]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - block/bio.c
block: use bio_add_page in bio_iov_iter_get_pages
[thirdparty/kernel/linux.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <linux/blk-cgroup.h>
32
33 #include <trace/events/block.h>
34 #include "blk.h"
35 #include "blk-rq-qos.h"
36
37 /*
38 * Test patch to inline a certain number of bi_io_vec's inside the bio
39 * itself, to shrink a bio data allocation from two mempool calls to one
40 */
41 #define BIO_INLINE_VECS 4
42
43 /*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
48 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
49 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
50 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
51 };
52 #undef BV
53
54 /*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
58 struct bio_set fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
60
61 /*
62 * Our slab pool management
63 */
64 struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69 };
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
73
74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75 {
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
78 struct bio_slab *bslab, *new_bio_slabs;
79 unsigned int new_bio_slab_max;
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
86 bslab = &bio_slabs[i];
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
102 new_bio_slab_max = bio_slab_max << 1;
103 new_bio_slabs = krealloc(bio_slabs,
104 new_bio_slab_max * sizeof(struct bio_slab),
105 GFP_KERNEL);
106 if (!new_bio_slabs)
107 goto out_unlock;
108 bio_slab_max = new_bio_slab_max;
109 bio_slabs = new_bio_slabs;
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 SLAB_HWCACHE_ALIGN, NULL);
119 if (!slab)
120 goto out_unlock;
121
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125 out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128 }
129
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155 out:
156 mutex_unlock(&bio_slab_lock);
157 }
158
159 unsigned int bvec_nr_vecs(unsigned short idx)
160 {
161 return bvec_slabs[--idx].nr_vecs;
162 }
163
164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
165 {
166 if (!idx)
167 return;
168 idx--;
169
170 BIO_BUG_ON(idx >= BVEC_POOL_NR);
171
172 if (idx == BVEC_POOL_MAX) {
173 mempool_free(bv, pool);
174 } else {
175 struct biovec_slab *bvs = bvec_slabs + idx;
176
177 kmem_cache_free(bvs->slab, bv);
178 }
179 }
180
181 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 mempool_t *pool)
183 {
184 struct bio_vec *bvl;
185
186 /*
187 * see comment near bvec_array define!
188 */
189 switch (nr) {
190 case 1:
191 *idx = 0;
192 break;
193 case 2 ... 4:
194 *idx = 1;
195 break;
196 case 5 ... 16:
197 *idx = 2;
198 break;
199 case 17 ... 64:
200 *idx = 3;
201 break;
202 case 65 ... 128:
203 *idx = 4;
204 break;
205 case 129 ... BIO_MAX_PAGES:
206 *idx = 5;
207 break;
208 default:
209 return NULL;
210 }
211
212 /*
213 * idx now points to the pool we want to allocate from. only the
214 * 1-vec entry pool is mempool backed.
215 */
216 if (*idx == BVEC_POOL_MAX) {
217 fallback:
218 bvl = mempool_alloc(pool, gfp_mask);
219 } else {
220 struct biovec_slab *bvs = bvec_slabs + *idx;
221 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
222
223 /*
224 * Make this allocation restricted and don't dump info on
225 * allocation failures, since we'll fallback to the mempool
226 * in case of failure.
227 */
228 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
229
230 /*
231 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
232 * is set, retry with the 1-entry mempool
233 */
234 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
235 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
236 *idx = BVEC_POOL_MAX;
237 goto fallback;
238 }
239 }
240
241 (*idx)++;
242 return bvl;
243 }
244
245 void bio_uninit(struct bio *bio)
246 {
247 bio_disassociate_task(bio);
248 }
249 EXPORT_SYMBOL(bio_uninit);
250
251 static void bio_free(struct bio *bio)
252 {
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
256 bio_uninit(bio);
257
258 if (bs) {
259 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
265 p -= bs->front_pad;
266
267 mempool_free(p, &bs->bio_pool);
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
272 }
273
274 /*
275 * Users of this function have their own bio allocation. Subsequently,
276 * they must remember to pair any call to bio_init() with bio_uninit()
277 * when IO has completed, or when the bio is released.
278 */
279 void bio_init(struct bio *bio, struct bio_vec *table,
280 unsigned short max_vecs)
281 {
282 memset(bio, 0, sizeof(*bio));
283 atomic_set(&bio->__bi_remaining, 1);
284 atomic_set(&bio->__bi_cnt, 1);
285
286 bio->bi_io_vec = table;
287 bio->bi_max_vecs = max_vecs;
288 }
289 EXPORT_SYMBOL(bio_init);
290
291 /**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301 void bio_reset(struct bio *bio)
302 {
303 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304
305 bio_uninit(bio);
306
307 memset(bio, 0, BIO_RESET_BYTES);
308 bio->bi_flags = flags;
309 atomic_set(&bio->__bi_remaining, 1);
310 }
311 EXPORT_SYMBOL(bio_reset);
312
313 static struct bio *__bio_chain_endio(struct bio *bio)
314 {
315 struct bio *parent = bio->bi_private;
316
317 if (!parent->bi_status)
318 parent->bi_status = bio->bi_status;
319 bio_put(bio);
320 return parent;
321 }
322
323 static void bio_chain_endio(struct bio *bio)
324 {
325 bio_endio(__bio_chain_endio(bio));
326 }
327
328 /**
329 * bio_chain - chain bio completions
330 * @bio: the target bio
331 * @parent: the @bio's parent bio
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
339 void bio_chain(struct bio *bio, struct bio *parent)
340 {
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
345 bio_inc_remaining(parent);
346 }
347 EXPORT_SYMBOL(bio_chain);
348
349 static void bio_alloc_rescue(struct work_struct *work)
350 {
351 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 struct bio *bio;
353
354 while (1) {
355 spin_lock(&bs->rescue_lock);
356 bio = bio_list_pop(&bs->rescue_list);
357 spin_unlock(&bs->rescue_lock);
358
359 if (!bio)
360 break;
361
362 generic_make_request(bio);
363 }
364 }
365
366 static void punt_bios_to_rescuer(struct bio_set *bs)
367 {
368 struct bio_list punt, nopunt;
369 struct bio *bio;
370
371 if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 return;
373 /*
374 * In order to guarantee forward progress we must punt only bios that
375 * were allocated from this bio_set; otherwise, if there was a bio on
376 * there for a stacking driver higher up in the stack, processing it
377 * could require allocating bios from this bio_set, and doing that from
378 * our own rescuer would be bad.
379 *
380 * Since bio lists are singly linked, pop them all instead of trying to
381 * remove from the middle of the list:
382 */
383
384 bio_list_init(&punt);
385 bio_list_init(&nopunt);
386
387 while ((bio = bio_list_pop(&current->bio_list[0])))
388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
389 current->bio_list[0] = nopunt;
390
391 bio_list_init(&nopunt);
392 while ((bio = bio_list_pop(&current->bio_list[1])))
393 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 current->bio_list[1] = nopunt;
395
396 spin_lock(&bs->rescue_lock);
397 bio_list_merge(&bs->rescue_list, &punt);
398 spin_unlock(&bs->rescue_lock);
399
400 queue_work(bs->rescue_workqueue, &bs->rescue_work);
401 }
402
403 /**
404 * bio_alloc_bioset - allocate a bio for I/O
405 * @gfp_mask: the GFP_* mask given to the slab allocator
406 * @nr_iovecs: number of iovecs to pre-allocate
407 * @bs: the bio_set to allocate from.
