]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - arch/x86/kernel/cpu/resctrl/rdtgroup.c
Merge tag 'selinux-pr-20190521' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/kernel/linux.git] / arch / x86 / kernel / cpu / resctrl / rdtgroup.c
1 /*
2 * User interface for Resource Alloction in Resource Director Technology(RDT)
3 *
4 * Copyright (C) 2016 Intel Corporation
5 *
6 * Author: Fenghua Yu <fenghua.yu@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * More information about RDT be found in the Intel (R) x86 Architecture
18 * Software Developer Manual.
19 */
20
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22
23 #include <linux/cacheinfo.h>
24 #include <linux/cpu.h>
25 #include <linux/debugfs.h>
26 #include <linux/fs.h>
27 #include <linux/fs_parser.h>
28 #include <linux/sysfs.h>
29 #include <linux/kernfs.h>
30 #include <linux/seq_buf.h>
31 #include <linux/seq_file.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/task.h>
34 #include <linux/slab.h>
35 #include <linux/task_work.h>
36 #include <linux/user_namespace.h>
37
38 #include <uapi/linux/magic.h>
39
40 #include <asm/resctrl_sched.h>
41 #include "internal.h"
42
43 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
44 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
45 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
46 static struct kernfs_root *rdt_root;
47 struct rdtgroup rdtgroup_default;
48 LIST_HEAD(rdt_all_groups);
49
50 /* Kernel fs node for "info" directory under root */
51 static struct kernfs_node *kn_info;
52
53 /* Kernel fs node for "mon_groups" directory under root */
54 static struct kernfs_node *kn_mongrp;
55
56 /* Kernel fs node for "mon_data" directory under root */
57 static struct kernfs_node *kn_mondata;
58
59 static struct seq_buf last_cmd_status;
60 static char last_cmd_status_buf[512];
61
62 struct dentry *debugfs_resctrl;
63
64 void rdt_last_cmd_clear(void)
65 {
66 lockdep_assert_held(&rdtgroup_mutex);
67 seq_buf_clear(&last_cmd_status);
68 }
69
70 void rdt_last_cmd_puts(const char *s)
71 {
72 lockdep_assert_held(&rdtgroup_mutex);
73 seq_buf_puts(&last_cmd_status, s);
74 }
75
76 void rdt_last_cmd_printf(const char *fmt, ...)
77 {
78 va_list ap;
79
80 va_start(ap, fmt);
81 lockdep_assert_held(&rdtgroup_mutex);
82 seq_buf_vprintf(&last_cmd_status, fmt, ap);
83 va_end(ap);
84 }
85
86 /*
87 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
88 * we can keep a bitmap of free CLOSIDs in a single integer.
89 *
90 * Using a global CLOSID across all resources has some advantages and
91 * some drawbacks:
92 * + We can simply set "current->closid" to assign a task to a resource
93 * group.
94 * + Context switch code can avoid extra memory references deciding which
95 * CLOSID to load into the PQR_ASSOC MSR
96 * - We give up some options in configuring resource groups across multi-socket
97 * systems.
98 * - Our choices on how to configure each resource become progressively more
99 * limited as the number of resources grows.
100 */
101 static int closid_free_map;
102 static int closid_free_map_len;
103
104 int closids_supported(void)
105 {
106 return closid_free_map_len;
107 }
108
109 static void closid_init(void)
110 {
111 struct rdt_resource *r;
112 int rdt_min_closid = 32;
113
114 /* Compute rdt_min_closid across all resources */
115 for_each_alloc_enabled_rdt_resource(r)
116 rdt_min_closid = min(rdt_min_closid, r->num_closid);
117
118 closid_free_map = BIT_MASK(rdt_min_closid) - 1;
119
120 /* CLOSID 0 is always reserved for the default group */
121 closid_free_map &= ~1;
122 closid_free_map_len = rdt_min_closid;
123 }
124
125 static int closid_alloc(void)
126 {
127 u32 closid = ffs(closid_free_map);
128
129 if (closid == 0)
130 return -ENOSPC;
131 closid--;
132 closid_free_map &= ~(1 << closid);
133
134 return closid;
135 }
136
137 void closid_free(int closid)
138 {
139 closid_free_map |= 1 << closid;
140 }
141
142 /**
143 * closid_allocated - test if provided closid is in use
144 * @closid: closid to be tested
145 *
146 * Return: true if @closid is currently associated with a resource group,
147 * false if @closid is free
148 */
149 static bool closid_allocated(unsigned int closid)
150 {
151 return (closid_free_map & (1 << closid)) == 0;
152 }
153
154 /**
155 * rdtgroup_mode_by_closid - Return mode of resource group with closid
156 * @closid: closid if the resource group
157 *
158 * Each resource group is associated with a @closid. Here the mode
159 * of a resource group can be queried by searching for it using its closid.
160 *
161 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
162 */
163 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
164 {
165 struct rdtgroup *rdtgrp;
166
167 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
168 if (rdtgrp->closid == closid)
169 return rdtgrp->mode;
170 }
171
172 return RDT_NUM_MODES;
173 }
174
175 static const char * const rdt_mode_str[] = {
176 [RDT_MODE_SHAREABLE] = "shareable",
177 [RDT_MODE_EXCLUSIVE] = "exclusive",
178 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup",
179 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked",
180 };
181
182 /**
183 * rdtgroup_mode_str - Return the string representation of mode
184 * @mode: the resource group mode as &enum rdtgroup_mode
185 *
186 * Return: string representation of valid mode, "unknown" otherwise
187 */
188 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
189 {
190 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
191 return "unknown";
192
193 return rdt_mode_str[mode];
194 }
195
196 /* set uid and gid of rdtgroup dirs and files to that of the creator */
197 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
198 {
199 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
200 .ia_uid = current_fsuid(),
201 .ia_gid = current_fsgid(), };
202
203 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
204 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
205 return 0;
206
207 return kernfs_setattr(kn, &iattr);
208 }
209
210 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
211 {
212 struct kernfs_node *kn;
213 int ret;
214
215 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
216 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
217 0, rft->kf_ops, rft, NULL, NULL);
218 if (IS_ERR(kn))
219 return PTR_ERR(kn);
220
221 ret = rdtgroup_kn_set_ugid(kn);
222 if (ret) {
223 kernfs_remove(kn);
224 return ret;
225 }
226
227 return 0;
228 }
229
230 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
231 {
232 struct kernfs_open_file *of = m->private;
233 struct rftype *rft = of->kn->priv;
234
235 if (rft->seq_show)
236 return rft->seq_show(of, m, arg);
237 return 0;
238 }
239
240 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
241 size_t nbytes, loff_t off)
242 {
243 struct rftype *rft = of->kn->priv;
244
245 if (rft->write)
246 return rft->write(of, buf, nbytes, off);
247
248 return -EINVAL;
249 }
250
251 static struct kernfs_ops rdtgroup_kf_single_ops = {
252 .atomic_write_len = PAGE_SIZE,
253 .write = rdtgroup_file_write,
254 .seq_show = rdtgroup_seqfile_show,
255 };
256
257 static struct kernfs_ops kf_mondata_ops = {
258 .atomic_write_len = PAGE_SIZE,
259 .seq_show = rdtgroup_mondata_show,
260 };
261
262 static bool is_cpu_list(struct kernfs_open_file *of)
263 {
264 struct rftype *rft = of->kn->priv;
265
266 return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
267 }
268
269 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
270 struct seq_file *s, void *v)
271 {
272 struct rdtgroup *rdtgrp;
273 struct cpumask *mask;
274 int ret = 0;
275
276 rdtgrp = rdtgroup_kn_lock_live(of->kn);
277
278 if (rdtgrp) {
279 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
280 if (!rdtgrp->plr->d) {
281 rdt_last_cmd_clear();
282 rdt_last_cmd_puts("Cache domain offline\n");
283 ret = -ENODEV;
284 } else {
285 mask = &rdtgrp->plr->d->cpu_mask;
286 seq_printf(s, is_cpu_list(of) ?
287 "%*pbl\n" : "%*pb\n",
288 cpumask_pr_args(mask));
289 }
290 } else {
291 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
292 cpumask_pr_args(&rdtgrp->cpu_mask));
293 }
294 } else {
295 ret = -ENOENT;
296 }
297 rdtgroup_kn_unlock(of->kn);
298
299 return ret;
300 }
301
302 /*
303 * This is safe against resctrl_sched_in() called from __switch_to()
304 * because __switch_to() is executed with interrupts disabled. A local call
305 * from update_closid_rmid() is proteced against __switch_to() because
306 * preemption is disabled.
307 */
308 static void update_cpu_closid_rmid(void *info)
309 {
310 struct rdtgroup *r = info;
311
312 if (r) {
313 this_cpu_write(pqr_state.default_closid, r->closid);
314 this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
315 }
316
317 /*
318 * We cannot unconditionally write the MSR because the current
319 * executing task might have its own closid selected. Just reuse
320 * the context switch code.
321 */
322 resctrl_sched_in();
323 }
324
325 /*
326 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
327 *
328 * Per task closids/rmids must have been set up before calling this function.
329 */
330 static void
331 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
332 {
333 int cpu = get_cpu();
334
335 if (cpumask_test_cpu(cpu, cpu_mask))
336 update_cpu_closid_rmid(r);
337 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
338 put_cpu();
339 }
340
341 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
342 cpumask_var_t tmpmask)
343 {
344 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
345 struct list_head *head;
346
347 /* Check whether cpus belong to parent ctrl group */
348 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
349 if (cpumask_weight(tmpmask)) {
350 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
351 return -EINVAL;
352 }
353
354 /* Check whether cpus are dropped from this group */
355 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
356 if (cpumask_weight(tmpmask)) {
357 /* Give any dropped cpus to parent rdtgroup */
358 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
359 update_closid_rmid(tmpmask, prgrp);
360 }
361
362 /*
363 * If we added cpus, remove them from previous group that owned them
364 * and update per-cpu rmid
365 */
366 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
367 if (cpumask_weight(tmpmask)) {
368 head = &prgrp->mon.crdtgrp_list;
369 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
370 if (crgrp == rdtgrp)
371 continue;
372 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
373 tmpmask);
374 }
375 update_closid_rmid(tmpmask, rdtgrp);
376 }
377
378 /* Done pushing/pulling - update this group with new mask */
379 cpumask_copy(&rdtgrp->cpu_mask, newmask);
380
381 return 0;
382 }
383
384 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
385 {
386 struct rdtgroup *crgrp;
387
388 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
389 /* update the child mon group masks as well*/
390 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
391 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
392 }
393
394 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
395 cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
396 {
397 struct rdtgroup *r, *crgrp;
398 struct list_head *head;
399
400 /* Check whether cpus are dropped from this group */
401 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
402 if (cpumask_weight(tmpmask)) {
403 /* Can't drop from default group */
404 if (rdtgrp == &rdtgroup_default) {
405 rdt_last_cmd_puts("Can't drop CPUs from default group\n");
406 return -EINVAL;
407 }
408
409 /* Give any dropped cpus to rdtgroup_default */
410 cpumask_or(&rdtgroup_default.cpu_mask,
411 &rdtgroup_default.cpu_mask, tmpmask);
412 update_closid_rmid(tmpmask, &rdtgroup_default);
413 }
414
415 /*
416 * If we added cpus, remove them from previous group and
417 * the prev group's child groups that owned them
418 * and update per-cpu closid/rmid.
419 */
420 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
421 if (cpumask_weight(tmpmask)) {
422 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
423 if (r == rdtgrp)
424 continue;
425 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
426 if (cpumask_weight(tmpmask1))
427 cpumask_rdtgrp_clear(r, tmpmask1);
428 }
429 update_closid_rmid(tmpmask, rdtgrp);
430 }
431
432 /* Done pushing/pulling - update this group with new mask */
433 cpumask_copy(&rdtgrp->cpu_mask, newmask);
434
435 /*
436 * Clear child mon group masks since there is a new parent mask
437 * now and update the rmid for the cpus the child lost.
