]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - arch/x86/kernel/kprobes/core.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[thirdparty/kernel/linux.git] / arch / x86 / kernel / kprobes / core.c
1 /*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
41 */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/sched/debug.h>
49 #include <linux/extable.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 #include <linux/frame.h>
54 #include <linux/kasan.h>
55 #include <linux/moduleloader.h>
56
57 #include <asm/text-patching.h>
58 #include <asm/cacheflush.h>
59 #include <asm/desc.h>
60 #include <asm/pgtable.h>
61 #include <linux/uaccess.h>
62 #include <asm/alternative.h>
63 #include <asm/insn.h>
64 #include <asm/debugreg.h>
65 #include <asm/set_memory.h>
66
67 #include "common.h"
68
69 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
70 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
71
72 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
73
74 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
75 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
76 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
77 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
78 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
79 << (row % 32))
80 /*
81 * Undefined/reserved opcodes, conditional jump, Opcode Extension
82 * Groups, and some special opcodes can not boost.
83 * This is non-const and volatile to keep gcc from statically
84 * optimizing it out, as variable_test_bit makes gcc think only
85 * *(unsigned long*) is used.
86 */
87 static volatile u32 twobyte_is_boostable[256 / 32] = {
88 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
89 /* ---------------------------------------------- */
90 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
91 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
92 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
93 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
94 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
95 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
96 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
97 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
98 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
99 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
100 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
101 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
102 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
103 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
104 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
105 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
106 /* ----------------------------------------------- */
107 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
108 };
109 #undef W
110
111 struct kretprobe_blackpoint kretprobe_blacklist[] = {
112 {"__switch_to", }, /* This function switches only current task, but
113 doesn't switch kernel stack.*/
114 {NULL, NULL} /* Terminator */
115 };
116
117 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
118
119 static nokprobe_inline void
120 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
121 {
122 struct __arch_relative_insn {
123 u8 op;
124 s32 raddr;
125 } __packed *insn;
126
127 insn = (struct __arch_relative_insn *)dest;
128 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
129 insn->op = op;
130 }
131
132 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
133 void synthesize_reljump(void *dest, void *from, void *to)
134 {
135 __synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE);
136 }
137 NOKPROBE_SYMBOL(synthesize_reljump);
138
139 /* Insert a call instruction at address 'from', which calls address 'to'.*/
140 void synthesize_relcall(void *dest, void *from, void *to)
141 {
142 __synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE);
143 }
144 NOKPROBE_SYMBOL(synthesize_relcall);
145
146 /*
147 * Skip the prefixes of the instruction.
148 */
149 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
150 {
151 insn_attr_t attr;
152
153 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
154 while (inat_is_legacy_prefix(attr)) {
155 insn++;
156 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
157 }
158 #ifdef CONFIG_X86_64
159 if (inat_is_rex_prefix(attr))
160 insn++;
161 #endif
162 return insn;
163 }
164 NOKPROBE_SYMBOL(skip_prefixes);
165
166 /*
167 * Returns non-zero if INSN is boostable.