408 *
409 * Description:
410 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411 * backed by the @bs's mempool.
412 *
413 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414 * always be able to allocate a bio. This is due to the mempool guarantees.
415 * To make this work, callers must never allocate more than 1 bio at a time
416 * from this pool. Callers that need to allocate more than 1 bio must always
417 * submit the previously allocated bio for IO before attempting to allocate
418 * a new one. Failure to do so can cause deadlocks under memory pressure.
419 *
420 * Note that when running under generic_make_request() (i.e. any block
421 * driver), bios are not submitted until after you return - see the code in
422 * generic_make_request() that converts recursion into iteration, to prevent
423 * stack overflows.
424 *
425 * This would normally mean allocating multiple bios under
426 * generic_make_request() would be susceptible to deadlocks, but we have
427 * deadlock avoidance code that resubmits any blocked bios from a rescuer
428 * thread.
429 *
430 * However, we do not guarantee forward progress for allocations from other
431 * mempools. Doing multiple allocations from the same mempool under
432 * generic_make_request() should be avoided - instead, use bio_set's front_pad
433 * for per bio allocations.
434 *
435 * RETURNS:
436 * Pointer to new bio on success, NULL on failure.
437 */
438 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 struct bio_set *bs)
440 {
441 gfp_t saved_gfp = gfp_mask;
442 unsigned front_pad;
443 unsigned inline_vecs;
444 struct bio_vec *bvl = NULL;
445 struct bio *bio;
446 void *p;
447
448 if (!bs) {
449 if (nr_iovecs > UIO_MAXIOV)
450 return NULL;
451
452 p = kmalloc(sizeof(struct bio) +
453 nr_iovecs * sizeof(struct bio_vec),
454 gfp_mask);
455 front_pad = 0;
456 inline_vecs = nr_iovecs;
457 } else {
458 /* should not use nobvec bioset for nr_iovecs > 0 */
459 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 nr_iovecs > 0))
461 return NULL;
462 /*
463 * generic_make_request() converts recursion to iteration; this
464 * means if we're running beneath it, any bios we allocate and
465 * submit will not be submitted (and thus freed) until after we
466 * return.
467 *
468 * This exposes us to a potential deadlock if we allocate
469 * multiple bios from the same bio_set() while running
470 * underneath generic_make_request(). If we were to allocate
471 * multiple bios (say a stacking block driver that was splitting
472 * bios), we would deadlock if we exhausted the mempool's
473 * reserve.
474 *
475 * We solve this, and guarantee forward progress, with a rescuer
476 * workqueue per bio_set. If we go to allocate and there are
477 * bios on current->bio_list, we first try the allocation
478 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 * bios we would be blocking to the rescuer workqueue before
480 * we retry with the original gfp_flags.
481 */
482
483 if (current->bio_list &&
484 (!bio_list_empty(&current->bio_list[0]) ||
485 !bio_list_empty(&current->bio_list[1])) &&
486 bs->rescue_workqueue)
487 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
488
489 p = mempool_alloc(&bs->bio_pool, gfp_mask);
490 if (!p && gfp_mask != saved_gfp) {
491 punt_bios_to_rescuer(bs);
492 gfp_mask = saved_gfp;
493 p = mempool_alloc(&bs->bio_pool, gfp_mask);
494 }
495
496 front_pad = bs->front_pad;
497 inline_vecs = BIO_INLINE_VECS;
498 }
499
500 if (unlikely(!p))
501 return NULL;
502
503 bio = p + front_pad;
504 bio_init(bio, NULL, 0);
505
506 if (nr_iovecs > inline_vecs) {
507 unsigned long idx = 0;
508
509 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
510 if (!bvl && gfp_mask != saved_gfp) {
511 punt_bios_to_rescuer(bs);
512 gfp_mask = saved_gfp;
513 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
514 }
515
516 if (unlikely(!bvl))
517 goto err_free;
518
519 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
520 } else if (nr_iovecs) {
521 bvl = bio->bi_inline_vecs;
522 }
523
524 bio->bi_pool = bs;
525 bio->bi_max_vecs = nr_iovecs;
526 bio->bi_io_vec = bvl;
527 return bio;
528
529 err_free:
530 mempool_free(p, &bs->bio_pool);
531 return NULL;
532 }
533 EXPORT_SYMBOL(bio_alloc_bioset);
534
535 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
536 {
537 unsigned long flags;
538 struct bio_vec bv;
539 struct bvec_iter iter;
540
541 __bio_for_each_segment(bv, bio, iter, start) {
542 char *data = bvec_kmap_irq(&bv, &flags);
543 memset(data, 0, bv.bv_len);
544 flush_dcache_page(bv.bv_page);
545 bvec_kunmap_irq(data, &flags);
546 }
547 }
548 EXPORT_SYMBOL(zero_fill_bio_iter);
549
550 /**
551 * bio_put - release a reference to a bio
552 * @bio: bio to release reference to
553 *
554 * Description:
555 * Put a reference to a &struct bio, either one you have gotten with
556 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
557 **/
558 void bio_put(struct bio *bio)
559 {
560 if (!bio_flagged(bio, BIO_REFFED))
561 bio_free(bio);
562 else {
563 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564
565 /*
566 * last put frees it
567 */
568 if (atomic_dec_and_test(&bio->__bi_cnt))
569 bio_free(bio);
570 }
571 }
572 EXPORT_SYMBOL(bio_put);
573
574 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
575 {
576 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 blk_recount_segments(q, bio);
578
579 return bio->bi_phys_segments;
580 }
581 EXPORT_SYMBOL(bio_phys_segments);
582
583 /**
584 * __bio_clone_fast - clone a bio that shares the original bio's biovec
585 * @bio: destination bio
586 * @bio_src: bio to clone
587 *
588 * Clone a &bio. Caller will own the returned bio, but not
589 * the actual data it points to. Reference count of returned
590 * bio will be one.
591 *
592 * Caller must ensure that @bio_src is not freed before @bio.
593 */
594 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
595 {
596 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
597
598 /*
599 * most users will be overriding ->bi_disk with a new target,
600 * so we don't set nor calculate new physical/hw segment counts here
601 */
602 bio->bi_disk = bio_src->bi_disk;
603 bio->bi_partno = bio_src->bi_partno;
604 bio_set_flag(bio, BIO_CLONED);
605 if (bio_flagged(bio_src, BIO_THROTTLED))
606 bio_set_flag(bio, BIO_THROTTLED);
607 bio->bi_opf = bio_src->bi_opf;
608 bio->bi_write_hint = bio_src->bi_write_hint;
609 bio->bi_iter = bio_src->bi_iter;
610 bio->bi_io_vec = bio_src->bi_io_vec;
611
612 bio_clone_blkcg_association(bio, bio_src);
613 }
614 EXPORT_SYMBOL(__bio_clone_fast);
615
616 /**
617 * bio_clone_fast - clone a bio that shares the original bio's biovec
618 * @bio: bio to clone
619 * @gfp_mask: allocation priority
620 * @bs: bio_set to allocate from
621 *
622 * Like __bio_clone_fast, only also allocates the returned bio
623 */
624 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
625 {
626 struct bio *b;
627
628 b = bio_alloc_bioset(gfp_mask, 0, bs);
629 if (!b)
630 return NULL;
631
632 __bio_clone_fast(b, bio);
633
634 if (bio_integrity(bio)) {
635 int ret;
636
637 ret = bio_integrity_clone(b, bio, gfp_mask);
638
639 if (ret < 0) {
640 bio_put(b);
641 return NULL;
642 }
643 }
644
645 return b;
646 }
647 EXPORT_SYMBOL(bio_clone_fast);
648
649 /**
650 * bio_add_pc_page - attempt to add page to bio
651 * @q: the target queue
652 * @bio: destination bio
653 * @page: page to add
654 * @len: vec entry length
655 * @offset: vec entry offset
656 *
657 * Attempt to add a page to the bio_vec maplist. This can fail for a
658 * number of reasons, such as the bio being full or target block device
659 * limitations. The target block device must allow bio's up to PAGE_SIZE,
660 * so it is always possible to add a single page to an empty bio.