438 */
439 head = &rdtgrp->mon.crdtgrp_list;
440 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
441 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
442 update_closid_rmid(tmpmask, rdtgrp);
443 cpumask_clear(&crgrp->cpu_mask);
444 }
445
446 return 0;
447 }
448
449 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
450 char *buf, size_t nbytes, loff_t off)
451 {
452 cpumask_var_t tmpmask, newmask, tmpmask1;
453 struct rdtgroup *rdtgrp;
454 int ret;
455
456 if (!buf)
457 return -EINVAL;
458
459 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
460 return -ENOMEM;
461 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
462 free_cpumask_var(tmpmask);
463 return -ENOMEM;
464 }
465 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
466 free_cpumask_var(tmpmask);
467 free_cpumask_var(newmask);
468 return -ENOMEM;
469 }
470
471 rdtgrp = rdtgroup_kn_lock_live(of->kn);
472 rdt_last_cmd_clear();
473 if (!rdtgrp) {
474 ret = -ENOENT;
475 rdt_last_cmd_puts("Directory was removed\n");
476 goto unlock;
477 }
478
479 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
480 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
481 ret = -EINVAL;
482 rdt_last_cmd_puts("Pseudo-locking in progress\n");
483 goto unlock;
484 }
485
486 if (is_cpu_list(of))
487 ret = cpulist_parse(buf, newmask);
488 else
489 ret = cpumask_parse(buf, newmask);
490
491 if (ret) {
492 rdt_last_cmd_puts("Bad CPU list/mask\n");
493 goto unlock;
494 }
495
496 /* check that user didn't specify any offline cpus */
497 cpumask_andnot(tmpmask, newmask, cpu_online_mask);
498 if (cpumask_weight(tmpmask)) {
499 ret = -EINVAL;
500 rdt_last_cmd_puts("Can only assign online CPUs\n");
501 goto unlock;
502 }
503
504 if (rdtgrp->type == RDTCTRL_GROUP)
505 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
506 else if (rdtgrp->type == RDTMON_GROUP)
507 ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
508 else
509 ret = -EINVAL;
510
511 unlock:
512 rdtgroup_kn_unlock(of->kn);
513 free_cpumask_var(tmpmask);
514 free_cpumask_var(newmask);
515 free_cpumask_var(tmpmask1);
516
517 return ret ?: nbytes;
518 }
519
520 struct task_move_callback {
521 struct callback_head work;
522 struct rdtgroup *rdtgrp;
523 };
524
525 static void move_myself(struct callback_head *head)
526 {
527 struct task_move_callback *callback;
528 struct rdtgroup *rdtgrp;
529
530 callback = container_of(head, struct task_move_callback, work);
531 rdtgrp = callback->rdtgrp;
532
533 /*
534 * If resource group was deleted before this task work callback
535 * was invoked, then assign the task to root group and free the
536 * resource group.
537 */
538 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
539 (rdtgrp->flags & RDT_DELETED)) {
540 current->closid = 0;
541 current->rmid = 0;
542 kfree(rdtgrp);
543 }
544
545 preempt_disable();
546 /* update PQR_ASSOC MSR to make resource group go into effect */
547 resctrl_sched_in();
548 preempt_enable();
549
550 kfree(callback);
551 }
552
553 static int __rdtgroup_move_task(struct task_struct *tsk,
554 struct rdtgroup *rdtgrp)
555 {
556 struct task_move_callback *callback;
557 int ret;
558
559 callback = kzalloc(sizeof(*callback), GFP_KERNEL);
560 if (!callback)
561 return -ENOMEM;
562 callback->work.func = move_myself;
563 callback->rdtgrp = rdtgrp;
564
565 /*
566 * Take a refcount, so rdtgrp cannot be freed before the
567 * callback has been invoked.
568 */
569 atomic_inc(&rdtgrp->waitcount);
570 ret = task_work_add(tsk, &callback->work, true);
571 if (ret) {
572 /*
573 * Task is exiting. Drop the refcount and free the callback.
574 * No need to check the refcount as the group cannot be
575 * deleted before the write function unlocks rdtgroup_mutex.
576 */
577 atomic_dec(&rdtgrp->waitcount);
578 kfree(callback);
579 rdt_last_cmd_puts("Task exited\n");
580 } else {
581 /*
582 * For ctrl_mon groups move both closid and rmid.
583 * For monitor groups, can move the tasks only from
584 * their parent CTRL group.
585 */
586 if (rdtgrp->type == RDTCTRL_GROUP) {
587 tsk->closid = rdtgrp->closid;
588 tsk->rmid = rdtgrp->mon.rmid;
589 } else if (rdtgrp->type == RDTMON_GROUP) {
590 if (rdtgrp->mon.parent->closid == tsk->closid) {
591 tsk->rmid = rdtgrp->mon.rmid;
592 } else {
593 rdt_last_cmd_puts("Can't move task to different control group\n");
594 ret = -EINVAL;
595 }
596 }
597 }
598 return ret;
599 }
600
601 /**
602 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
603 * @r: Resource group
604 *
605 * Return: 1 if tasks have been assigned to @r, 0 otherwise
606 */
607 int rdtgroup_tasks_assigned(struct rdtgroup *r)
608 {
609 struct task_struct *p, *t;
610 int ret = 0;
611
612 lockdep_assert_held(&rdtgroup_mutex);
613
614 rcu_read_lock();
615 for_each_process_thread(p, t) {
616 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
617 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) {
618 ret = 1;
619 break;
620 }
621 }
622 rcu_read_unlock();
623
624 return ret;
625 }
626
627 static int rdtgroup_task_write_permission(struct task_struct *task,
628 struct kernfs_open_file *of)
629 {
630 const struct cred *tcred = get_task_cred(task);
631 const struct cred *cred = current_cred();
632 int ret = 0;
633
634 /*
635 * Even if we're attaching all tasks in the thread group, we only
636 * need to check permissions on one of them.
637 */
638 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
639 !uid_eq(cred->euid, tcred->uid) &&
640 !uid_eq(cred->euid, tcred->suid)) {
641 rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
642 ret = -EPERM;
643 }
644
645 put_cred(tcred);
646 return ret;
647 }
648
649 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
650 struct kernfs_open_file *of)
651 {
652 struct task_struct *tsk;
653 int ret;
654
655 rcu_read_lock();
656 if (pid) {
657 tsk = find_task_by_vpid(pid);
658 if (!tsk) {
659 rcu_read_unlock();
660 rdt_last_cmd_printf("No task %d\n", pid);
661 return -ESRCH;
662 }
663 } else {
664 tsk = current;
665 }
666
667 get_task_struct(tsk);
668 rcu_read_unlock();
669
670 ret = rdtgroup_task_write_permission(tsk, of);
671 if (!ret)
672 ret = __rdtgroup_move_task(tsk, rdtgrp);
673
674 put_task_struct(tsk);
675 return ret;
676 }
677
678 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
679 char *buf, size_t nbytes, loff_t off)
680 {
681 struct rdtgroup *rdtgrp;
682 int ret = 0;
683 pid_t pid;
684
685 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
686 return -EINVAL;
687 rdtgrp = rdtgroup_kn_lock_live(of->kn);
688 if (!rdtgrp) {
689 rdtgroup_kn_unlock(of->kn);
690 return -ENOENT;
691 }
692 rdt_last_cmd_clear();
693
694 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
695 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
696 ret = -EINVAL;
697 rdt_last_cmd_puts("Pseudo-locking in progress\n");
698 goto unlock;
699 }
700
701 ret = rdtgroup_move_task(pid, rdtgrp, of);
702
703 unlock:
704 rdtgroup_kn_unlock(of->kn);
705
706 return ret ?: nbytes;
707 }
708
709 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
710 {
711 struct task_struct *p, *t;
712
713 rcu_read_lock();
714 for_each_process_thread(p, t) {
715 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
716 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
717 seq_printf(s, "%d\n", t->pid);
718 }
719 rcu_read_unlock();
720 }
721
722 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
723 struct seq_file *s, void *v)
724 {
725 struct rdtgroup *rdtgrp;
726 int ret = 0;
727
728 rdtgrp = rdtgroup_kn_lock_live(of->kn);
729 if (rdtgrp)
730 show_rdt_tasks(rdtgrp, s);
731 else
732 ret = -ENOENT;
733 rdtgroup_kn_unlock(of->kn);
734
735 return ret;
736 }
737
738 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
739 struct seq_file *seq, void *v)
740 {
741 int len;
742
743 mutex_lock(&rdtgroup_mutex);
744 len = seq_buf_used(&last_cmd_status);
745 if (len)
746 seq_printf(seq, "%.*s", len, last_cmd_status_buf);
747 else
748 seq_puts(seq, "ok\n");
749 mutex_unlock(&rdtgroup_mutex);
750 return 0;
751 }
752
753 static int rdt_num_closids_show(struct kernfs_open_file *of,
754 struct seq_file *seq, void *v)
755 {
756 struct rdt_resource *r = of->kn->parent->priv;
757
758 seq_printf(seq, "%d\n", r->num_closid);
759 return 0;
760 }
761
762 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
763 struct seq_file *seq, void *v)
764 {
765 struct rdt_resource *r = of->kn->parent->priv;
766
767 seq_printf(seq, "%x\n", r->default_ctrl);
768 return 0;
769 }
770
771 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
772 struct seq_file *seq, void *v)
773 {
774 struct rdt_resource *r = of->kn->parent->priv;
775
776 seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
777 return 0;
778 }
779
780 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
781 struct seq_file *seq, void *v)
782 {
783 struct rdt_resource *r = of->kn->parent->priv;
784
785 seq_printf(seq, "%x\n", r->cache.shareable_bits);
786 return 0;
787 }
788
789 /**
790 * rdt_bit_usage_show - Display current usage of resources
791 *
792 * A domain is a shared resource that can now be allocated differently. Here
793 * we display the current regions of the domain as an annotated bitmask.
794 * For each domain of this resource its allocation bitmask
795 * is annotated as below to indicate the current usage of the corresponding bit:
796 * 0 - currently unused
797 * X - currently available for sharing and used by software and hardware
798 * H - currently used by hardware only but available for software use
799 * S - currently used and shareable by software only
800 * E - currently used exclusively by one resource group
801 * P - currently pseudo-locked by one resource group
802 */
803 static int rdt_bit_usage_show(struct kernfs_open_file *of,
804 struct seq_file *seq, void *v)
805 {
806 struct rdt_resource *r = of->kn->parent->priv;
807 u32 sw_shareable = 0, hw_shareable = 0;
808 u32 exclusive = 0, pseudo_locked = 0;
809 struct rdt_domain *dom;
810 int i, hwb, swb, excl, psl;
811 enum rdtgrp_mode mode;
812 bool sep = false;
813 u32 *ctrl;
814
815 mutex_lock(&rdtgroup_mutex);
816 hw_shareable = r->cache.shareable_bits;
817 list_for_each_entry(dom, &r->domains, list) {
818 if (sep)
819 seq_putc(seq, ';');
820 ctrl = dom->ctrl_val;
821 sw_shareable = 0;
822 exclusive = 0;
823 seq_printf(seq, "%d=", dom->id);
824 for (i = 0; i < closids_supported(); i++, ctrl++) {
825 if (!closid_allocated(i))
826 continue;
827 mode = rdtgroup_mode_by_closid(i);
828 switch (mode) {
829 case RDT_MODE_SHAREABLE:
830 sw_shareable |= *ctrl;
831 break;
832 case RDT_MODE_EXCLUSIVE:
833 exclusive |= *ctrl;
834 break;
835 case RDT_MODE_PSEUDO_LOCKSETUP:
836 /*
837 * RDT_MODE_PSEUDO_LOCKSETUP is possible
838 * here but not included since the CBM
839 * associated with this CLOSID in this mode
840 * is not initialized and no task or cpu can be
841 * assigned this CLOSID.
