]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - block/bio.c
Merge tag 'for-linus-5.2b-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/kernel/linux.git] / block / bio.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19
20 #include <trace/events/block.h>
21 #include "blk.h"
22 #include "blk-rq-qos.h"
23
24 /*
25 * Test patch to inline a certain number of bi_io_vec's inside the bio
26 * itself, to shrink a bio data allocation from two mempool calls to one
27 */
28 #define BIO_INLINE_VECS 4
29
30 /*
31 * if you change this list, also change bvec_alloc or things will
32 * break badly! cannot be bigger than what you can fit into an
33 * unsigned short
34 */
35 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
36 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
37 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
38 };
39 #undef BV
40
41 /*
42 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
43 * IO code that does not need private memory pools.
44 */
45 struct bio_set fs_bio_set;
46 EXPORT_SYMBOL(fs_bio_set);
47
48 /*
49 * Our slab pool management
50 */
51 struct bio_slab {
52 struct kmem_cache *slab;
53 unsigned int slab_ref;
54 unsigned int slab_size;
55 char name[8];
56 };
57 static DEFINE_MUTEX(bio_slab_lock);
58 static struct bio_slab *bio_slabs;
59 static unsigned int bio_slab_nr, bio_slab_max;
60
61 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
62 {
63 unsigned int sz = sizeof(struct bio) + extra_size;
64 struct kmem_cache *slab = NULL;
65 struct bio_slab *bslab, *new_bio_slabs;
66 unsigned int new_bio_slab_max;
67 unsigned int i, entry = -1;
68
69 mutex_lock(&bio_slab_lock);
70
71 i = 0;
72 while (i < bio_slab_nr) {
73 bslab = &bio_slabs[i];
74
75 if (!bslab->slab && entry == -1)
76 entry = i;
77 else if (bslab->slab_size == sz) {
78 slab = bslab->slab;
79 bslab->slab_ref++;
80 break;
81 }
82 i++;
83 }
84
85 if (slab)
86 goto out_unlock;
87
88 if (bio_slab_nr == bio_slab_max && entry == -1) {
89 new_bio_slab_max = bio_slab_max << 1;
90 new_bio_slabs = krealloc(bio_slabs,
91 new_bio_slab_max * sizeof(struct bio_slab),
92 GFP_KERNEL);
93 if (!new_bio_slabs)
94 goto out_unlock;
95 bio_slab_max = new_bio_slab_max;
96 bio_slabs = new_bio_slabs;
97 }
98 if (entry == -1)
99 entry = bio_slab_nr++;
100
101 bslab = &bio_slabs[entry];
102
103 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
104 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
105 SLAB_HWCACHE_ALIGN, NULL);
106 if (!slab)
107 goto out_unlock;
108
109 bslab->slab = slab;
110 bslab->slab_ref = 1;
111 bslab->slab_size = sz;
112 out_unlock:
113 mutex_unlock(&bio_slab_lock);
114 return slab;
115 }
116
117 static void bio_put_slab(struct bio_set *bs)
118 {
119 struct bio_slab *bslab = NULL;
120 unsigned int i;
121
122 mutex_lock(&bio_slab_lock);
123
124 for (i = 0; i < bio_slab_nr; i++) {
125 if (bs->bio_slab == bio_slabs[i].slab) {
126 bslab = &bio_slabs[i];
127 break;
128 }
129 }
130
131 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
132 goto out;
133
134 WARN_ON(!bslab->slab_ref);
135
136 if (--bslab->slab_ref)
137 goto out;
138
139 kmem_cache_destroy(bslab->slab);
140 bslab->slab = NULL;
141
142 out:
143 mutex_unlock(&bio_slab_lock);
144 }
145
146 unsigned int bvec_nr_vecs(unsigned short idx)
147 {
148 return bvec_slabs[--idx].nr_vecs;
149 }
150
151 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
152 {
153 if (!idx)
154 return;
155 idx--;
156
157 BIO_BUG_ON(idx >= BVEC_POOL_NR);
158
159 if (idx == BVEC_POOL_MAX) {
160 mempool_free(bv, pool);
161 } else {
162 struct biovec_slab *bvs = bvec_slabs + idx;
163
164 kmem_cache_free(bvs->slab, bv);
165 }
166 }
167
168 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
169 mempool_t *pool)
170 {
171 struct bio_vec *bvl;
172
173 /*
174 * see comment near bvec_array define!