168 * RIP relative instructions are adjusted at copying time in 64 bits mode
169 */
170 int can_boost(struct insn *insn, void *addr)
171 {
172 kprobe_opcode_t opcode;
173
174 if (search_exception_tables((unsigned long)addr))
175 return 0; /* Page fault may occur on this address. */
176
177 /* 2nd-byte opcode */
178 if (insn->opcode.nbytes == 2)
179 return test_bit(insn->opcode.bytes[1],
180 (unsigned long *)twobyte_is_boostable);
181
182 if (insn->opcode.nbytes != 1)
183 return 0;
184
185 /* Can't boost Address-size override prefix */
186 if (unlikely(inat_is_address_size_prefix(insn->attr)))
187 return 0;
188
189 opcode = insn->opcode.bytes[0];
190
191 switch (opcode & 0xf0) {
192 case 0x60:
193 /* can't boost "bound" */
194 return (opcode != 0x62);
195 case 0x70:
196 return 0; /* can't boost conditional jump */
197 case 0x90:
198 return opcode != 0x9a; /* can't boost call far */
199 case 0xc0:
200 /* can't boost software-interruptions */
201 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
202 case 0xd0:
203 /* can boost AA* and XLAT */
204 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
205 case 0xe0:
206 /* can boost in/out and absolute jmps */
207 return ((opcode & 0x04) || opcode == 0xea);
208 case 0xf0:
209 /* clear and set flags are boostable */
210 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
211 default:
212 /* CS override prefix and call are not boostable */
213 return (opcode != 0x2e && opcode != 0x9a);
214 }
215 }
216
217 static unsigned long
218 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
219 {
220 struct kprobe *kp;
221 unsigned long faddr;
222
223 kp = get_kprobe((void *)addr);
224 faddr = ftrace_location(addr);
225 /*
226 * Addresses inside the ftrace location are refused by
227 * arch_check_ftrace_location(). Something went terribly wrong
228 * if such an address is checked here.
229 */
230 if (WARN_ON(faddr && faddr != addr))
231 return 0UL;
232 /*
233 * Use the current code if it is not modified by Kprobe
234 * and it cannot be modified by ftrace.
235 */
236 if (!kp && !faddr)
237 return addr;
238
239 /*
240 * Basically, kp->ainsn.insn has an original instruction.
241 * However, RIP-relative instruction can not do single-stepping
242 * at different place, __copy_instruction() tweaks the displacement of
243 * that instruction. In that case, we can't recover the instruction
244 * from the kp->ainsn.insn.
245 *
246 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
247 * of the first byte of the probed instruction, which is overwritten
248 * by int3. And the instruction at kp->addr is not modified by kprobes
249 * except for the first byte, we can recover the original instruction
250 * from it and kp->opcode.
251 *
252 * In case of Kprobes using ftrace, we do not have a copy of
253 * the original instruction. In fact, the ftrace location might
254 * be modified at anytime and even could be in an inconsistent state.
255 * Fortunately, we know that the original code is the ideal 5-byte
256 * long NOP.
257 */
258 if (probe_kernel_read(buf, (void *)addr,
259 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
260 return 0UL;
261
262 if (faddr)
263 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
264 else
265 buf[0] = kp->opcode;
266 return (unsigned long)buf;
267 }
268
269 /*
270 * Recover the probed instruction at addr for further analysis.
271 * Caller must lock kprobes by kprobe_mutex, or disable preemption
272 * for preventing to release referencing kprobes.
273 * Returns zero if the instruction can not get recovered (or access failed).
274 */
275 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
276 {
277 unsigned long __addr;
278
279 __addr = __recover_optprobed_insn(buf, addr);
280 if (__addr != addr)
281 return __addr;
282
283 return __recover_probed_insn(buf, addr);
284 }
285
286 /* Check if paddr is at an instruction boundary */
287 static int can_probe(unsigned long paddr)
288 {
289 unsigned long addr, __addr, offset = 0;
290 struct insn insn;
291 kprobe_opcode_t buf[MAX_INSN_SIZE];
292
293 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
294 return 0;
295
296 /* Decode instructions */
297 addr = paddr - offset;
298 while (addr < paddr) {
299 /*
300 * Check if the instruction has been modified by another
301 * kprobe, in which case we replace the breakpoint by the
302 * original instruction in our buffer.
303 * Also, jump optimization will change the breakpoint to
304 * relative-jump. Since the relative-jump itself is
305 * normally used, we just go through if there is no kprobe.
306 */
307 __addr = recover_probed_instruction(buf, addr);
308 if (!__addr)
309 return 0;
310 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
311 insn_get_length(&insn);
312
313 /*
314 * Another debugging subsystem might insert this breakpoint.