661 *
662 * This should only be used by REQ_PC bios.
663 */
664 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
665 *page, unsigned int len, unsigned int offset)
666 {
667 int retried_segments = 0;
668 struct bio_vec *bvec;
669
670 /*
671 * cloned bio must not modify vec list
672 */
673 if (unlikely(bio_flagged(bio, BIO_CLONED)))
674 return 0;
675
676 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
677 return 0;
678
679 /*
680 * For filesystems with a blocksize smaller than the pagesize
681 * we will often be called with the same page as last time and
682 * a consecutive offset. Optimize this special case.
683 */
684 if (bio->bi_vcnt > 0) {
685 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
686
687 if (page == prev->bv_page &&
688 offset == prev->bv_offset + prev->bv_len) {
689 prev->bv_len += len;
690 bio->bi_iter.bi_size += len;
691 goto done;
692 }
693
694 /*
695 * If the queue doesn't support SG gaps and adding this
696 * offset would create a gap, disallow it.
697 */
698 if (bvec_gap_to_prev(q, prev, offset))
699 return 0;
700 }
701
702 if (bio_full(bio))
703 return 0;
704
705 /*
706 * setup the new entry, we might clear it again later if we
707 * cannot add the page
708 */
709 bvec = &bio->bi_io_vec[bio->bi_vcnt];
710 bvec->bv_page = page;
711 bvec->bv_len = len;
712 bvec->bv_offset = offset;
713 bio->bi_vcnt++;
714 bio->bi_phys_segments++;
715 bio->bi_iter.bi_size += len;
716
717 /*
718 * Perform a recount if the number of segments is greater
719 * than queue_max_segments(q).
720 */
721
722 while (bio->bi_phys_segments > queue_max_segments(q)) {
723
724 if (retried_segments)
725 goto failed;
726
727 retried_segments = 1;
728 blk_recount_segments(q, bio);
729 }
730
731 /* If we may be able to merge these biovecs, force a recount */
732 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
733 bio_clear_flag(bio, BIO_SEG_VALID);
734
735 done:
736 return len;
737
738 failed:
739 bvec->bv_page = NULL;
740 bvec->bv_len = 0;
741 bvec->bv_offset = 0;
742 bio->bi_vcnt--;
743 bio->bi_iter.bi_size -= len;
744 blk_recount_segments(q, bio);
745 return 0;
746 }
747 EXPORT_SYMBOL(bio_add_pc_page);
748
749 /**
750 * __bio_try_merge_page - try appending data to an existing bvec.
751 * @bio: destination bio
752 * @page: page to add
753 * @len: length of the data to add
754 * @off: offset of the data in @page
755 *
756 * Try to add the data at @page + @off to the last bvec of @bio. This is a
757 * a useful optimisation for file systems with a block size smaller than the
758 * page size.
759 *
760 * Return %true on success or %false on failure.
761 */
762 bool __bio_try_merge_page(struct bio *bio, struct page *page,
763 unsigned int len, unsigned int off)
764 {
765 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
766 return false;
767
768 if (bio->bi_vcnt > 0) {
769 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
770
771 if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
772 bv->bv_len += len;
773 bio->bi_iter.bi_size += len;
774 return true;
775 }
776 }
777 return false;
778 }
779 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
780
781 /**
782 * __bio_add_page - add page to a bio in a new segment
783 * @bio: destination bio
784 * @page: page to add
785 * @len: length of the data to add
786 * @off: offset of the data in @page
787 *
788 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
789 * that @bio has space for another bvec.
790 */
791 void __bio_add_page(struct bio *bio, struct page *page,
792 unsigned int len, unsigned int off)
793 {
794 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
795
796 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
797 WARN_ON_ONCE(bio_full(bio));
798
799 bv->bv_page = page;
800 bv->bv_offset = off;
801 bv->bv_len = len;
802
803 bio->bi_iter.bi_size += len;
804 bio->bi_vcnt++;
805 }
806 EXPORT_SYMBOL_GPL(__bio_add_page);
807
808 /**
809 * bio_add_page - attempt to add page to bio
810 * @bio: destination bio
811 * @page: page to add
812 * @len: vec entry length
813 * @offset: vec entry offset
814 *
815 * Attempt to add a page to the bio_vec maplist. This will only fail
816 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
817 */
818 int bio_add_page(struct bio *bio, struct page *page,
819 unsigned int len, unsigned int offset)
820 {
821 if (!__bio_try_merge_page(bio, page, len, offset)) {
822 if (bio_full(bio))
823 return 0;
824 __bio_add_page(bio, page, len, offset);
825 }
826 return len;
827 }
828 EXPORT_SYMBOL(bio_add_page);
829
830 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
831
832 /**
833 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
834 * @bio: bio to add pages to
835 * @iter: iov iterator describing the region to be mapped
836 *
837 * Pins pages from *iter and appends them to @bio's bvec array. The
838 * pages will have to be released using put_page() when done.
839 * For multi-segment *iter, this function only adds pages from the
840 * the next non-empty segment of the iov iterator.
841 */
842 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
843 {
844 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
845 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
846 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
847 struct page **pages = (struct page **)bv;
848 ssize_t size, left;
849 unsigned len, i;
850 size_t offset;
851
852 /*
853 * Move page array up in the allocated memory for the bio vecs as far as
854 * possible so that we can start filling biovecs from the beginning
855 * without overwriting the temporary page array.
856 */
857 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
858 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
859
860 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
861 if (unlikely(size <= 0))
862 return size ? size : -EFAULT;
863
864 for (left = size, i = 0; left > 0; left -= len, i++) {
865 struct page *page = pages[i];
866
867 len = min_t(size_t, PAGE_SIZE - offset, left);
868 if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
869 return -EINVAL;
870 offset = 0;
871 }
872
873 iov_iter_advance(iter, size);
874 return 0;
875 }
876
877 /**
878 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
879 * @bio: bio to add pages to
880 * @iter: iov iterator describing the region to be mapped
881 *
882 * Pins pages from *iter and appends them to @bio's bvec array. The
883 * pages will have to be released using put_page() when done.
884 * The function tries, but does not guarantee, to pin as many pages as
885 * fit into the bio, or are requested in *iter, whatever is smaller.
886 * If MM encounters an error pinning the requested pages, it stops.
887 * Error is returned only if 0 pages could be pinned.
