builds allocation fallback zone lists.
1a93205b
CL
4496 *
4497 * Add all populated zones of a node to the zonelist.
1da177e4 4498 */
f0c0b2b8 4499static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4500 int nr_zones)
1da177e4 4501{
1a93205b 4502 struct zone *zone;
bc732f1d 4503 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4504
4505 do {
2f6726e5 4506 zone_type--;
070f8032 4507 zone = pgdat->node_zones + zone_type;
1a93205b 4508 if (populated_zone(zone)) {
dd1a239f
MG
4509 zoneref_set_zone(zone,
4510 &zonelist->_zonerefs[nr_zones++]);
070f8032 4511 check_highest_zone(zone_type);
1da177e4 4512 }
2f6726e5 4513 } while (zone_type);
bc732f1d 4514
070f8032 4515 return nr_zones;
1da177e4
LT
4516}
4517
f0c0b2b8
KH
4518
4519/*
4520 * zonelist_order:
4521 * 0 = automatic detection of better ordering.
4522 * 1 = order by ([node] distance, -zonetype)
4523 * 2 = order by (-zonetype, [node] distance)
4524 *
4525 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4526 * the same zonelist. So only NUMA can configure this param.
4527 */
4528#define ZONELIST_ORDER_DEFAULT 0
4529#define ZONELIST_ORDER_NODE 1
4530#define ZONELIST_ORDER_ZONE 2
4531
4532/* zonelist order in the kernel.
4533 * set_zonelist_order() will set this to NODE or ZONE.
4534 */
4535static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4536static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4537
4538
1da177e4 4539#ifdef CONFIG_NUMA
f0c0b2b8
KH
4540/* The value user specified ....changed by config */
4541static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4542/* string for sysctl */
4543#define NUMA_ZONELIST_ORDER_LEN 16
4544char numa_zonelist_order[16] = "default";
4545
4546/*
4547 * interface for configure zonelist ordering.
4548 * command line option "numa_zonelist_order"
4549 * = "[dD]efault - default, automatic configuration.
4550 * = "[nN]ode - order by node locality, then by zone within node
4551 * = "[zZ]one - order by zone, then by locality within zone
4552 */
4553
4554static int __parse_numa_zonelist_order(char *s)
4555{
4556 if (*s == 'd' || *s == 'D') {
4557 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4558 } else if (*s == 'n' || *s == 'N') {
4559 user_zonelist_order = ZONELIST_ORDER_NODE;
4560 } else if (*s == 'z' || *s == 'Z') {
4561 user_zonelist_order = ZONELIST_ORDER_ZONE;
4562 } else {
1170532b 4563 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4564 return -EINVAL;
4565 }
4566 return 0;
4567}
4568
4569static __init int setup_numa_zonelist_order(char *s)
4570{
ecb256f8
VL
4571 int ret;
4572
4573 if (!s)
4574 return 0;
4575
4576 ret = __parse_numa_zonelist_order(s);
4577 if (ret == 0)
4578 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4579
4580 return ret;
f0c0b2b8
KH
4581}
4582early_param("numa_zonelist_order", setup_numa_zonelist_order);
4583
4584/*
4585 * sysctl handler for numa_zonelist_order
4586 */
cccad5b9 4587int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4588 void __user *buffer, size_t *length,
f0c0b2b8
KH
4589 loff_t *ppos)
4590{
4591 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4592 int ret;
443c6f14 4593 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4594
443c6f14 4595 mutex_lock(&zl_order_mutex);
dacbde09
CG
4596 if (write) {
4597 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4598 ret = -EINVAL;
4599 goto out;
4600 }
4601 strcpy(saved_string, (char *)table->data);
4602 }
8d65af78 4603 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4604 if (ret)
443c6f14 4605 goto out;
f0c0b2b8
KH
4606 if (write) {
4607 int oldval = user_zonelist_order;
dacbde09
CG
4608
4609 ret = __parse_numa_zonelist_order((char *)table->data);
4610 if (ret) {
f0c0b2b8
KH
4611 /*
4612 * bogus value. restore saved string
4613 */
dacbde09 4614 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4615 NUMA_ZONELIST_ORDER_LEN);
4616 user_zonelist_order = oldval;
4eaf3f64
HL
4617 } else if (oldval != user_zonelist_order) {
4618 mutex_lock(&zonelists_mutex);
9adb62a5 4619 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4620 mutex_unlock(&zonelists_mutex);
4621 }
f0c0b2b8 4622 }
443c6f14
AK
4623out:
4624 mutex_unlock(&zl_order_mutex);
4625 return ret;
f0c0b2b8
KH
4626}
4627
4628
62bc62a8 4629#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4630static int node_load[MAX_NUMNODES];
4631
1da177e4 4632/**
4dc3b16b 4633 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4634 * @node: node whose fallback list we're appending
4635 * @used_node_mask: nodemask_t of already used nodes
4636 *
4637 * We use a number of factors to determine which is the next node that should
4638 * appear on a given node's fallback list. The node should not have appeared
4639 * already in @node's fallback list, and it should be the next closest node
4640 * according to the distance array (which contains arbitrary distance values
4641 * from each node to each node in the system), and should also prefer nodes
4642 * with no CPUs, since presumably they'll have very little allocation pressure
4643 * on them otherwise.
4644 * It returns -1 if no node is found.
4645 */
f0c0b2b8 4646static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4647{
4cf808eb 4648 int n, val;
1da177e4 4649 int min_val = INT_MAX;
00ef2d2f 4650 int best_node = NUMA_NO_NODE;
a70f7302 4651 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4652
4cf808eb
LT
4653 /* Use the local node if we haven't already */
4654 if (!node_isset(node, *used_node_mask)) {
4655 node_set(node, *used_node_mask);
4656 return node;
4657 }
1da177e4 4658
4b0ef1fe 4659 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4660
4661 /* Don't want a node to appear more than once */
4662 if (node_isset(n, *used_node_mask))
4663 continue;
4664
1da177e4
LT
4665 /* Use the distance array to find the distance */
4666 val = node_distance(node, n);
4667
4cf808eb
LT
4668 /* Penalize nodes under us ("prefer the next node") */
4669 val += (n < node);
4670
1da177e4 4671 /* Give preference to headless and unused nodes */
a70f7302
RR
4672 tmp = cpumask_of_node(n);
4673 if (!cpumask_empty(tmp))
1da177e4
LT
4674 val += PENALTY_FOR_NODE_WITH_CPUS;
4675
4676 /* Slight preference for less loaded node */
4677 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4678 val += node_load[n];
4679
4680 if (val < min_val) {
4681 min_val = val;
4682 best_node = n;
4683 }
4684 }
4685
4686 if (best_node >= 0)
4687 node_set(best_node, *used_node_mask);
4688
4689 return best_node;
4690}
4691
f0c0b2b8
KH
4692
4693/*
4694 * Build zonelists ordered by node and zones within node.
4695 * This results in maximum locality--normal zone overflows into local
4696 * DMA zone, if any--but risks exhausting DMA zone.
4697 */
4698static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4699{
f0c0b2b8 4700 int j;
1da177e4 4701 struct zonelist *zonelist;
f0c0b2b8 4702
54a6eb5c 4703 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4704 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4705 ;
bc732f1d 4706 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4707 zonelist->_zonerefs[j].zone = NULL;
4708 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4709}
4710
523b9458
CL
4711/*
4712 * Build gfp_thisnode zonelists
4713 */
4714static void build_thisnode_zonelists(pg_data_t *pgdat)
4715{
523b9458
CL
4716 int j;
4717 struct zonelist *zonelist;
4718
54a6eb5c 4719 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4720 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4721 zonelist->_zonerefs[j].zone = NULL;
4722 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4723}
4724
f0c0b2b8
KH
4725/*
4726 * Build zonelists ordered by zone and nodes within zones.
4727 * This results in conserving DMA zone[s] until all Normal memory is
4728 * exhausted, but results in overflowing to remote node while memory
4729 * may still exist in local DMA zone.
4730 */
4731static int node_order[MAX_NUMNODES];
4732
4733static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4734{
f0c0b2b8
KH
4735 int pos, j, node;
4736 int zone_type; /* needs to be signed */
4737 struct zone *z;
4738 struct zonelist *zonelist;
4739
54a6eb5c
MG
4740 zonelist = &pgdat->node_zonelists[0];
4741 pos = 0;
4742 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4743 for (j = 0; j < nr_nodes; j++) {
4744 node = node_order[j];
4745 z = &NODE_DATA(node)->node_zones[zone_type];
4746 if (populated_zone(z)) {
dd1a239f
MG
4747 zoneref_set_zone(z,
4748 &zonelist->_zonerefs[pos++]);
54a6eb5c 4749 check_highest_zone(zone_type);
f0c0b2b8
KH
4750 }
4751 }
f0c0b2b8 4752 }
dd1a239f
MG
4753 zonelist->_zonerefs[pos].zone = NULL;
4754 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4755}
4756
3193913c
MG
4757#if defined(CONFIG_64BIT)
4758/*
4759 * Devices that require DMA32/DMA are relatively rare and do not justify a
4760 * penalty to every machine in case the specialised case applies. Default
4761 * to Node-ordering on 64-bit NUMA machines
4762 */
4763static int default_zonelist_order(void)
4764{
4765 return ZONELIST_ORDER_NODE;
4766}
4767#else
4768/*
4769 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4770 * by the kernel. If processes running on node 0 deplete the low memory zone
4771 * then reclaim will occur more frequency increasing stalls and potentially
4772 * be easier to OOM if a large percentage of the zone is under writeback or
4773 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4774 * Hence, default to zone ordering on 32-bit.
4775 */
f0c0b2b8
KH
4776static int default_zonelist_order(void)
4777{
f0c0b2b8
KH
4778 return ZONELIST_ORDER_ZONE;
4779}
3193913c 4780#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4781
4782static void set_zonelist_order(void)
4783{
4784 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4785 current_zonelist_order = default_zonelist_order();
4786 else
4787 current_zonelist_order = user_zonelist_order;
4788}
4789
4790static void build_zonelists(pg_data_t *pgdat)
4791{
c00eb15a 4792 int i, node, load;
1da177e4 4793 nodemask_t used_mask;
f0c0b2b8
KH
4794 int local_node, prev_node;
4795 struct zonelist *zonelist;
d00181b9 4796 unsigned int order = current_zonelist_order;
1da177e4
LT
4797
4798 /* initialize zonelists */
523b9458 4799 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4800 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4801 zonelist->_zonerefs[0].zone = NULL;
4802 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4803 }
4804
4805 /* NUMA-aware ordering of nodes */
4806 local_node = pgdat->node_id;
62bc62a8 4807 load = nr_online_nodes;
1da177e4
LT
4808 prev_node = local_node;
4809 nodes_clear(used_mask);
f0c0b2b8 4810
f0c0b2b8 4811 memset(node_order, 0, sizeof(node_order));
c00eb15a 4812 i = 0;
f0c0b2b8 4813
1da177e4
LT
4814 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4815 /*
4816 * We don't want to pressure a particular node.
4817 * So adding penalty to the first node in same
4818 * distance group to make it round-robin.
4819 */
957f822a
DR
4820 if (node_distance(local_node, node) !=
4821 node_distance(local_node, prev_node))
f0c0b2b8
KH
4822 node_load[node] = load;
4823
1da177e4
LT
4824 prev_node = node;
4825 load--;
f0c0b2b8
KH
4826 if (order == ZONELIST_ORDER_NODE)
4827 build_zonelists_in_node_order(pgdat, node);
4828 else
c00eb15a 4829 node_order[i++] = node; /* remember order */
f0c0b2b8 4830 }
1da177e4 4831
f0c0b2b8
KH
4832 if (order == ZONELIST_ORDER_ZONE) {
4833 /* calculate node order -- i.e., DMA last! */
c00eb15a 4834 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4835 }
523b9458
CL
4836
4837 build_thisnode_zonelists(pgdat);
1da177e4
LT
4838}
4839
7aac7898
LS
4840#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4841/*
4842 * Return node id of node used for "local" allocations.
4843 * I.e., first node id of first zone in arg node's generic zonelist.