842 */
843 break;
844 case RDT_MODE_PSEUDO_LOCKED:
845 case RDT_NUM_MODES:
846 WARN(1,
847 "invalid mode for closid %d\n", i);
848 break;
849 }
850 }
851 for (i = r->cache.cbm_len - 1; i >= 0; i--) {
852 pseudo_locked = dom->plr ? dom->plr->cbm : 0;
853 hwb = test_bit(i, (unsigned long *)&hw_shareable);
854 swb = test_bit(i, (unsigned long *)&sw_shareable);
855 excl = test_bit(i, (unsigned long *)&exclusive);
856 psl = test_bit(i, (unsigned long *)&pseudo_locked);
857 if (hwb && swb)
858 seq_putc(seq, 'X');
859 else if (hwb && !swb)
860 seq_putc(seq, 'H');
861 else if (!hwb && swb)
862 seq_putc(seq, 'S');
863 else if (excl)
864 seq_putc(seq, 'E');
865 else if (psl)
866 seq_putc(seq, 'P');
867 else /* Unused bits remain */
868 seq_putc(seq, '0');
869 }
870 sep = true;
871 }
872 seq_putc(seq, '\n');
873 mutex_unlock(&rdtgroup_mutex);
874 return 0;
875 }
876
877 static int rdt_min_bw_show(struct kernfs_open_file *of,
878 struct seq_file *seq, void *v)
879 {
880 struct rdt_resource *r = of->kn->parent->priv;
881
882 seq_printf(seq, "%u\n", r->membw.min_bw);
883 return 0;
884 }
885
886 static int rdt_num_rmids_show(struct kernfs_open_file *of,
887 struct seq_file *seq, void *v)
888 {
889 struct rdt_resource *r = of->kn->parent->priv;
890
891 seq_printf(seq, "%d\n", r->num_rmid);
892
893 return 0;
894 }
895
896 static int rdt_mon_features_show(struct kernfs_open_file *of,
897 struct seq_file *seq, void *v)
898 {
899 struct rdt_resource *r = of->kn->parent->priv;
900 struct mon_evt *mevt;
901
902 list_for_each_entry(mevt, &r->evt_list, list)
903 seq_printf(seq, "%s\n", mevt->name);
904
905 return 0;
906 }
907
908 static int rdt_bw_gran_show(struct kernfs_open_file *of,
909 struct seq_file *seq, void *v)
910 {
911 struct rdt_resource *r = of->kn->parent->priv;
912
913 seq_printf(seq, "%u\n", r->membw.bw_gran);
914 return 0;
915 }
916
917 static int rdt_delay_linear_show(struct kernfs_open_file *of,
918 struct seq_file *seq, void *v)
919 {
920 struct rdt_resource *r = of->kn->parent->priv;
921
922 seq_printf(seq, "%u\n", r->membw.delay_linear);
923 return 0;
924 }
925
926 static int max_threshold_occ_show(struct kernfs_open_file *of,
927 struct seq_file *seq, void *v)
928 {
929 struct rdt_resource *r = of->kn->parent->priv;
930
931 seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
932
933 return 0;
934 }
935
936 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
937 char *buf, size_t nbytes, loff_t off)
938 {
939 struct rdt_resource *r = of->kn->parent->priv;
940 unsigned int bytes;
941 int ret;
942
943 ret = kstrtouint(buf, 0, &bytes);
944 if (ret)
945 return ret;
946
947 if (bytes > (boot_cpu_data.x86_cache_size * 1024))
948 return -EINVAL;
949
950 resctrl_cqm_threshold = bytes / r->mon_scale;
951
952 return nbytes;
953 }
954
955 /*
956 * rdtgroup_mode_show - Display mode of this resource group
957 */
958 static int rdtgroup_mode_show(struct kernfs_open_file *of,
959 struct seq_file *s, void *v)
960 {
961 struct rdtgroup *rdtgrp;
962
963 rdtgrp = rdtgroup_kn_lock_live(of->kn);
964 if (!rdtgrp) {
965 rdtgroup_kn_unlock(of->kn);
966 return -ENOENT;
967 }
968
969 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
970
971 rdtgroup_kn_unlock(of->kn);
972 return 0;
973 }
974
975 /**
976 * rdt_cdp_peer_get - Retrieve CDP peer if it exists
977 * @r: RDT resource to which RDT domain @d belongs
978 * @d: Cache instance for which a CDP peer is requested
979 * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
980 * Used to return the result.
981 * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
982 * Used to return the result.
983 *
984 * RDT resources are managed independently and by extension the RDT domains
985 * (RDT resource instances) are managed independently also. The Code and
986 * Data Prioritization (CDP) RDT resources, while managed independently,
987 * could refer to the same underlying hardware. For example,
988 * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
989 *
990 * When provided with an RDT resource @r and an instance of that RDT
991 * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
992 * resource and the exact instance that shares the same hardware.
993 *
994 * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
995 * If a CDP peer was found, @r_cdp will point to the peer RDT resource
996 * and @d_cdp will point to the peer RDT domain.
997 */
998 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
999 struct rdt_resource **r_cdp,
1000 struct rdt_domain **d_cdp)
1001 {
1002 struct rdt_resource *_r_cdp = NULL;
1003 struct rdt_domain *_d_cdp = NULL;
1004 int ret = 0;
1005
1006 switch (r->rid) {
1007 case RDT_RESOURCE_L3DATA:
1008 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1009 break;
1010 case RDT_RESOURCE_L3CODE:
1011 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3DATA];
1012 break;
1013 case RDT_RESOURCE_L2DATA:
1014 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2CODE];
1015 break;
1016 case RDT_RESOURCE_L2CODE:
1017 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2DATA];
1018 break;
1019 default:
1020 ret = -ENOENT;
1021 goto out;
1022 }
1023
1024 /*
1025 * When a new CPU comes online and CDP is enabled then the new
1026 * RDT domains (if any) associated with both CDP RDT resources
1027 * are added in the same CPU online routine while the
1028 * rdtgroup_mutex is held. It should thus not happen for one
1029 * RDT domain to exist and be associated with its RDT CDP
1030 * resource but there is no RDT domain associated with the
1031 * peer RDT CDP resource. Hence the WARN.
1032 */
1033 _d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1034 if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1035 _r_cdp = NULL;
1036 ret = -EINVAL;
1037 }
1038
1039 out:
1040 *r_cdp = _r_cdp;
1041 *d_cdp = _d_cdp;
1042
1043 return ret;
1044 }
1045
1046 /**
1047 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1048 * @r: Resource to which domain instance @d belongs.
1049 * @d: The domain instance for which @closid is being tested.
1050 * @cbm: Capacity bitmask being tested.
1051 * @closid: Intended closid for @cbm.
1052 * @exclusive: Only check if overlaps with exclusive resource groups
1053 *
1054 * Checks if provided @cbm intended to be used for @closid on domain
1055 * @d overlaps with any other closids or other hardware usage associated
1056 * with this domain. If @exclusive is true then only overlaps with
1057 * resource groups in exclusive mode will be considered. If @exclusive
1058 * is false then overlaps with any resource group or hardware entities
1059 * will be considered.
1060 *
1061 * @cbm is unsigned long, even if only 32 bits are used, to make the
1062 * bitmap functions work correctly.
1063 *
1064 * Return: false if CBM does not overlap, true if it does.
1065 */
1066 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1067 unsigned long cbm, int closid, bool exclusive)
1068 {
1069 enum rdtgrp_mode mode;
1070 unsigned long ctrl_b;
1071 u32 *ctrl;
1072 int i;
1073
1074 /* Check for any overlap with regions used by hardware directly */
1075 if (!exclusive) {
1076 ctrl_b = r->cache.shareable_bits;
1077 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1078 return true;
1079 }
1080
1081 /* Check for overlap with other resource groups */
1082 ctrl = d->ctrl_val;
1083 for (i = 0; i < closids_supported(); i++, ctrl++) {
1084 ctrl_b = *ctrl;
1085 mode = rdtgroup_mode_by_closid(i);
1086 if (closid_allocated(i) && i != closid &&
1087 mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1088 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1089 if (exclusive) {
1090 if (mode == RDT_MODE_EXCLUSIVE)
1091 return true;
1092 continue;
1093 }
1094 return true;
1095 }
1096 }
1097 }
1098
1099 return false;
1100 }
1101
1102 /**
1103 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1104 * @r: Resource to which domain instance @d belongs.
1105 * @d: The domain instance for which @closid is being tested.
1106 * @cbm: Capacity bitmask being tested.
1107 * @closid: Intended closid for @cbm.
1108 * @exclusive: Only check if overlaps with exclusive resource groups
1109 *
1110 * Resources that can be allocated using a CBM can use the CBM to control
1111 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1112 * for overlap. Overlap test is not limited to the specific resource for
1113 * which the CBM is intended though - when dealing with CDP resources that
1114 * share the underlying hardware the overlap check should be performed on
1115 * the CDP resource sharing the hardware also.
1116 *
1117 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1118 * overlap test.
1119 *
1120 * Return: true if CBM overlap detected, false if there is no overlap
1121 */
1122 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1123 unsigned long cbm, int closid, bool exclusive)
1124 {
1125 struct rdt_resource *r_cdp;
1126 struct rdt_domain *d_cdp;
1127
1128 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1129 return true;
1130
1131 if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1132 return false;
1133
1134 return __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1135 }
1136
1137 /**
1138 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1139 *
1140 * An exclusive resource group implies that there should be no sharing of
1141 * its allocated resources. At the time this group is considered to be
1142 * exclusive this test can determine if its current schemata supports this
1143 * setting by testing for overlap with all other resource groups.
1144 *
1145 * Return: true if resource group can be exclusive, false if there is overlap
1146 * with allocations of other resource groups and thus this resource group
1147 * cannot be exclusive.
1148 */
1149 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1150 {
1151 int closid = rdtgrp->closid;
1152 struct rdt_resource *r;
1153 bool has_cache = false;
1154 struct rdt_domain *d;
1155
1156 for_each_alloc_enabled_rdt_resource(r) {
1157 if (r->rid == RDT_RESOURCE_MBA)
1158 continue;
1159 has_cache = true;
1160 list_for_each_entry(d, &r->domains, list) {
1161 if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1162 rdtgrp->closid, false)) {
1163 rdt_last_cmd_puts("Schemata overlaps\n");
1164 return false;
1165 }
1166 }
1167 }
1168
1169 if (!has_cache) {
1170 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1171 return false;
1172 }
1173
1174 return true;
1175 }
1176
1177 /**
1178 * rdtgroup_mode_write - Modify the resource group's mode
1179 *
1180 */
1181 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1182 char *buf, size_t nbytes, loff_t off)
1183 {
1184 struct rdtgroup *rdtgrp;
1185 enum rdtgrp_mode mode;
1186 int ret = 0;
1187
1188 /* Valid input requires a trailing newline */
1189 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1190 return -EINVAL;
1191 buf[nbytes - 1] = '\0';
1192
1193 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1194 if (!rdtgrp) {
1195 rdtgroup_kn_unlock(of->kn);
1196 return -ENOENT;
1197 }
1198
1199 rdt_last_cmd_clear();
1200
1201 mode = rdtgrp->mode;
1202
1203 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1204 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1205 (!strcmp(buf, "pseudo-locksetup") &&
1206 mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1207 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1208 goto out;
1209
1210 if (mode == RDT_MODE_PSEUDO_LOCKED) {
1211 rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1212 ret = -EINVAL;
1213 goto out;
1214 }
1215
1216 if (!strcmp(buf, "shareable")) {
1217 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1218 ret = rdtgroup_locksetup_exit(rdtgrp);
1219 if (ret)
1220 goto out;
1221 }
1222 rdtgrp->mode = RDT_MODE_SHAREABLE;
1223 } else if (!strcmp(buf, "exclusive")) {
1224 if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1225 ret = -EINVAL;
1226 goto out;
1227 }
1228 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1229 ret = rdtgroup_locksetup_exit(rdtgrp);
1230 if (ret)
1231 goto out;
1232 }
1233 rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1234 } else if (!strcmp(buf, "pseudo-locksetup")) {
1235 ret = rdtgroup_locksetup_enter(rdtgrp);
1236 if (ret)
1237 goto out;
1238 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1239 } else {
1240 rdt_last_cmd_puts("Unknown or unsupported mode\n");
1241 ret = -EINVAL;
1242 }
1243
1244 out:
1245 rdtgroup_kn_unlock(of->kn);
1246 return ret ?: nbytes;
1247 }
1248
1249 /**
1250 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1251 * @r: RDT resource to which @d belongs.