175 */
176 switch (nr) {
177 case 1:
178 *idx = 0;
179 break;
180 case 2 ... 4:
181 *idx = 1;
182 break;
183 case 5 ... 16:
184 *idx = 2;
185 break;
186 case 17 ... 64:
187 *idx = 3;
188 break;
189 case 65 ... 128:
190 *idx = 4;
191 break;
192 case 129 ... BIO_MAX_PAGES:
193 *idx = 5;
194 break;
195 default:
196 return NULL;
197 }
198
199 /*
200 * idx now points to the pool we want to allocate from. only the
201 * 1-vec entry pool is mempool backed.
202 */
203 if (*idx == BVEC_POOL_MAX) {
204 fallback:
205 bvl = mempool_alloc(pool, gfp_mask);
206 } else {
207 struct biovec_slab *bvs = bvec_slabs + *idx;
208 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
209
210 /*
211 * Make this allocation restricted and don't dump info on
212 * allocation failures, since we'll fallback to the mempool
213 * in case of failure.
214 */
215 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
216
217 /*
218 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
219 * is set, retry with the 1-entry mempool
220 */
221 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
222 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
223 *idx = BVEC_POOL_MAX;
224 goto fallback;
225 }
226 }
227
228 (*idx)++;
229 return bvl;
230 }
231
232 void bio_uninit(struct bio *bio)
233 {
234 bio_disassociate_blkg(bio);
235 }
236 EXPORT_SYMBOL(bio_uninit);
237
238 static void bio_free(struct bio *bio)
239 {
240 struct bio_set *bs = bio->bi_pool;
241 void *p;
242
243 bio_uninit(bio);
244
245 if (bs) {
246 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
247
248 /*
249 * If we have front padding, adjust the bio pointer before freeing
250 */
251 p = bio;
252 p -= bs->front_pad;
253
254 mempool_free(p, &bs->bio_pool);
255 } else {
256 /* Bio was allocated by bio_kmalloc() */
257 kfree(bio);
258 }
259 }
260
261 /*
262 * Users of this function have their own bio allocation. Subsequently,
263 * they must remember to pair any call to bio_init() with bio_uninit()
264 * when IO has completed, or when the bio is released.
265 */
266 void bio_init(struct bio *bio, struct bio_vec *table,
267 unsigned short max_vecs)
268 {
269 memset(bio, 0, sizeof(*bio));
270 atomic_set(&bio->__bi_remaining, 1);
271 atomic_set(&bio->__bi_cnt, 1);
272
273 bio->bi_io_vec = table;
274 bio->bi_max_vecs = max_vecs;
275 }
276 EXPORT_SYMBOL(bio_init);
277
278 /**
279 * bio_reset - reinitialize a bio
280 * @bio: bio to reset
281 *
282 * Description:
283 * After calling bio_reset(), @bio will be in the same state as a freshly
284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
285 * preserved are the ones that are initialized by bio_alloc_bioset(). See
286 * comment in struct bio.
287 */
288 void bio_reset(struct bio *bio)
289 {
290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291
292 bio_uninit(bio);
293
294 memset(bio, 0, BIO_RESET_BYTES);
295 bio->bi_flags = flags;
296 atomic_set(&bio->__bi_remaining, 1);
297 }
298 EXPORT_SYMBOL(bio_reset);
299
300 static struct bio *__bio_chain_endio(struct bio *bio)
301 {
302 struct bio *parent = bio->bi_private;
303
304 if (!parent->bi_status)
305 parent->bi_status = bio->bi_status;
306 bio_put(bio);
307 return parent;
308 }
309
310 static void bio_chain_endio(struct bio *bio)
311 {
312 bio_endio(__bio_chain_endio(bio));
313 }
314
315 /**
316 * bio_chain - chain bio completions
317 * @bio: the target bio
318 * @parent: the @bio's parent bio
319 *
320 * The caller won't have a bi_end_io called when @bio completes - instead,
321 * @parent's bi_end_io won't be called until both @parent and @bio have
322 * completed; the chained bio will also be freed when it completes.
323 *
324 * The caller must not set bi_private or bi_end_io in @bio.