4844 * Used for initializing percpu 'numa_mem', which is used primarily
4845 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4846 */
4847int local_memory_node(int node)
4848{
c33d6c06 4849 struct zoneref *z;
7aac7898 4850
c33d6c06 4851 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4852 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4853 NULL);
4854 return z->zone->node;
7aac7898
LS
4855}
4856#endif
f0c0b2b8 4857
1da177e4
LT
4858#else /* CONFIG_NUMA */
4859
f0c0b2b8
KH
4860static void set_zonelist_order(void)
4861{
4862 current_zonelist_order = ZONELIST_ORDER_ZONE;
4863}
4864
4865static void build_zonelists(pg_data_t *pgdat)
1da177e4 4866{
19655d34 4867 int node, local_node;
54a6eb5c
MG
4868 enum zone_type j;
4869 struct zonelist *zonelist;
1da177e4
LT
4870
4871 local_node = pgdat->node_id;
1da177e4 4872
54a6eb5c 4873 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4874 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4875
54a6eb5c
MG
4876 /*
4877 * Now we build the zonelist so that it contains the zones
4878 * of all the other nodes.
4879 * We don't want to pressure a particular node, so when
4880 * building the zones for node N, we make sure that the
4881 * zones coming right after the local ones are those from
4882 * node N+1 (modulo N)
4883 */
4884 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4885 if (!node_online(node))
4886 continue;
bc732f1d 4887 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4888 }
54a6eb5c
MG
4889 for (node = 0; node < local_node; node++) {
4890 if (!node_online(node))
4891 continue;
bc732f1d 4892 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4893 }
4894
dd1a239f
MG
4895 zonelist->_zonerefs[j].zone = NULL;
4896 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4897}
4898
4899#endif /* CONFIG_NUMA */
4900
99dcc3e5
CL
4901/*
4902 * Boot pageset table. One per cpu which is going to be used for all
4903 * zones and all nodes. The parameters will be set in such a way
4904 * that an item put on a list will immediately be handed over to
4905 * the buddy list. This is safe since pageset manipulation is done
4906 * with interrupts disabled.
4907 *
4908 * The boot_pagesets must be kept even after bootup is complete for
4909 * unused processors and/or zones. They do play a role for bootstrapping
4910 * hotplugged processors.
4911 *
4912 * zoneinfo_show() and maybe other functions do
4913 * not check if the processor is online before following the pageset pointer.
4914 * Other parts of the kernel may not check if the zone is available.
4915 */
4916static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4917static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4918static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4919
4eaf3f64
HL
4920/*
4921 * Global mutex to protect against size modification of zonelists
4922 * as well as to serialize pageset setup for the new populated zone.
4923 */
4924DEFINE_MUTEX(zonelists_mutex);
4925
9b1a4d38 4926/* return values int ....just for stop_machine() */
4ed7e022 4927static int __build_all_zonelists(void *data)
1da177e4 4928{
6811378e 4929 int nid;
99dcc3e5 4930 int cpu;
9adb62a5 4931 pg_data_t *self = data;
9276b1bc 4932
7f9cfb31
BL
4933#ifdef CONFIG_NUMA
4934 memset(node_load, 0, sizeof(node_load));
4935#endif
9adb62a5
JL
4936
4937 if (self && !node_online(self->node_id)) {
4938 build_zonelists(self);
9adb62a5
JL
4939 }
4940
9276b1bc 4941 for_each_online_node(nid) {
7ea1530a
CL
4942 pg_data_t *pgdat = NODE_DATA(nid);
4943
4944 build_zonelists(pgdat);
9276b1bc 4945 }
99dcc3e5
CL
4946
4947 /*
4948 * Initialize the boot_pagesets that are going to be used
4949 * for bootstrapping processors. The real pagesets for
4950 * each zone will be allocated later when the per cpu
4951 * allocator is available.
4952 *
4953 * boot_pagesets are used also for bootstrapping offline
4954 * cpus if the system is already booted because the pagesets
4955 * are needed to initialize allocators on a specific cpu too.
4956 * F.e. the percpu allocator needs the page allocator which
4957 * needs the percpu allocator in order to allocate its pagesets
4958 * (a chicken-egg dilemma).
4959 */
7aac7898 4960 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4961 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4962
7aac7898
LS
4963#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4964 /*
4965 * We now know the "local memory node" for each node--
4966 * i.e., the node of the first zone in the generic zonelist.
4967 * Set up numa_mem percpu variable for on-line cpus. During
4968 * boot, only the boot cpu should be on-line; we'll init the
4969 * secondary cpus' numa_mem as they come on-line. During
4970 * node/memory hotplug, we'll fixup all on-line cpus.
4971 */
4972 if (cpu_online(cpu))
4973 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4974#endif
4975 }
4976
6811378e
YG
4977 return 0;
4978}
4979
061f67bc
RV
4980static noinline void __init
4981build_all_zonelists_init(void)
4982{
4983 __build_all_zonelists(NULL);
4984 mminit_verify_zonelist();
4985 cpuset_init_current_mems_allowed();
4986}
4987
4eaf3f64
HL
4988/*
4989 * Called with zonelists_mutex held always
4990 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4991 *
4992 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4993 * [we're only called with non-NULL zone through __meminit paths] and
4994 * (2) call of __init annotated helper build_all_zonelists_init
4995 * [protected by SYSTEM_BOOTING].
4eaf3f64 4996 */
9adb62a5 4997void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4998{
f0c0b2b8
KH
4999 set_zonelist_order();
5000
6811378e 5001 if (system_state == SYSTEM_BOOTING) {
061f67bc 5002 build_all_zonelists_init();
6811378e 5003 } else {
e9959f0f 5004#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5005 if (zone)
5006 setup_zone_pageset(zone);
e9959f0f 5007#endif
dd1895e2
CS
5008 /* we have to stop all cpus to guarantee there is no user
5009 of zonelist */
9adb62a5 5010 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5011 /* cpuset refresh routine should be here */
5012 }
bd1e22b8 5013 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5014 /*
5015 * Disable grouping by mobility if the number of pages in the
5016 * system is too low to allow the mechanism to work. It would be
5017 * more accurate, but expensive to check per-zone. This check is
5018 * made on memory-hotadd so a system can start with mobility
5019 * disabled and enable it later
5020 */
d9c23400 5021 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5022 page_group_by_mobility_disabled = 1;
5023 else
5024 page_group_by_mobility_disabled = 0;
5025
756a025f
JP
5026 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5027 nr_online_nodes,
5028 zonelist_order_name[current_zonelist_order],
5029 page_group_by_mobility_disabled ? "off" : "on",
5030 vm_total_pages);
f0c0b2b8 5031#ifdef CONFIG_NUMA
f88dfff5 5032 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5033#endif
1da177e4
LT
5034}
5035
5036/*
5037 * Helper functions to size the waitqueue hash table.
5038 * Essentially these want to choose hash table sizes sufficiently
5039 * large so that collisions trying to wait on pages are rare.
5040 * But in fact, the number of active page waitqueues on typical
5041 * systems is ridiculously low, less than 200. So this is even
5042 * conservative, even though it seems large.
5043 *
5044 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5045 * waitqueues, i.e. the size of the waitq table given the number of pages.
5046 */
5047#define PAGES_PER_WAITQUEUE 256
5048
cca448fe 5049#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 5050static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
5051{
5052 unsigned long size = 1;
5053
5054 pages /= PAGES_PER_WAITQUEUE;
5055
5056 while (size < pages)
5057 size <<= 1;
5058
5059 /*
5060 * Once we have dozens or even hundreds of threads sleeping
5061 * on IO we've got bigger problems than wait queue collision.
5062 * Limit the size of the wait table to a reasonable size.
5063 */
5064 size = min(size, 4096UL);
5065
5066 return max(size, 4UL);
5067}
cca448fe
YG
5068#else
5069/*
5070 * A zone's size might be changed by hot-add, so it is not possible to determine
5071 * a suitable size for its wait_table. So we use the maximum size now.
5072 *
5073 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5074 *
5075 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5076 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5077 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5078 *
5079 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5080 * or more by the traditional way. (See above). It equals:
5081 *
5082 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5083 * ia64(16K page size) : = ( 8G + 4M)byte.
5084 * powerpc (64K page size) : = (32G +16M)byte.
5085 */
5086static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5087{
5088 return 4096UL;
5089}
5090#endif
1da177e4
LT
5091
5092/*
5093 * This is an integer logarithm so that shifts can be used later
5094 * to extract the more random high bits from the multiplicative
5095 * hash function before the remainder is taken.
5096 */
5097static inline unsigned long wait_table_bits(unsigned long size)
5098{
5099 return ffz(~size);
5100}
5101
1da177e4
LT
5102/*
5103 * Initially all pages are reserved - free ones are freed
5104 * up by free_all_bootmem() once the early boot process is
5105 * done. Non-atomic initialization, single-pass.
5106 */
c09b4240 5107void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5108 unsigned long start_pfn, enum memmap_context context)
1da177e4 5109{
4b94ffdc 5110 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5111 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5112 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5113 unsigned long pfn;
3a80a7fa 5114 unsigned long nr_initialised = 0;
342332e6
TI
5115#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5116 struct memblock_region *r = NULL, *tmp;
5117#endif
1da177e4 5118
22b31eec
HD
5119 if (highest_memmap_pfn < end_pfn - 1)
5120 highest_memmap_pfn = end_pfn - 1;
5121
4b94ffdc
DW
5122 /*
5123 * Honor reservation requested by the driver for this ZONE_DEVICE
5124 * memory
5125 */
5126 if (altmap && start_pfn == altmap->base_pfn)
5127 start_pfn += altmap->reserve;
5128
cbe8dd4a 5129 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5130 /*
b72d0ffb
AM
5131 * There can be holes in boot-time mem_map[]s handed to this
5132 * function. They do not exist on hotplugged memory.
a2f3aa02 5133 */
b72d0ffb
AM
5134 if (context != MEMMAP_EARLY)
5135 goto not_early;
5136
5137 if (!early_pfn_valid(pfn))
5138 continue;
5139 if (!early_pfn_in_nid(pfn, nid))
5140 continue;
5141 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5142 break;
342332e6
TI
5143
5144#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5145 /*
5146 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5147 * from zone_movable_pfn[nid] to end of each node should be
5148 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5149 */
5150 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5151 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5152 continue;
342332e6 5153
b72d0ffb
AM
5154 /*
5155 * Check given memblock attribute by firmware which can affect
5156 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5157 * mirrored, it's an overlapped memmap init. skip it.
5158 */
5159 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5160 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5161 for_each_memblock(memory, tmp)
5162 if (pfn < memblock_region_memory_end_pfn(tmp))
5163 break;
5164 r = tmp;
5165 }
5166 if (pfn >= memblock_region_memory_base_pfn(r) &&
5167 memblock_is_mirror(r)) {
5168 /* already initialized as NORMAL */
5169 pfn = memblock_region_memory_end_pfn(r);
5170 continue;
342332e6 5171 }
a2f3aa02 5172 }
b72d0ffb 5173#endif
ac5d2539 5174
b72d0ffb 5175not_early:
ac5d2539
MG
5176 /*
5177 * Mark the block movable so that blocks are reserved for
5178 * movable at startup. This will force kernel allocations
5179 * to reserve their blocks rather than leaking throughout
5180 * the address space during boot when many long-lived
974a786e 5181 * kernel allocations are made.
ac5d2539
MG
5182 *
5183 * bitmap is created for zone's valid pfn range. but memmap
5184 * can be created for invalid pages (for alignment)
5185 * check here not to call set_pageblock_migratetype() against
5186 * pfn out of zone.
5187 */
5188 if (!(pfn & (pageblock_nr_pages - 1))) {
5189 struct page *page = pfn_to_page(pfn);
5190
5191 __init_single_page(page, pfn, zone, nid);
5192 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5193 } else {
5194 __init_single_pfn(pfn, zone, nid);
5195 }
1da177e4
LT
5196 }
5197}
5198
1e548deb 5199static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5200{
7aeb09f9 5201 unsigned int order, t;
b2a0ac88
MG
5202 for_each_migratetype_order(order, t) {
5203 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5204 zone->free_area[order].nr_free = 0;
5205 }
5206}
5207
5208#ifndef __HAVE_ARCH_MEMMAP_INIT
5209#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5210 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5211#endif
5212
7cd2b0a3 5213static int zone_batchsize(struct zone *zone)
e7c8d5c9 5214{
3a6be87f 5215#ifdef CONFIG_MMU
e7c8d5c9
CL
5216 int batch;
5217
5218 /*
5219 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5220 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5221 *
5222 * OK, so we don't know how big the cache is. So guess.
5223 */
b40da049 5224 batch = zone->managed_pages / 1024;
ba56e91c
SR
5225 if (batch * PAGE_SIZE > 512 * 1024)
5226 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5227 batch /= 4; /* We effectively *= 4 below */
5228 if (batch < 1)
5229 batch = 1;
5230
5231 /*
0ceaacc9
NP
5232 * Clamp the batch to a 2^n - 1 value. Having a power
5233 * of 2 value was found to be more likely to have
5234 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5235 *
0ceaacc9
NP
5236 * For example if 2 tasks are alternately allocating
5237 * batches of pages, one task can end up with a lot
5238 * of pages of one half of the possible page colors
5239 * and the other with pages of the other colors.
e7c8d5c9 5240 */
9155203a 5241 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5242
e7c8d5c9 5243 return batch;
3a6be87f
DH
5244
5245#else
5246 /* The deferral and batching of frees should be suppressed under NOMMU
5247 * conditions.