888 */
889 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
890 {
891 unsigned short orig_vcnt = bio->bi_vcnt;
892
893 do {
894 int ret = __bio_iov_iter_get_pages(bio, iter);
895
896 if (unlikely(ret))
897 return bio->bi_vcnt > orig_vcnt ? 0 : ret;
898
899 } while (iov_iter_count(iter) && !bio_full(bio));
900
901 return 0;
902 }
903 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
904
905 static void submit_bio_wait_endio(struct bio *bio)
906 {
907 complete(bio->bi_private);
908 }
909
910 /**
911 * submit_bio_wait - submit a bio, and wait until it completes
912 * @bio: The &struct bio which describes the I/O
913 *
914 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
915 * bio_endio() on failure.
916 *
917 * WARNING: Unlike to how submit_bio() is usually used, this function does not
918 * result in bio reference to be consumed. The caller must drop the reference
919 * on his own.
920 */
921 int submit_bio_wait(struct bio *bio)
922 {
923 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
924
925 bio->bi_private = &done;
926 bio->bi_end_io = submit_bio_wait_endio;
927 bio->bi_opf |= REQ_SYNC;
928 submit_bio(bio);
929 wait_for_completion_io(&done);
930
931 return blk_status_to_errno(bio->bi_status);
932 }
933 EXPORT_SYMBOL(submit_bio_wait);
934
935 /**
936 * bio_advance - increment/complete a bio by some number of bytes
937 * @bio: bio to advance
938 * @bytes: number of bytes to complete
939 *
940 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
941 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
942 * be updated on the last bvec as well.
943 *
944 * @bio will then represent the remaining, uncompleted portion of the io.
945 */
946 void bio_advance(struct bio *bio, unsigned bytes)
947 {
948 if (bio_integrity(bio))
949 bio_integrity_advance(bio, bytes);
950
951 bio_advance_iter(bio, &bio->bi_iter, bytes);
952 }
953 EXPORT_SYMBOL(bio_advance);
954
955 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
956 struct bio *src, struct bvec_iter *src_iter)
957 {
958 struct bio_vec src_bv, dst_bv;
959 void *src_p, *dst_p;
960 unsigned bytes;
961
962 while (src_iter->bi_size && dst_iter->bi_size) {
963 src_bv = bio_iter_iovec(src, *src_iter);
964 dst_bv = bio_iter_iovec(dst, *dst_iter);
965
966 bytes = min(src_bv.bv_len, dst_bv.bv_len);
967
968 src_p = kmap_atomic(src_bv.bv_page);
969 dst_p = kmap_atomic(dst_bv.bv_page);
970
971 memcpy(dst_p + dst_bv.bv_offset,
972 src_p + src_bv.bv_offset,
973 bytes);
974
975 kunmap_atomic(dst_p);
976 kunmap_atomic(src_p);
977
978 flush_dcache_page(dst_bv.bv_page);
979
980 bio_advance_iter(src, src_iter, bytes);
981 bio_advance_iter(dst, dst_iter, bytes);
982 }
983 }
984 EXPORT_SYMBOL(bio_copy_data_iter);
985
986 /**
987 * bio_copy_data - copy contents of data buffers from one bio to another
988 * @src: source bio
989 * @dst: destination bio
990 *
991 * Stops when it reaches the end of either @src or @dst - that is, copies
992 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
993 */
994 void bio_copy_data(struct bio *dst, struct bio *src)
995 {
996 struct bvec_iter src_iter = src->bi_iter;
997 struct bvec_iter dst_iter = dst->bi_iter;
998
999 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1000 }
1001 EXPORT_SYMBOL(bio_copy_data);
1002
1003 /**
1004 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1005 * another
1006 * @src: source bio list
1007 * @dst: destination bio list
1008 *
1009 * Stops when it reaches the end of either the @src list or @dst list - that is,
1010 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1011 * bios).
1012 */
1013 void bio_list_copy_data(struct bio *dst, struct bio *src)
1014 {
1015 struct bvec_iter src_iter = src->bi_iter;
1016 struct bvec_iter dst_iter = dst->bi_iter;
1017
1018 while (1) {
1019 if (!src_iter.bi_size) {
1020 src = src->bi_next;
1021 if (!src)
1022 break;
1023
1024 src_iter = src->bi_iter;
1025 }
1026
1027 if (!dst_iter.bi_size) {
1028 dst = dst->bi_next;
1029 if (!dst)
1030 break;
1031
1032 dst_iter = dst->bi_iter;
1033 }
1034
1035 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1036 }
1037 }
1038 EXPORT_SYMBOL(bio_list_copy_data);
1039
1040 struct bio_map_data {
1041 int is_our_pages;
1042 struct iov_iter iter;
1043 struct iovec iov[];
1044 };
1045
1046 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1047 gfp_t gfp_mask)
1048 {
1049 struct bio_map_data *bmd;
1050 if (data->nr_segs > UIO_MAXIOV)
1051 return NULL;
1052
1053 bmd = kmalloc(sizeof(struct bio_map_data) +
1054 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1055 if (!bmd)
1056 return NULL;
1057 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1058 bmd->iter = *data;
1059 bmd->iter.iov = bmd->iov;
1060 return bmd;
1061 }
1062
1063 /**
1064 * bio_copy_from_iter - copy all pages from iov_iter to bio
1065 * @bio: The &struct bio which describes the I/O as destination
1066 * @iter: iov_iter as source
1067 *
1068 * Copy all pages from iov_iter to bio.
1069 * Returns 0 on success, or error on failure.
1070 */
1071 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1072 {
1073 int i;
1074 struct bio_vec *bvec;
1075
1076 bio_for_each_segment_all(bvec, bio, i) {
1077 ssize_t ret;
1078
1079 ret = copy_page_from_iter(bvec->bv_page,
1080 bvec->bv_offset,
1081 bvec->bv_len,
1082 iter);
1083
1084 if (!iov_iter_count(iter))
1085 break;
1086
1087 if (ret < bvec->bv_len)
1088 return -EFAULT;
1089 }
1090
1091 return 0;
1092 }
1093
1094 /**
1095 * bio_copy_to_iter - copy all pages from bio to iov_iter
1096 * @bio: The &struct bio which describes the I/O as source
1097 * @iter: iov_iter as destination
1098 *
1099 * Copy all pages from bio to iov_iter.
1100 * Returns 0 on success, or error on failure.
1101 */
1102 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1103 {
1104 int i;
1105 struct bio_vec *bvec;
1106
1107 bio_for_each_segment_all(bvec, bio, i) {
1108 ssize_t ret;
1109
1110 ret = copy_page_to_iter(bvec->bv_page,
1111 bvec->bv_offset,
1112 bvec->bv_len,
1113 &iter);
1114
1115 if (!iov_iter_count(&iter))
1116 break;
1117
1118 if (ret < bvec->bv_len)
1119 return -EFAULT;
1120 }
1121
1122 return 0;
1123 }
1124
1125 void bio_free_pages(struct bio *bio)
1126 {
1127 struct bio_vec *bvec;
1128 int i;
1129
1130 bio_for_each_segment_all(bvec, bio, i)
1131 __free_page(bvec->bv_page);
1132 }
1133 EXPORT_SYMBOL(bio_free_pages);
1134
1135 /**
1136 * bio_uncopy_user - finish previously mapped bio
1137 * @bio: bio being terminated
1138 *
1139 * Free pages allocated from bio_copy_user_iov() and write back data
1140 * to user space in case of a read.