315 * In that case, we can't recover it.
316 */
317 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
318 return 0;
319 addr += insn.length;
320 }
321
322 return (addr == paddr);
323 }
324
325 /*
326 * Returns non-zero if opcode modifies the interrupt flag.
327 */
328 static int is_IF_modifier(kprobe_opcode_t *insn)
329 {
330 /* Skip prefixes */
331 insn = skip_prefixes(insn);
332
333 switch (*insn) {
334 case 0xfa: /* cli */
335 case 0xfb: /* sti */
336 case 0xcf: /* iret/iretd */
337 case 0x9d: /* popf/popfd */
338 return 1;
339 }
340
341 return 0;
342 }
343
344 /*
345 * Copy an instruction with recovering modified instruction by kprobes
346 * and adjust the displacement if the instruction uses the %rip-relative
347 * addressing mode. Note that since @real will be the final place of copied
348 * instruction, displacement must be adjust by @real, not @dest.
349 * This returns the length of copied instruction, or 0 if it has an error.
350 */
351 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
352 {
353 kprobe_opcode_t buf[MAX_INSN_SIZE];
354 unsigned long recovered_insn =
355 recover_probed_instruction(buf, (unsigned long)src);
356
357 if (!recovered_insn || !insn)
358 return 0;
359
360 /* This can access kernel text if given address is not recovered */
361 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
362 return 0;
363
364 kernel_insn_init(insn, dest, MAX_INSN_SIZE);
365 insn_get_length(insn);
366
367 /* Another subsystem puts a breakpoint, failed to recover */
368 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
369 return 0;
370
371 /* We should not singlestep on the exception masking instructions */
372 if (insn_masking_exception(insn))
373 return 0;
374
375 #ifdef CONFIG_X86_64
376 /* Only x86_64 has RIP relative instructions */
377 if (insn_rip_relative(insn)) {
378 s64 newdisp;
379 u8 *disp;
380 /*
381 * The copied instruction uses the %rip-relative addressing
382 * mode. Adjust the displacement for the difference between
383 * the original location of this instruction and the location
384 * of the copy that will actually be run. The tricky bit here
385 * is making sure that the sign extension happens correctly in
386 * this calculation, since we need a signed 32-bit result to
387 * be sign-extended to 64 bits when it's added to the %rip
388 * value and yield the same 64-bit result that the sign-
389 * extension of the original signed 32-bit displacement would
390 * have given.
391 */
392 newdisp = (u8 *) src + (s64) insn->displacement.value
393 - (u8 *) real;
394 if ((s64) (s32) newdisp != newdisp) {
395 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
396 return 0;
397 }
398 disp = (u8 *) dest + insn_offset_displacement(insn);
399 *(s32 *) disp = (s32) newdisp;
400 }
401 #endif
402 return insn->length;
403 }
404
405 /* Prepare reljump right after instruction to boost */
406 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
407 struct insn *insn)
408 {
409 int len = insn->length;
410
411 if (can_boost(insn, p->addr) &&
412 MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) {
413 /*
414 * These instructions can be executed directly if it
415 * jumps back to correct address.
416 */
417 synthesize_reljump(buf + len, p->ainsn.insn + len,
418 p->addr + insn->length);
419 len += RELATIVEJUMP_SIZE;
420 p->ainsn.boostable = true;
421 } else {
422 p->ainsn.boostable = false;
423 }
424
425 return len;
426 }
427
428 /* Make page to RO mode when allocate it */
429 void *alloc_insn_page(void)
430 {
431 void *page;
432
433 page = module_alloc(PAGE_SIZE);
434 if (page)
435 set_memory_ro((unsigned long)page & PAGE_MASK, 1);
436
437 return page;
438 }
439
440 /* Recover page to RW mode before releasing it */
441 void free_insn_page(void *page)
442 {
443 set_memory_nx((unsigned long)page & PAGE_MASK, 1);
444 set_memory_rw((unsigned long)page & PAGE_MASK, 1);
445 module_memfree(page);
446 }
447
448 static int arch_copy_kprobe(struct kprobe *p)
449 {
450 struct insn insn;
451 kprobe_opcode_t buf[MAX_INSN_SIZE];
452 int len;
453
454 /* Copy an instruction with recovering if other optprobe modifies it.*/
455 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
456 if (!len)
457 return -EINVAL;
458
459 /*
460 * __copy_instruction can modify the displacement of the instruction,
461 * but it doesn't affect boostable check.