325 */
326 void bio_chain(struct bio *bio, struct bio *parent)
327 {
328 BUG_ON(bio->bi_private || bio->bi_end_io);
329
330 bio->bi_private = parent;
331 bio->bi_end_io = bio_chain_endio;
332 bio_inc_remaining(parent);
333 }
334 EXPORT_SYMBOL(bio_chain);
335
336 static void bio_alloc_rescue(struct work_struct *work)
337 {
338 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
339 struct bio *bio;
340
341 while (1) {
342 spin_lock(&bs->rescue_lock);
343 bio = bio_list_pop(&bs->rescue_list);
344 spin_unlock(&bs->rescue_lock);
345
346 if (!bio)
347 break;
348
349 generic_make_request(bio);
350 }
351 }
352
353 static void punt_bios_to_rescuer(struct bio_set *bs)
354 {
355 struct bio_list punt, nopunt;
356 struct bio *bio;
357
358 if (WARN_ON_ONCE(!bs->rescue_workqueue))
359 return;
360 /*
361 * In order to guarantee forward progress we must punt only bios that
362 * were allocated from this bio_set; otherwise, if there was a bio on
363 * there for a stacking driver higher up in the stack, processing it
364 * could require allocating bios from this bio_set, and doing that from
365 * our own rescuer would be bad.
366 *
367 * Since bio lists are singly linked, pop them all instead of trying to
368 * remove from the middle of the list:
369 */
370
371 bio_list_init(&punt);
372 bio_list_init(&nopunt);
373
374 while ((bio = bio_list_pop(&current->bio_list[0])))
375 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
376 current->bio_list[0] = nopunt;
377
378 bio_list_init(&nopunt);
379 while ((bio = bio_list_pop(&current->bio_list[1])))
380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 current->bio_list[1] = nopunt;
382
383 spin_lock(&bs->rescue_lock);
384 bio_list_merge(&bs->rescue_list, &punt);
385 spin_unlock(&bs->rescue_lock);
386
387 queue_work(bs->rescue_workqueue, &bs->rescue_work);
388 }
389
390 /**
391 * bio_alloc_bioset - allocate a bio for I/O
392 * @gfp_mask: the GFP_* mask given to the slab allocator
393 * @nr_iovecs: number of iovecs to pre-allocate
394 * @bs: the bio_set to allocate from.
395 *
396 * Description:
397 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
398 * backed by the @bs's mempool.
399 *
400 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
401 * always be able to allocate a bio. This is due to the mempool guarantees.
402 * To make this work, callers must never allocate more than 1 bio at a time
403 * from this pool. Callers that need to allocate more than 1 bio must always
404 * submit the previously allocated bio for IO before attempting to allocate
405 * a new one. Failure to do so can cause deadlocks under memory pressure.
406 *
407 * Note that when running under generic_make_request() (i.e. any block
408 * driver), bios are not submitted until after you return - see the code in
409 * generic_make_request() that converts recursion into iteration, to prevent
410 * stack overflows.
411 *
412 * This would normally mean allocating multiple bios under
413 * generic_make_request() would be susceptible to deadlocks, but we have
414 * deadlock avoidance code that resubmits any blocked bios from a rescuer
415 * thread.
416 *
417 * However, we do not guarantee forward progress for allocations from other
418 * mempools. Doing multiple allocations from the same mempool under
419 * generic_make_request() should be avoided - instead, use bio_set's front_pad
420 * for per bio allocations.
421 *
422 * RETURNS:
423 * Pointer to new bio on success, NULL on failure.
424 */
425 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
426 struct bio_set *bs)
427 {
428 gfp_t saved_gfp = gfp_mask;
429 unsigned front_pad;
430 unsigned inline_vecs;
431 struct bio_vec *bvl = NULL;
432 struct bio *bio;
433 void *p;
434
435 if (!bs) {
436 if (nr_iovecs > UIO_MAXIOV)
437 return NULL;
438
439 p = kmalloc(sizeof(struct bio) +
440 nr_iovecs * sizeof(struct bio_vec),
441 gfp_mask);
442 front_pad = 0;
443 inline_vecs = nr_iovecs;
444 } else {
445 /* should not use nobvec bioset for nr_iovecs > 0 */
446 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
447 nr_iovecs > 0))
448 return NULL;
449 /*
450 * generic_make_request() converts recursion to iteration; this
451 * means if we're running beneath it, any bios we allocate and
452 * submit will not be submitted (and thus freed) until after we
453 * return.
454 *
455 * This exposes us to a potential deadlock if we allocate
456 * multiple bios from the same bio_set() while running
457 * underneath generic_make_request(). If we were to allocate
458 * multiple bios (say a stacking block driver that was splitting
459 * bios), we would deadlock if we exhausted the mempool's
460 * reserve.