1141 */
1142 int bio_uncopy_user(struct bio *bio)
1143 {
1144 struct bio_map_data *bmd = bio->bi_private;
1145 int ret = 0;
1146
1147 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1148 /*
1149 * if we're in a workqueue, the request is orphaned, so
1150 * don't copy into a random user address space, just free
1151 * and return -EINTR so user space doesn't expect any data.
1152 */
1153 if (!current->mm)
1154 ret = -EINTR;
1155 else if (bio_data_dir(bio) == READ)
1156 ret = bio_copy_to_iter(bio, bmd->iter);
1157 if (bmd->is_our_pages)
1158 bio_free_pages(bio);
1159 }
1160 kfree(bmd);
1161 bio_put(bio);
1162 return ret;
1163 }
1164
1165 /**
1166 * bio_copy_user_iov - copy user data to bio
1167 * @q: destination block queue
1168 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1169 * @iter: iovec iterator
1170 * @gfp_mask: memory allocation flags
1171 *
1172 * Prepares and returns a bio for indirect user io, bouncing data
1173 * to/from kernel pages as necessary. Must be paired with
1174 * call bio_uncopy_user() on io completion.
1175 */
1176 struct bio *bio_copy_user_iov(struct request_queue *q,
1177 struct rq_map_data *map_data,
1178 struct iov_iter *iter,
1179 gfp_t gfp_mask)
1180 {
1181 struct bio_map_data *bmd;
1182 struct page *page;
1183 struct bio *bio;
1184 int i = 0, ret;
1185 int nr_pages;
1186 unsigned int len = iter->count;
1187 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1188
1189 bmd = bio_alloc_map_data(iter, gfp_mask);
1190 if (!bmd)
1191 return ERR_PTR(-ENOMEM);
1192
1193 /*
1194 * We need to do a deep copy of the iov_iter including the iovecs.
1195 * The caller provided iov might point to an on-stack or otherwise
1196 * shortlived one.
1197 */
1198 bmd->is_our_pages = map_data ? 0 : 1;
1199
1200 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1201 if (nr_pages > BIO_MAX_PAGES)
1202 nr_pages = BIO_MAX_PAGES;
1203
1204 ret = -ENOMEM;
1205 bio = bio_kmalloc(gfp_mask, nr_pages);
1206 if (!bio)
1207 goto out_bmd;
1208
1209 ret = 0;
1210
1211 if (map_data) {
1212 nr_pages = 1 << map_data->page_order;
1213 i = map_data->offset / PAGE_SIZE;
1214 }
1215 while (len) {
1216 unsigned int bytes = PAGE_SIZE;
1217
1218 bytes -= offset;
1219
1220 if (bytes > len)
1221 bytes = len;
1222
1223 if (map_data) {
1224 if (i == map_data->nr_entries * nr_pages) {
1225 ret = -ENOMEM;
1226 break;
1227 }
1228
1229 page = map_data->pages[i / nr_pages];
1230 page += (i % nr_pages);
1231
1232 i++;
1233 } else {
1234 page = alloc_page(q->bounce_gfp | gfp_mask);
1235 if (!page) {
1236 ret = -ENOMEM;
1237 break;
1238 }
1239 }
1240
1241 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1242 break;
1243
1244 len -= bytes;
1245 offset = 0;
1246 }
1247
1248 if (ret)
1249 goto cleanup;
1250
1251 if (map_data)
1252 map_data->offset += bio->bi_iter.bi_size;
1253
1254 /*
1255 * success
1256 */
1257 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1258 (map_data && map_data->from_user)) {
1259 ret = bio_copy_from_iter(bio, iter);
1260 if (ret)
1261 goto cleanup;
1262 } else {
1263 iov_iter_advance(iter, bio->bi_iter.bi_size);
1264 }
1265
1266 bio->bi_private = bmd;
1267 if (map_data && map_data->null_mapped)
1268 bio_set_flag(bio, BIO_NULL_MAPPED);
1269 return bio;
1270 cleanup:
1271 if (!map_data)
1272 bio_free_pages(bio);
1273 bio_put(bio);
1274 out_bmd:
1275 kfree(bmd);
1276 return ERR_PTR(ret);
1277 }
1278
1279 /**
1280 * bio_map_user_iov - map user iovec into bio
1281 * @q: the struct request_queue for the bio
1282 * @iter: iovec iterator
1283 * @gfp_mask: memory allocation flags
1284 *
1285 * Map the user space address into a bio suitable for io to a block
1286 * device. Returns an error pointer in case of error.
1287 */
1288 struct bio *bio_map_user_iov(struct request_queue *q,
1289 struct iov_iter *iter,
1290 gfp_t gfp_mask)
1291 {
1292 int j;
1293 struct bio *bio;
1294 int ret;
1295 struct bio_vec *bvec;
1296
1297 if (!iov_iter_count(iter))
1298 return ERR_PTR(-EINVAL);
1299
1300 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1301 if (!bio)
1302 return ERR_PTR(-ENOMEM);
1303
1304 while (iov_iter_count(iter)) {
1305 struct page **pages;
1306 ssize_t bytes;
1307 size_t offs, added = 0;
1308 int npages;
1309
1310 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1311 if (unlikely(bytes <= 0)) {
1312 ret = bytes ? bytes : -EFAULT;
1313 goto out_unmap;
1314 }
1315
1316 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1317
1318 if (unlikely(offs & queue_dma_alignment(q))) {
1319 ret = -EINVAL;
1320 j = 0;
1321 } else {
1322 for (j = 0; j < npages; j++) {
1323 struct page *page = pages[j];
1324 unsigned int n = PAGE_SIZE - offs;
1325 unsigned short prev_bi_vcnt = bio->bi_vcnt;
1326
1327 if (n > bytes)
1328 n = bytes;
1329
1330 if (!bio_add_pc_page(q, bio, page, n, offs))
1331 break;
1332
1333 /*
1334 * check if vector was merged with previous
1335 * drop page reference if needed
1336 */
1337 if (bio->bi_vcnt == prev_bi_vcnt)
1338 put_page(page);
1339
1340 added += n;
1341 bytes -= n;
1342 offs = 0;
1343 }
1344 iov_iter_advance(iter, added);
1345 }
1346 /*
1347 * release the pages we didn't map into the bio, if any
1348 */
1349 while (j < npages)
1350 put_page(pages[j++]);
1351 kvfree(pages);
1352 /* couldn't stuff something into bio? */
1353 if (bytes)
1354 break;
1355 }
1356
1357 bio_set_flag(bio, BIO_USER_MAPPED);
1358
1359 /*
1360 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1361 * it would normally disappear when its bi_end_io is run.
1362 * however, we need it for the unmap, so grab an extra
1363 * reference to it
1364 */
1365 bio_get(bio);
1366 return bio;
1367
1368 out_unmap:
1369 bio_for_each_segment_all(bvec, bio, j) {
1370 put_page(bvec->bv_page);
1371 }
1372 bio_put(bio);
1373 return ERR_PTR(ret);
1374 }
1375
1376 static void __bio_unmap_user(struct bio *bio)
1377 {
1378 struct bio_vec *bvec;
1379 int i;
1380
1381 /*
1382 * make sure we dirty pages we wrote to
1383 */
1384 bio_for_each_segment_all(bvec, bio, i) {
1385 if (bio_data_dir(bio) == READ)
1386 set_page_dirty_lock(bvec->bv_page);
1387
1388 put_page(bvec->bv_page);
1389 }
1390
1391 bio_put(bio);
1392 }
1393
1394 /**
1395 * bio_unmap_user - unmap a bio
1396 * @bio: the bio being unmapped
1397 *
1398 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1399 * process context.