5248 *
5249 * The problem is that NOMMU needs to be able to allocate large chunks
5250 * of contiguous memory as there's no hardware page translation to
5251 * assemble apparent contiguous memory from discontiguous pages.
5252 *
5253 * Queueing large contiguous runs of pages for batching, however,
5254 * causes the pages to actually be freed in smaller chunks. As there
5255 * can be a significant delay between the individual batches being
5256 * recycled, this leads to the once large chunks of space being
5257 * fragmented and becoming unavailable for high-order allocations.
5258 */
5259 return 0;
5260#endif
e7c8d5c9
CL
5261}
5262
8d7a8fa9
CS
5263/*
5264 * pcp->high and pcp->batch values are related and dependent on one another:
5265 * ->batch must never be higher then ->high.
5266 * The following function updates them in a safe manner without read side
5267 * locking.
5268 *
5269 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5270 * those fields changing asynchronously (acording the the above rule).
5271 *
5272 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5273 * outside of boot time (or some other assurance that no concurrent updaters
5274 * exist).
5275 */
5276static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5277 unsigned long batch)
5278{
5279 /* start with a fail safe value for batch */
5280 pcp->batch = 1;
5281 smp_wmb();
5282
5283 /* Update high, then batch, in order */
5284 pcp->high = high;
5285 smp_wmb();
5286
5287 pcp->batch = batch;
5288}
5289
3664033c 5290/* a companion to pageset_set_high() */
4008bab7
CS
5291static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5292{
8d7a8fa9 5293 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5294}
5295
88c90dbc 5296static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5297{
5298 struct per_cpu_pages *pcp;
5f8dcc21 5299 int migratetype;
2caaad41 5300
1c6fe946
MD
5301 memset(p, 0, sizeof(*p));
5302
3dfa5721 5303 pcp = &p->pcp;
2caaad41 5304 pcp->count = 0;
5f8dcc21
MG
5305 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5306 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5307}
5308
88c90dbc
CS
5309static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5310{
5311 pageset_init(p);
5312 pageset_set_batch(p, batch);
5313}
5314
8ad4b1fb 5315/*
3664033c 5316 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5317 * to the value high for the pageset p.
5318 */
3664033c 5319static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5320 unsigned long high)
5321{
8d7a8fa9
CS
5322 unsigned long batch = max(1UL, high / 4);
5323 if ((high / 4) > (PAGE_SHIFT * 8))
5324 batch = PAGE_SHIFT * 8;
8ad4b1fb 5325
8d7a8fa9 5326 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5327}
5328
7cd2b0a3
DR
5329static void pageset_set_high_and_batch(struct zone *zone,
5330 struct per_cpu_pageset *pcp)
56cef2b8 5331{
56cef2b8 5332 if (percpu_pagelist_fraction)
3664033c 5333 pageset_set_high(pcp,
56cef2b8
CS
5334 (zone->managed_pages /
5335 percpu_pagelist_fraction));
5336 else
5337 pageset_set_batch(pcp, zone_batchsize(zone));
5338}
5339
169f6c19
CS
5340static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5341{
5342 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5343
5344 pageset_init(pcp);
5345 pageset_set_high_and_batch(zone, pcp);
5346}
5347
4ed7e022 5348static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5349{
5350 int cpu;
319774e2 5351 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5352 for_each_possible_cpu(cpu)
5353 zone_pageset_init(zone, cpu);
319774e2
WF
5354}
5355
2caaad41 5356/*
99dcc3e5
CL
5357 * Allocate per cpu pagesets and initialize them.
5358 * Before this call only boot pagesets were available.
e7c8d5c9 5359 */
99dcc3e5 5360void __init setup_per_cpu_pageset(void)
e7c8d5c9 5361{
99dcc3e5 5362 struct zone *zone;
e7c8d5c9 5363
319774e2
WF
5364 for_each_populated_zone(zone)
5365 setup_zone_pageset(zone);
e7c8d5c9
CL
5366}
5367
577a32f6 5368static noinline __init_refok
cca448fe 5369int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5370{
5371 int i;
cca448fe 5372 size_t alloc_size;
ed8ece2e
DH
5373
5374 /*
5375 * The per-page waitqueue mechanism uses hashed waitqueues
5376 * per zone.
5377 */
02b694de
YG
5378 zone->wait_table_hash_nr_entries =
5379 wait_table_hash_nr_entries(zone_size_pages);
5380 zone->wait_table_bits =
5381 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5382 alloc_size = zone->wait_table_hash_nr_entries
5383 * sizeof(wait_queue_head_t);
5384
cd94b9db 5385 if (!slab_is_available()) {
cca448fe 5386 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5387 memblock_virt_alloc_node_nopanic(
5388 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5389 } else {
5390 /*
5391 * This case means that a zone whose size was 0 gets new memory
5392 * via memory hot-add.
5393 * But it may be the case that a new node was hot-added. In
5394 * this case vmalloc() will not be able to use this new node's
5395 * memory - this wait_table must be initialized to use this new
5396 * node itself as well.
5397 * To use this new node's memory, further consideration will be
5398 * necessary.
5399 */
8691f3a7 5400 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5401 }
5402 if (!zone->wait_table)
5403 return -ENOMEM;
ed8ece2e 5404
b8af2941 5405 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5406 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5407
5408 return 0;
ed8ece2e
DH
5409}
5410
c09b4240 5411static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5412{
99dcc3e5
CL
5413 /*
5414 * per cpu subsystem is not up at this point. The following code
5415 * relies on the ability of the linker to provide the
5416 * offset of a (static) per cpu variable into the per cpu area.
5417 */
5418 zone->pageset = &boot_pageset;
ed8ece2e 5419
b38a8725 5420 if (populated_zone(zone))
99dcc3e5
CL
5421 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5422 zone->name, zone->present_pages,
5423 zone_batchsize(zone));
ed8ece2e
DH
5424}
5425
4ed7e022 5426int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5427 unsigned long zone_start_pfn,
b171e409 5428 unsigned long size)
ed8ece2e
DH
5429{
5430 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5431 int ret;
5432 ret = zone_wait_table_init(zone, size);
5433 if (ret)
5434 return ret;
ed8ece2e
DH
5435 pgdat->nr_zones = zone_idx(zone) + 1;
5436
ed8ece2e
DH
5437 zone->zone_start_pfn = zone_start_pfn;
5438
708614e6
MG
5439 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5440 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5441 pgdat->node_id,
5442 (unsigned long)zone_idx(zone),
5443 zone_start_pfn, (zone_start_pfn + size));
5444
1e548deb 5445 zone_init_free_lists(zone);
718127cc
YG
5446
5447 return 0;
ed8ece2e
DH
5448}
5449
0ee332c1 5450#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5451#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5452
c713216d
MG
5453/*
5454 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5455 */
8a942fde
MG
5456int __meminit __early_pfn_to_nid(unsigned long pfn,
5457 struct mminit_pfnnid_cache *state)
c713216d 5458{
c13291a5 5459 unsigned long start_pfn, end_pfn;
e76b63f8 5460 int nid;
7c243c71 5461
8a942fde
MG
5462 if (state->last_start <= pfn && pfn < state->last_end)
5463 return state->last_nid;
c713216d 5464
e76b63f8
YL
5465 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5466 if (nid != -1) {
8a942fde
MG
5467 state->last_start = start_pfn;
5468 state->last_end = end_pfn;
5469 state->last_nid = nid;
e76b63f8
YL
5470 }
5471
5472 return nid;
c713216d
MG
5473}
5474#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5475
c713216d 5476/**
6782832e 5477 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5478 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5479 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5480 *
7d018176
ZZ
5481 * If an architecture guarantees that all ranges registered contain no holes
5482 * and may be freed, this this function may be used instead of calling
5483 * memblock_free_early_nid() manually.
c713216d 5484 */
c13291a5 5485void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5486{
c13291a5
TH
5487 unsigned long start_pfn, end_pfn;
5488 int i, this_nid;
edbe7d23 5489
c13291a5
TH
5490 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5491 start_pfn = min(start_pfn, max_low_pfn);
5492 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5493
c13291a5 5494 if (start_pfn < end_pfn)
6782832e
SS
5495 memblock_free_early_nid(PFN_PHYS(start_pfn),
5496 (end_pfn - start_pfn) << PAGE_SHIFT,
5497 this_nid);
edbe7d23 5498 }
edbe7d23 5499}
edbe7d23 5500
c713216d
MG
5501/**
5502 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5503 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5504 *
7d018176
ZZ
5505 * If an architecture guarantees that all ranges registered contain no holes and may
5506 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5507 */
5508void __init sparse_memory_present_with_active_regions(int nid)
5509{
c13291a5
TH
5510 unsigned long start_pfn, end_pfn;
5511 int i, this_nid;
c713216d 5512
c13291a5
TH
5513 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5514 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5515}
5516
5517/**
5518 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5519 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5520 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5521 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5522 *
5523 * It returns the start and end page frame of a node based on information
7d018176 5524 * provided by memblock_set_node(). If called for a node
c713216d 5525 * with no available memory, a warning is printed and the start and end
88ca3b94 5526 * PFNs will be 0.
c713216d 5527 */
a3142c8e 5528void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5529 unsigned long *start_pfn, unsigned long *end_pfn)
5530{
c13291a5 5531 unsigned long this_start_pfn, this_end_pfn;
c713216d 5532 int i;
c13291a5 5533
c713216d
MG
5534 *start_pfn = -1UL;
5535 *end_pfn = 0;
5536
c13291a5
TH
5537 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5538 *start_pfn = min(*start_pfn, this_start_pfn);
5539 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5540 }
5541
633c0666 5542 if (*start_pfn == -1UL)
c713216d 5543 *start_pfn = 0;
c713216d
MG
5544}
5545
2a1e274a
MG
5546/*
5547 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5548 * assumption is made that zones within a node are ordered in monotonic
5549 * increasing memory addresses so that the "highest" populated zone is used
5550 */
b69a7288 5551static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5552{
5553 int zone_index;
5554 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5555 if (zone_index == ZONE_MOVABLE)
5556 continue;
5557
5558 if (arch_zone_highest_possible_pfn[zone_index] >
5559 arch_zone_lowest_possible_pfn[zone_index])
5560 break;
5561 }
5562
5563 VM_BUG_ON(zone_index == -1);
5564 movable_zone = zone_index;
5565}
5566
5567/*
5568 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5569 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5570 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5571 * in each node depending on the size of each node and how evenly kernelcore
5572 * is distributed. This helper function adjusts the zone ranges
5573 * provided by the architecture for a given node by using the end of the
5574 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5575 * zones within a node are in order of monotonic increases memory addresses
5576 */
b69a7288 5577static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5578 unsigned long zone_type,
5579 unsigned long node_start_pfn,
5580 unsigned long node_end_pfn,
5581 unsigned long *zone_start_pfn,
5582 unsigned long *zone_end_pfn)
5583{
5584 /* Only adjust if ZONE_MOVABLE is on this node */
5585 if (zone_movable_pfn[nid]) {
5586 /* Size ZONE_MOVABLE */
5587 if (zone_type == ZONE_MOVABLE) {
5588 *zone_start_pfn = zone_movable_pfn[nid];
5589 *zone_end_pfn = min(node_end_pfn,
5590 arch_zone_highest_possible_pfn[movable_zone]);
5591
2a1e274a
MG
5592 /* Check if this whole range is within ZONE_MOVABLE */
5593 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5594 *zone_start_pfn = *zone_end_pfn;
5595 }
5596}
5597
c713216d
MG
5598/*
5599 * Return the number of pages a zone spans in a node, including holes
5600 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5601 */
6ea6e688 5602static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5603 unsigned long zone_type,
7960aedd
ZY
5604 unsigned long node_start_pfn,
5605 unsigned long node_end_pfn,
d91749c1
TI
5606 unsigned long *zone_start_pfn,
5607 unsigned long *zone_end_pfn,
c713216d
MG
5608 unsigned long *ignored)
5609{
b5685e92 5610 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5611 if (!node_start_pfn && !node_end_pfn)
5612 return 0;
5613
7960aedd 5614 /* Get the start and end of the zone */
d91749c1
TI
5615 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5616 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5617 adjust_zone_range_for_zone_movable(nid, zone_type,
5618 node_start_pfn, node_end_pfn,
d91749c1 5619 zone_start_pfn, zone_end_pfn);
c713216d
MG
5620
5621 /* Check that this node has pages within the zone's required range */
d91749c1 5622 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5623 return 0;
5624
5625 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5626 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5627 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5628
5629 /* Return the spanned pages */
d91749c1 5630 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5631}
5632
5633/*
5634 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5635 * then all holes in the requested range will be accounted for.