462 */
463 len = prepare_boost(buf, p, &insn);
464
465 /* Check whether the instruction modifies Interrupt Flag or not */
466 p->ainsn.if_modifier = is_IF_modifier(buf);
467
468 /* Also, displacement change doesn't affect the first byte */
469 p->opcode = buf[0];
470
471 /* OK, write back the instruction(s) into ROX insn buffer */
472 text_poke(p->ainsn.insn, buf, len);
473
474 return 0;
475 }
476
477 int arch_prepare_kprobe(struct kprobe *p)
478 {
479 int ret;
480
481 if (alternatives_text_reserved(p->addr, p->addr))
482 return -EINVAL;
483
484 if (!can_probe((unsigned long)p->addr))
485 return -EILSEQ;
486 /* insn: must be on special executable page on x86. */
487 p->ainsn.insn = get_insn_slot();
488 if (!p->ainsn.insn)
489 return -ENOMEM;
490
491 ret = arch_copy_kprobe(p);
492 if (ret) {
493 free_insn_slot(p->ainsn.insn, 0);
494 p->ainsn.insn = NULL;
495 }
496
497 return ret;
498 }
499
500 void arch_arm_kprobe(struct kprobe *p)
501 {
502 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
503 }
504
505 void arch_disarm_kprobe(struct kprobe *p)
506 {
507 text_poke(p->addr, &p->opcode, 1);
508 }
509
510 void arch_remove_kprobe(struct kprobe *p)
511 {
512 if (p->ainsn.insn) {
513 free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
514 p->ainsn.insn = NULL;
515 }
516 }
517
518 static nokprobe_inline void
519 save_previous_kprobe(struct kprobe_ctlblk *kcb)
520 {
521 kcb->prev_kprobe.kp = kprobe_running();
522 kcb->prev_kprobe.status = kcb->kprobe_status;
523 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
524 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
525 }
526
527 static nokprobe_inline void
528 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
529 {
530 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
531 kcb->kprobe_status = kcb->prev_kprobe.status;
532 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
533 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
534 }
535
536 static nokprobe_inline void
537 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
538 struct kprobe_ctlblk *kcb)
539 {
540 __this_cpu_write(current_kprobe, p);
541 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
542 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
543 if (p->ainsn.if_modifier)
544 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
545 }
546
547 static nokprobe_inline void clear_btf(void)
548 {
549 if (test_thread_flag(TIF_BLOCKSTEP)) {
550 unsigned long debugctl = get_debugctlmsr();
551
552 debugctl &= ~DEBUGCTLMSR_BTF;
553 update_debugctlmsr(debugctl);
554 }
555 }
556
557 static nokprobe_inline void restore_btf(void)
558 {
559 if (test_thread_flag(TIF_BLOCKSTEP)) {
560 unsigned long debugctl = get_debugctlmsr();
561
562 debugctl |= DEBUGCTLMSR_BTF;
563 update_debugctlmsr(debugctl);
564 }
565 }
566
567 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
568 {
569 unsigned long *sara = stack_addr(regs);
570
571 ri->ret_addr = (kprobe_opcode_t *) *sara;
572
573 /* Replace the return addr with trampoline addr */
574 *sara = (unsigned long) &kretprobe_trampoline;
575 }
576 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
577
578 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
579 struct kprobe_ctlblk *kcb, int reenter)
580 {
581 if (setup_detour_execution(p, regs, reenter))
582 return;
583
584 #if !defined(CONFIG_PREEMPT)
585 if (p->ainsn.boostable && !p->post_handler) {
586 /* Boost up -- we can execute copied instructions directly */
587 if (!reenter)
588 reset_current_kprobe();
589 /*
590 * Reentering boosted probe doesn't reset current_kprobe,
591 * nor set current_kprobe, because it doesn't use single
592 * stepping.