461 *
462 * We solve this, and guarantee forward progress, with a rescuer
463 * workqueue per bio_set. If we go to allocate and there are
464 * bios on current->bio_list, we first try the allocation
465 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
466 * bios we would be blocking to the rescuer workqueue before
467 * we retry with the original gfp_flags.
468 */
469
470 if (current->bio_list &&
471 (!bio_list_empty(&current->bio_list[0]) ||
472 !bio_list_empty(&current->bio_list[1])) &&
473 bs->rescue_workqueue)
474 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
475
476 p = mempool_alloc(&bs->bio_pool, gfp_mask);
477 if (!p && gfp_mask != saved_gfp) {
478 punt_bios_to_rescuer(bs);
479 gfp_mask = saved_gfp;
480 p = mempool_alloc(&bs->bio_pool, gfp_mask);
481 }
482
483 front_pad = bs->front_pad;
484 inline_vecs = BIO_INLINE_VECS;
485 }
486
487 if (unlikely(!p))
488 return NULL;
489
490 bio = p + front_pad;
491 bio_init(bio, NULL, 0);
492
493 if (nr_iovecs > inline_vecs) {
494 unsigned long idx = 0;
495
496 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
497 if (!bvl && gfp_mask != saved_gfp) {
498 punt_bios_to_rescuer(bs);
499 gfp_mask = saved_gfp;
500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
501 }
502
503 if (unlikely(!bvl))
504 goto err_free;
505
506 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
507 } else if (nr_iovecs) {
508 bvl = bio->bi_inline_vecs;
509 }
510
511 bio->bi_pool = bs;
512 bio->bi_max_vecs = nr_iovecs;
513 bio->bi_io_vec = bvl;
514 return bio;
515
516 err_free:
517 mempool_free(p, &bs->bio_pool);
518 return NULL;
519 }
520 EXPORT_SYMBOL(bio_alloc_bioset);
521
522 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
523 {
524 unsigned long flags;
525 struct bio_vec bv;
526 struct bvec_iter iter;
527
528 __bio_for_each_segment(bv, bio, iter, start) {
529 char *data = bvec_kmap_irq(&bv, &flags);
530 memset(data, 0, bv.bv_len);
531 flush_dcache_page(bv.bv_page);
532 bvec_kunmap_irq(data, &flags);
533 }
534 }
535 EXPORT_SYMBOL(zero_fill_bio_iter);
536
537 /**
538 * bio_put - release a reference to a bio
539 * @bio: bio to release reference to
540 *
541 * Description:
542 * Put a reference to a &struct bio, either one you have gotten with
543 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
544 **/
545 void bio_put(struct bio *bio)
546 {
547 if (!bio_flagged(bio, BIO_REFFED))
548 bio_free(bio);
549 else {
550 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
551
552 /*
553 * last put frees it
554 */
555 if (atomic_dec_and_test(&bio->__bi_cnt))
556 bio_free(bio);
557 }
558 }
559 EXPORT_SYMBOL(bio_put);
560
561 int bio_phys_segments(struct request_queue *q, struct bio *bio)
562 {
563 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
564 blk_recount_segments(q, bio);
565
566 return bio->bi_phys_segments;
567 }
568
569 /**
570 * __bio_clone_fast - clone a bio that shares the original bio's biovec
571 * @bio: destination bio
572 * @bio_src: bio to clone
573 *
574 * Clone a &bio. Caller will own the returned bio, but not
575 * the actual data it points to. Reference count of returned
576 * bio will be one.
577 *
578 * Caller must ensure that @bio_src is not freed before @bio.