c713216d 5636 */
32996250 5637unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5638 unsigned long range_start_pfn,
5639 unsigned long range_end_pfn)
5640{
96e907d1
TH
5641 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5642 unsigned long start_pfn, end_pfn;
5643 int i;
c713216d 5644
96e907d1
TH
5645 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5646 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5647 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5648 nr_absent -= end_pfn - start_pfn;
c713216d 5649 }
96e907d1 5650 return nr_absent;
c713216d
MG
5651}
5652
5653/**
5654 * absent_pages_in_range - Return number of page frames in holes within a range
5655 * @start_pfn: The start PFN to start searching for holes
5656 * @end_pfn: The end PFN to stop searching for holes
5657 *
88ca3b94 5658 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5659 */
5660unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5661 unsigned long end_pfn)
5662{
5663 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5664}
5665
5666/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5667static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5668 unsigned long zone_type,
7960aedd
ZY
5669 unsigned long node_start_pfn,
5670 unsigned long node_end_pfn,
c713216d
MG
5671 unsigned long *ignored)
5672{
96e907d1
TH
5673 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5674 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5675 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5676 unsigned long nr_absent;
9c7cd687 5677
b5685e92 5678 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5679 if (!node_start_pfn && !node_end_pfn)
5680 return 0;
5681
96e907d1
TH
5682 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5683 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5684
2a1e274a
MG
5685 adjust_zone_range_for_zone_movable(nid, zone_type,
5686 node_start_pfn, node_end_pfn,
5687 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5688 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5689
5690 /*
5691 * ZONE_MOVABLE handling.
5692 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5693 * and vice versa.
5694 */
5695 if (zone_movable_pfn[nid]) {
5696 if (mirrored_kernelcore) {
5697 unsigned long start_pfn, end_pfn;
5698 struct memblock_region *r;
5699
5700 for_each_memblock(memory, r) {
5701 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5702 zone_start_pfn, zone_end_pfn);
5703 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5704 zone_start_pfn, zone_end_pfn);
5705
5706 if (zone_type == ZONE_MOVABLE &&
5707 memblock_is_mirror(r))
5708 nr_absent += end_pfn - start_pfn;
5709
5710 if (zone_type == ZONE_NORMAL &&
5711 !memblock_is_mirror(r))
5712 nr_absent += end_pfn - start_pfn;
5713 }
5714 } else {
5715 if (zone_type == ZONE_NORMAL)
5716 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5717 }
5718 }
5719
5720 return nr_absent;
c713216d 5721}
0e0b864e 5722
0ee332c1 5723#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5724static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5725 unsigned long zone_type,
7960aedd
ZY
5726 unsigned long node_start_pfn,
5727 unsigned long node_end_pfn,
d91749c1
TI
5728 unsigned long *zone_start_pfn,
5729 unsigned long *zone_end_pfn,
c713216d
MG
5730 unsigned long *zones_size)
5731{
d91749c1
TI
5732 unsigned int zone;
5733
5734 *zone_start_pfn = node_start_pfn;
5735 for (zone = 0; zone < zone_type; zone++)
5736 *zone_start_pfn += zones_size[zone];
5737
5738 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5739
c713216d
MG
5740 return zones_size[zone_type];
5741}
5742
6ea6e688 5743static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5744 unsigned long zone_type,
7960aedd
ZY
5745 unsigned long node_start_pfn,
5746 unsigned long node_end_pfn,
c713216d
MG
5747 unsigned long *zholes_size)
5748{
5749 if (!zholes_size)
5750 return 0;
5751
5752 return zholes_size[zone_type];
5753}
20e6926d 5754
0ee332c1 5755#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5756
a3142c8e 5757static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5758 unsigned long node_start_pfn,
5759 unsigned long node_end_pfn,
5760 unsigned long *zones_size,
5761 unsigned long *zholes_size)
c713216d 5762{
febd5949 5763 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5764 enum zone_type i;
5765
febd5949
GZ
5766 for (i = 0; i < MAX_NR_ZONES; i++) {
5767 struct zone *zone = pgdat->node_zones + i;
d91749c1 5768 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5769 unsigned long size, real_size;
c713216d 5770
febd5949
GZ
5771 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5772 node_start_pfn,
5773 node_end_pfn,
d91749c1
TI
5774 &zone_start_pfn,
5775 &zone_end_pfn,
febd5949
GZ
5776 zones_size);
5777 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5778 node_start_pfn, node_end_pfn,
5779 zholes_size);
d91749c1
TI
5780 if (size)
5781 zone->zone_start_pfn = zone_start_pfn;
5782 else
5783 zone->zone_start_pfn = 0;
febd5949
GZ
5784 zone->spanned_pages = size;
5785 zone->present_pages = real_size;
5786
5787 totalpages += size;
5788 realtotalpages += real_size;
5789 }
5790
5791 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5792 pgdat->node_present_pages = realtotalpages;
5793 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5794 realtotalpages);
5795}
5796
835c134e
MG
5797#ifndef CONFIG_SPARSEMEM
5798/*
5799 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5800 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5801 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5802 * round what is now in bits to nearest long in bits, then return it in
5803 * bytes.
5804 */
7c45512d 5805static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5806{
5807 unsigned long usemapsize;
5808
7c45512d 5809 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5810 usemapsize = roundup(zonesize, pageblock_nr_pages);
5811 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5812 usemapsize *= NR_PAGEBLOCK_BITS;
5813 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5814
5815 return usemapsize / 8;
5816}
5817
5818static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5819 struct zone *zone,
5820 unsigned long zone_start_pfn,
5821 unsigned long zonesize)
835c134e 5822{
7c45512d 5823 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5824 zone->pageblock_flags = NULL;
58a01a45 5825 if (usemapsize)
6782832e
SS
5826 zone->pageblock_flags =
5827 memblock_virt_alloc_node_nopanic(usemapsize,
5828 pgdat->node_id);
835c134e
MG
5829}
5830#else
7c45512d
LT
5831static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5832 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5833#endif /* CONFIG_SPARSEMEM */
5834
d9c23400 5835#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5836
d9c23400 5837/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5838void __paginginit set_pageblock_order(void)
d9c23400 5839{
955c1cd7
AM
5840 unsigned int order;
5841
d9c23400
MG
5842 /* Check that pageblock_nr_pages has not already been setup */
5843 if (pageblock_order)
5844 return;
5845
955c1cd7
AM
5846 if (HPAGE_SHIFT > PAGE_SHIFT)
5847 order = HUGETLB_PAGE_ORDER;
5848 else
5849 order = MAX_ORDER - 1;
5850
d9c23400
MG
5851 /*
5852 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5853 * This value may be variable depending on boot parameters on IA64 and
5854 * powerpc.
d9c23400
MG
5855 */
5856 pageblock_order = order;
5857}
5858#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5859
ba72cb8c
MG
5860/*
5861 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5862 * is unused as pageblock_order is set at compile-time. See
5863 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5864 * the kernel config
ba72cb8c 5865 */
15ca220e 5866void __paginginit set_pageblock_order(void)
ba72cb8c 5867{
ba72cb8c 5868}
d9c23400
MG
5869
5870#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5871
01cefaef
JL
5872static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5873 unsigned long present_pages)
5874{
5875 unsigned long pages = spanned_pages;
5876
5877 /*
5878 * Provide a more accurate estimation if there are holes within
5879 * the zone and SPARSEMEM is in use. If there are holes within the
5880 * zone, each populated memory region may cost us one or two extra
5881 * memmap pages due to alignment because memmap pages for each
5882 * populated regions may not naturally algined on page boundary.
5883 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5884 */
5885 if (spanned_pages > present_pages + (present_pages >> 4) &&
5886 IS_ENABLED(CONFIG_SPARSEMEM))
5887 pages = present_pages;
5888
5889 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5890}
5891
1da177e4
LT
5892/*
5893 * Set up the zone data structures:
5894 * - mark all pages reserved
5895 * - mark all memory queues empty
5896 * - clear the memory bitmaps
6527af5d
MK
5897 *
5898 * NOTE: pgdat should get zeroed by caller.
1da177e4 5899 */
7f3eb55b 5900static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5901{
2f1b6248 5902 enum zone_type j;
ed8ece2e 5903 int nid = pgdat->node_id;
718127cc 5904 int ret;
1da177e4 5905
208d54e5 5906 pgdat_resize_init(pgdat);
8177a420
AA
5907#ifdef CONFIG_NUMA_BALANCING
5908 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5909 pgdat->numabalancing_migrate_nr_pages = 0;
5910 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5911#endif
5912#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5913 spin_lock_init(&pgdat->split_queue_lock);
5914 INIT_LIST_HEAD(&pgdat->split_queue);
5915 pgdat->split_queue_len = 0;
8177a420 5916#endif
1da177e4 5917 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5918 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5919#ifdef CONFIG_COMPACTION
5920 init_waitqueue_head(&pgdat->kcompactd_wait);
5921#endif
eefa864b 5922 pgdat_page_ext_init(pgdat);
5f63b720 5923
1da177e4
LT
5924 for (j = 0; j < MAX_NR_ZONES; j++) {
5925 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5926 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5927 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5928
febd5949
GZ
5929 size = zone->spanned_pages;
5930 realsize = freesize = zone->present_pages;
1da177e4 5931
0e0b864e 5932 /*
9feedc9d 5933 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5934 * is used by this zone for memmap. This affects the watermark
5935 * and per-cpu initialisations
5936 */
01cefaef 5937 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5938 if (!is_highmem_idx(j)) {
5939 if (freesize >= memmap_pages) {
5940 freesize -= memmap_pages;
5941 if (memmap_pages)
5942 printk(KERN_DEBUG
5943 " %s zone: %lu pages used for memmap\n",
5944 zone_names[j], memmap_pages);
5945 } else
1170532b 5946 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5947 zone_names[j], memmap_pages, freesize);
5948 }
0e0b864e 5949
6267276f 5950 /* Account for reserved pages */
9feedc9d
JL
5951 if (j == 0 && freesize > dma_reserve) {
5952 freesize -= dma_reserve;
d903ef9f 5953 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5954 zone_names[0], dma_reserve);
0e0b864e
MG
5955 }
5956
98d2b0eb 5957 if (!is_highmem_idx(j))
9feedc9d 5958 nr_kernel_pages += freesize;
01cefaef
JL
5959 /* Charge for highmem memmap if there are enough kernel pages */
5960 else if (nr_kernel_pages > memmap_pages * 2)
5961 nr_kernel_pages -= memmap_pages;
9feedc9d 5962 nr_all_pages += freesize;
1da177e4 5963
9feedc9d
JL
5964 /*
5965 * Set an approximate value for lowmem here, it will be adjusted
5966 * when the bootmem allocator frees pages into the buddy system.
5967 * And all highmem pages will be managed by the buddy system.
5968 */
5969 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5970#ifdef CONFIG_NUMA
d5f541ed 5971 zone->node = nid;
9feedc9d 5972 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5973 / 100;
9feedc9d 5974 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5975#endif
1da177e4
LT
5976 zone->name = zone_names[j];
5977 spin_lock_init(&zone->lock);
5978 spin_lock_init(&zone->lru_lock);
bdc8cb98 5979 zone_seqlock_init(zone);
1da177e4 5980 zone->zone_pgdat = pgdat;
ed8ece2e 5981 zone_pcp_init(zone);
81c0a2bb
JW
5982
5983 /* For bootup, initialized properly in watermark setup */
5984 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5985
bea8c150 5986 lruvec_init(&zone->lruvec);
1da177e4
LT
5987 if (!size)
5988 continue;
5989
955c1cd7 5990 set_pageblock_order();
7c45512d 5991 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5992 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5993 BUG_ON(ret);
76cdd58e 5994 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5995 }
5996}
5997
577a32f6 5998static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5999{
b0aeba74 6000 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6001 unsigned long __maybe_unused offset = 0;
6002
1da177e4
LT
6003 /* Skip empty nodes */
6004 if (!pgdat->node_spanned_pages)
6005 return;
6006
d41dee36 6007#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6008 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6009 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6010 /* ia64 gets its own node_mem_map, before this, without bootmem */
6011 if (!pgdat->node_mem_map) {
b0aeba74 6012 unsigned long size, end;
d41dee36
AW
6013 struct page *map;
6014
e984bb43
BP
6015 /*
6016 * The zone's endpoints aren't required to be MAX_ORDER
6017 * aligned but the node_mem_map endpoints must be in order
6018 * for the buddy allocator to function correctly.