593 */
594 regs->ip = (unsigned long)p->ainsn.insn;
595 return;
596 }
597 #endif
598 if (reenter) {
599 save_previous_kprobe(kcb);
600 set_current_kprobe(p, regs, kcb);
601 kcb->kprobe_status = KPROBE_REENTER;
602 } else
603 kcb->kprobe_status = KPROBE_HIT_SS;
604 /* Prepare real single stepping */
605 clear_btf();
606 regs->flags |= X86_EFLAGS_TF;
607 regs->flags &= ~X86_EFLAGS_IF;
608 /* single step inline if the instruction is an int3 */
609 if (p->opcode == BREAKPOINT_INSTRUCTION)
610 regs->ip = (unsigned long)p->addr;
611 else
612 regs->ip = (unsigned long)p->ainsn.insn;
613 }
614 NOKPROBE_SYMBOL(setup_singlestep);
615
616 /*
617 * We have reentered the kprobe_handler(), since another probe was hit while
618 * within the handler. We save the original kprobes variables and just single
619 * step on the instruction of the new probe without calling any user handlers.
620 */
621 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
622 struct kprobe_ctlblk *kcb)
623 {
624 switch (kcb->kprobe_status) {
625 case KPROBE_HIT_SSDONE:
626 case KPROBE_HIT_ACTIVE:
627 case KPROBE_HIT_SS:
628 kprobes_inc_nmissed_count(p);
629 setup_singlestep(p, regs, kcb, 1);
630 break;
631 case KPROBE_REENTER:
632 /* A probe has been hit in the codepath leading up to, or just
633 * after, single-stepping of a probed instruction. This entire
634 * codepath should strictly reside in .kprobes.text section.
635 * Raise a BUG or we'll continue in an endless reentering loop
636 * and eventually a stack overflow.
637 */
638 pr_err("Unrecoverable kprobe detected.\n");
639 dump_kprobe(p);
640 BUG();
641 default:
642 /* impossible cases */
643 WARN_ON(1);
644 return 0;
645 }
646
647 return 1;
648 }
649 NOKPROBE_SYMBOL(reenter_kprobe);
650
651 /*
652 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
653 * remain disabled throughout this function.
654 */
655 int kprobe_int3_handler(struct pt_regs *regs)
656 {
657 kprobe_opcode_t *addr;
658 struct kprobe *p;
659 struct kprobe_ctlblk *kcb;
660
661 if (user_mode(regs))
662 return 0;
663
664 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
665 /*
666 * We don't want to be preempted for the entire duration of kprobe
667 * processing. Since int3 and debug trap disables irqs and we clear
668 * IF while singlestepping, it must be no preemptible.
669 */
670
671 kcb = get_kprobe_ctlblk();
672 p = get_kprobe(addr);
673
674 if (p) {
675 if (kprobe_running()) {
676 if (reenter_kprobe(p, regs, kcb))
677 return 1;
678 } else {
679 set_current_kprobe(p, regs, kcb);
680 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
681
682 /*
683 * If we have no pre-handler or it returned 0, we
684 * continue with normal processing. If we have a
685 * pre-handler and it returned non-zero, that means
686 * user handler setup registers to exit to another
687 * instruction, we must skip the single stepping.