1252 * @d: RDT domain instance.
1253 * @cbm: bitmask for which the size should be computed.
1254 *
1255 * The bitmask provided associated with the RDT domain instance @d will be
1256 * translated into how many bytes it represents. The size in bytes is
1257 * computed by first dividing the total cache size by the CBM length to
1258 * determine how many bytes each bit in the bitmask represents. The result
1259 * is multiplied with the number of bits set in the bitmask.
1260 *
1261 * @cbm is unsigned long, even if only 32 bits are used to make the
1262 * bitmap functions work correctly.
1263 */
1264 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1265 struct rdt_domain *d, unsigned long cbm)
1266 {
1267 struct cpu_cacheinfo *ci;
1268 unsigned int size = 0;
1269 int num_b, i;
1270
1271 num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1272 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1273 for (i = 0; i < ci->num_leaves; i++) {
1274 if (ci->info_list[i].level == r->cache_level) {
1275 size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1276 break;
1277 }
1278 }
1279
1280 return size;
1281 }
1282
1283 /**
1284 * rdtgroup_size_show - Display size in bytes of allocated regions
1285 *
1286 * The "size" file mirrors the layout of the "schemata" file, printing the
1287 * size in bytes of each region instead of the capacity bitmask.
1288 *
1289 */
1290 static int rdtgroup_size_show(struct kernfs_open_file *of,
1291 struct seq_file *s, void *v)
1292 {
1293 struct rdtgroup *rdtgrp;
1294 struct rdt_resource *r;
1295 struct rdt_domain *d;
1296 unsigned int size;
1297 int ret = 0;
1298 bool sep;
1299 u32 ctrl;
1300
1301 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1302 if (!rdtgrp) {
1303 rdtgroup_kn_unlock(of->kn);
1304 return -ENOENT;
1305 }
1306
1307 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1308 if (!rdtgrp->plr->d) {
1309 rdt_last_cmd_clear();
1310 rdt_last_cmd_puts("Cache domain offline\n");
1311 ret = -ENODEV;
1312 } else {
1313 seq_printf(s, "%*s:", max_name_width,
1314 rdtgrp->plr->r->name);
1315 size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1316 rdtgrp->plr->d,
1317 rdtgrp->plr->cbm);
1318 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1319 }
1320 goto out;
1321 }
1322
1323 for_each_alloc_enabled_rdt_resource(r) {
1324 sep = false;
1325 seq_printf(s, "%*s:", max_name_width, r->name);
1326 list_for_each_entry(d, &r->domains, list) {
1327 if (sep)
1328 seq_putc(s, ';');
1329 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1330 size = 0;
1331 } else {
1332 ctrl = (!is_mba_sc(r) ?
1333 d->ctrl_val[rdtgrp->closid] :
1334 d->mbps_val[rdtgrp->closid]);
1335 if (r->rid == RDT_RESOURCE_MBA)
1336 size = ctrl;
1337 else
1338 size = rdtgroup_cbm_to_size(r, d, ctrl);
1339 }
1340 seq_printf(s, "%d=%u", d->id, size);
1341 sep = true;
1342 }
1343 seq_putc(s, '\n');
1344 }
1345
1346 out:
1347 rdtgroup_kn_unlock(of->kn);
1348
1349 return ret;
1350 }
1351
1352 /* rdtgroup information files for one cache resource. */
1353 static struct rftype res_common_files[] = {
1354 {
1355 .name = "last_cmd_status",
1356 .mode = 0444,
1357 .kf_ops = &rdtgroup_kf_single_ops,
1358 .seq_show = rdt_last_cmd_status_show,
1359 .fflags = RF_TOP_INFO,
1360 },
1361 {
1362 .name = "num_closids",
1363 .mode = 0444,
1364 .kf_ops = &rdtgroup_kf_single_ops,
1365 .seq_show = rdt_num_closids_show,
1366 .fflags = RF_CTRL_INFO,
1367 },
1368 {
1369 .name = "mon_features",
1370 .mode = 0444,
1371 .kf_ops = &rdtgroup_kf_single_ops,
1372 .seq_show = rdt_mon_features_show,
1373 .fflags = RF_MON_INFO,
1374 },
1375 {
1376 .name = "num_rmids",
1377 .mode = 0444,
1378 .kf_ops = &rdtgroup_kf_single_ops,
1379 .seq_show = rdt_num_rmids_show,
1380 .fflags = RF_MON_INFO,
1381 },
1382 {
1383 .name = "cbm_mask",
1384 .mode = 0444,
1385 .kf_ops = &rdtgroup_kf_single_ops,
1386 .seq_show = rdt_default_ctrl_show,
1387 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1388 },
1389 {
1390 .name = "min_cbm_bits",
1391 .mode = 0444,
1392 .kf_ops = &rdtgroup_kf_single_ops,
1393 .seq_show = rdt_min_cbm_bits_show,
1394 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1395 },
1396 {
1397 .name = "shareable_bits",
1398 .mode = 0444,
1399 .kf_ops = &rdtgroup_kf_single_ops,
1400 .seq_show = rdt_shareable_bits_show,
1401 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1402 },
1403 {
1404 .name = "bit_usage",
1405 .mode = 0444,
1406 .kf_ops = &rdtgroup_kf_single_ops,
1407 .seq_show = rdt_bit_usage_show,
1408 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1409 },
1410 {
1411 .name = "min_bandwidth",
1412 .mode = 0444,
1413 .kf_ops = &rdtgroup_kf_single_ops,
1414 .seq_show = rdt_min_bw_show,
1415 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1416 },
1417 {
1418 .name = "bandwidth_gran",
1419 .mode = 0444,
1420 .kf_ops = &rdtgroup_kf_single_ops,
1421 .seq_show = rdt_bw_gran_show,
1422 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1423 },
1424 {
1425 .name = "delay_linear",
1426 .mode = 0444,
1427 .kf_ops = &rdtgroup_kf_single_ops,
1428 .seq_show = rdt_delay_linear_show,
1429 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1430 },
1431 {
1432 .name = "max_threshold_occupancy",
1433 .mode = 0644,
1434 .kf_ops = &rdtgroup_kf_single_ops,
1435 .write = max_threshold_occ_write,
1436 .seq_show = max_threshold_occ_show,
1437 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE,
1438 },
1439 {
1440 .name = "cpus",
1441 .mode = 0644,
1442 .kf_ops = &rdtgroup_kf_single_ops,
1443 .write = rdtgroup_cpus_write,
1444 .seq_show = rdtgroup_cpus_show,
1445 .fflags = RFTYPE_BASE,
1446 },
1447 {
1448 .name = "cpus_list",
1449 .mode = 0644,
1450 .kf_ops = &rdtgroup_kf_single_ops,
1451 .write = rdtgroup_cpus_write,
1452 .seq_show = rdtgroup_cpus_show,
1453 .flags = RFTYPE_FLAGS_CPUS_LIST,
1454 .fflags = RFTYPE_BASE,
1455 },
1456 {
1457 .name = "tasks",
1458 .mode = 0644,
1459 .kf_ops = &rdtgroup_kf_single_ops,
1460 .write = rdtgroup_tasks_write,
1461 .seq_show = rdtgroup_tasks_show,
1462 .fflags = RFTYPE_BASE,
1463 },
1464 {
1465 .name = "schemata",
1466 .mode = 0644,
1467 .kf_ops = &rdtgroup_kf_single_ops,
1468 .write = rdtgroup_schemata_write,
1469 .seq_show = rdtgroup_schemata_show,
1470 .fflags = RF_CTRL_BASE,
1471 },
1472 {
1473 .name = "mode",
1474 .mode = 0644,
1475 .kf_ops = &rdtgroup_kf_single_ops,
1476 .write = rdtgroup_mode_write,
1477 .seq_show = rdtgroup_mode_show,
1478 .fflags = RF_CTRL_BASE,
1479 },
1480 {
1481 .name = "size",
1482 .mode = 0444,
1483 .kf_ops = &rdtgroup_kf_single_ops,
1484 .seq_show = rdtgroup_size_show,
1485 .fflags = RF_CTRL_BASE,
1486 },
1487
1488 };
1489
1490 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1491 {
1492 struct rftype *rfts, *rft;
1493 int ret, len;
1494
1495 rfts = res_common_files;
1496 len = ARRAY_SIZE(res_common_files);
1497
1498 lockdep_assert_held(&rdtgroup_mutex);
1499
1500 for (rft = rfts; rft < rfts + len; rft++) {
1501 if ((fflags & rft->fflags) == rft->fflags) {
1502 ret = rdtgroup_add_file(kn, rft);
1503 if (ret)
1504 goto error;
1505 }
1506 }
1507
1508 return 0;
1509 error:
1510 pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1511 while (--rft >= rfts) {
1512 if ((fflags & rft->fflags) == rft->fflags)
1513 kernfs_remove_by_name(kn, rft->name);
1514 }
1515 return ret;
1516 }
1517
1518 /**
1519 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1520 * @r: The resource group with which the file is associated.
1521 * @name: Name of the file
1522 *
1523 * The permissions of named resctrl file, directory, or link are modified
1524 * to not allow read, write, or execute by any user.
1525 *
1526 * WARNING: This function is intended to communicate to the user that the
1527 * resctrl file has been locked down - that it is not relevant to the
1528 * particular state the system finds itself in. It should not be relied
1529 * on to protect from user access because after the file's permissions
1530 * are restricted the user can still change the permissions using chmod
1531 * from the command line.
1532 *
1533 * Return: 0 on success, <0 on failure.
1534 */
1535 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1536 {
1537 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1538 struct kernfs_node *kn;
1539 int ret = 0;
1540
1541 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1542 if (!kn)
1543 return -ENOENT;
1544
1545 switch (kernfs_type(kn)) {
1546 case KERNFS_DIR:
1547 iattr.ia_mode = S_IFDIR;
1548 break;
1549 case KERNFS_FILE:
1550 iattr.ia_mode = S_IFREG;
1551 break;
1552 case KERNFS_LINK:
1553 iattr.ia_mode = S_IFLNK;
1554 break;
1555 }
1556
1557 ret = kernfs_setattr(kn, &iattr);
1558 kernfs_put(kn);
1559 return ret;
1560 }
1561
1562 /**
1563 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1564 * @r: The resource group with which the file is associated.
1565 * @name: Name of the file
1566 * @mask: Mask of permissions that should be restored
1567 *
1568 * Restore the permissions of the named file. If @name is a directory the
1569 * permissions of its parent will be used.