6019 */
108bcc96 6020 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6021 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6022 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6023 map = alloc_remap(pgdat->node_id, size);
6024 if (!map)
6782832e
SS
6025 map = memblock_virt_alloc_node_nopanic(size,
6026 pgdat->node_id);
a1c34a3b 6027 pgdat->node_mem_map = map + offset;
1da177e4 6028 }
12d810c1 6029#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6030 /*
6031 * With no DISCONTIG, the global mem_map is just set as node 0's
6032 */
c713216d 6033 if (pgdat == NODE_DATA(0)) {
1da177e4 6034 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6035#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6036 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6037 mem_map -= offset;
0ee332c1 6038#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6039 }
1da177e4 6040#endif
d41dee36 6041#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6042}
6043
9109fb7b
JW
6044void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6045 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6046{
9109fb7b 6047 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6048 unsigned long start_pfn = 0;
6049 unsigned long end_pfn = 0;
9109fb7b 6050
88fdf75d 6051 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 6052 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 6053
3a80a7fa 6054 reset_deferred_meminit(pgdat);
1da177e4
LT
6055 pgdat->node_id = nid;
6056 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
6057#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6058 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6059 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6060 (u64)start_pfn << PAGE_SHIFT,
6061 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6062#else
6063 start_pfn = node_start_pfn;
7960aedd
ZY
6064#endif
6065 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6066 zones_size, zholes_size);
1da177e4
LT
6067
6068 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6069#ifdef CONFIG_FLAT_NODE_MEM_MAP
6070 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6071 nid, (unsigned long)pgdat,
6072 (unsigned long)pgdat->node_mem_map);
6073#endif
1da177e4 6074
7f3eb55b 6075 free_area_init_core(pgdat);
1da177e4
LT
6076}
6077
0ee332c1 6078#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6079
6080#if MAX_NUMNODES > 1
6081/*
6082 * Figure out the number of possible node ids.
6083 */
f9872caf 6084void __init setup_nr_node_ids(void)
418508c1 6085{
904a9553 6086 unsigned int highest;
418508c1 6087
904a9553 6088 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6089 nr_node_ids = highest + 1;
6090}
418508c1
MS
6091#endif
6092
1e01979c
TH
6093/**
6094 * node_map_pfn_alignment - determine the maximum internode alignment
6095 *
6096 * This function should be called after node map is populated and sorted.
6097 * It calculates the maximum power of two alignment which can distinguish
6098 * all the nodes.
6099 *
6100 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6101 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6102 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6103 * shifted, 1GiB is enough and this function will indicate so.
6104 *
6105 * This is used to test whether pfn -> nid mapping of the chosen memory
6106 * model has fine enough granularity to avoid incorrect mapping for the
6107 * populated node map.
6108 *
6109 * Returns the determined alignment in pfn's. 0 if there is no alignment
6110 * requirement (single node).
6111 */
6112unsigned long __init node_map_pfn_alignment(void)
6113{
6114 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6115 unsigned long start, end, mask;
1e01979c 6116 int last_nid = -1;
c13291a5 6117 int i, nid;
1e01979c 6118
c13291a5 6119 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6120 if (!start || last_nid < 0 || last_nid == nid) {
6121 last_nid = nid;
6122 last_end = end;
6123 continue;
6124 }
6125
6126 /*
6127 * Start with a mask granular enough to pin-point to the
6128 * start pfn and tick off bits one-by-one until it becomes
6129 * too coarse to separate the current node from the last.
6130 */
6131 mask = ~((1 << __ffs(start)) - 1);
6132 while (mask && last_end <= (start & (mask << 1)))
6133 mask <<= 1;
6134
6135 /* accumulate all internode masks */
6136 accl_mask |= mask;
6137 }
6138
6139 /* convert mask to number of pages */
6140 return ~accl_mask + 1;
6141}
6142
a6af2bc3 6143/* Find the lowest pfn for a node */
b69a7288 6144static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6145{
a6af2bc3 6146 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6147 unsigned long start_pfn;
6148 int i;
1abbfb41 6149
c13291a5
TH
6150 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6151 min_pfn = min(min_pfn, start_pfn);
c713216d 6152
a6af2bc3 6153 if (min_pfn == ULONG_MAX) {
1170532b 6154 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6155 return 0;
6156 }
6157
6158 return min_pfn;
c713216d
MG
6159}
6160
6161/**
6162 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6163 *
6164 * It returns the minimum PFN based on information provided via
7d018176 6165 * memblock_set_node().
c713216d
MG
6166 */
6167unsigned long __init find_min_pfn_with_active_regions(void)
6168{
6169 return find_min_pfn_for_node(MAX_NUMNODES);
6170}
6171
37b07e41
LS
6172/*
6173 * early_calculate_totalpages()
6174 * Sum pages in active regions for movable zone.
4b0ef1fe 6175 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6176 */
484f51f8 6177static unsigned long __init early_calculate_totalpages(void)
7e63efef 6178{
7e63efef 6179 unsigned long totalpages = 0;
c13291a5
TH
6180 unsigned long start_pfn, end_pfn;
6181 int i, nid;
6182
6183 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6184 unsigned long pages = end_pfn - start_pfn;
7e63efef 6185
37b07e41
LS
6186 totalpages += pages;
6187 if (pages)
4b0ef1fe 6188 node_set_state(nid, N_MEMORY);
37b07e41 6189 }
b8af2941 6190 return totalpages;
7e63efef
MG
6191}
6192
2a1e274a
MG
6193/*
6194 * Find the PFN the Movable zone begins in each node. Kernel memory
6195 * is spread evenly between nodes as long as the nodes have enough
6196 * memory. When they don't, some nodes will have more kernelcore than
6197 * others
6198 */
b224ef85 6199static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6200{
6201 int i, nid;
6202 unsigned long usable_startpfn;
6203 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6204 /* save the state before borrow the nodemask */
4b0ef1fe 6205 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6206 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6207 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6208 struct memblock_region *r;
b2f3eebe
TC
6209
6210 /* Need to find movable_zone earlier when movable_node is specified. */
6211 find_usable_zone_for_movable();
6212
6213 /*
6214 * If movable_node is specified, ignore kernelcore and movablecore
6215 * options.
6216 */
6217 if (movable_node_is_enabled()) {
136199f0
EM
6218 for_each_memblock(memory, r) {
6219 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6220 continue;
6221
136199f0 6222 nid = r->nid;
b2f3eebe 6223
136199f0 6224 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6225 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6226 min(usable_startpfn, zone_movable_pfn[nid]) :
6227 usable_startpfn;
6228 }
6229
6230 goto out2;
6231 }
2a1e274a 6232
342332e6
TI
6233 /*
6234 * If kernelcore=mirror is specified, ignore movablecore option
6235 */
6236 if (mirrored_kernelcore) {
6237 bool mem_below_4gb_not_mirrored = false;
6238
6239 for_each_memblock(memory, r) {
6240 if (memblock_is_mirror(r))
6241 continue;
6242
6243 nid = r->nid;
6244
6245 usable_startpfn = memblock_region_memory_base_pfn(r);
6246
6247 if (usable_startpfn < 0x100000) {
6248 mem_below_4gb_not_mirrored = true;
6249 continue;
6250 }
6251
6252 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6253 min(usable_startpfn, zone_movable_pfn[nid]) :
6254 usable_startpfn;
6255 }
6256
6257 if (mem_below_4gb_not_mirrored)
6258 pr_warn("This configuration results in unmirrored kernel memory.");
6259
6260 goto out2;
6261 }
6262
7e63efef 6263 /*
b2f3eebe 6264 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6265 * kernelcore that corresponds so that memory usable for
6266 * any allocation type is evenly spread. If both kernelcore
6267 * and movablecore are specified, then the value of kernelcore
6268 * will be used for required_kernelcore if it's greater than
6269 * what movablecore would have allowed.
6270 */
6271 if (required_movablecore) {
7e63efef
MG
6272 unsigned long corepages;
6273
6274 /*
6275 * Round-up so that ZONE_MOVABLE is at least as large as what
6276 * was requested by the user
6277 */
6278 required_movablecore =
6279 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6280 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6281 corepages = totalpages - required_movablecore;
6282
6283 required_kernelcore = max(required_kernelcore, corepages);
6284 }
6285
bde304bd
XQ
6286 /*
6287 * If kernelcore was not specified or kernelcore size is larger
6288 * than totalpages, there is no ZONE_MOVABLE.
6289 */
6290 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6291 goto out;
2a1e274a
MG
6292
6293 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6294 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6295
6296restart:
6297 /* Spread kernelcore memory as evenly as possible throughout nodes */
6298 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6299 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6300 unsigned long start_pfn, end_pfn;
6301
2a1e274a
MG
6302 /*
6303 * Recalculate kernelcore_node if the division per node
6304 * now exceeds what is necessary to satisfy the requested
6305 * amount of memory for the kernel
6306 */
6307 if (required_kernelcore < kernelcore_node)
6308 kernelcore_node = required_kernelcore / usable_nodes;
6309
6310 /*
6311 * As the map is walked, we track how much memory is usable
6312 * by the kernel using kernelcore_remaining. When it is
6313 * 0, the rest of the node is usable by ZONE_MOVABLE
6314 */
6315 kernelcore_remaining = kernelcore_node;
6316
6317 /* Go through each range of PFNs within this node */
c13291a5 6318 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6319 unsigned long size_pages;
6320
c13291a5 6321 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6322 if (start_pfn >= end_pfn)
6323 continue;
6324
6325 /* Account for what is only usable for kernelcore */
6326 if (start_pfn < usable_startpfn) {
6327 unsigned long kernel_pages;
6328 kernel_pages = min(end_pfn, usable_startpfn)
6329 - start_pfn;
6330
6331 kernelcore_remaining -= min(kernel_pages,
6332 kernelcore_remaining);
6333 required_kernelcore -= min(kernel_pages,
6334 required_kernelcore);
6335
6336 /* Continue if range is now fully accounted */
6337 if (end_pfn <= usable_startpfn) {
6338
6339 /*
6340 * Push zone_movable_pfn to the end so
6341 * that if we have to rebalance
6342 * kernelcore across nodes, we will
6343 * not double account here
6344 */
6345 zone_movable_pfn[nid] = end_pfn;
6346 continue;
6347 }
6348 start_pfn = usable_startpfn;
6349 }
6350
6351 /*
6352 * The usable PFN range for ZONE_MOVABLE is from
6353 * start_pfn->end_pfn. Calculate size_pages as the
6354 * number of pages used as kernelcore
6355 */
6356 size_pages = end_pfn - start_pfn;
6357 if (size_pages > kernelcore_remaining)
6358 size_pages = kernelcore_remaining;
6359 zone_movable_pfn[nid] = start_pfn + size_pages;
6360
6361 /*
6362 * Some kernelcore has been met, update counts and
6363 * break if the kernelcore for this node has been
b8af2941 6364 * satisfied
2a1e274a
MG
6365 */
6366 required_kernelcore -= min(required_kernelcore,
6367 size_pages);
6368 kernelcore_remaining -= size_pages;
6369 if (!kernelcore_remaining)
6370 break;
6371 }
6372 }
6373
6374 /*
6375 * If there is still required_kernelcore, we do another pass with one
6376 * less node in the count. This will push zone_movable_pfn[nid] further
6377 * along on the nodes that still have memory until kernelcore is
b8af2941 6378 * satisfied
2a1e274a
MG
6379 */
6380 usable_nodes--;
6381 if (usable_nodes && required_kernelcore > usable_nodes)
6382 goto restart;
6383
b2f3eebe 6384out2:
2a1e274a
MG
6385 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6386 for (nid = 0; nid < MAX_NUMNODES; nid++)
6387 zone_movable_pfn[nid] =
6388 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6389
20e6926d 6390out:
66918dcd 6391 /* restore the node_state */
4b0ef1fe 6392 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6393}
6394
4b0ef1fe
LJ
6395/* Any regular or high memory on that node ? */
6396static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6397{
37b07e41
LS
6398 enum zone_type zone_type;
6399
4b0ef1fe
LJ
6400 if (N_MEMORY == N_NORMAL_MEMORY)
6401 return;
6402
6403 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6404 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6405 if (populated_zone(zone)) {
4b0ef1fe
LJ
6406 node_set_state(nid, N_HIGH_MEMORY);
6407 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6408 zone_type <= ZONE_NORMAL)
6409 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6410 break;
6411 }
37b07e41 6412 }
37b07e41
LS
6413}
6414
c713216d
MG
6415/**
6416 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6417 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6418 *
6419 * This will call free_area_init_node() for each active node in the system.