688 */
689 if (!p->pre_handler || !p->pre_handler(p, regs))
690 setup_singlestep(p, regs, kcb, 0);
691 else
692 reset_current_kprobe();
693 return 1;
694 }
695 } else if (*addr != BREAKPOINT_INSTRUCTION) {
696 /*
697 * The breakpoint instruction was removed right
698 * after we hit it. Another cpu has removed
699 * either a probepoint or a debugger breakpoint
700 * at this address. In either case, no further
701 * handling of this interrupt is appropriate.
702 * Back up over the (now missing) int3 and run
703 * the original instruction.
704 */
705 regs->ip = (unsigned long)addr;
706 return 1;
707 } /* else: not a kprobe fault; let the kernel handle it */
708
709 return 0;
710 }
711 NOKPROBE_SYMBOL(kprobe_int3_handler);
712
713 /*
714 * When a retprobed function returns, this code saves registers and
715 * calls trampoline_handler() runs, which calls the kretprobe's handler.
716 */
717 asm(
718 ".global kretprobe_trampoline\n"
719 ".type kretprobe_trampoline, @function\n"
720 "kretprobe_trampoline:\n"
721 #ifdef CONFIG_X86_64
722 /* We don't bother saving the ss register */
723 " pushq %rsp\n"
724 " pushfq\n"
725 SAVE_REGS_STRING
726 " movq %rsp, %rdi\n"
727 " call trampoline_handler\n"
728 /* Replace saved sp with true return address. */
729 " movq %rax, 152(%rsp)\n"
730 RESTORE_REGS_STRING
731 " popfq\n"
732 #else
733 " pushf\n"
734 SAVE_REGS_STRING
735 " movl %esp, %eax\n"
736 " call trampoline_handler\n"
737 /* Move flags to cs */
738 " movl 56(%esp), %edx\n"
739 " movl %edx, 52(%esp)\n"
740 /* Replace saved flags with true return address. */
741 " movl %eax, 56(%esp)\n"
742 RESTORE_REGS_STRING
743 " popf\n"
744 #endif
745 " ret\n"
746 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
747 );
748 NOKPROBE_SYMBOL(kretprobe_trampoline);
749 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
750
751 /*
752 * Called from kretprobe_trampoline
753 */
754 static __used void *trampoline_handler(struct pt_regs *regs)
755 {
756 struct kretprobe_instance *ri = NULL;
757 struct hlist_head *head, empty_rp;
758 struct hlist_node *tmp;
759 unsigned long flags, orig_ret_address = 0;
760 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
761 kprobe_opcode_t *correct_ret_addr = NULL;
762
763 INIT_HLIST_HEAD(&empty_rp);
764 kretprobe_hash_lock(current, &head, &flags);
765 /* fixup registers */
766 #ifdef CONFIG_X86_64
767 regs->cs = __KERNEL_CS;
768 #else
769 regs->cs = __KERNEL_CS | get_kernel_rpl();
770 regs->gs = 0;
771 #endif
772 regs->ip = trampoline_address;
773 regs->orig_ax = ~0UL;
774
775 /*
776 * It is possible to have multiple instances associated with a given
777 * task either because multiple functions in the call path have
778 * return probes installed on them, and/or more than one
779 * return probe was registered for a target function.
780 *
781 * We can handle this because:
782 * - instances are always pushed into the head of the list
783 * - when multiple return probes are registered for the same
784 * function, the (chronologically) first instance's ret_addr
785 * will be the real return address, and all the rest will
786 * point to kretprobe_trampoline.