1400 *
1401 * bio_unmap_user() may sleep.
1402 */
1403 void bio_unmap_user(struct bio *bio)
1404 {
1405 __bio_unmap_user(bio);
1406 bio_put(bio);
1407 }
1408
1409 static void bio_map_kern_endio(struct bio *bio)
1410 {
1411 bio_put(bio);
1412 }
1413
1414 /**
1415 * bio_map_kern - map kernel address into bio
1416 * @q: the struct request_queue for the bio
1417 * @data: pointer to buffer to map
1418 * @len: length in bytes
1419 * @gfp_mask: allocation flags for bio allocation
1420 *
1421 * Map the kernel address into a bio suitable for io to a block
1422 * device. Returns an error pointer in case of error.
1423 */
1424 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1425 gfp_t gfp_mask)
1426 {
1427 unsigned long kaddr = (unsigned long)data;
1428 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1429 unsigned long start = kaddr >> PAGE_SHIFT;
1430 const int nr_pages = end - start;
1431 int offset, i;
1432 struct bio *bio;
1433
1434 bio = bio_kmalloc(gfp_mask, nr_pages);
1435 if (!bio)
1436 return ERR_PTR(-ENOMEM);
1437
1438 offset = offset_in_page(kaddr);
1439 for (i = 0; i < nr_pages; i++) {
1440 unsigned int bytes = PAGE_SIZE - offset;
1441
1442 if (len <= 0)
1443 break;
1444
1445 if (bytes > len)
1446 bytes = len;
1447
1448 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1449 offset) < bytes) {
1450 /* we don't support partial mappings */
1451 bio_put(bio);
1452 return ERR_PTR(-EINVAL);
1453 }
1454
1455 data += bytes;
1456 len -= bytes;
1457 offset = 0;
1458 }
1459
1460 bio->bi_end_io = bio_map_kern_endio;
1461 return bio;
1462 }
1463 EXPORT_SYMBOL(bio_map_kern);
1464
1465 static void bio_copy_kern_endio(struct bio *bio)
1466 {
1467 bio_free_pages(bio);
1468 bio_put(bio);
1469 }
1470
1471 static void bio_copy_kern_endio_read(struct bio *bio)
1472 {
1473 char *p = bio->bi_private;
1474 struct bio_vec *bvec;
1475 int i;
1476
1477 bio_for_each_segment_all(bvec, bio, i) {
1478 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1479 p += bvec->bv_len;
1480 }
1481
1482 bio_copy_kern_endio(bio);
1483 }
1484
1485 /**
1486 * bio_copy_kern - copy kernel address into bio
1487 * @q: the struct request_queue for the bio
1488 * @data: pointer to buffer to copy
1489 * @len: length in bytes
1490 * @gfp_mask: allocation flags for bio and page allocation
1491 * @reading: data direction is READ
1492 *
1493 * copy the kernel address into a bio suitable for io to a block
1494 * device. Returns an error pointer in case of error.
1495 */
1496 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1497 gfp_t gfp_mask, int reading)
1498 {
1499 unsigned long kaddr = (unsigned long)data;
1500 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1501 unsigned long start = kaddr >> PAGE_SHIFT;
1502 struct bio *bio;
1503 void *p = data;
1504 int nr_pages = 0;
1505
1506 /*
1507 * Overflow, abort
1508 */
1509 if (end < start)
1510 return ERR_PTR(-EINVAL);
1511
1512 nr_pages = end - start;
1513 bio = bio_kmalloc(gfp_mask, nr_pages);
1514 if (!bio)
1515 return ERR_PTR(-ENOMEM);
1516
1517 while (len) {
1518 struct page *page;
1519 unsigned int bytes = PAGE_SIZE;
1520
1521 if (bytes > len)
1522 bytes = len;
1523
1524 page = alloc_page(q->bounce_gfp | gfp_mask);
1525 if (!page)
1526 goto cleanup;
1527
1528 if (!reading)
1529 memcpy(page_address(page), p, bytes);
1530
1531 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1532 break;
1533
1534 len -= bytes;
1535 p += bytes;
1536 }
1537
1538 if (reading) {
1539 bio->bi_end_io = bio_copy_kern_endio_read;
1540 bio->bi_private = data;
1541 } else {
1542 bio->bi_end_io = bio_copy_kern_endio;
1543 }
1544
1545 return bio;
1546
1547 cleanup:
1548 bio_free_pages(bio);
1549 bio_put(bio);
1550 return ERR_PTR(-ENOMEM);
1551 }
1552
1553 /*
1554 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1555 * for performing direct-IO in BIOs.
1556 *
1557 * The problem is that we cannot run set_page_dirty() from interrupt context
1558 * because the required locks are not interrupt-safe. So what we can do is to
1559 * mark the pages dirty _before_ performing IO. And in interrupt context,
1560 * check that the pages are still dirty. If so, fine. If not, redirty them
1561 * in process context.
1562 *
1563 * We special-case compound pages here: normally this means reads into hugetlb
1564 * pages. The logic in here doesn't really work right for compound pages
1565 * because the VM does not uniformly chase down the head page in all cases.
1566 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1567 * handle them at all. So we skip compound pages here at an early stage.
1568 *
1569 * Note that this code is very hard to test under normal circumstances because
1570 * direct-io pins the pages with get_user_pages(). This makes
1571 * is_page_cache_freeable return false, and the VM will not clean the pages.
1572 * But other code (eg, flusher threads) could clean the pages if they are mapped
1573 * pagecache.
1574 *
1575 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1576 * deferred bio dirtying paths.
1577 */
1578
1579 /*
1580 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1581 */
1582 void bio_set_pages_dirty(struct bio *bio)
1583 {
1584 struct bio_vec *bvec;
1585 int i;
1586
1587 bio_for_each_segment_all(bvec, bio, i) {
1588 if (!PageCompound(bvec->bv_page))
1589 set_page_dirty_lock(bvec->bv_page);
1590 }
1591 }
1592 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1593
1594 static void bio_release_pages(struct bio *bio)
1595 {
1596 struct bio_vec *bvec;
1597 int i;
1598
1599 bio_for_each_segment_all(bvec, bio, i)
1600 put_page(bvec->bv_page);
1601 }
1602
1603 /*
1604 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1605 * If they are, then fine. If, however, some pages are clean then they must
1606 * have been written out during the direct-IO read. So we take another ref on
1607 * the BIO and re-dirty the pages in process context.
1608 *
1609 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1610 * here on. It will run one put_page() against each page and will run one
1611 * bio_put() against the BIO.