7d018176 6420 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6421 * zone in each node and their holes is calculated. If the maximum PFN
6422 * between two adjacent zones match, it is assumed that the zone is empty.
6423 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6424 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6425 * starts where the previous one ended. For example, ZONE_DMA32 starts
6426 * at arch_max_dma_pfn.
6427 */
6428void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6429{
c13291a5
TH
6430 unsigned long start_pfn, end_pfn;
6431 int i, nid;
a6af2bc3 6432
c713216d
MG
6433 /* Record where the zone boundaries are */
6434 memset(arch_zone_lowest_possible_pfn, 0,
6435 sizeof(arch_zone_lowest_possible_pfn));
6436 memset(arch_zone_highest_possible_pfn, 0,
6437 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6438
6439 start_pfn = find_min_pfn_with_active_regions();
6440
6441 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6442 if (i == ZONE_MOVABLE)
6443 continue;
90cae1fe
OH
6444
6445 end_pfn = max(max_zone_pfn[i], start_pfn);
6446 arch_zone_lowest_possible_pfn[i] = start_pfn;
6447 arch_zone_highest_possible_pfn[i] = end_pfn;
6448
6449 start_pfn = end_pfn;
c713216d 6450 }
2a1e274a
MG
6451 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6452 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6453
6454 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6455 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6456 find_zone_movable_pfns_for_nodes();
c713216d 6457
c713216d 6458 /* Print out the zone ranges */
f88dfff5 6459 pr_info("Zone ranges:\n");
2a1e274a
MG
6460 for (i = 0; i < MAX_NR_ZONES; i++) {
6461 if (i == ZONE_MOVABLE)
6462 continue;
f88dfff5 6463 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6464 if (arch_zone_lowest_possible_pfn[i] ==
6465 arch_zone_highest_possible_pfn[i])
f88dfff5 6466 pr_cont("empty\n");
72f0ba02 6467 else
8d29e18a
JG
6468 pr_cont("[mem %#018Lx-%#018Lx]\n",
6469 (u64)arch_zone_lowest_possible_pfn[i]
6470 << PAGE_SHIFT,
6471 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6472 << PAGE_SHIFT) - 1);
2a1e274a
MG
6473 }
6474
6475 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6476 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6477 for (i = 0; i < MAX_NUMNODES; i++) {
6478 if (zone_movable_pfn[i])
8d29e18a
JG
6479 pr_info(" Node %d: %#018Lx\n", i,
6480 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6481 }
c713216d 6482
f2d52fe5 6483 /* Print out the early node map */
f88dfff5 6484 pr_info("Early memory node ranges\n");
c13291a5 6485 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6486 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6487 (u64)start_pfn << PAGE_SHIFT,
6488 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6489
6490 /* Initialise every node */
708614e6 6491 mminit_verify_pageflags_layout();
8ef82866 6492 setup_nr_node_ids();
c713216d
MG
6493 for_each_online_node(nid) {
6494 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6495 free_area_init_node(nid, NULL,
c713216d 6496 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6497
6498 /* Any memory on that node */
6499 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6500 node_set_state(nid, N_MEMORY);
6501 check_for_memory(pgdat, nid);
c713216d
MG
6502 }
6503}
2a1e274a 6504
7e63efef 6505static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6506{
6507 unsigned long long coremem;
6508 if (!p)
6509 return -EINVAL;
6510
6511 coremem = memparse(p, &p);
7e63efef 6512 *core = coremem >> PAGE_SHIFT;
2a1e274a 6513
7e63efef 6514 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6515 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6516
6517 return 0;
6518}
ed7ed365 6519
7e63efef
MG
6520/*
6521 * kernelcore=size sets the amount of memory for use for allocations that
6522 * cannot be reclaimed or migrated.
6523 */
6524static int __init cmdline_parse_kernelcore(char *p)
6525{
342332e6
TI
6526 /* parse kernelcore=mirror */
6527 if (parse_option_str(p, "mirror")) {
6528 mirrored_kernelcore = true;
6529 return 0;
6530 }
6531
7e63efef
MG
6532 return cmdline_parse_core(p, &required_kernelcore);
6533}
6534
6535/*
6536 * movablecore=size sets the amount of memory for use for allocations that
6537 * can be reclaimed or migrated.
6538 */
6539static int __init cmdline_parse_movablecore(char *p)
6540{
6541 return cmdline_parse_core(p, &required_movablecore);
6542}
6543
ed7ed365 6544early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6545early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6546
0ee332c1 6547#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6548
c3d5f5f0
JL
6549void adjust_managed_page_count(struct page *page, long count)
6550{
6551 spin_lock(&managed_page_count_lock);
6552 page_zone(page)->managed_pages += count;
6553 totalram_pages += count;
3dcc0571
JL
6554#ifdef CONFIG_HIGHMEM
6555 if (PageHighMem(page))
6556 totalhigh_pages += count;
6557#endif
c3d5f5f0
JL
6558 spin_unlock(&managed_page_count_lock);
6559}
3dcc0571 6560EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6561
11199692 6562unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6563{
11199692
JL
6564 void *pos;
6565 unsigned long pages = 0;
69afade7 6566
11199692
JL
6567 start = (void *)PAGE_ALIGN((unsigned long)start);
6568 end = (void *)((unsigned long)end & PAGE_MASK);
6569 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6570 if ((unsigned int)poison <= 0xFF)
11199692
JL
6571 memset(pos, poison, PAGE_SIZE);
6572 free_reserved_page(virt_to_page(pos));
69afade7
JL
6573 }
6574
6575 if (pages && s)
11199692 6576 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6577 s, pages << (PAGE_SHIFT - 10), start, end);
6578
6579 return pages;
6580}
11199692 6581EXPORT_SYMBOL(free_reserved_area);
69afade7 6582
cfa11e08
JL
6583#ifdef CONFIG_HIGHMEM
6584void free_highmem_page(struct page *page)
6585{
6586 __free_reserved_page(page);
6587 totalram_pages++;
7b4b2a0d 6588 page_zone(page)->managed_pages++;
cfa11e08
JL
6589 totalhigh_pages++;
6590}
6591#endif
6592
7ee3d4e8
JL
6593
6594void __init mem_init_print_info(const char *str)
6595{
6596 unsigned long physpages, codesize, datasize, rosize, bss_size;
6597 unsigned long init_code_size, init_data_size;
6598
6599 physpages = get_num_physpages();
6600 codesize = _etext - _stext;
6601 datasize = _edata - _sdata;
6602 rosize = __end_rodata - __start_rodata;
6603 bss_size = __bss_stop - __bss_start;
6604 init_data_size = __init_end - __init_begin;
6605 init_code_size = _einittext - _sinittext;
6606
6607 /*
6608 * Detect special cases and adjust section sizes accordingly:
6609 * 1) .init.* may be embedded into .data sections
6610 * 2) .init.text.* may be out of [__init_begin, __init_end],
6611 * please refer to arch/tile/kernel/vmlinux.lds.S.
6612 * 3) .rodata.* may be embedded into .text or .data sections.
6613 */
6614#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6615 do { \
6616 if (start <= pos && pos < end && size > adj) \
6617 size -= adj; \
6618 } while (0)
7ee3d4e8
JL
6619
6620 adj_init_size(__init_begin, __init_end, init_data_size,
6621 _sinittext, init_code_size);
6622 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6623 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6624 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6625 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6626
6627#undef adj_init_size
6628
756a025f 6629 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6630#ifdef CONFIG_HIGHMEM
756a025f 6631 ", %luK highmem"
7ee3d4e8 6632#endif
756a025f
JP
6633 "%s%s)\n",
6634 nr_free_pages() << (PAGE_SHIFT - 10),
6635 physpages << (PAGE_SHIFT - 10),
6636 codesize >> 10, datasize >> 10, rosize >> 10,
6637 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6638 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6639 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6640#ifdef CONFIG_HIGHMEM
756a025f 6641 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6642#endif
756a025f 6643 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6644}
6645
0e0b864e 6646/**
88ca3b94
RD
6647 * set_dma_reserve - set the specified number of pages reserved in the first zone
6648 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6649 *
013110a7 6650 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6651 * In the DMA zone, a significant percentage may be consumed by kernel image
6652 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6653 * function may optionally be used to account for unfreeable pages in the
6654 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6655 * smaller per-cpu batchsize.
0e0b864e
MG
6656 */
6657void __init set_dma_reserve(unsigned long new_dma_reserve)
6658{
6659 dma_reserve = new_dma_reserve;
6660}
6661
1da177e4
LT
6662void __init free_area_init(unsigned long *zones_size)
6663{
9109fb7b 6664 free_area_init_node(0, zones_size,
1da177e4
LT
6665 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6666}
1da177e4 6667
1da177e4
LT
6668static int page_alloc_cpu_notify(struct notifier_block *self,
6669 unsigned long action, void *hcpu)
6670{
6671 int cpu = (unsigned long)hcpu;
1da177e4 6672
8bb78442 6673 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6674 lru_add_drain_cpu(cpu);
9f8f2172
CL
6675 drain_pages(cpu);
6676
6677 /*
6678 * Spill the event counters of the dead processor
6679 * into the current processors event counters.
6680 * This artificially elevates the count of the current
6681 * processor.
6682 */
f8891e5e 6683 vm_events_fold_cpu(cpu);
9f8f2172
CL
6684
6685 /*
6686 * Zero the differential counters of the dead processor
6687 * so that the vm statistics are consistent.
6688 *
6689 * This is only okay since the processor is dead and cannot
6690 * race with what we are doing.
6691 */
2bb921e5 6692 cpu_vm_stats_fold(cpu);
1da177e4
LT
6693 }
6694 return NOTIFY_OK;
6695}
1da177e4
LT
6696
6697void __init page_alloc_init(void)
6698{
6699 hotcpu_notifier(page_alloc_cpu_notify, 0);
6700}
6701
cb45b0e9 6702/*
34b10060 6703 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6704 * or min_free_kbytes changes.
6705 */
6706static void calculate_totalreserve_pages(void)
6707{
6708 struct pglist_data *pgdat;
6709 unsigned long reserve_pages = 0;
2f6726e5 6710 enum zone_type i, j;
cb45b0e9
HA
6711
6712 for_each_online_pgdat(pgdat) {
6713 for (i = 0; i < MAX_NR_ZONES; i++) {
6714 struct zone *zone = pgdat->node_zones + i;
3484b2de 6715 long max = 0;
cb45b0e9
HA
6716
6717 /* Find valid and maximum lowmem_reserve in the zone */
6718 for (j = i; j < MAX_NR_ZONES; j++) {
6719 if (zone->lowmem_reserve[j] > max)
6720 max = zone->lowmem_reserve[j];
6721 }
6722
41858966
MG
6723 /* we treat the high watermark as reserved pages. */
6724 max += high_wmark_pages(zone);
cb45b0e9 6725
b40da049
JL
6726 if (max > zone->managed_pages)
6727 max = zone->managed_pages;
a8d01437
JW
6728
6729 zone->totalreserve_pages = max;
6730
cb45b0e9
HA
6731 reserve_pages += max;
6732 }
6733 }
6734 totalreserve_pages = reserve_pages;
6735}
6736
1da177e4
LT
6737/*
6738 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6739 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6740 * has a correct pages reserved value, so an adequate number of
6741 * pages are left in the zone after a successful __alloc_pages().
6742 */
6743static void setup_per_zone_lowmem_reserve(void)
6744{
6745 struct pglist_data *pgdat;
2f6726e5 6746 enum zone_type j, idx;
1da177e4 6747
ec936fc5 6748 for_each_online_pgdat(pgdat) {
1da177e4
LT
6749 for (j = 0; j < MAX_NR_ZONES; j++) {
6750 struct zone *zone = pgdat->node_zones + j;
b40da049 6751 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6752
6753 zone->lowmem_reserve[j] = 0;
6754
2f6726e5
CL
6755 idx = j;
6756 while (idx) {
1da177e4
LT
6757 struct zone *lower_zone;
6758
2f6726e5
CL
6759 idx--;
6760
1da177e4
LT
6761 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6762 sysctl_lowmem_reserve_ratio[idx] = 1;
6763
6764 lower_zone = pgdat->node_zones + idx;
b40da049 6765 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6766 sysctl_lowmem_reserve_ratio[idx];
b40da049 6767 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6768 }
6769 }
6770 }
cb45b0e9
HA
6771
6772 /* update totalreserve_pages */
6773 calculate_totalreserve_pages();
1da177e4
LT
6774}
6775
cfd3da1e 6776static void __setup_per_zone_wmarks(void)
1da177e4
LT
6777{
6778 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6779 unsigned long lowmem_pages = 0;
6780 struct zone *zone;
6781 unsigned long flags;
6782
6783 /* Calculate total number of !ZONE_HIGHMEM pages */
6784 for_each_zone(zone) {
6785 if (!is_highmem(zone))
b40da049 6786 lowmem_pages += zone->managed_pages;
1da177e4
LT
6787 }
6788
6789 for_each_zone(zone) {
ac924c60
AM
6790 u64 tmp;
6791
1125b4e3 6792 spin_lock_irqsave(&zone->lock, flags);
b40da049 6793 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6794 do_div(tmp, lowmem_pages);
1da177e4
LT
6795 if (is_highmem(zone)) {
6796 /*
669ed175
NP
6797 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6798 * need highmem pages, so cap pages_min to a small
6799 * value here.
