]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - arch/x86/events/amd/core.c
perf/x86: Add perf support for AMD family-17h processors
[thirdparty/kernel/linux.git] / arch / x86 / events / amd / core.c
1 #include <linux/perf_event.h>
2 #include <linux/export.h>
3 #include <linux/types.h>
4 #include <linux/init.h>
5 #include <linux/slab.h>
6 #include <asm/apicdef.h>
7
8 #include "../perf_event.h"
9
10 static __initconst const u64 amd_hw_cache_event_ids
11 [PERF_COUNT_HW_CACHE_MAX]
12 [PERF_COUNT_HW_CACHE_OP_MAX]
13 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
14 {
15 [ C(L1D) ] = {
16 [ C(OP_READ) ] = {
17 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
18 [ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */
19 },
20 [ C(OP_WRITE) ] = {
21 [ C(RESULT_ACCESS) ] = 0,
22 [ C(RESULT_MISS) ] = 0,
23 },
24 [ C(OP_PREFETCH) ] = {
25 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
26 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
27 },
28 },
29 [ C(L1I ) ] = {
30 [ C(OP_READ) ] = {
31 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
32 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
33 },
34 [ C(OP_WRITE) ] = {
35 [ C(RESULT_ACCESS) ] = -1,
36 [ C(RESULT_MISS) ] = -1,
37 },
38 [ C(OP_PREFETCH) ] = {
39 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
40 [ C(RESULT_MISS) ] = 0,
41 },
42 },
43 [ C(LL ) ] = {
44 [ C(OP_READ) ] = {
45 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
46 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
47 },
48 [ C(OP_WRITE) ] = {
49 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
50 [ C(RESULT_MISS) ] = 0,
51 },
52 [ C(OP_PREFETCH) ] = {
53 [ C(RESULT_ACCESS) ] = 0,
54 [ C(RESULT_MISS) ] = 0,
55 },
56 },
57 [ C(DTLB) ] = {
58 [ C(OP_READ) ] = {
59 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
60 [ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
61 },
62 [ C(OP_WRITE) ] = {
63 [ C(RESULT_ACCESS) ] = 0,
64 [ C(RESULT_MISS) ] = 0,
65 },
66 [ C(OP_PREFETCH) ] = {
67 [ C(RESULT_ACCESS) ] = 0,
68 [ C(RESULT_MISS) ] = 0,
69 },
70 },
71 [ C(ITLB) ] = {
72 [ C(OP_READ) ] = {
73 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
74 [ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
75 },
76 [ C(OP_WRITE) ] = {
77 [ C(RESULT_ACCESS) ] = -1,
78 [ C(RESULT_MISS) ] = -1,
79 },
80 [ C(OP_PREFETCH) ] = {
81 [ C(RESULT_ACCESS) ] = -1,
82 [ C(RESULT_MISS) ] = -1,
83 },
84 },
85 [ C(BPU ) ] = {
86 [ C(OP_READ) ] = {
87 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
88 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
89 },
90 [ C(OP_WRITE) ] = {
91 [ C(RESULT_ACCESS) ] = -1,
92 [ C(RESULT_MISS) ] = -1,
93 },
94 [ C(OP_PREFETCH) ] = {
95 [ C(RESULT_ACCESS) ] = -1,
96 [ C(RESULT_MISS) ] = -1,
97 },
98 },
99 [ C(NODE) ] = {
100 [ C(OP_READ) ] = {
101 [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
102 [ C(RESULT_MISS) ] = 0x98e9, /* CPU Request to Memory, r */
103 },
104 [ C(OP_WRITE) ] = {
105 [ C(RESULT_ACCESS) ] = -1,
106 [ C(RESULT_MISS) ] = -1,
107 },
108 [ C(OP_PREFETCH) ] = {
109 [ C(RESULT_ACCESS) ] = -1,
110 [ C(RESULT_MISS) ] = -1,
111 },
112 },
113 };
114
115 /*
116 * AMD Performance Monitor K7 and later.