1612 */
1613
1614 static void bio_dirty_fn(struct work_struct *work);
1615
1616 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1617 static DEFINE_SPINLOCK(bio_dirty_lock);
1618 static struct bio *bio_dirty_list;
1619
1620 /*
1621 * This runs in process context
1622 */
1623 static void bio_dirty_fn(struct work_struct *work)
1624 {
1625 struct bio *bio, *next;
1626
1627 spin_lock_irq(&bio_dirty_lock);
1628 next = bio_dirty_list;
1629 bio_dirty_list = NULL;
1630 spin_unlock_irq(&bio_dirty_lock);
1631
1632 while ((bio = next) != NULL) {
1633 next = bio->bi_private;
1634
1635 bio_set_pages_dirty(bio);
1636 bio_release_pages(bio);
1637 bio_put(bio);
1638 }
1639 }
1640
1641 void bio_check_pages_dirty(struct bio *bio)
1642 {
1643 struct bio_vec *bvec;
1644 unsigned long flags;
1645 int i;
1646
1647 bio_for_each_segment_all(bvec, bio, i) {
1648 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1649 goto defer;
1650 }
1651
1652 bio_release_pages(bio);
1653 bio_put(bio);
1654 return;
1655 defer:
1656 spin_lock_irqsave(&bio_dirty_lock, flags);
1657 bio->bi_private = bio_dirty_list;
1658 bio_dirty_list = bio;
1659 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1660 schedule_work(&bio_dirty_work);
1661 }
1662 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1663
1664 void generic_start_io_acct(struct request_queue *q, int op,
1665 unsigned long sectors, struct hd_struct *part)
1666 {
1667 const int sgrp = op_stat_group(op);
1668 int cpu = part_stat_lock();
1669
1670 part_round_stats(q, cpu, part);
1671 part_stat_inc(cpu, part, ios[sgrp]);
1672 part_stat_add(cpu, part, sectors[sgrp], sectors);
1673 part_inc_in_flight(q, part, op_is_write(op));
1674
1675 part_stat_unlock();
1676 }
1677 EXPORT_SYMBOL(generic_start_io_acct);
1678
1679 void generic_end_io_acct(struct request_queue *q, int req_op,
1680 struct hd_struct *part, unsigned long start_time)
1681 {
1682 unsigned long duration = jiffies - start_time;
1683 const int sgrp = op_stat_group(req_op);
1684 int cpu = part_stat_lock();
1685
1686 part_stat_add(cpu, part, ticks[sgrp], duration);
1687 part_round_stats(q, cpu, part);
1688 part_dec_in_flight(q, part, op_is_write(req_op));
1689
1690 part_stat_unlock();
1691 }
1692 EXPORT_SYMBOL(generic_end_io_acct);
1693
1694 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1695 void bio_flush_dcache_pages(struct bio *bi)
1696 {
1697 struct bio_vec bvec;
1698 struct bvec_iter iter;
1699
1700 bio_for_each_segment(bvec, bi, iter)
1701 flush_dcache_page(bvec.bv_page);
1702 }
1703 EXPORT_SYMBOL(bio_flush_dcache_pages);
1704 #endif
1705
1706 static inline bool bio_remaining_done(struct bio *bio)
1707 {
1708 /*
1709 * If we're not chaining, then ->__bi_remaining is always 1 and
1710 * we always end io on the first invocation.
1711 */
1712 if (!bio_flagged(bio, BIO_CHAIN))
1713 return true;
1714
1715 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1716
1717 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1718 bio_clear_flag(bio, BIO_CHAIN);
1719 return true;
1720 }
1721
1722 return false;
1723 }
1724
1725 /**
1726 * bio_endio - end I/O on a bio
1727 * @bio: bio
1728 *
1729 * Description:
1730 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1731 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1732 * bio unless they own it and thus know that it has an end_io function.
1733 *
1734 * bio_endio() can be called several times on a bio that has been chained
1735 * using bio_chain(). The ->bi_end_io() function will only be called the
1736 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1737 * generated if BIO_TRACE_COMPLETION is set.
1738 **/
1739 void bio_endio(struct bio *bio)
1740 {
1741 again:
1742 if (!bio_remaining_done(bio))
1743 return;
1744 if (!bio_integrity_endio(bio))
1745 return;
1746
1747 if (bio->bi_disk)
1748 rq_qos_done_bio(bio->bi_disk->queue, bio);
1749
1750 /*
1751 * Need to have a real endio function for chained bios, otherwise
1752 * various corner cases will break (like stacking block devices that
1753 * save/restore bi_end_io) - however, we want to avoid unbounded
1754 * recursion and blowing the stack. Tail call optimization would
1755 * handle this, but compiling with frame pointers also disables
1756 * gcc's sibling call optimization.
1757 */
1758 if (bio->bi_end_io == bio_chain_endio) {
1759 bio = __bio_chain_endio(bio);
1760 goto again;
1761 }
1762
1763 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1764 trace_block_bio_complete(bio->bi_disk->queue, bio,
1765 blk_status_to_errno(bio->bi_status));
1766 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1767 }
1768
1769 blk_throtl_bio_endio(bio);
1770 /* release cgroup info */
1771 bio_uninit(bio);
1772 if (bio->bi_end_io)
1773 bio->bi_end_io(bio);
1774 }
1775 EXPORT_SYMBOL(bio_endio);
1776
1777 /**
1778 * bio_split - split a bio
1779 * @bio: bio to split
1780 * @sectors: number of sectors to split from the front of @bio
1781 * @gfp: gfp mask
1782 * @bs: bio set to allocate from
1783 *
1784 * Allocates and returns a new bio which represents @sectors from the start of
1785 * @bio, and updates @bio to represent the remaining sectors.
1786 *
1787 * Unless this is a discard request the newly allocated bio will point
1788 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1789 * @bio is not freed before the split.
1790 */
1791 struct bio *bio_split(struct bio *bio, int sectors,
1792 gfp_t gfp, struct bio_set *bs)
1793 {
1794 struct bio *split;
1795
1796 BUG_ON(sectors <= 0);
1797 BUG_ON(sectors >= bio_sectors(bio));
1798
1799 split = bio_clone_fast(bio, gfp, bs);
1800 if (!split)
1801 return NULL;
1802
1803 split->bi_iter.bi_size = sectors << 9;
1804
1805 if (bio_integrity(split))
1806 bio_integrity_trim(split);
1807
1808 bio_advance(bio, split->bi_iter.bi_size);
1809
1810 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1811 bio_set_flag(split, BIO_TRACE_COMPLETION);
1812
1813 return split;
1814 }
1815 EXPORT_SYMBOL(bio_split);
1816
1817 /**
1818 * bio_trim - trim a bio
1819 * @bio: bio to trim
1820 * @offset: number of sectors to trim from the front of @bio
1821 * @size: size we want to trim @bio to, in sectors
1822 */
1823 void bio_trim(struct bio *bio, int offset, int size)
1824 {
1825 /* 'bio' is a cloned bio which we need to trim to match
1826 * the given offset and size.
1827 */
1828
1829 size <<= 9;
1830 if (offset == 0 && size == bio->bi_iter.bi_size)
1831 return;
1832
1833 bio_clear_flag(bio, BIO_SEG_VALID);
1834
1835 bio_advance(bio, offset << 9);
1836
1837 bio->bi_iter.bi_size = size;
1838
1839 if (bio_integrity(bio))
1840 bio_integrity_trim(bio);
1841
1842 }
1843 EXPORT_SYMBOL_GPL(bio_trim);
1844
1845 /*
1846 * create memory pools for biovec's in a bio_set.
1847 * use the global biovec slabs created for general use.