787 */
788 hlist_for_each_entry(ri, head, hlist) {
789 if (ri->task != current)
790 /* another task is sharing our hash bucket */
791 continue;
792
793 orig_ret_address = (unsigned long)ri->ret_addr;
794
795 if (orig_ret_address != trampoline_address)
796 /*
797 * This is the real return address. Any other
798 * instances associated with this task are for
799 * other calls deeper on the call stack
800 */
801 break;
802 }
803
804 kretprobe_assert(ri, orig_ret_address, trampoline_address);
805
806 correct_ret_addr = ri->ret_addr;
807 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
808 if (ri->task != current)
809 /* another task is sharing our hash bucket */
810 continue;
811
812 orig_ret_address = (unsigned long)ri->ret_addr;
813 if (ri->rp && ri->rp->handler) {
814 __this_cpu_write(current_kprobe, &ri->rp->kp);
815 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
816 ri->ret_addr = correct_ret_addr;
817 ri->rp->handler(ri, regs);
818 __this_cpu_write(current_kprobe, NULL);
819 }
820
821 recycle_rp_inst(ri, &empty_rp);
822
823 if (orig_ret_address != trampoline_address)
824 /*
825 * This is the real return address. Any other
826 * instances associated with this task are for
827 * other calls deeper on the call stack
828 */
829 break;
830 }
831
832 kretprobe_hash_unlock(current, &flags);
833
834 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
835 hlist_del(&ri->hlist);
836 kfree(ri);
837 }
838 return (void *)orig_ret_address;
839 }
840 NOKPROBE_SYMBOL(trampoline_handler);
841
842 /*
843 * Called after single-stepping. p->addr is the address of the
844 * instruction whose first byte has been replaced by the "int 3"
845 * instruction. To avoid the SMP problems that can occur when we
846 * temporarily put back the original opcode to single-step, we
847 * single-stepped a copy of the instruction. The address of this
848 * copy is p->ainsn.insn.
849 *
850 * This function prepares to return from the post-single-step
851 * interrupt. We have to fix up the stack as follows:
852 *
853 * 0) Except in the case of absolute or indirect jump or call instructions,
854 * the new ip is relative to the copied instruction. We need to make
855 * it relative to the original instruction.
856 *
857 * 1) If the single-stepped instruction was pushfl, then the TF and IF
858 * flags are set in the just-pushed flags, and may need to be cleared.
859 *
860 * 2) If the single-stepped instruction was a call, the return address
861 * that is atop the stack is the address following the copied instruction.
862 * We need to make it the address following the original instruction.
863 *
864 * If this is the first time we've single-stepped the instruction at
865 * this probepoint, and the instruction is boostable, boost it: add a
866 * jump instruction after the copied instruction, that jumps to the next
867 * instruction after the probepoint.
868 */
869 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
870 struct kprobe_ctlblk *kcb)
871 {
872 unsigned long *tos = stack_addr(regs);
873 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
874 unsigned long orig_ip = (unsigned long)p->addr;
875 kprobe_opcode_t *insn = p->ainsn.insn;
876
877 /* Skip prefixes */
878 insn = skip_prefixes(insn);
879
880 regs->flags &= ~X86_EFLAGS_TF;
881 switch (*insn) {
882 case 0x9c: /* pushfl */
883 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
884 *tos |= kcb->kprobe_old_flags;
885 break;
886 case 0xc2: /* iret/ret/lret */
887 case 0xc3:
888 case 0xca:
889 case 0xcb:
890 case 0xcf:
891 case 0xea: /* jmp absolute -- ip is correct */
892 /* ip is already adjusted, no more changes required */
893 p->ainsn.boostable = true;
894 goto no_change;
895 case 0xe8: /* call relative - Fix return addr */
896 *tos = orig_ip + (*tos - copy_ip);
897 break;
898 #ifdef CONFIG_X86_32
899 case 0x9a: /* call absolute -- same as call absolute, indirect */
900 *tos = orig_ip + (*tos - copy_ip);
901 goto no_change;
902 #endif
903 case 0xff:
904 if ((insn[1] & 0x30) == 0x10) {
905 /*
906 * call absolute, indirect
907 * Fix return addr; ip is correct.