117 */
118 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
119 {
120 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
121 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
122 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x077d,
123 [PERF_COUNT_HW_CACHE_MISSES] = 0x077e,
124 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
125 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
126 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
127 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */
128 };
129
130 static u64 amd_pmu_event_map(int hw_event)
131 {
132 return amd_perfmon_event_map[hw_event];
133 }
134
135 /*
136 * Previously calculated offsets
137 */
138 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
139 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
140
141 /*
142 * Legacy CPUs:
143 * 4 counters starting at 0xc0010000 each offset by 1
144 *
145 * CPUs with core performance counter extensions:
146 * 6 counters starting at 0xc0010200 each offset by 2
147 */
148 static inline int amd_pmu_addr_offset(int index, bool eventsel)
149 {
150 int offset;
151
152 if (!index)
153 return index;
154
155 if (eventsel)
156 offset = event_offsets[index];
157 else
158 offset = count_offsets[index];
159
160 if (offset)
161 return offset;
162
163 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
164 offset = index;
165 else
166 offset = index << 1;
167
168 if (eventsel)
169 event_offsets[index] = offset;
170 else
171 count_offsets[index] = offset;
172
173 return offset;
174 }
175
176 static int amd_core_hw_config(struct perf_event *event)
177 {
178 if (event->attr.exclude_host && event->attr.exclude_guest)
179 /*
180 * When HO == GO == 1 the hardware treats that as GO == HO == 0
181 * and will count in both modes. We don't want to count in that
182 * case so we emulate no-counting by setting US = OS = 0.
183 */
184 event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
185 ARCH_PERFMON_EVENTSEL_OS);
186 else if (event->attr.exclude_host)
187 event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
188 else if (event->attr.exclude_guest)
189 event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
190
191 return 0;
192 }
193
194 /*
195 * AMD64 events are detected based on their event codes.
196 */
197 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
198 {
199 return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
200 }
201
202 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
203 {
204 return (hwc->config & 0xe0) == 0xe0;
205 }
206
207 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
208 {
209 struct amd_nb *nb = cpuc->amd_nb;
210
211 return nb && nb->nb_id != -1;
212 }
213
214 static int amd_pmu_hw_config(struct perf_event *event)
215 {
216 int ret;
217
218 /* pass precise event sampling to ibs: */
219 if (event->attr.precise_ip && get_ibs_caps())
220 return -ENOENT;
221
222 if (has_branch_stack(event))
223 return -EOPNOTSUPP;
224
225 ret = x86_pmu_hw_config(event);
226 if (ret)
227 return ret;
228
229 if (event->attr.type == PERF_TYPE_RAW)
230 event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
231
232 return amd_core_hw_config(event);
233 }
234
235 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
236 struct perf_event *event)
237 {
238 struct amd_nb *nb = cpuc->amd_nb;
239 int i;
240
241 /*
242 * need to scan whole list because event may not have
243 * been assigned during scheduling
244 *
245 * no race condition possible because event can only
246 * be removed on one CPU at a time AND PMU is disabled
247 * when we come here
248 */
249 for (i = 0; i < x86_pmu.num_counters; i++) {
250 if (cmpxchg(nb->owners + i, event, NULL) == event)
251 break;
252 }
253 }
254
255 /*
256 * AMD64 NorthBridge events need special treatment because
257 * counter access needs to be synchronized across all cores
258 * of a package. Refer to BKDG section 3.12
259 *
260 * NB events are events measuring L3 cache, Hypertransport
261 * traffic. They are identified by an event code >= 0xe00.
262 * They measure events on the NorthBride which is shared
263 * by all cores on a package. NB events are counted on a
264 * shared set of counters. When a NB event is programmed
265 * in a counter, the data actually comes from a shared
266 * counter. Thus, access to those counters needs to be
267 * synchronized.
268 *
269 * We implement the synchronization such that no two cores
270 * can be measuring NB events using the same counters. Thus,
271 * we maintain a per-NB allocation table. The available slot
272 * is propagated using the event_constraint structure.
273 *
274 * We provide only one choice for each NB event based on
275 * the fact that only NB events have restrictions. Consequently,
276 * if a counter is available, there is a guarantee the NB event
277 * will be assigned to it. If no slot is available, an empty
278 * constraint is returned and scheduling will eventually fail
279 * for this event.
280 *
281 * Note that all cores attached the same NB compete for the same
282 * counters to host NB events, this is why we use atomic ops. Some
283 * multi-chip CPUs may have more than one NB.
284 *
285 * Given that resources are allocated (cmpxchg), they must be
286 * eventually freed for others to use. This is accomplished by
287 * calling __amd_put_nb_event_constraints()
288 *
289 * Non NB events are not impacted by this restriction.