1570 *
1571 * Return: 0 on success, <0 on failure.
1572 */
1573 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1574 umode_t mask)
1575 {
1576 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1577 struct kernfs_node *kn, *parent;
1578 struct rftype *rfts, *rft;
1579 int ret, len;
1580
1581 rfts = res_common_files;
1582 len = ARRAY_SIZE(res_common_files);
1583
1584 for (rft = rfts; rft < rfts + len; rft++) {
1585 if (!strcmp(rft->name, name))
1586 iattr.ia_mode = rft->mode & mask;
1587 }
1588
1589 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1590 if (!kn)
1591 return -ENOENT;
1592
1593 switch (kernfs_type(kn)) {
1594 case KERNFS_DIR:
1595 parent = kernfs_get_parent(kn);
1596 if (parent) {
1597 iattr.ia_mode |= parent->mode;
1598 kernfs_put(parent);
1599 }
1600 iattr.ia_mode |= S_IFDIR;
1601 break;
1602 case KERNFS_FILE:
1603 iattr.ia_mode |= S_IFREG;
1604 break;
1605 case KERNFS_LINK:
1606 iattr.ia_mode |= S_IFLNK;
1607 break;
1608 }
1609
1610 ret = kernfs_setattr(kn, &iattr);
1611 kernfs_put(kn);
1612 return ret;
1613 }
1614
1615 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1616 unsigned long fflags)
1617 {
1618 struct kernfs_node *kn_subdir;
1619 int ret;
1620
1621 kn_subdir = kernfs_create_dir(kn_info, name,
1622 kn_info->mode, r);
1623 if (IS_ERR(kn_subdir))
1624 return PTR_ERR(kn_subdir);
1625
1626 kernfs_get(kn_subdir);
1627 ret = rdtgroup_kn_set_ugid(kn_subdir);
1628 if (ret)
1629 return ret;
1630
1631 ret = rdtgroup_add_files(kn_subdir, fflags);
1632 if (!ret)
1633 kernfs_activate(kn_subdir);
1634
1635 return ret;
1636 }
1637
1638 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1639 {
1640 struct rdt_resource *r;
1641 unsigned long fflags;
1642 char name[32];
1643 int ret;
1644
1645 /* create the directory */
1646 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1647 if (IS_ERR(kn_info))
1648 return PTR_ERR(kn_info);
1649 kernfs_get(kn_info);
1650
1651 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1652 if (ret)
1653 goto out_destroy;
1654
1655 for_each_alloc_enabled_rdt_resource(r) {
1656 fflags = r->fflags | RF_CTRL_INFO;
1657 ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1658 if (ret)
1659 goto out_destroy;
1660 }
1661
1662 for_each_mon_enabled_rdt_resource(r) {
1663 fflags = r->fflags | RF_MON_INFO;
1664 sprintf(name, "%s_MON", r->name);
1665 ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1666 if (ret)
1667 goto out_destroy;
1668 }
1669
1670 /*
1671 * This extra ref will be put in kernfs_remove() and guarantees
1672 * that @rdtgrp->kn is always accessible.
1673 */
1674 kernfs_get(kn_info);
1675
1676 ret = rdtgroup_kn_set_ugid(kn_info);
1677 if (ret)
1678 goto out_destroy;
1679
1680 kernfs_activate(kn_info);
1681
1682 return 0;
1683
1684 out_destroy:
1685 kernfs_remove(kn_info);
1686 return ret;
1687 }
1688
1689 static int
1690 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1691 char *name, struct kernfs_node **dest_kn)
1692 {
1693 struct kernfs_node *kn;
1694 int ret;
1695
1696 /* create the directory */
1697 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1698 if (IS_ERR(kn))
1699 return PTR_ERR(kn);
1700
1701 if (dest_kn)
1702 *dest_kn = kn;
1703
1704 /*
1705 * This extra ref will be put in kernfs_remove() and guarantees
1706 * that @rdtgrp->kn is always accessible.
1707 */
1708 kernfs_get(kn);
1709
1710 ret = rdtgroup_kn_set_ugid(kn);
1711 if (ret)
1712 goto out_destroy;
1713
1714 kernfs_activate(kn);
1715
1716 return 0;
1717
1718 out_destroy:
1719 kernfs_remove(kn);
1720 return ret;
1721 }
1722
1723 static void l3_qos_cfg_update(void *arg)
1724 {
1725 bool *enable = arg;
1726
1727 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1728 }
1729
1730 static void l2_qos_cfg_update(void *arg)
1731 {
1732 bool *enable = arg;
1733
1734 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1735 }
1736
1737 static inline bool is_mba_linear(void)
1738 {
1739 return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1740 }
1741
1742 static int set_cache_qos_cfg(int level, bool enable)
1743 {
1744 void (*update)(void *arg);
1745 struct rdt_resource *r_l;
1746 cpumask_var_t cpu_mask;
1747 struct rdt_domain *d;
1748 int cpu;
1749
1750 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1751 return -ENOMEM;
1752
1753 if (level == RDT_RESOURCE_L3)
1754 update = l3_qos_cfg_update;
1755 else if (level == RDT_RESOURCE_L2)
1756 update = l2_qos_cfg_update;
1757 else
1758 return -EINVAL;
1759
1760 r_l = &rdt_resources_all[level];
1761 list_for_each_entry(d, &r_l->domains, list) {
1762 /* Pick one CPU from each domain instance to update MSR */
1763 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1764 }
1765 cpu = get_cpu();
1766 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1767 if (cpumask_test_cpu(cpu, cpu_mask))
1768 update(&enable);
1769 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1770 smp_call_function_many(cpu_mask, update, &enable, 1);
1771 put_cpu();
1772
1773 free_cpumask_var(cpu_mask);
1774
1775 return 0;
1776 }
1777
1778 /*
1779 * Enable or disable the MBA software controller
1780 * which helps user specify bandwidth in MBps.
1781 * MBA software controller is supported only if
1782 * MBM is supported and MBA is in linear scale.
1783 */
1784 static int set_mba_sc(bool mba_sc)
1785 {
1786 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1787 struct rdt_domain *d;
1788
1789 if (!is_mbm_enabled() || !is_mba_linear() ||
1790 mba_sc == is_mba_sc(r))
1791 return -EINVAL;
1792
1793 r->membw.mba_sc = mba_sc;
1794 list_for_each_entry(d, &r->domains, list)
1795 setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1796
1797 return 0;
1798 }
1799
1800 static int cdp_enable(int level, int data_type, int code_type)
1801 {
1802 struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1803 struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1804 struct rdt_resource *r_l = &rdt_resources_all[level];
1805 int ret;
1806
1807 if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1808 !r_lcode->alloc_capable)
1809 return -EINVAL;
1810
1811 ret = set_cache_qos_cfg(level, true);
1812 if (!ret) {
1813 r_l->alloc_enabled = false;
1814 r_ldata->alloc_enabled = true;
1815 r_lcode->alloc_enabled = true;
1816 }
1817 return ret;
1818 }
1819
1820 static int cdpl3_enable(void)
1821 {
1822 return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1823 RDT_RESOURCE_L3CODE);
1824 }
1825
1826 static int cdpl2_enable(void)
1827 {
1828 return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1829 RDT_RESOURCE_L2CODE);
1830 }
1831
1832 static void cdp_disable(int level, int data_type, int code_type)
1833 {
1834 struct rdt_resource *r = &rdt_resources_all[level];
1835
1836 r->alloc_enabled = r->alloc_capable;
1837
1838 if (rdt_resources_all[data_type].alloc_enabled) {
1839 rdt_resources_all[data_type].alloc_enabled = false;
1840 rdt_resources_all[code_type].alloc_enabled = false;
1841 set_cache_qos_cfg(level, false);
1842 }
1843 }
1844
1845 static void cdpl3_disable(void)
1846 {
1847 cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1848 }
1849
1850 static void cdpl2_disable(void)
1851 {
1852 cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
1853 }
1854
1855 static void cdp_disable_all(void)
1856 {
1857 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
1858 cdpl3_disable();
1859 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
1860 cdpl2_disable();
1861 }
1862
1863 /*
1864 * We don't allow rdtgroup directories to be created anywhere
1865 * except the root directory. Thus when looking for the rdtgroup
1866 * structure for a kernfs node we are either looking at a directory,
1867 * in which case the rdtgroup structure is pointed at by the "priv"
1868 * field, otherwise we have a file, and need only look to the parent
1869 * to find the rdtgroup.
1870 */
1871 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
1872 {
1873 if (kernfs_type(kn) == KERNFS_DIR) {
1874 /*
1875 * All the resource directories use "kn->priv"
1876 * to point to the "struct rdtgroup" for the
1877 * resource. "info" and its subdirectories don't
1878 * have rdtgroup structures, so return NULL here.
1879 */
1880 if (kn == kn_info || kn->parent == kn_info)
1881 return NULL;
1882 else
1883 return kn->priv;
1884 } else {
1885 return kn->parent->priv;
1886 }
1887 }
1888
1889 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
1890 {
1891 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1892
1893 if (!rdtgrp)
1894 return NULL;
1895
1896 atomic_inc(&rdtgrp->waitcount);
1897 kernfs_break_active_protection(kn);
1898
1899 mutex_lock(&rdtgroup_mutex);
1900
1901 /* Was this group deleted while we waited? */
1902 if (rdtgrp->flags & RDT_DELETED)
1903 return NULL;
1904
1905 return rdtgrp;
1906 }
1907
1908 void rdtgroup_kn_unlock(struct kernfs_node *kn)
1909 {
1910 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1911
1912 if (!rdtgrp)
1913 return;
1914
1915 mutex_unlock(&rdtgroup_mutex);
1916
1917 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
1918 (rdtgrp->flags & RDT_DELETED)) {
1919 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
1920 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
1921 rdtgroup_pseudo_lock_remove(rdtgrp);
1922 kernfs_unbreak_active_protection(kn);
1923 kernfs_put(rdtgrp->kn);
1924 kfree(rdtgrp);
1925 } else {
1926 kernfs_unbreak_active_protection(kn);
1927 }
1928 }
1929
1930 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
1931 struct rdtgroup *prgrp,
1932 struct kernfs_node **mon_data_kn);
1933
1934 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
1935 {
1936 int ret = 0;
1937
1938 if (ctx->enable_cdpl2)
1939 ret = cdpl2_enable();
1940
1941 if (!ret && ctx->enable_cdpl3)
1942 ret = cdpl3_enable();
1943
1944 if (!ret && ctx->enable_mba_mbps)
1945 ret = set_mba_sc(true);
1946
1947 return ret;
1948 }
1949
1950 static int rdt_get_tree(struct fs_context *fc)
1951 {
1952 struct rdt_fs_context *ctx = rdt_fc2context(fc);
1953 struct rdt_domain *dom;
1954 struct rdt_resource *r;
1955 int ret;
1956
1957 cpus_read_lock();
1958 mutex_lock(&rdtgroup_mutex);
1959 /*
1960 * resctrl file system can only be mounted once.