908 * But this is not boostable
909 */
910 *tos = orig_ip + (*tos - copy_ip);
911 goto no_change;
912 } else if (((insn[1] & 0x31) == 0x20) ||
913 ((insn[1] & 0x31) == 0x21)) {
914 /*
915 * jmp near and far, absolute indirect
916 * ip is correct. And this is boostable
917 */
918 p->ainsn.boostable = true;
919 goto no_change;
920 }
921 default:
922 break;
923 }
924
925 regs->ip += orig_ip - copy_ip;
926
927 no_change:
928 restore_btf();
929 }
930 NOKPROBE_SYMBOL(resume_execution);
931
932 /*
933 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
934 * remain disabled throughout this function.
935 */
936 int kprobe_debug_handler(struct pt_regs *regs)
937 {
938 struct kprobe *cur = kprobe_running();
939 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
940
941 if (!cur)
942 return 0;
943
944 resume_execution(cur, regs, kcb);
945 regs->flags |= kcb->kprobe_saved_flags;
946
947 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
948 kcb->kprobe_status = KPROBE_HIT_SSDONE;
949 cur->post_handler(cur, regs, 0);
950 }
951
952 /* Restore back the original saved kprobes variables and continue. */
953 if (kcb->kprobe_status == KPROBE_REENTER) {
954 restore_previous_kprobe(kcb);
955 goto out;
956 }
957 reset_current_kprobe();
958 out:
959 /*
960 * if somebody else is singlestepping across a probe point, flags
961 * will have TF set, in which case, continue the remaining processing
962 * of do_debug, as if this is not a probe hit.
963 */
964 if (regs->flags & X86_EFLAGS_TF)
965 return 0;
966
967 return 1;
968 }
969 NOKPROBE_SYMBOL(kprobe_debug_handler);
970
971 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
972 {
973 struct kprobe *cur = kprobe_running();
974 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
975
976 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
977 /* This must happen on single-stepping */
978 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
979 kcb->kprobe_status != KPROBE_REENTER);
980 /*
981 * We are here because the instruction being single
982 * stepped caused a page fault. We reset the current
983 * kprobe and the ip points back to the probe address
984 * and allow the page fault handler to continue as a
985 * normal page fault.
986 */
987 regs->ip = (unsigned long)cur->addr;
988 /*
989 * Trap flag (TF) has been set here because this fault
990 * happened where the single stepping will be done.
991 * So clear it by resetting the current kprobe:
992 */
993 regs->flags &= ~X86_EFLAGS_TF;
994
995 /*
996 * If the TF flag was set before the kprobe hit,
997 * don't touch it:
998 */
999 regs->flags |= kcb->kprobe_old_flags;
1000
1001 if (kcb->kprobe_status == KPROBE_REENTER)
1002 restore_previous_kprobe(kcb);
1003 else
1004 reset_current_kprobe();
1005 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1006 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1007 /*
1008 * We increment the nmissed count for accounting,
1009 * we can also use npre/npostfault count for accounting
1010 * these specific fault cases.
1011 */
1012 kprobes_inc_nmissed_count(cur);
1013
1014 /*
1015 * We come here because instructions in the pre/post
1016 * handler caused the page_fault, this could happen
1017 * if handler tries to access user space by
1018 * copy_from_user(), get_user() etc. Let the
1019 * user-specified handler try to fix it first.
1020 */
1021 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1022 return 1;
1023 }
1024
1025 return 0;
1026 }
1027 NOKPROBE_SYMBOL(kprobe_fault_handler);
1028
1029 int __init arch_populate_kprobe_blacklist(void)
1030 {
1031 int ret;
1032
1033 ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
1034 (unsigned long)__irqentry_text_end);
1035 if (ret)
1036 return ret;
1037
1038 return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1039 (unsigned long)__entry_text_end);
1040 }
1041
1042 int __init arch_init_kprobes(void)
1043 {
1044 return 0;
1045 }
1046
1047 int arch_trampoline_kprobe(struct kprobe *p)
1048 {
1049 return 0;
1050 }