290 */
291 static struct event_constraint *
292 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
293 struct event_constraint *c)
294 {
295 struct hw_perf_event *hwc = &event->hw;
296 struct amd_nb *nb = cpuc->amd_nb;
297 struct perf_event *old;
298 int idx, new = -1;
299
300 if (!c)
301 c = &unconstrained;
302
303 if (cpuc->is_fake)
304 return c;
305
306 /*
307 * detect if already present, if so reuse
308 *
309 * cannot merge with actual allocation
310 * because of possible holes
311 *
312 * event can already be present yet not assigned (in hwc->idx)
313 * because of successive calls to x86_schedule_events() from
314 * hw_perf_group_sched_in() without hw_perf_enable()
315 */
316 for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
317 if (new == -1 || hwc->idx == idx)
318 /* assign free slot, prefer hwc->idx */
319 old = cmpxchg(nb->owners + idx, NULL, event);
320 else if (nb->owners[idx] == event)
321 /* event already present */
322 old = event;
323 else
324 continue;
325
326 if (old && old != event)
327 continue;
328
329 /* reassign to this slot */
330 if (new != -1)
331 cmpxchg(nb->owners + new, event, NULL);
332 new = idx;
333
334 /* already present, reuse */
335 if (old == event)
336 break;
337 }
338
339 if (new == -1)
340 return &emptyconstraint;
341
342 return &nb->event_constraints[new];
343 }
344
345 static struct amd_nb *amd_alloc_nb(int cpu)
346 {
347 struct amd_nb *nb;
348 int i;
349
350 nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
351 if (!nb)
352 return NULL;
353
354 nb->nb_id = -1;
355
356 /*
357 * initialize all possible NB constraints
358 */
359 for (i = 0; i < x86_pmu.num_counters; i++) {
360 __set_bit(i, nb->event_constraints[i].idxmsk);
361 nb->event_constraints[i].weight = 1;
362 }
363 return nb;
364 }
365
366 static int amd_pmu_cpu_prepare(int cpu)
367 {
368 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
369
370 WARN_ON_ONCE(cpuc->amd_nb);
371
372 if (!x86_pmu.amd_nb_constraints)
373 return 0;
374
375 cpuc->amd_nb = amd_alloc_nb(cpu);
376 if (!cpuc->amd_nb)
377 return -ENOMEM;
378
379 return 0;
380 }
381
382 static void amd_pmu_cpu_starting(int cpu)
383 {
384 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
385 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
386 struct amd_nb *nb;
387 int i, nb_id;
388
389 cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
390
391 if (!x86_pmu.amd_nb_constraints)
392 return;
393
394 nb_id = amd_get_nb_id(cpu);
395 WARN_ON_ONCE(nb_id == BAD_APICID);
396
397 for_each_online_cpu(i) {
398 nb = per_cpu(cpu_hw_events, i).amd_nb;
399 if (WARN_ON_ONCE(!nb))
400 continue;
401
402 if (nb->nb_id == nb_id) {
403 *onln = cpuc->amd_nb;
404 cpuc->amd_nb = nb;
405 break;
406 }
407 }
408
409 cpuc->amd_nb->nb_id = nb_id;
410 cpuc->amd_nb->refcnt++;
411 }
412
413 static void amd_pmu_cpu_dead(int cpu)
414 {
415 struct cpu_hw_events *cpuhw;
416
417 if (!x86_pmu.amd_nb_constraints)
418 return;
419
420 cpuhw = &per_cpu(cpu_hw_events, cpu);
421
422 if (cpuhw->amd_nb) {
423 struct amd_nb *nb = cpuhw->amd_nb;
424
425 if (nb->nb_id == -1 || --nb->refcnt == 0)
426 kfree(nb);
427
428 cpuhw->amd_nb = NULL;
429 }
430 }
431
432 static struct event_constraint *
433 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
434 struct perf_event *event)
435 {
436 /*
437 * if not NB event or no NB, then no constraints
438 */
439 if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
440 return &unconstrained;
441
442 return __amd_get_nb_event_constraints(cpuc, event, NULL);
443 }
444
445 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
446 struct perf_event *event)
447 {
448 if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
449 __amd_put_nb_event_constraints(cpuc, event);
450 }
451
452 PMU_FORMAT_ATTR(event, "config:0-7,32-35");
453 PMU_FORMAT_ATTR(umask, "config:8-15" );
454 PMU_FORMAT_ATTR(edge, "config:18" );
455 PMU_FORMAT_ATTR(inv, "config:23" );
456 PMU_FORMAT_ATTR(cmask, "config:24-31" );
457
458 static struct attribute *amd_format_attr[] = {
459 &format_attr_event.attr,
460 &format_attr_umask.attr,