1961 */
1962 if (static_branch_unlikely(&rdt_enable_key)) {
1963 ret = -EBUSY;
1964 goto out;
1965 }
1966
1967 ret = rdt_enable_ctx(ctx);
1968 if (ret < 0)
1969 goto out_cdp;
1970
1971 closid_init();
1972
1973 ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
1974 if (ret < 0)
1975 goto out_mba;
1976
1977 if (rdt_mon_capable) {
1978 ret = mongroup_create_dir(rdtgroup_default.kn,
1979 NULL, "mon_groups",
1980 &kn_mongrp);
1981 if (ret < 0)
1982 goto out_info;
1983 kernfs_get(kn_mongrp);
1984
1985 ret = mkdir_mondata_all(rdtgroup_default.kn,
1986 &rdtgroup_default, &kn_mondata);
1987 if (ret < 0)
1988 goto out_mongrp;
1989 kernfs_get(kn_mondata);
1990 rdtgroup_default.mon.mon_data_kn = kn_mondata;
1991 }
1992
1993 ret = rdt_pseudo_lock_init();
1994 if (ret)
1995 goto out_mondata;
1996
1997 ret = kernfs_get_tree(fc);
1998 if (ret < 0)
1999 goto out_psl;
2000
2001 if (rdt_alloc_capable)
2002 static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2003 if (rdt_mon_capable)
2004 static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2005
2006 if (rdt_alloc_capable || rdt_mon_capable)
2007 static_branch_enable_cpuslocked(&rdt_enable_key);
2008
2009 if (is_mbm_enabled()) {
2010 r = &rdt_resources_all[RDT_RESOURCE_L3];
2011 list_for_each_entry(dom, &r->domains, list)
2012 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2013 }
2014
2015 goto out;
2016
2017 out_psl:
2018 rdt_pseudo_lock_release();
2019 out_mondata:
2020 if (rdt_mon_capable)
2021 kernfs_remove(kn_mondata);
2022 out_mongrp:
2023 if (rdt_mon_capable)
2024 kernfs_remove(kn_mongrp);
2025 out_info:
2026 kernfs_remove(kn_info);
2027 out_mba:
2028 if (ctx->enable_mba_mbps)
2029 set_mba_sc(false);
2030 out_cdp:
2031 cdp_disable_all();
2032 out:
2033 rdt_last_cmd_clear();
2034 mutex_unlock(&rdtgroup_mutex);
2035 cpus_read_unlock();
2036 return ret;
2037 }
2038
2039 enum rdt_param {
2040 Opt_cdp,
2041 Opt_cdpl2,
2042 Opt_mba_mbps,
2043 nr__rdt_params
2044 };
2045
2046 static const struct fs_parameter_spec rdt_param_specs[] = {
2047 fsparam_flag("cdp", Opt_cdp),
2048 fsparam_flag("cdpl2", Opt_cdpl2),
2049 fsparam_flag("mba_MBps", Opt_mba_mbps),
2050 {}
2051 };
2052
2053 static const struct fs_parameter_description rdt_fs_parameters = {
2054 .name = "rdt",
2055 .specs = rdt_param_specs,
2056 };
2057
2058 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2059 {
2060 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2061 struct fs_parse_result result;
2062 int opt;
2063
2064 opt = fs_parse(fc, &rdt_fs_parameters, param, &result);
2065 if (opt < 0)
2066 return opt;
2067
2068 switch (opt) {
2069 case Opt_cdp:
2070 ctx->enable_cdpl3 = true;
2071 return 0;
2072 case Opt_cdpl2:
2073 ctx->enable_cdpl2 = true;
2074 return 0;
2075 case Opt_mba_mbps:
2076 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2077 return -EINVAL;
2078 ctx->enable_mba_mbps = true;
2079 return 0;
2080 }
2081
2082 return -EINVAL;
2083 }
2084
2085 static void rdt_fs_context_free(struct fs_context *fc)
2086 {
2087 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2088
2089 kernfs_free_fs_context(fc);
2090 kfree(ctx);
2091 }
2092
2093 static const struct fs_context_operations rdt_fs_context_ops = {
2094 .free = rdt_fs_context_free,
2095 .parse_param = rdt_parse_param,
2096 .get_tree = rdt_get_tree,
2097 };
2098
2099 static int rdt_init_fs_context(struct fs_context *fc)
2100 {
2101 struct rdt_fs_context *ctx;
2102
2103 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2104 if (!ctx)
2105 return -ENOMEM;
2106
2107 ctx->kfc.root = rdt_root;
2108 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2109 fc->fs_private = &ctx->kfc;
2110 fc->ops = &rdt_fs_context_ops;
2111 if (fc->user_ns)
2112 put_user_ns(fc->user_ns);
2113 fc->user_ns = get_user_ns(&init_user_ns);
2114 fc->global = true;
2115 return 0;
2116 }
2117
2118 static int reset_all_ctrls(struct rdt_resource *r)
2119 {
2120 struct msr_param msr_param;
2121 cpumask_var_t cpu_mask;
2122 struct rdt_domain *d;
2123 int i, cpu;
2124
2125 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2126 return -ENOMEM;
2127
2128 msr_param.res = r;
2129 msr_param.low = 0;
2130 msr_param.high = r->num_closid;
2131
2132 /*
2133 * Disable resource control for this resource by setting all
2134 * CBMs in all domains to the maximum mask value. Pick one CPU
2135 * from each domain to update the MSRs below.
2136 */
2137 list_for_each_entry(d, &r->domains, list) {
2138 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2139
2140 for (i = 0; i < r->num_closid; i++)
2141 d->ctrl_val[i] = r->default_ctrl;
2142 }
2143 cpu = get_cpu();
2144 /* Update CBM on this cpu if it's in cpu_mask. */
2145 if (cpumask_test_cpu(cpu, cpu_mask))
2146 rdt_ctrl_update(&msr_param);
2147 /* Update CBM on all other cpus in cpu_mask. */
2148 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2149 put_cpu();
2150
2151 free_cpumask_var(cpu_mask);
2152
2153 return 0;
2154 }
2155
2156 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
2157 {
2158 return (rdt_alloc_capable &&
2159 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
2160 }
2161
2162 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
2163 {
2164 return (rdt_mon_capable &&
2165 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
2166 }
2167
2168 /*
2169 * Move tasks from one to the other group. If @from is NULL, then all tasks
2170 * in the systems are moved unconditionally (used for teardown).
2171 *
2172 * If @mask is not NULL the cpus on which moved tasks are running are set
2173 * in that mask so the update smp function call is restricted to affected
2174 * cpus.
2175 */
2176 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2177 struct cpumask *mask)
2178 {
2179 struct task_struct *p, *t;
2180
2181 read_lock(&tasklist_lock);
2182 for_each_process_thread(p, t) {
2183 if (!from || is_closid_match(t, from) ||
2184 is_rmid_match(t, from)) {
2185 t->closid = to->closid;
2186 t->rmid = to->mon.rmid;
2187
2188 #ifdef CONFIG_SMP
2189 /*
2190 * This is safe on x86 w/o barriers as the ordering
2191 * of writing to task_cpu() and t->on_cpu is
2192 * reverse to the reading here. The detection is
2193 * inaccurate as tasks might move or schedule
2194 * before the smp function call takes place. In
2195 * such a case the function call is pointless, but
2196 * there is no other side effect.
2197 */
2198 if (mask && t->on_cpu)
2199 cpumask_set_cpu(task_cpu(t), mask);
2200 #endif
2201 }
2202 }
2203 read_unlock(&tasklist_lock);
2204 }
2205
2206 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2207 {
2208 struct rdtgroup *sentry, *stmp;
2209 struct list_head *head;
2210
2211 head = &rdtgrp->mon.crdtgrp_list;
2212 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2213 free_rmid(sentry->mon.rmid);
2214 list_del(&sentry->mon.crdtgrp_list);
2215 kfree(sentry);
2216 }
2217 }
2218
2219 /*
2220 * Forcibly remove all of subdirectories under root.
2221 */
2222 static void rmdir_all_sub(void)
2223 {
2224 struct rdtgroup *rdtgrp, *tmp;
2225
2226 /* Move all tasks to the default resource group */
2227 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2228
2229 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2230 /* Free any child rmids */
2231 free_all_child_rdtgrp(rdtgrp);
2232
2233 /* Remove each rdtgroup other than root */
2234 if (rdtgrp == &rdtgroup_default)
2235 continue;
2236
2237 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2238 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2239 rdtgroup_pseudo_lock_remove(rdtgrp);
2240
2241 /*
2242 * Give any CPUs back to the default group. We cannot copy
2243 * cpu_online_mask because a CPU might have executed the
2244 * offline callback already, but is still marked online.
2245 */
2246 cpumask_or(&rdtgroup_default.cpu_mask,
2247 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2248
2249 free_rmid(rdtgrp->mon.rmid);
2250
2251 kernfs_remove(rdtgrp->kn);
2252 list_del(&rdtgrp->rdtgroup_list);
2253 kfree(rdtgrp);
2254 }
2255 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2256 update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2257
2258 kernfs_remove(kn_info);
2259 kernfs_remove(kn_mongrp);
2260 kernfs_remove(kn_mondata);
2261 }
2262
2263 static void rdt_kill_sb(struct super_block *sb)
2264 {
2265 struct rdt_resource *r;
2266
2267 cpus_read_lock();
2268 mutex_lock(&rdtgroup_mutex);
2269
2270 set_mba_sc(false);
2271
2272 /*Put everything back to default values. */
2273 for_each_alloc_enabled_rdt_resource(r)
2274 reset_all_ctrls(r);
2275 cdp_disable_all();
2276 rmdir_all_sub();
2277 rdt_pseudo_lock_release();
2278 rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2279 static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2280 static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2281 static_branch_disable_cpuslocked(&rdt_enable_key);
2282 kernfs_kill_sb(sb);
2283 mutex_unlock(&rdtgroup_mutex);
2284 cpus_read_unlock();
2285 }
2286
2287 static struct file_system_type rdt_fs_type = {
2288 .name = "resctrl",
2289 .init_fs_context = rdt_init_fs_context,
2290 .parameters = &rdt_fs_parameters,
2291 .kill_sb = rdt_kill_sb,
2292 };
2293
2294 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2295 void *priv)
2296 {
2297 struct kernfs_node *kn;
2298 int ret = 0;
2299
2300 kn = __kernfs_create_file(parent_kn, name, 0444,
2301 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2302 &kf_mondata_ops, priv, NULL, NULL);
2303 if (IS_ERR(kn))
2304 return PTR_ERR(kn);
2305
2306 ret = rdtgroup_kn_set_ugid(kn);
2307 if (ret) {
2308 kernfs_remove(kn);
2309 return ret;
2310 }
2311
2312 return ret;
2313 }
2314
2315 /*
2316 * Remove all subdirectories of mon_data of ctrl_mon groups
2317 * and monitor groups with given domain id.
2318 */
2319 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2320 {
2321 struct rdtgroup *prgrp, *crgrp;
2322 char name[32];
2323
2324 if (!r->mon_enabled)
2325 return;
2326
2327 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2328 sprintf(name, "mon_%s_%02d", r->name, dom_id);
2329 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2330
2331 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2332 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2333 }
2334 }
2335
2336 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2337 struct rdt_domain *d,
2338 struct rdt_resource *r, struct rdtgroup *prgrp)
2339 {
2340 union mon_data_bits priv;
2341 struct kernfs_node *kn;
2342 struct mon_evt *mevt;
2343 struct rmid_read rr;
2344 char name[32];
2345 int ret;
2346
2347 sprintf(name, "mon_%s_%02d", r->name, d->id);
2348 /* create the directory */
2349 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2350 if (IS_ERR(kn))
2351 return PTR_ERR(kn);
2352
2353 /*
2354 * This extra ref will be put in kernfs_remove() and guarantees
2355 * that kn is always accessible.