579 */
580 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
581 {
582 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
583
584 /*
585 * most users will be overriding ->bi_disk with a new target,
586 * so we don't set nor calculate new physical/hw segment counts here
587 */
588 bio->bi_disk = bio_src->bi_disk;
589 bio->bi_partno = bio_src->bi_partno;
590 bio_set_flag(bio, BIO_CLONED);
591 if (bio_flagged(bio_src, BIO_THROTTLED))
592 bio_set_flag(bio, BIO_THROTTLED);
593 bio->bi_opf = bio_src->bi_opf;
594 bio->bi_ioprio = bio_src->bi_ioprio;
595 bio->bi_write_hint = bio_src->bi_write_hint;
596 bio->bi_iter = bio_src->bi_iter;
597 bio->bi_io_vec = bio_src->bi_io_vec;
598
599 bio_clone_blkg_association(bio, bio_src);
600 blkcg_bio_issue_init(bio);
601 }
602 EXPORT_SYMBOL(__bio_clone_fast);
603
604 /**
605 * bio_clone_fast - clone a bio that shares the original bio's biovec
606 * @bio: bio to clone
607 * @gfp_mask: allocation priority
608 * @bs: bio_set to allocate from
609 *
610 * Like __bio_clone_fast, only also allocates the returned bio
611 */
612 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
613 {
614 struct bio *b;
615
616 b = bio_alloc_bioset(gfp_mask, 0, bs);
617 if (!b)
618 return NULL;
619
620 __bio_clone_fast(b, bio);
621
622 if (bio_integrity(bio)) {
623 int ret;
624
625 ret = bio_integrity_clone(b, bio, gfp_mask);
626
627 if (ret < 0) {
628 bio_put(b);
629 return NULL;
630 }
631 }
632
633 return b;
634 }
635 EXPORT_SYMBOL(bio_clone_fast);
636
637 static inline bool page_is_mergeable(const struct bio_vec *bv,
638 struct page *page, unsigned int len, unsigned int off,
639 bool same_page)
640 {
641 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
642 bv->bv_offset + bv->bv_len - 1;
643 phys_addr_t page_addr = page_to_phys(page);
644
645 if (vec_end_addr + 1 != page_addr + off)
646 return false;
647 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
648 return false;
649
650 if ((vec_end_addr & PAGE_MASK) != page_addr) {
651 if (same_page)
652 return false;
653 if (pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
654 return false;
655 }
656
657 WARN_ON_ONCE(same_page && (len + off) > PAGE_SIZE);
658
659 return true;
660 }
661
662 /*
663 * Check if the @page can be added to the current segment(@bv), and make
664 * sure to call it only if page_is_mergeable(@bv, @page) is true
665 */
666 static bool can_add_page_to_seg(struct request_queue *q,
667 struct bio_vec *bv, struct page *page, unsigned len,
668 unsigned offset)
669 {
670 unsigned long mask = queue_segment_boundary(q);
671 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
672 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
673
674 if ((addr1 | mask) != (addr2 | mask))
675 return false;
676
677 if (bv->bv_len + len > queue_max_segment_size(q))
678 return false;
679
680 return true;
681 }
682
683 /**
684 * __bio_add_pc_page - attempt to add page to passthrough bio
685 * @q: the target queue
686 * @bio: destination bio
687 * @page: page to add
688 * @len: vec entry length
689 * @offset: vec entry offset
690 * @put_same_page: put the page if it is same with last added page
691 *
692 * Attempt to add a page to the bio_vec maplist. This can fail for a
693 * number of reasons, such as the bio being full or target block device
694 * limitations. The target block device must allow bio's up to PAGE_SIZE,
695 * so it is always possible to add a single page to an empty bio.
696 *
697 * This should only be used by passthrough bios.
698 */
699 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
700 struct page *page, unsigned int len, unsigned int offset,
701 bool put_same_page)
702 {
703 struct bio_vec *bvec;
704
705 /*
706 * cloned bio must not modify vec list
707 */
708 if (unlikely(bio_flagged(bio, BIO_CLONED)))
709 return 0;
710
711 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
712 return 0;
713
714 if (bio->bi_vcnt > 0) {
715 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
716
717 if (page == bvec->bv_page &&
718 offset == bvec->bv_offset + bvec->bv_len) {
719 if (put_same_page)
720 put_page(page);
721 bvec->bv_len += len;
722 goto done;
723 }
724
725 /*
726 * If the queue doesn't support SG gaps and adding this
727 * offset would create a gap, disallow it.
728 */
729 if (bvec_gap_to_prev(q, bvec, offset))
730 return 0;
731
732 if (page_is_mergeable(bvec, page, len, offset, false) &&
733 can_add_page_to_seg(q, bvec, page, len, offset)) {
734 bvec->bv_len += len;
735 goto done;
736 }
737 }
738
739 if (bio_full(bio))
740 return 0;
741
742 if (bio->bi_phys_segments >= queue_max_segments(q))
743 return 0;
744
745 bvec = &bio->bi_io_vec[bio->bi_vcnt];
746 bvec->bv_page = page;
747 bvec->bv_len = len;
748 bvec->bv_offset = offset;
749 bio->bi_vcnt++;
750 done:
751 bio->bi_iter.bi_size += len;
752 bio->bi_phys_segments = bio->bi_vcnt;
753 bio_set_flag(bio, BIO_SEG_VALID);
754 return len;
755 }
756
757 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
758 struct page *page, unsigned int len, unsigned int offset)
759 {
760 return __bio_add_pc_page(q, bio, page, len, offset, false);
761 }
762 EXPORT_SYMBOL(bio_add_pc_page);
763
764 /**
765 * __bio_try_merge_page - try appending data to an existing bvec.