461 &format_attr_edge.attr,
462 &format_attr_inv.attr,
463 &format_attr_cmask.attr,
464 NULL,
465 };
466
467 /* AMD Family 15h */
468
469 #define AMD_EVENT_TYPE_MASK 0x000000F0ULL
470
471 #define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL
472 #define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL
473 #define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL
474 #define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL
475 #define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL
476 #define AMD_EVENT_EX_LS 0x000000C0ULL
477 #define AMD_EVENT_DE 0x000000D0ULL
478 #define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL
479
480 /*
481 * AMD family 15h event code/PMC mappings:
482 *
483 * type = event_code & 0x0F0:
484 *
485 * 0x000 FP PERF_CTL[5:3]
486 * 0x010 FP PERF_CTL[5:3]
487 * 0x020 LS PERF_CTL[5:0]
488 * 0x030 LS PERF_CTL[5:0]
489 * 0x040 DC PERF_CTL[5:0]
490 * 0x050 DC PERF_CTL[5:0]
491 * 0x060 CU PERF_CTL[2:0]
492 * 0x070 CU PERF_CTL[2:0]
493 * 0x080 IC/DE PERF_CTL[2:0]
494 * 0x090 IC/DE PERF_CTL[2:0]
495 * 0x0A0 ---
496 * 0x0B0 ---
497 * 0x0C0 EX/LS PERF_CTL[5:0]
498 * 0x0D0 DE PERF_CTL[2:0]
499 * 0x0E0 NB NB_PERF_CTL[3:0]
500 * 0x0F0 NB NB_PERF_CTL[3:0]
501 *
502 * Exceptions:
503 *
504 * 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*)
505 * 0x003 FP PERF_CTL[3]
506 * 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*)
507 * 0x00B FP PERF_CTL[3]
508 * 0x00D FP PERF_CTL[3]
509 * 0x023 DE PERF_CTL[2:0]
510 * 0x02D LS PERF_CTL[3]
511 * 0x02E LS PERF_CTL[3,0]
512 * 0x031 LS PERF_CTL[2:0] (**)
513 * 0x043 CU PERF_CTL[2:0]
514 * 0x045 CU PERF_CTL[2:0]
515 * 0x046 CU PERF_CTL[2:0]
516 * 0x054 CU PERF_CTL[2:0]
517 * 0x055 CU PERF_CTL[2:0]
518 * 0x08F IC PERF_CTL[0]
519 * 0x187 DE PERF_CTL[0]
520 * 0x188 DE PERF_CTL[0]
521 * 0x0DB EX PERF_CTL[5:0]
522 * 0x0DC LS PERF_CTL[5:0]
523 * 0x0DD LS PERF_CTL[5:0]
524 * 0x0DE LS PERF_CTL[5:0]
525 * 0x0DF LS PERF_CTL[5:0]
526 * 0x1C0 EX PERF_CTL[5:3]
527 * 0x1D6 EX PERF_CTL[5:0]
528 * 0x1D8 EX PERF_CTL[5:0]
529 *
530 * (*) depending on the umask all FPU counters may be used
531 * (**) only one unitmask enabled at a time
532 */
533
534 static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0);
535 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
536 static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0);
537 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
538 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
539 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
540
541 static struct event_constraint *
542 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
543 struct perf_event *event)
544 {
545 struct hw_perf_event *hwc = &event->hw;
546 unsigned int event_code = amd_get_event_code(hwc);
547
548 switch (event_code & AMD_EVENT_TYPE_MASK) {
549 case AMD_EVENT_FP:
550 switch (event_code) {
551 case 0x000:
552 if (!(hwc->config & 0x0000F000ULL))
553 break;
554 if (!(hwc->config & 0x00000F00ULL))
555 break;
556 return &amd_f15_PMC3;
557 case 0x004:
558 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
559 break;
560 return &amd_f15_PMC3;
561 case 0x003:
562 case 0x00B:
563 case 0x00D:
564 return &amd_f15_PMC3;
565 }
566 return &amd_f15_PMC53;
567 case AMD_EVENT_LS:
568 case AMD_EVENT_DC:
569 case AMD_EVENT_EX_LS:
570 switch (event_code) {
571 case 0x023:
572 case 0x043:
573 case 0x045:
574 case 0x046:
575 case 0x054:
576 case 0x055:
577 return &amd_f15_PMC20;
578 case 0x02D:
579 return &amd_f15_PMC3;
580 case 0x02E:
581 return &amd_f15_PMC30;
582 case 0x031:
583 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
584 return &amd_f15_PMC20;
585 return &emptyconstraint;
586 case 0x1C0:
587 return &amd_f15_PMC53;
588 default:
589 return &amd_f15_PMC50;
590 }
591 case AMD_EVENT_CU:
592 case AMD_EVENT_IC_DE:
593 case AMD_EVENT_DE:
594 switch (event_code) {
595 case 0x08F:
596 case 0x187:
597 case 0x188:
598 return &amd_f15_PMC0;
599 case 0x0DB ... 0x0DF:
600 case 0x1D6:
601 case 0x1D8:
602 return &amd_f15_PMC50;
603 default:
604 return &amd_f15_PMC20;
605 }
606 case AMD_EVENT_NB:
607 /* moved to perf_event_amd_uncore.c */
608 return &emptyconstraint;
609 default:
610 return &emptyconstraint;
611 }
612 }
613
614 static ssize_t amd_event_sysfs_show(char *page, u64 config)
615 {
616 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
617 (config & AMD64_EVENTSEL_EVENT) >> 24;
618
619 return x86_event_sysfs_show(page, config, event);
620 }
621
622 static __initconst const struct x86_pmu amd_pmu = {
623 .name = "AMD",
624 .handle_irq = x86_pmu_handle_irq,
625 .disable_all = x86_pmu_disable_all,
626 .enable_all = x86_pmu_enable_all,
627 .enable = x86_pmu_enable_event,
628 .disable = x86_pmu_disable_event,
629 .hw_config = amd_pmu_hw_config,
630 .schedule_events = x86_schedule_events,
631 .eventsel = MSR_K7_EVNTSEL0,
632 .perfctr = MSR_K7_PERFCTR0,
633 .addr_offset = amd_pmu_addr_offset,
634 .event_map = amd_pmu_event_map,
635 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
636 .num_counters = AMD64_NUM_COUNTERS,
637 .cntval_bits = 48,
638 .cntval_mask = (1ULL << 48) - 1,
639 .apic = 1,
640 /* use highest bit to detect overflow */
641 .max_period = (1ULL << 47) - 1,
642 .get_event_constraints = amd_get_event_constraints,
643 .put_event_constraints = amd_put_event_constraints,
644
645 .format_attrs = amd_format_attr,
646 .events_sysfs_show = amd_event_sysfs_show,
647
648 .cpu_prepare = amd_pmu_cpu_prepare,
649 .cpu_starting = amd_pmu_cpu_starting,
650 .cpu_dead = amd_pmu_cpu_dead,
651
652 .amd_nb_constraints = 1,
653 };
654
655 static int __init amd_core_pmu_init(void)
656 {
657 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
658 return 0;
659
660 switch (boot_cpu_data.x86) {
661 case 0x15:
662 pr_cont("Fam15h ");
663 x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
664 break;
665 case 0x17:
666 pr_cont("Fam17h ");
667 /*
668 * In family 17h, there are no event constraints in the PMC hardware.
669 * We fallback to using default amd_get_event_constraints.
670 */
671 break;
672 default:
673 pr_err("core perfctr but no constraints; unknown hardware!\n");
674 return -ENODEV;
675 }
676
677 /*
678 * If core performance counter extensions exists, we must use
679 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
680 * amd_pmu_addr_offset().
681 */
682 x86_pmu.eventsel = MSR_F15H_PERF_CTL;
683 x86_pmu.perfctr = MSR_F15H_PERF_CTR;
684 x86_pmu.num_counters = AMD64_NUM_COUNTERS_CORE;
685 /*
686 * AMD Core perfctr has separate MSRs for the NB events, see
687 * the amd/uncore.c driver.
688 */
689 x86_pmu.amd_nb_constraints = 0;
690
691 pr_cont("core perfctr, ");
692 return 0;
693 }
694
695 __init int amd_pmu_init(void)
696 {
697 int ret;
698
699 /* Performance-monitoring supported from K7 and later: */
700 if (boot_cpu_data.x86 < 6)
701 return -ENODEV;
702
703 x86_pmu = amd_pmu;
704
705 ret = amd_core_pmu_init();
706 if (ret)
707 return ret;
708
709 if (num_possible_cpus() == 1) {
710 /*
711 * No point in allocating data structures to serialize
712 * against other CPUs, when there is only the one CPU.
713 */
714 x86_pmu.amd_nb_constraints = 0;
715 }
716
717 /* Events are common for all AMDs */
718 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
719 sizeof(hw_cache_event_ids));
720
721 return 0;
722 }
723
724 void amd_pmu_enable_virt(void)
725 {
726 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
727
728 cpuc->perf_ctr_virt_mask = 0;
729
730 /* Reload all events */
731 x86_pmu_disable_all();
732 x86_pmu_enable_all(0);
733 }
734 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
735
736 void amd_pmu_disable_virt(void)
737 {
738 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
739
740 /*
741 * We only mask out the Host-only bit so that host-only counting works
742 * when SVM is disabled. If someone sets up a guest-only counter when
743 * SVM is disabled the Guest-only bits still gets set and the counter
744 * will not count anything.
745 */
746 cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
747
748 /* Reload all events */
749 x86_pmu_disable_all();
750 x86_pmu_enable_all(0);
751 }
752 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);