1848 */
1849 int biovec_init_pool(mempool_t *pool, int pool_entries)
1850 {
1851 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1852
1853 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1854 }
1855
1856 /*
1857 * bioset_exit - exit a bioset initialized with bioset_init()
1858 *
1859 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1860 * kzalloc()).
1861 */
1862 void bioset_exit(struct bio_set *bs)
1863 {
1864 if (bs->rescue_workqueue)
1865 destroy_workqueue(bs->rescue_workqueue);
1866 bs->rescue_workqueue = NULL;
1867
1868 mempool_exit(&bs->bio_pool);
1869 mempool_exit(&bs->bvec_pool);
1870
1871 bioset_integrity_free(bs);
1872 if (bs->bio_slab)
1873 bio_put_slab(bs);
1874 bs->bio_slab = NULL;
1875 }
1876 EXPORT_SYMBOL(bioset_exit);
1877
1878 /**
1879 * bioset_init - Initialize a bio_set
1880 * @bs: pool to initialize
1881 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1882 * @front_pad: Number of bytes to allocate in front of the returned bio
1883 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1884 * and %BIOSET_NEED_RESCUER
1885 *
1886 * Description:
1887 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1888 * to ask for a number of bytes to be allocated in front of the bio.
1889 * Front pad allocation is useful for embedding the bio inside
1890 * another structure, to avoid allocating extra data to go with the bio.
1891 * Note that the bio must be embedded at the END of that structure always,
1892 * or things will break badly.
1893 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1894 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1895 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1896 * dispatch queued requests when the mempool runs out of space.
1897 *
1898 */
1899 int bioset_init(struct bio_set *bs,
1900 unsigned int pool_size,
1901 unsigned int front_pad,
1902 int flags)
1903 {
1904 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1905
1906 bs->front_pad = front_pad;
1907
1908 spin_lock_init(&bs->rescue_lock);
1909 bio_list_init(&bs->rescue_list);
1910 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1911
1912 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1913 if (!bs->bio_slab)
1914 return -ENOMEM;
1915
1916 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1917 goto bad;
1918
1919 if ((flags & BIOSET_NEED_BVECS) &&
1920 biovec_init_pool(&bs->bvec_pool, pool_size))
1921 goto bad;
1922
1923 if (!(flags & BIOSET_NEED_RESCUER))
1924 return 0;
1925
1926 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1927 if (!bs->rescue_workqueue)
1928 goto bad;
1929
1930 return 0;
1931 bad:
1932 bioset_exit(bs);
1933 return -ENOMEM;
1934 }
1935 EXPORT_SYMBOL(bioset_init);
1936
1937 /*
1938 * Initialize and setup a new bio_set, based on the settings from
1939 * another bio_set.
1940 */
1941 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1942 {
1943 int flags;
1944
1945 flags = 0;
1946 if (src->bvec_pool.min_nr)
1947 flags |= BIOSET_NEED_BVECS;
1948 if (src->rescue_workqueue)
1949 flags |= BIOSET_NEED_RESCUER;
1950
1951 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1952 }
1953 EXPORT_SYMBOL(bioset_init_from_src);
1954
1955 #ifdef CONFIG_BLK_CGROUP
1956
1957 #ifdef CONFIG_MEMCG
1958 /**
1959 * bio_associate_blkcg_from_page - associate a bio with the page's blkcg
1960 * @bio: target bio
1961 * @page: the page to lookup the blkcg from
1962 *
1963 * Associate @bio with the blkcg from @page's owning memcg. This works like
1964 * every other associate function wrt references.
1965 */
1966 int bio_associate_blkcg_from_page(struct bio *bio, struct page *page)
1967 {
1968 struct cgroup_subsys_state *blkcg_css;
1969
1970 if (unlikely(bio->bi_css))
1971 return -EBUSY;
1972 if (!page->mem_cgroup)
1973 return 0;
1974 blkcg_css = cgroup_get_e_css(page->mem_cgroup->css.cgroup,
1975 &io_cgrp_subsys);
1976 bio->bi_css = blkcg_css;
1977 return 0;
1978 }
1979 #endif /* CONFIG_MEMCG */
1980
1981 /**
1982 * bio_associate_blkcg - associate a bio with the specified blkcg
1983 * @bio: target bio
1984 * @blkcg_css: css of the blkcg to associate
1985 *
1986 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1987 * treat @bio as if it were issued by a task which belongs to the blkcg.
1988 *
1989 * This function takes an extra reference of @blkcg_css which will be put
1990 * when @bio is released. The caller must own @bio and is responsible for
1991 * synchronizing calls to this function.
1992 */
1993 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1994 {
1995 if (unlikely(bio->bi_css))
1996 return -EBUSY;
1997 css_get(blkcg_css);
1998 bio->bi_css = blkcg_css;
1999 return 0;
2000 }
2001 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2002
2003 /**
2004 * bio_associate_blkg - associate a bio with the specified blkg
2005 * @bio: target bio
2006 * @blkg: the blkg to associate
2007 *
2008 * Associate @bio with the blkg specified by @blkg. This is the queue specific
2009 * blkcg information associated with the @bio, a reference will be taken on the
2010 * @blkg and will be freed when the bio is freed.
2011 */
2012 int bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2013 {
2014 if (unlikely(bio->bi_blkg))
2015 return -EBUSY;
2016 if (!blkg_try_get(blkg))
2017 return -ENODEV;
2018 bio->bi_blkg = blkg;
2019 return 0;
2020 }
2021
2022 /**
2023 * bio_disassociate_task - undo bio_associate_current()
2024 * @bio: target bio
2025 */
2026 void bio_disassociate_task(struct bio *bio)
2027 {
2028 if (bio->bi_ioc) {
2029 put_io_context(bio->bi_ioc);
2030 bio->bi_ioc = NULL;
2031 }
2032 if (bio->bi_css) {
2033 css_put(bio->bi_css);
2034 bio->bi_css = NULL;
2035 }
2036 if (bio->bi_blkg) {
2037 blkg_put(bio->bi_blkg);
2038 bio->bi_blkg = NULL;
2039 }
2040 }
2041
2042 /**
2043 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2044 * @dst: destination bio
2045 * @src: source bio
2046 */
2047 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2048 {
2049 if (src->bi_css)
2050 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2051 }
2052 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2053 #endif /* CONFIG_BLK_CGROUP */
2054
2055 static void __init biovec_init_slabs(void)
2056 {
2057 int i;
2058
2059 for (i = 0; i < BVEC_POOL_NR; i++) {
2060 int size;
2061 struct biovec_slab *bvs = bvec_slabs + i;
2062
2063 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2064 bvs->slab = NULL;
2065 continue;
2066 }
2067
2068 size = bvs->nr_vecs * sizeof(struct bio_vec);
2069 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2070 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2071 }
2072 }
2073
2074 static int __init init_bio(void)
2075 {
2076 bio_slab_max = 2;
2077 bio_slab_nr = 0;
2078 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2079 GFP_KERNEL);
2080 if (!bio_slabs)
2081 panic("bio: can't allocate bios\n");
2082
2083 bio_integrity_init();
2084 biovec_init_slabs();
2085
2086 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2087 panic("bio: can't allocate bios\n");
2088
2089 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2090 panic("bio: can't create integrity pool\n");
2091
2092 return 0;
2093 }
2094 subsys_initcall(init_bio);