766 * @bio: destination bio
767 * @page: start page to add
768 * @len: length of the data to add
769 * @off: offset of the data relative to @page
770 * @same_page: if %true only merge if the new data is in the same physical
771 * page as the last segment of the bio.
772 *
773 * Try to add the data at @page + @off to the last bvec of @bio. This is a
774 * a useful optimisation for file systems with a block size smaller than the
775 * page size.
776 *
777 * Warn if (@len, @off) crosses pages in case that @same_page is true.
778 *
779 * Return %true on success or %false on failure.
780 */
781 bool __bio_try_merge_page(struct bio *bio, struct page *page,
782 unsigned int len, unsigned int off, bool same_page)
783 {
784 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
785 return false;
786
787 if (bio->bi_vcnt > 0) {
788 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
789
790 if (page_is_mergeable(bv, page, len, off, same_page)) {
791 bv->bv_len += len;
792 bio->bi_iter.bi_size += len;
793 return true;
794 }
795 }
796 return false;
797 }
798 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
799
800 /**
801 * __bio_add_page - add page(s) to a bio in a new segment
802 * @bio: destination bio
803 * @page: start page to add
804 * @len: length of the data to add, may cross pages
805 * @off: offset of the data relative to @page, may cross pages
806 *
807 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
808 * that @bio has space for another bvec.
809 */
810 void __bio_add_page(struct bio *bio, struct page *page,
811 unsigned int len, unsigned int off)
812 {
813 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
814
815 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
816 WARN_ON_ONCE(bio_full(bio));
817
818 bv->bv_page = page;
819 bv->bv_offset = off;
820 bv->bv_len = len;
821
822 bio->bi_iter.bi_size += len;
823 bio->bi_vcnt++;
824 }
825 EXPORT_SYMBOL_GPL(__bio_add_page);
826
827 /**
828 * bio_add_page - attempt to add page(s) to bio
829 * @bio: destination bio
830 * @page: start page to add
831 * @len: vec entry length, may cross pages
832 * @offset: vec entry offset relative to @page, may cross pages
833 *
834 * Attempt to add page(s) to the bio_vec maplist. This will only fail
835 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
836 */
837 int bio_add_page(struct bio *bio, struct page *page,
838 unsigned int len, unsigned int offset)
839 {
840 if (!__bio_try_merge_page(bio, page, len, offset, false)) {
841 if (bio_full(bio))
842 return 0;
843 __bio_add_page(bio, page, len, offset);
844 }
845 return len;
846 }
847 EXPORT_SYMBOL(bio_add_page);
848
849 static void bio_get_pages(struct bio *bio)
850 {
851 struct bvec_iter_all iter_all;
852 struct bio_vec *bvec;
853
854 bio_for_each_segment_all(bvec, bio, iter_all)
855 get_page(bvec->bv_page);
856 }
857
858 static void bio_release_pages(struct bio *bio)
859 {
860 struct bvec_iter_all iter_all;
861 struct bio_vec *bvec;
862
863 bio_for_each_segment_all(bvec, bio, iter_all)
864 put_page(bvec->bv_page);
865 }
866
867 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
868 {
869 const struct bio_vec *bv = iter->bvec;
870 unsigned int len;
871 size_t size;
872
873 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
874 return -EINVAL;
875
876 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
877 size = bio_add_page(bio, bv->bv_page, len,
878 bv->bv_offset + iter->iov_offset);
879 if (unlikely(size != len))
880 return -EINVAL;
881 iov_iter_advance(iter, size);
882 return 0;
883 }
884
885 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
886
887 /**
888 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
889 * @bio: bio to add pages to
890 * @iter: iov iterator describing the region to be mapped
891 *
892 * Pins pages from *iter and appends them to @bio's bvec array. The
893 * pages will have to be released using put_page() when done.
894 * For multi-segment *iter, this function only adds pages from the
895 * the next non-empty segment of the iov iterator.