2356 */
2357 kernfs_get(kn);
2358 ret = rdtgroup_kn_set_ugid(kn);
2359 if (ret)
2360 goto out_destroy;
2361
2362 if (WARN_ON(list_empty(&r->evt_list))) {
2363 ret = -EPERM;
2364 goto out_destroy;
2365 }
2366
2367 priv.u.rid = r->rid;
2368 priv.u.domid = d->id;
2369 list_for_each_entry(mevt, &r->evt_list, list) {
2370 priv.u.evtid = mevt->evtid;
2371 ret = mon_addfile(kn, mevt->name, priv.priv);
2372 if (ret)
2373 goto out_destroy;
2374
2375 if (is_mbm_event(mevt->evtid))
2376 mon_event_read(&rr, d, prgrp, mevt->evtid, true);
2377 }
2378 kernfs_activate(kn);
2379 return 0;
2380
2381 out_destroy:
2382 kernfs_remove(kn);
2383 return ret;
2384 }
2385
2386 /*
2387 * Add all subdirectories of mon_data for "ctrl_mon" groups
2388 * and "monitor" groups with given domain id.
2389 */
2390 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2391 struct rdt_domain *d)
2392 {
2393 struct kernfs_node *parent_kn;
2394 struct rdtgroup *prgrp, *crgrp;
2395 struct list_head *head;
2396
2397 if (!r->mon_enabled)
2398 return;
2399
2400 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2401 parent_kn = prgrp->mon.mon_data_kn;
2402 mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2403
2404 head = &prgrp->mon.crdtgrp_list;
2405 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2406 parent_kn = crgrp->mon.mon_data_kn;
2407 mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2408 }
2409 }
2410 }
2411
2412 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2413 struct rdt_resource *r,
2414 struct rdtgroup *prgrp)
2415 {
2416 struct rdt_domain *dom;
2417 int ret;
2418
2419 list_for_each_entry(dom, &r->domains, list) {
2420 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2421 if (ret)
2422 return ret;
2423 }
2424
2425 return 0;
2426 }
2427
2428 /*
2429 * This creates a directory mon_data which contains the monitored data.
2430 *
2431 * mon_data has one directory for each domain whic are named
2432 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2433 * with L3 domain looks as below:
2434 * ./mon_data:
2435 * mon_L3_00
2436 * mon_L3_01
2437 * mon_L3_02
2438 * ...
2439 *
2440 * Each domain directory has one file per event:
2441 * ./mon_L3_00/:
2442 * llc_occupancy
2443 *
2444 */
2445 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2446 struct rdtgroup *prgrp,
2447 struct kernfs_node **dest_kn)
2448 {
2449 struct rdt_resource *r;
2450 struct kernfs_node *kn;
2451 int ret;
2452
2453 /*
2454 * Create the mon_data directory first.
2455 */
2456 ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
2457 if (ret)
2458 return ret;
2459
2460 if (dest_kn)
2461 *dest_kn = kn;
2462
2463 /*
2464 * Create the subdirectories for each domain. Note that all events
2465 * in a domain like L3 are grouped into a resource whose domain is L3
2466 */
2467 for_each_mon_enabled_rdt_resource(r) {
2468 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2469 if (ret)
2470 goto out_destroy;
2471 }
2472
2473 return 0;
2474
2475 out_destroy:
2476 kernfs_remove(kn);
2477 return ret;
2478 }
2479
2480 /**
2481 * cbm_ensure_valid - Enforce validity on provided CBM
2482 * @_val: Candidate CBM
2483 * @r: RDT resource to which the CBM belongs
2484 *
2485 * The provided CBM represents all cache portions available for use. This
2486 * may be represented by a bitmap that does not consist of contiguous ones
2487 * and thus be an invalid CBM.
2488 * Here the provided CBM is forced to be a valid CBM by only considering
2489 * the first set of contiguous bits as valid and clearing all bits.
2490 * The intention here is to provide a valid default CBM with which a new
2491 * resource group is initialized. The user can follow this with a
2492 * modification to the CBM if the default does not satisfy the
2493 * requirements.
2494 */
2495 static void cbm_ensure_valid(u32 *_val, struct rdt_resource *r)
2496 {
2497 /*
2498 * Convert the u32 _val to an unsigned long required by all the bit
2499 * operations within this function. No more than 32 bits of this
2500 * converted value can be accessed because all bit operations are
2501 * additionally provided with cbm_len that is initialized during
2502 * hardware enumeration using five bits from the EAX register and
2503 * thus never can exceed 32 bits.
2504 */
2505 unsigned long *val = (unsigned long *)_val;
2506 unsigned int cbm_len = r->cache.cbm_len;
2507 unsigned long first_bit, zero_bit;
2508
2509 if (*val == 0)
2510 return;
2511
2512 first_bit = find_first_bit(val, cbm_len);
2513 zero_bit = find_next_zero_bit(val, cbm_len, first_bit);
2514
2515 /* Clear any remaining bits to ensure contiguous region */
2516 bitmap_clear(val, zero_bit, cbm_len - zero_bit);
2517 }
2518
2519 /*
2520 * Initialize cache resources per RDT domain
2521 *
2522 * Set the RDT domain up to start off with all usable allocations. That is,
2523 * all shareable and unused bits. All-zero CBM is invalid.
2524 */
2525 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r,
2526 u32 closid)
2527 {
2528 struct rdt_resource *r_cdp = NULL;
2529 struct rdt_domain *d_cdp = NULL;
2530 u32 used_b = 0, unused_b = 0;
2531 unsigned long tmp_cbm;
2532 enum rdtgrp_mode mode;
2533 u32 peer_ctl, *ctrl;
2534 int i;
2535
2536 rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2537 d->have_new_ctrl = false;
2538 d->new_ctrl = r->cache.shareable_bits;
2539 used_b = r->cache.shareable_bits;
2540 ctrl = d->ctrl_val;
2541 for (i = 0; i < closids_supported(); i++, ctrl++) {
2542 if (closid_allocated(i) && i != closid) {
2543 mode = rdtgroup_mode_by_closid(i);
2544 if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2545 break;
2546 /*
2547 * If CDP is active include peer domain's
2548 * usage to ensure there is no overlap
2549 * with an exclusive group.
2550 */
2551 if (d_cdp)
2552 peer_ctl = d_cdp->ctrl_val[i];
2553 else
2554 peer_ctl = 0;
2555 used_b |= *ctrl | peer_ctl;
2556 if (mode == RDT_MODE_SHAREABLE)
2557 d->new_ctrl |= *ctrl | peer_ctl;
2558 }
2559 }
2560 if (d->plr && d->plr->cbm > 0)
2561 used_b |= d->plr->cbm;
2562 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2563 unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2564 d->new_ctrl |= unused_b;
2565 /*
2566 * Force the initial CBM to be valid, user can
2567 * modify the CBM based on system availability.
2568 */
2569 cbm_ensure_valid(&d->new_ctrl, r);
2570 /*
2571 * Assign the u32 CBM to an unsigned long to ensure that
2572 * bitmap_weight() does not access out-of-bound memory.
2573 */
2574 tmp_cbm = d->new_ctrl;
2575 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2576 rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id);
2577 return -ENOSPC;
2578 }
2579 d->have_new_ctrl = true;
2580
2581 return 0;
2582 }
2583
2584 /*
2585 * Initialize cache resources with default values.
2586 *
2587 * A new RDT group is being created on an allocation capable (CAT)
2588 * supporting system. Set this group up to start off with all usable
2589 * allocations.
2590 *
2591 * If there are no more shareable bits available on any domain then
2592 * the entire allocation will fail.
2593 */
2594 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid)
2595 {
2596 struct rdt_domain *d;
2597 int ret;
2598
2599 list_for_each_entry(d, &r->domains, list) {
2600 ret = __init_one_rdt_domain(d, r, closid);
2601 if (ret < 0)
2602 return ret;
2603 }
2604
2605 return 0;
2606 }
2607
2608 /* Initialize MBA resource with default values. */
2609 static void rdtgroup_init_mba(struct rdt_resource *r)
2610 {
2611 struct rdt_domain *d;
2612
2613 list_for_each_entry(d, &r->domains, list) {
2614 d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl;
2615 d->have_new_ctrl = true;
2616 }
2617 }
2618
2619 /* Initialize the RDT group's allocations. */
2620 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2621 {
2622 struct rdt_resource *r;
2623 int ret;
2624
2625 for_each_alloc_enabled_rdt_resource(r) {
2626 if (r->rid == RDT_RESOURCE_MBA) {
2627 rdtgroup_init_mba(r);
2628 } else {
2629 ret = rdtgroup_init_cat(r, rdtgrp->closid);
2630 if (ret < 0)
2631 return ret;
2632 }
2633
2634 ret = update_domains(r, rdtgrp->closid);
2635 if (ret < 0) {
2636 rdt_last_cmd_puts("Failed to initialize allocations\n");
2637 return ret;
2638 }
2639
2640 }
2641
2642 rdtgrp->mode = RDT_MODE_SHAREABLE;
2643
2644 return 0;
2645 }
2646
2647 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2648 struct kernfs_node *prgrp_kn,
2649 const char *name, umode_t mode,
2650 enum rdt_group_type rtype, struct rdtgroup **r)
2651 {
2652 struct rdtgroup *prdtgrp, *rdtgrp;
2653 struct kernfs_node *kn;
2654 uint files = 0;
2655 int ret;
2656
2657 prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
2658 rdt_last_cmd_clear();
2659 if (!prdtgrp) {
2660 ret = -ENODEV;
2661 rdt_last_cmd_puts("Directory was removed\n");
2662 goto out_unlock;
2663 }
2664
2665 if (rtype == RDTMON_GROUP &&
2666 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2667 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2668 ret = -EINVAL;
2669 rdt_last_cmd_puts("Pseudo-locking in progress\n");
2670 goto out_unlock;
2671 }
2672
2673 /* allocate the rdtgroup. */
2674 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2675 if (!rdtgrp) {
2676 ret = -ENOSPC;
2677 rdt_last_cmd_puts("Kernel out of memory\n");
2678 goto out_unlock;
2679 }
2680 *r = rdtgrp;
2681 rdtgrp->mon.parent = prdtgrp;
2682 rdtgrp->type = rtype;
2683 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2684
2685 /* kernfs creates the directory for rdtgrp */
2686 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2687 if (IS_ERR(kn)) {
2688 ret = PTR_ERR(kn);
2689 rdt_last_cmd_puts("kernfs create error\n");
2690 goto out_free_rgrp;
2691 }
2692 rdtgrp->kn = kn;
2693
2694 /*
2695 * kernfs_remove() will drop the reference count on "kn" which
2696 * will free it. But we still need it to stick around for the
2697 * rdtgroup_kn_unlock(kn} call below. Take one extra reference
2698 * here, which will be dropped inside rdtgroup_kn_unlock().
2699 */
2700 kernfs_get(kn);
2701
2702 ret = rdtgroup_kn_set_ugid(kn);
2703 if (ret) {
2704 rdt_last_cmd_puts("kernfs perm error\n");
2705 goto out_destroy;
2706 }
2707
2708 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2709 ret = rdtgroup_add_files(kn, files);
2710 if (ret) {
2711 rdt_last_cmd_puts("kernfs fill error\n");
2712 goto out_destroy;
2713 }
2714
2715 if (rdt_mon_capable) {
2716 ret = alloc_rmid();
2717 if (ret < 0) {
2718 rdt_last_cmd_puts("Out of RMIDs\n");
2719 goto out_destroy;
2720 }
2721 rdtgrp->mon.rmid = ret;
2722
2723 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2724 if (ret) {
2725 rdt_last_cmd_puts("kernfs subdir error\n");
2726 goto out_idfree;
2727 }
2728 }
2729 kernfs_activate(kn);
2730
2731 /*
2732 * The caller unlocks the prgrp_kn upon success.