6800 *
41858966 6801 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6802 * deltas control asynch page reclaim, and so should
669ed175 6803 * not be capped for highmem.
1da177e4 6804 */
90ae8d67 6805 unsigned long min_pages;
1da177e4 6806
b40da049 6807 min_pages = zone->managed_pages / 1024;
90ae8d67 6808 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6809 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6810 } else {
669ed175
NP
6811 /*
6812 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6813 * proportionate to the zone's size.
6814 */
41858966 6815 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6816 }
6817
795ae7a0
JW
6818 /*
6819 * Set the kswapd watermarks distance according to the
6820 * scale factor in proportion to available memory, but
6821 * ensure a minimum size on small systems.
6822 */
6823 tmp = max_t(u64, tmp >> 2,
6824 mult_frac(zone->managed_pages,
6825 watermark_scale_factor, 10000));
6826
6827 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6828 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6829
81c0a2bb 6830 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6831 high_wmark_pages(zone) - low_wmark_pages(zone) -
6832 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6833
1125b4e3 6834 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6835 }
cb45b0e9
HA
6836
6837 /* update totalreserve_pages */
6838 calculate_totalreserve_pages();
1da177e4
LT
6839}
6840
cfd3da1e
MG
6841/**
6842 * setup_per_zone_wmarks - called when min_free_kbytes changes
6843 * or when memory is hot-{added|removed}
6844 *
6845 * Ensures that the watermark[min,low,high] values for each zone are set
6846 * correctly with respect to min_free_kbytes.
6847 */
6848void setup_per_zone_wmarks(void)
6849{
6850 mutex_lock(&zonelists_mutex);
6851 __setup_per_zone_wmarks();
6852 mutex_unlock(&zonelists_mutex);
6853}
6854
1da177e4
LT
6855/*
6856 * Initialise min_free_kbytes.
6857 *
6858 * For small machines we want it small (128k min). For large machines
6859 * we want it large (64MB max). But it is not linear, because network
6860 * bandwidth does not increase linearly with machine size. We use
6861 *
b8af2941 6862 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6863 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6864 *
6865 * which yields
6866 *
6867 * 16MB: 512k
6868 * 32MB: 724k
6869 * 64MB: 1024k
6870 * 128MB: 1448k
6871 * 256MB: 2048k
6872 * 512MB: 2896k
6873 * 1024MB: 4096k
6874 * 2048MB: 5792k
6875 * 4096MB: 8192k
6876 * 8192MB: 11584k
6877 * 16384MB: 16384k
6878 */
1b79acc9 6879int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6880{
6881 unsigned long lowmem_kbytes;
5f12733e 6882 int new_min_free_kbytes;
1da177e4
LT
6883
6884 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6885 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6886
6887 if (new_min_free_kbytes > user_min_free_kbytes) {
6888 min_free_kbytes = new_min_free_kbytes;
6889 if (min_free_kbytes < 128)
6890 min_free_kbytes = 128;
6891 if (min_free_kbytes > 65536)
6892 min_free_kbytes = 65536;
6893 } else {
6894 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6895 new_min_free_kbytes, user_min_free_kbytes);
6896 }
bc75d33f 6897 setup_per_zone_wmarks();
a6cccdc3 6898 refresh_zone_stat_thresholds();
1da177e4
LT
6899 setup_per_zone_lowmem_reserve();
6900 return 0;
6901}
bc22af74 6902core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6903
6904/*
b8af2941 6905 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6906 * that we can call two helper functions whenever min_free_kbytes
6907 * changes.
6908 */
cccad5b9 6909int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6910 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6911{
da8c757b
HP
6912 int rc;
6913
6914 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6915 if (rc)
6916 return rc;
6917
5f12733e
MH
6918 if (write) {
6919 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6920 setup_per_zone_wmarks();
5f12733e 6921 }
1da177e4
LT
6922 return 0;
6923}
6924
795ae7a0
JW
6925int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6926 void __user *buffer, size_t *length, loff_t *ppos)
6927{
6928 int rc;
6929
6930 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6931 if (rc)
6932 return rc;
6933
6934 if (write)
6935 setup_per_zone_wmarks();
6936
6937 return 0;
6938}
6939
9614634f 6940#ifdef CONFIG_NUMA
cccad5b9 6941int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6942 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6943{
6944 struct zone *zone;
6945 int rc;
6946
8d65af78 6947 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6948 if (rc)
6949 return rc;
6950
6951 for_each_zone(zone)
b40da049 6952 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6953 sysctl_min_unmapped_ratio) / 100;
6954 return 0;
6955}
0ff38490 6956
cccad5b9 6957int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6958 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6959{
6960 struct zone *zone;
6961 int rc;
6962
8d65af78 6963 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6964 if (rc)
6965 return rc;
6966
6967 for_each_zone(zone)
b40da049 6968 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6969 sysctl_min_slab_ratio) / 100;
6970 return 0;
6971}
9614634f
CL
6972#endif
6973
1da177e4
LT
6974/*
6975 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6976 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6977 * whenever sysctl_lowmem_reserve_ratio changes.
6978 *
6979 * The reserve ratio obviously has absolutely no relation with the
41858966 6980 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6981 * if in function of the boot time zone sizes.
6982 */
cccad5b9 6983int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6984 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6985{
8d65af78 6986 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6987 setup_per_zone_lowmem_reserve();
6988 return 0;
6989}
6990
8ad4b1fb
RS
6991/*
6992 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6993 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6994 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6995 */
cccad5b9 6996int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6997 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6998{
6999 struct zone *zone;
7cd2b0a3 7000 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7001 int ret;
7002
7cd2b0a3
DR
7003 mutex_lock(&pcp_batch_high_lock);
7004 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7005
8d65af78 7006 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7007 if (!write || ret < 0)
7008 goto out;
7009
7010 /* Sanity checking to avoid pcp imbalance */
7011 if (percpu_pagelist_fraction &&
7012 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7013 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7014 ret = -EINVAL;
7015 goto out;
7016 }
7017
7018 /* No change? */
7019 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7020 goto out;
c8e251fa 7021
364df0eb 7022 for_each_populated_zone(zone) {
7cd2b0a3
DR
7023 unsigned int cpu;
7024
22a7f12b 7025 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7026 pageset_set_high_and_batch(zone,
7027 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7028 }
7cd2b0a3 7029out:
c8e251fa 7030 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7031 return ret;
8ad4b1fb
RS
7032}
7033
a9919c79 7034#ifdef CONFIG_NUMA
f034b5d4 7035int hashdist = HASHDIST_DEFAULT;
1da177e4 7036
1da177e4
LT
7037static int __init set_hashdist(char *str)
7038{
7039 if (!str)
7040 return 0;
7041 hashdist = simple_strtoul(str, &str, 0);
7042 return 1;
7043}
7044__setup("hashdist=", set_hashdist);
7045#endif
7046
7047/*
7048 * allocate a large system hash table from bootmem
7049 * - it is assumed that the hash table must contain an exact power-of-2
7050 * quantity of entries
7051 * - limit is the number of hash buckets, not the total allocation size
7052 */
7053void *__init alloc_large_system_hash(const char *tablename,
7054 unsigned long bucketsize,
7055 unsigned long numentries,
7056 int scale,
7057 int flags,
7058 unsigned int *_hash_shift,
7059 unsigned int *_hash_mask,
31fe62b9
TB
7060 unsigned long low_limit,
7061 unsigned long high_limit)
1da177e4 7062{
31fe62b9 7063 unsigned long long max = high_limit;
1da177e4
LT
7064 unsigned long log2qty, size;
7065 void *table = NULL;
7066
7067 /* allow the kernel cmdline to have a say */
7068 if (!numentries) {
7069 /* round applicable memory size up to nearest megabyte */
04903664 7070 numentries = nr_kernel_pages;
a7e83318
JZ
7071
7072 /* It isn't necessary when PAGE_SIZE >= 1MB */
7073 if (PAGE_SHIFT < 20)
7074 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7075
7076 /* limit to 1 bucket per 2^scale bytes of low memory */
7077 if (scale > PAGE_SHIFT)
7078 numentries >>= (scale - PAGE_SHIFT);
7079 else
7080 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7081
7082 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7083 if (unlikely(flags & HASH_SMALL)) {
7084 /* Makes no sense without HASH_EARLY */
7085 WARN_ON(!(flags & HASH_EARLY));
7086 if (!(numentries >> *_hash_shift)) {
7087 numentries = 1UL << *_hash_shift;
7088 BUG_ON(!numentries);
7089 }
7090 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7091 numentries = PAGE_SIZE / bucketsize;
1da177e4 7092 }
6e692ed3 7093 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7094
7095 /* limit allocation size to 1/16 total memory by default */
7096 if (max == 0) {
7097 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7098 do_div(max, bucketsize);
7099 }
074b8517 7100 max = min(max, 0x80000000ULL);
1da177e4 7101
31fe62b9
TB
7102 if (numentries < low_limit)
7103 numentries = low_limit;
1da177e4
LT
7104 if (numentries > max)
7105 numentries = max;
7106
f0d1b0b3 7107 log2qty = ilog2(numentries);
1da177e4
LT
7108
7109 do {
7110 size = bucketsize << log2qty;
7111 if (flags & HASH_EARLY)
6782832e 7112 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7113 else if (hashdist)
7114 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7115 else {
1037b83b
ED
7116 /*
7117 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7118 * some pages at the end of hash table which
7119 * alloc_pages_exact() automatically does
1037b83b 7120 */
264ef8a9 7121 if (get_order(size) < MAX_ORDER) {
a1dd268c 7122 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7123 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7124 }
1da177e4
LT
7125 }
7126 } while (!table && size > PAGE_SIZE && --log2qty);
7127
7128 if (!table)
7129 panic("Failed to allocate %s hash table\n", tablename);
7130
1170532b
JP
7131 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7132 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7133
7134 if (_hash_shift)
7135 *_hash_shift = log2qty;
7136 if (_hash_mask)
7137 *_hash_mask = (1 << log2qty) - 1;
7138
7139 return table;
7140}
a117e66e 7141
a5d76b54 7142/*
80934513
MK
7143 * This function checks whether pageblock includes unmovable pages or not.
7144 * If @count is not zero, it is okay to include less @count unmovable pages
7145 *
b8af2941 7146 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7147 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7148 * expect this function should be exact.
a5d76b54 7149 */
b023f468
WC
7150bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7151 bool skip_hwpoisoned_pages)
49ac8255
KH
7152{
7153 unsigned long pfn, iter, found;
47118af0
MN
7154 int mt;
7155
49ac8255
KH
7156 /*
7157 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7158 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7159 */
7160 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7161 return false;
47118af0
MN
7162 mt = get_pageblock_migratetype(page);
7163 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7164 return false;
49ac8255
KH
7165
7166 pfn = page_to_pfn(page);
7167 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7168 unsigned long check = pfn + iter;
7169
29723fcc 7170 if (!pfn_valid_within(check))
49ac8255 7171 continue;
29723fcc 7172
49ac8255 7173 page = pfn_to_page(check);
c8721bbb
NH
7174
7175 /*
7176 * Hugepages are not in LRU lists, but they're movable.
7177 * We need not scan over tail pages bacause we don't
7178 * handle each tail page individually in migration.
7179 */
7180 if (PageHuge(page)) {
7181 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7182 continue;
7183 }
7184
97d255c8
MK
7185 /*
7186 * We can't use page_count without pin a page
7187 * because another CPU can free compound page.
7188 * This check already skips compound tails of THP
0139aa7b 7189 * because their page->_refcount is zero at all time.
97d255c8 7190 */
fe896d18 7191 if (!page_ref_count(page)) {
49ac8255
KH
7192 if (PageBuddy(page))
7193 iter += (1 << page_order(page)) - 1;
7194 continue;
7195 }
97d255c8 7196
b023f468
WC
7197 /*
7198 * The HWPoisoned page may be not in buddy system, and
7199 * page_count() is not 0.