896 */
897 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
898 {
899 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
900 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
901 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
902 struct page **pages = (struct page **)bv;
903 ssize_t size, left;
904 unsigned len, i;
905 size_t offset;
906
907 /*
908 * Move page array up in the allocated memory for the bio vecs as far as
909 * possible so that we can start filling biovecs from the beginning
910 * without overwriting the temporary page array.
911 */
912 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
913 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
914
915 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
916 if (unlikely(size <= 0))
917 return size ? size : -EFAULT;
918
919 for (left = size, i = 0; left > 0; left -= len, i++) {
920 struct page *page = pages[i];
921
922 len = min_t(size_t, PAGE_SIZE - offset, left);
923 if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
924 return -EINVAL;
925 offset = 0;
926 }
927
928 iov_iter_advance(iter, size);
929 return 0;
930 }
931
932 /**
933 * bio_iov_iter_get_pages - add user or kernel pages to a bio
934 * @bio: bio to add pages to
935 * @iter: iov iterator describing the region to be added
936 *
937 * This takes either an iterator pointing to user memory, or one pointing to
938 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
939 * map them into the kernel. On IO completion, the caller should put those
940 * pages. If we're adding kernel pages, and the caller told us it's safe to
941 * do so, we just have to add the pages to the bio directly. We don't grab an
942 * extra reference to those pages (the user should already have that), and we
943 * don't put the page on IO completion. The caller needs to check if the bio is
944 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
945 * released.
946 *
947 * The function tries, but does not guarantee, to pin as many pages as
948 * fit into the bio, or are requested in *iter, whatever is smaller. If
949 * MM encounters an error pinning the requested pages, it stops. Error
950 * is returned only if 0 pages could be pinned.
951 */
952 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
953 {
954 const bool is_bvec = iov_iter_is_bvec(iter);
955 int ret;
956
957 if (WARN_ON_ONCE(bio->bi_vcnt))
958 return -EINVAL;
959
960 do {
961 if (is_bvec)
962 ret = __bio_iov_bvec_add_pages(bio, iter);
963 else
964 ret = __bio_iov_iter_get_pages(bio, iter);
965 } while (!ret && iov_iter_count(iter) && !bio_full(bio));
966
967 if (iov_iter_bvec_no_ref(iter))
968 bio_set_flag(bio, BIO_NO_PAGE_REF);
969 else if (is_bvec)
970 bio_get_pages(bio);
971
972 return bio->bi_vcnt ? 0 : ret;
973 }
974
975 static void submit_bio_wait_endio(struct bio *bio)
976 {
977 complete(bio->bi_private);
978 }
979
980 /**
981 * submit_bio_wait - submit a bio, and wait until it completes
982 * @bio: The &struct bio which describes the I/O
983 *
984 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
985 * bio_endio() on failure.
986 *
987 * WARNING: Unlike to how submit_bio() is usually used, this function does not
988 * result in bio reference to be consumed. The caller must drop the reference
989 * on his own.
990 */
991 int submit_bio_wait(struct bio *bio)
992 {
993 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
994
995 bio->bi_private = &done;
996 bio->bi_end_io = submit_bio_wait_endio;
997 bio->bi_opf |= REQ_SYNC;
998 submit_bio(bio);
999 wait_for_completion_io(&done);
1000
1001 return blk_status_to_errno(bio->bi_status);
1002 }
1003 EXPORT_SYMBOL(submit_bio_wait);
1004
1005 /**
1006 * bio_advance - increment/complete a bio by some number of bytes
1007 * @bio: bio to advance
1008 * @bytes: number of bytes to complete
1009 *
1010 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1011 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1012 * be updated on the last bvec as well.
1013 *
1014 * @bio will then represent the remaining, uncompleted portion of the io.