2733 */
2734 return 0;
2735
2736 out_idfree:
2737 free_rmid(rdtgrp->mon.rmid);
2738 out_destroy:
2739 kernfs_remove(rdtgrp->kn);
2740 out_free_rgrp:
2741 kfree(rdtgrp);
2742 out_unlock:
2743 rdtgroup_kn_unlock(prgrp_kn);
2744 return ret;
2745 }
2746
2747 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2748 {
2749 kernfs_remove(rgrp->kn);
2750 free_rmid(rgrp->mon.rmid);
2751 kfree(rgrp);
2752 }
2753
2754 /*
2755 * Create a monitor group under "mon_groups" directory of a control
2756 * and monitor group(ctrl_mon). This is a resource group
2757 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2758 */
2759 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2760 struct kernfs_node *prgrp_kn,
2761 const char *name,
2762 umode_t mode)
2763 {
2764 struct rdtgroup *rdtgrp, *prgrp;
2765 int ret;
2766
2767 ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
2768 &rdtgrp);
2769 if (ret)
2770 return ret;
2771
2772 prgrp = rdtgrp->mon.parent;
2773 rdtgrp->closid = prgrp->closid;
2774
2775 /*
2776 * Add the rdtgrp to the list of rdtgrps the parent
2777 * ctrl_mon group has to track.
2778 */
2779 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2780
2781 rdtgroup_kn_unlock(prgrp_kn);
2782 return ret;
2783 }
2784
2785 /*
2786 * These are rdtgroups created under the root directory. Can be used
2787 * to allocate and monitor resources.
2788 */
2789 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2790 struct kernfs_node *prgrp_kn,
2791 const char *name, umode_t mode)
2792 {
2793 struct rdtgroup *rdtgrp;
2794 struct kernfs_node *kn;
2795 u32 closid;
2796 int ret;
2797
2798 ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
2799 &rdtgrp);
2800 if (ret)
2801 return ret;
2802
2803 kn = rdtgrp->kn;
2804 ret = closid_alloc();
2805 if (ret < 0) {
2806 rdt_last_cmd_puts("Out of CLOSIDs\n");
2807 goto out_common_fail;
2808 }
2809 closid = ret;
2810 ret = 0;
2811
2812 rdtgrp->closid = closid;
2813 ret = rdtgroup_init_alloc(rdtgrp);
2814 if (ret < 0)
2815 goto out_id_free;
2816
2817 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2818
2819 if (rdt_mon_capable) {
2820 /*
2821 * Create an empty mon_groups directory to hold the subset
2822 * of tasks and cpus to monitor.
2823 */
2824 ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
2825 if (ret) {
2826 rdt_last_cmd_puts("kernfs subdir error\n");
2827 goto out_del_list;
2828 }
2829 }
2830
2831 goto out_unlock;
2832
2833 out_del_list:
2834 list_del(&rdtgrp->rdtgroup_list);
2835 out_id_free:
2836 closid_free(closid);
2837 out_common_fail:
2838 mkdir_rdt_prepare_clean(rdtgrp);
2839 out_unlock:
2840 rdtgroup_kn_unlock(prgrp_kn);
2841 return ret;
2842 }
2843
2844 /*
2845 * We allow creating mon groups only with in a directory called "mon_groups"
2846 * which is present in every ctrl_mon group. Check if this is a valid
2847 * "mon_groups" directory.
2848 *
2849 * 1. The directory should be named "mon_groups".
2850 * 2. The mon group itself should "not" be named "mon_groups".
2851 * This makes sure "mon_groups" directory always has a ctrl_mon group
2852 * as parent.
2853 */
2854 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2855 {
2856 return (!strcmp(kn->name, "mon_groups") &&
2857 strcmp(name, "mon_groups"));
2858 }
2859
2860 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2861 umode_t mode)
2862 {
2863 /* Do not accept '\n' to avoid unparsable situation. */
2864 if (strchr(name, '\n'))
2865 return -EINVAL;
2866
2867 /*
2868 * If the parent directory is the root directory and RDT
2869 * allocation is supported, add a control and monitoring
2870 * subdirectory
2871 */
2872 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2873 return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);
2874
2875 /*
2876 * If RDT monitoring is supported and the parent directory is a valid
2877 * "mon_groups" directory, add a monitoring subdirectory.
2878 */
2879 if (rdt_mon_capable && is_mon_groups(parent_kn, name))
2880 return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
2881
2882 return -EPERM;
2883 }
2884
2885 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2886 cpumask_var_t tmpmask)
2887 {
2888 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
2889 int cpu;
2890
2891 /* Give any tasks back to the parent group */
2892 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
2893
2894 /* Update per cpu rmid of the moved CPUs first */
2895 for_each_cpu(cpu, &rdtgrp->cpu_mask)
2896 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2897 /*
2898 * Update the MSR on moved CPUs and CPUs which have moved
2899 * task running on them.
2900 */
2901 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2902 update_closid_rmid(tmpmask, NULL);
2903
2904 rdtgrp->flags = RDT_DELETED;
2905 free_rmid(rdtgrp->mon.rmid);
2906
2907 /*
2908 * Remove the rdtgrp from the parent ctrl_mon group's list
2909 */
2910 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
2911 list_del(&rdtgrp->mon.crdtgrp_list);
2912
2913 /*
2914 * one extra hold on this, will drop when we kfree(rdtgrp)
2915 * in rdtgroup_kn_unlock()
2916 */
2917 kernfs_get(kn);
2918 kernfs_remove(rdtgrp->kn);
2919
2920 return 0;
2921 }
2922
2923 static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
2924 struct rdtgroup *rdtgrp)
2925 {
2926 rdtgrp->flags = RDT_DELETED;
2927 list_del(&rdtgrp->rdtgroup_list);
2928
2929 /*
2930 * one extra hold on this, will drop when we kfree(rdtgrp)
2931 * in rdtgroup_kn_unlock()
2932 */
2933 kernfs_get(kn);
2934 kernfs_remove(rdtgrp->kn);
2935 return 0;
2936 }
2937
2938 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2939 cpumask_var_t tmpmask)
2940 {
2941 int cpu;
2942
2943 /* Give any tasks back to the default group */
2944 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
2945
2946 /* Give any CPUs back to the default group */
2947 cpumask_or(&rdtgroup_default.cpu_mask,
2948 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2949
2950 /* Update per cpu closid and rmid of the moved CPUs first */
2951 for_each_cpu(cpu, &rdtgrp->cpu_mask) {
2952 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
2953 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
2954 }
2955
2956 /*
2957 * Update the MSR on moved CPUs and CPUs which have moved
2958 * task running on them.
2959 */
2960 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2961 update_closid_rmid(tmpmask, NULL);
2962
2963 closid_free(rdtgrp->closid);
2964 free_rmid(rdtgrp->mon.rmid);
2965
2966 /*
2967 * Free all the child monitor group rmids.
2968 */
2969 free_all_child_rdtgrp(rdtgrp);
2970
2971 rdtgroup_ctrl_remove(kn, rdtgrp);
2972
2973 return 0;
2974 }
2975
2976 static int rdtgroup_rmdir(struct kernfs_node *kn)
2977 {
2978 struct kernfs_node *parent_kn = kn->parent;
2979 struct rdtgroup *rdtgrp;
2980 cpumask_var_t tmpmask;
2981 int ret = 0;
2982
2983 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
2984 return -ENOMEM;
2985
2986 rdtgrp = rdtgroup_kn_lock_live(kn);
2987 if (!rdtgrp) {
2988 ret = -EPERM;
2989 goto out;
2990 }
2991
2992 /*
2993 * If the rdtgroup is a ctrl_mon group and parent directory
2994 * is the root directory, remove the ctrl_mon group.
2995 *
2996 * If the rdtgroup is a mon group and parent directory
2997 * is a valid "mon_groups" directory, remove the mon group.
2998 */
2999 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn) {
3000 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3001 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3002 ret = rdtgroup_ctrl_remove(kn, rdtgrp);
3003 } else {
3004 ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
3005 }
3006 } else if (rdtgrp->type == RDTMON_GROUP &&
3007 is_mon_groups(parent_kn, kn->name)) {
3008 ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
3009 } else {
3010 ret = -EPERM;
3011 }
3012
3013 out:
3014 rdtgroup_kn_unlock(kn);
3015 free_cpumask_var(tmpmask);
3016 return ret;
3017 }
3018
3019 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3020 {
3021 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
3022 seq_puts(seq, ",cdp");
3023
3024 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
3025 seq_puts(seq, ",cdpl2");
3026
3027 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
3028 seq_puts(seq, ",mba_MBps");
3029
3030 return 0;
3031 }
3032
3033 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3034 .mkdir = rdtgroup_mkdir,
3035 .rmdir = rdtgroup_rmdir,
3036 .show_options = rdtgroup_show_options,
3037 };
3038
3039 static int __init rdtgroup_setup_root(void)
3040 {
3041 int ret;
3042
3043 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3044 KERNFS_ROOT_CREATE_DEACTIVATED |
3045 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3046 &rdtgroup_default);
3047 if (IS_ERR(rdt_root))
3048 return PTR_ERR(rdt_root);
3049
3050 mutex_lock(&rdtgroup_mutex);
3051
3052 rdtgroup_default.closid = 0;
3053 rdtgroup_default.mon.rmid = 0;
3054 rdtgroup_default.type = RDTCTRL_GROUP;
3055 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3056
3057 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3058
3059 ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
3060 if (ret) {
3061 kernfs_destroy_root(rdt_root);
3062 goto out;
3063 }
3064
3065 rdtgroup_default.kn = rdt_root->kn;
3066 kernfs_activate(rdtgroup_default.kn);
3067
3068 out:
3069 mutex_unlock(&rdtgroup_mutex);
3070
3071 return ret;
3072 }
3073
3074 /*
3075 * rdtgroup_init - rdtgroup initialization
3076 *
3077 * Setup resctrl file system including set up root, create mount point,
3078 * register rdtgroup filesystem, and initialize files under root directory.
3079 *
3080 * Return: 0 on success or -errno
3081 */
3082 int __init rdtgroup_init(void)
3083 {
3084 int ret = 0;
3085
3086 seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3087 sizeof(last_cmd_status_buf));
3088
3089 ret = rdtgroup_setup_root();
3090 if (ret)
3091 return ret;
3092
3093 ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3094 if (ret)
3095 goto cleanup_root;
3096
3097 ret = register_filesystem(&rdt_fs_type);
3098 if (ret)
3099 goto cleanup_mountpoint;
3100
3101 /*
3102 * Adding the resctrl debugfs directory here may not be ideal since
3103 * it would let the resctrl debugfs directory appear on the debugfs
3104 * filesystem before the resctrl filesystem is mounted.
3105 * It may also be ok since that would enable debugging of RDT before
3106 * resctrl is mounted.
3107 * The reason why the debugfs directory is created here and not in
3108 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
3109 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3110 * (the lockdep class of inode->i_rwsem). Other filesystem
3111 * interactions (eg. SyS_getdents) have the lock ordering:
3112 * &sb->s_type->i_mutex_key --> &mm->mmap_sem
3113 * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex
3114 * is taken, thus creating dependency:
3115 * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause
3116 * issues considering the other two lock dependencies.
3117 * By creating the debugfs directory here we avoid a dependency
3118 * that may cause deadlock (even though file operations cannot
3119 * occur until the filesystem is mounted, but I do not know how to
3120 * tell lockdep that).
3121 */
3122 debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3123
3124 return 0;
3125
3126 cleanup_mountpoint:
3127 sysfs_remove_mount_point(fs_kobj, "resctrl");
3128 cleanup_root:
3129 kernfs_destroy_root(rdt_root);
3130
3131 return ret;
3132 }
3133
3134 void __exit rdtgroup_exit(void)
3135 {
3136 debugfs_remove_recursive(debugfs_resctrl);
3137 unregister_filesystem(&rdt_fs_type);
3138 sysfs_remove_mount_point(fs_kobj, "resctrl");
3139 kernfs_destroy_root(rdt_root);
3140 }