7200 */
7201 if (skip_hwpoisoned_pages && PageHWPoison(page))
7202 continue;
7203
49ac8255
KH
7204 if (!PageLRU(page))
7205 found++;
7206 /*
6b4f7799
JW
7207 * If there are RECLAIMABLE pages, we need to check
7208 * it. But now, memory offline itself doesn't call
7209 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7210 */
7211 /*
7212 * If the page is not RAM, page_count()should be 0.
7213 * we don't need more check. This is an _used_ not-movable page.
7214 *
7215 * The problematic thing here is PG_reserved pages. PG_reserved
7216 * is set to both of a memory hole page and a _used_ kernel
7217 * page at boot.
7218 */
7219 if (found > count)
80934513 7220 return true;
49ac8255 7221 }
80934513 7222 return false;
49ac8255
KH
7223}
7224
7225bool is_pageblock_removable_nolock(struct page *page)
7226{
656a0706
MH
7227 struct zone *zone;
7228 unsigned long pfn;
687875fb
MH
7229
7230 /*
7231 * We have to be careful here because we are iterating over memory
7232 * sections which are not zone aware so we might end up outside of
7233 * the zone but still within the section.
656a0706
MH
7234 * We have to take care about the node as well. If the node is offline
7235 * its NODE_DATA will be NULL - see page_zone.
687875fb 7236 */
656a0706
MH
7237 if (!node_online(page_to_nid(page)))
7238 return false;
7239
7240 zone = page_zone(page);
7241 pfn = page_to_pfn(page);
108bcc96 7242 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7243 return false;
7244
b023f468 7245 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7246}
0c0e6195 7247
080fe206 7248#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7249
7250static unsigned long pfn_max_align_down(unsigned long pfn)
7251{
7252 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7253 pageblock_nr_pages) - 1);
7254}
7255
7256static unsigned long pfn_max_align_up(unsigned long pfn)
7257{
7258 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7259 pageblock_nr_pages));
7260}
7261
041d3a8c 7262/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7263static int __alloc_contig_migrate_range(struct compact_control *cc,
7264 unsigned long start, unsigned long end)
041d3a8c
MN
7265{
7266 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7267 unsigned long nr_reclaimed;
041d3a8c
MN
7268 unsigned long pfn = start;
7269 unsigned int tries = 0;
7270 int ret = 0;
7271
be49a6e1 7272 migrate_prep();
041d3a8c 7273
bb13ffeb 7274 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7275 if (fatal_signal_pending(current)) {
7276 ret = -EINTR;
7277 break;
7278 }
7279
bb13ffeb
MG
7280 if (list_empty(&cc->migratepages)) {
7281 cc->nr_migratepages = 0;
edc2ca61 7282 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7283 if (!pfn) {
7284 ret = -EINTR;
7285 break;
7286 }
7287 tries = 0;
7288 } else if (++tries == 5) {
7289 ret = ret < 0 ? ret : -EBUSY;
7290 break;
7291 }
7292
beb51eaa
MK
7293 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7294 &cc->migratepages);
7295 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7296
9c620e2b 7297 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7298 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7299 }
2a6f5124
SP
7300 if (ret < 0) {
7301 putback_movable_pages(&cc->migratepages);
7302 return ret;
7303 }
7304 return 0;
041d3a8c
MN
7305}
7306
7307/**
7308 * alloc_contig_range() -- tries to allocate given range of pages
7309 * @start: start PFN to allocate
7310 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7311 * @migratetype: migratetype of the underlaying pageblocks (either
7312 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7313 * in range must have the same migratetype and it must
7314 * be either of the two.
041d3a8c
MN
7315 *
7316 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7317 * aligned, however it's the caller's responsibility to guarantee that
7318 * we are the only thread that changes migrate type of pageblocks the
7319 * pages fall in.
7320 *
7321 * The PFN range must belong to a single zone.
7322 *
7323 * Returns zero on success or negative error code. On success all
7324 * pages which PFN is in [start, end) are allocated for the caller and
7325 * need to be freed with free_contig_range().
7326 */
0815f3d8
MN
7327int alloc_contig_range(unsigned long start, unsigned long end,
7328 unsigned migratetype)
041d3a8c 7329{
041d3a8c 7330 unsigned long outer_start, outer_end;
d00181b9
KS
7331 unsigned int order;
7332 int ret = 0;
041d3a8c 7333
bb13ffeb
MG
7334 struct compact_control cc = {
7335 .nr_migratepages = 0,
7336 .order = -1,
7337 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7338 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7339 .ignore_skip_hint = true,
7340 };
7341 INIT_LIST_HEAD(&cc.migratepages);
7342
041d3a8c
MN
7343 /*
7344 * What we do here is we mark all pageblocks in range as
7345 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7346 * have different sizes, and due to the way page allocator
7347 * work, we align the range to biggest of the two pages so
7348 * that page allocator won't try to merge buddies from
7349 * different pageblocks and change MIGRATE_ISOLATE to some
7350 * other migration type.
7351 *
7352 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7353 * migrate the pages from an unaligned range (ie. pages that
7354 * we are interested in). This will put all the pages in
7355 * range back to page allocator as MIGRATE_ISOLATE.
7356 *
7357 * When this is done, we take the pages in range from page
7358 * allocator removing them from the buddy system. This way
7359 * page allocator will never consider using them.
7360 *
7361 * This lets us mark the pageblocks back as
7362 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7363 * aligned range but not in the unaligned, original range are
7364 * put back to page allocator so that buddy can use them.
7365 */
7366
7367 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7368 pfn_max_align_up(end), migratetype,
7369 false);
041d3a8c 7370 if (ret)
86a595f9 7371 return ret;
041d3a8c 7372
8ef5849f
JK
7373 /*
7374 * In case of -EBUSY, we'd like to know which page causes problem.
7375 * So, just fall through. We will check it in test_pages_isolated().
7376 */
bb13ffeb 7377 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7378 if (ret && ret != -EBUSY)
041d3a8c
MN
7379 goto done;
7380
7381 /*
7382 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7383 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7384 * more, all pages in [start, end) are free in page allocator.
7385 * What we are going to do is to allocate all pages from
7386 * [start, end) (that is remove them from page allocator).
7387 *
7388 * The only problem is that pages at the beginning and at the
7389 * end of interesting range may be not aligned with pages that
7390 * page allocator holds, ie. they can be part of higher order
7391 * pages. Because of this, we reserve the bigger range and
7392 * once this is done free the pages we are not interested in.
7393 *
7394 * We don't have to hold zone->lock here because the pages are
7395 * isolated thus they won't get removed from buddy.
7396 */
7397
7398 lru_add_drain_all();
510f5507 7399 drain_all_pages(cc.zone);
041d3a8c
MN
7400
7401 order = 0;
7402 outer_start = start;
7403 while (!PageBuddy(pfn_to_page(outer_start))) {
7404 if (++order >= MAX_ORDER) {
8ef5849f
JK
7405 outer_start = start;
7406 break;
041d3a8c
MN
7407 }
7408 outer_start &= ~0UL << order;
7409 }
7410
8ef5849f
JK
7411 if (outer_start != start) {
7412 order = page_order(pfn_to_page(outer_start));
7413
7414 /*
7415 * outer_start page could be small order buddy page and
7416 * it doesn't include start page. Adjust outer_start
7417 * in this case to report failed page properly
7418 * on tracepoint in test_pages_isolated()
7419 */
7420 if (outer_start + (1UL << order) <= start)
7421 outer_start = start;
7422 }
7423
041d3a8c 7424 /* Make sure the range is really isolated. */
b023f468 7425 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7426 pr_info("%s: [%lx, %lx) PFNs busy\n",
7427 __func__, outer_start, end);
041d3a8c
MN
7428 ret = -EBUSY;
7429 goto done;
7430 }
7431
49f223a9 7432 /* Grab isolated pages from freelists. */
bb13ffeb 7433 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7434 if (!outer_end) {
7435 ret = -EBUSY;
7436 goto done;
7437 }
7438
7439 /* Free head and tail (if any) */
7440 if (start != outer_start)
7441 free_contig_range(outer_start, start - outer_start);
7442 if (end != outer_end)
7443 free_contig_range(end, outer_end - end);
7444
7445done:
7446 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7447 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7448 return ret;
7449}
7450
7451void free_contig_range(unsigned long pfn, unsigned nr_pages)
7452{
bcc2b02f
MS
7453 unsigned int count = 0;
7454
7455 for (; nr_pages--; pfn++) {
7456 struct page *page = pfn_to_page(pfn);
7457
7458 count += page_count(page) != 1;
7459 __free_page(page);
7460 }
7461 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7462}
7463#endif
7464
4ed7e022 7465#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7466/*
7467 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7468 * page high values need to be recalulated.
7469 */
4ed7e022
JL
7470void __meminit zone_pcp_update(struct zone *zone)
7471{
0a647f38 7472 unsigned cpu;
c8e251fa 7473 mutex_lock(&pcp_batch_high_lock);
0a647f38 7474 for_each_possible_cpu(cpu)
169f6c19
CS
7475 pageset_set_high_and_batch(zone,
7476 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7477 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7478}
7479#endif
7480
340175b7
JL
7481void zone_pcp_reset(struct zone *zone)
7482{
7483 unsigned long flags;
5a883813
MK
7484 int cpu;
7485 struct per_cpu_pageset *pset;
340175b7
JL
7486
7487 /* avoid races with drain_pages() */
7488 local_irq_save(flags);
7489 if (zone->pageset != &boot_pageset) {
5a883813
MK
7490 for_each_online_cpu(cpu) {
7491 pset = per_cpu_ptr(zone->pageset, cpu);
7492 drain_zonestat(zone, pset);
7493 }
340175b7
JL
7494 free_percpu(zone->pageset);
7495 zone->pageset = &boot_pageset;
7496 }
7497 local_irq_restore(flags);
7498}
7499
6dcd73d7 7500#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7501/*
b9eb6319
JK
7502 * All pages in the range must be in a single zone and isolated
7503 * before calling this.
0c0e6195
KH
7504 */
7505void
7506__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7507{
7508 struct page *page;
7509 struct zone *zone;
7aeb09f9 7510 unsigned int order, i;
0c0e6195
KH
7511 unsigned long pfn;
7512 unsigned long flags;
7513 /* find the first valid pfn */
7514 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7515 if (pfn_valid(pfn))
7516 break;
7517 if (pfn == end_pfn)
7518 return;
7519 zone = page_zone(pfn_to_page(pfn));
7520 spin_lock_irqsave(&zone->lock, flags);
7521 pfn = start_pfn;
7522 while (pfn < end_pfn) {
7523 if (!pfn_valid(pfn)) {
7524 pfn++;
7525 continue;
7526 }
7527 page = pfn_to_page(pfn);
b023f468
WC
7528 /*
7529 * The HWPoisoned page may be not in buddy system, and
7530 * page_count() is not 0.
7531 */
7532 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7533 pfn++;
7534 SetPageReserved(page);
7535 continue;
7536 }
7537
0c0e6195
KH
7538 BUG_ON(page_count(page));
7539 BUG_ON(!PageBuddy(page));
7540 order = page_order(page);
7541#ifdef CONFIG_DEBUG_VM
1170532b
JP
7542 pr_info("remove from free list %lx %d %lx\n",
7543 pfn, 1 << order, end_pfn);
0c0e6195
KH
7544#endif
7545 list_del(&page->lru);
7546 rmv_page_order(page);
7547 zone->free_area[order].nr_free--;
0c0e6195
KH
7548 for (i = 0; i < (1 << order); i++)
7549 SetPageReserved((page+i));
7550 pfn += (1 << order);
7551 }
7552 spin_unlock_irqrestore(&zone->lock, flags);
7553}
7554#endif
8d22ba1b 7555
8d22ba1b
WF
7556bool is_free_buddy_page(struct page *page)
7557{
7558 struct zone *zone = page_zone(page);
7559 unsigned long pfn = page_to_pfn(page);
7560 unsigned long flags;
7aeb09f9 7561 unsigned int order;
8d22ba1b
WF
7562
7563 spin_lock_irqsave(&zone->lock, flags);
7564 for (order = 0; order < MAX_ORDER; order++) {
7565 struct page *page_head = page - (pfn & ((1 << order) - 1));
7566
7567 if (PageBuddy(page_head) && page_order(page_head) >= order)
7568 break;
7569 }
7570 spin_unlock_irqrestore(&zone->lock, flags);
7571
7572 return order < MAX_ORDER;
7573}