1015 */
1016 void bio_advance(struct bio *bio, unsigned bytes)
1017 {
1018 if (bio_integrity(bio))
1019 bio_integrity_advance(bio, bytes);
1020
1021 bio_advance_iter(bio, &bio->bi_iter, bytes);
1022 }
1023 EXPORT_SYMBOL(bio_advance);
1024
1025 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1026 struct bio *src, struct bvec_iter *src_iter)
1027 {
1028 struct bio_vec src_bv, dst_bv;
1029 void *src_p, *dst_p;
1030 unsigned bytes;
1031
1032 while (src_iter->bi_size && dst_iter->bi_size) {
1033 src_bv = bio_iter_iovec(src, *src_iter);
1034 dst_bv = bio_iter_iovec(dst, *dst_iter);
1035
1036 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1037
1038 src_p = kmap_atomic(src_bv.bv_page);
1039 dst_p = kmap_atomic(dst_bv.bv_page);
1040
1041 memcpy(dst_p + dst_bv.bv_offset,
1042 src_p + src_bv.bv_offset,
1043 bytes);
1044
1045 kunmap_atomic(dst_p);
1046 kunmap_atomic(src_p);
1047
1048 flush_dcache_page(dst_bv.bv_page);
1049
1050 bio_advance_iter(src, src_iter, bytes);
1051 bio_advance_iter(dst, dst_iter, bytes);
1052 }
1053 }
1054 EXPORT_SYMBOL(bio_copy_data_iter);
1055
1056 /**
1057 * bio_copy_data - copy contents of data buffers from one bio to another
1058 * @src: source bio
1059 * @dst: destination bio
1060 *
1061 * Stops when it reaches the end of either @src or @dst - that is, copies
1062 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1063 */
1064 void bio_copy_data(struct bio *dst, struct bio *src)
1065 {
1066 struct bvec_iter src_iter = src->bi_iter;
1067 struct bvec_iter dst_iter = dst->bi_iter;
1068
1069 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1070 }
1071 EXPORT_SYMBOL(bio_copy_data);
1072
1073 /**
1074 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1075 * another
1076 * @src: source bio list
1077 * @dst: destination bio list
1078 *
1079 * Stops when it reaches the end of either the @src list or @dst list - that is,
1080 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1081 * bios).
1082 */
1083 void bio_list_copy_data(struct bio *dst, struct bio *src)
1084 {
1085 struct bvec_iter src_iter = src->bi_iter;
1086 struct bvec_iter dst_iter = dst->bi_iter;
1087
1088 while (1) {
1089 if (!src_iter.bi_size) {
1090 src = src->bi_next;
1091 if (!src)
1092 break;
1093
1094 src_iter = src->bi_iter;
1095 }
1096
1097 if (!dst_iter.bi_size) {
1098 dst = dst->bi_next;
1099 if (!dst)
1100 break;
1101
1102 dst_iter = dst->bi_iter;
1103 }
1104
1105 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1106 }
1107 }
1108 EXPORT_SYMBOL(bio_list_copy_data);
1109
1110 struct bio_map_data {
1111 int is_our_pages;
1112 struct iov_iter iter;
1113 struct iovec iov[];
1114 };
1115
1116 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1117 gfp_t gfp_mask)
1118 {
1119 struct bio_map_data *bmd;
1120 if (data->nr_segs > UIO_MAXIOV)
1121 return NULL;
1122
1123 bmd = kmalloc(sizeof(struct bio_map_data) +
1124 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1125 if (!bmd)
1126 return NULL;
1127 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1128 bmd->iter = *data;
1129 bmd->iter.iov = bmd->iov;
1130 return bmd;
1131 }
1132
1133 /**
1134 * bio_copy_from_iter - copy all pages from iov_iter to bio
1135 * @bio: The &struct bio which describes the I/O as destination
1136 * @iter: iov_iter as source
1137 *
1138 * Copy all pages from iov_iter to bio.
1139 * Returns 0 on success, or error on failure.
1140 */
1141 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1142 {
1143 struct bio_vec *bvec;
1144 struct bvec_iter_all iter_all;
1145
1146 bio_for_each_segment_all(bvec, bio, iter_all) {
1147 ssize_t ret;
1148
1149 ret = copy_page_from_iter(bvec->bv_page,
1150 bvec->bv_offset,
1151 bvec->bv_len,
1152 iter);
1153
1154 if (!iov_iter_count(iter))
1155 break;
1156
1157 if (ret < bvec->bv_len)
1158 return -EFAULT;
1159 }
1160
1161 return 0;
1162 }
1163
1164 /**
1165 * bio_copy_to_iter - copy all pages from bio to iov_iter
1166 * @bio: The &struct bio which describes the I/O as source
1167 * @iter: iov_iter as destination
1168 *
1169 * Copy all pages from bio to iov_iter.
1170 * Returns 0 on success, or error on failure.
1171 */
1172 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1173 {
1174 struct bio_vec *bvec;
1175 struct bvec_iter_all iter_all;
1176
1177 bio_for_each_segment_all(bvec, bio, iter_all) {
1178 ssize_t ret;
1179
1180 ret = copy_page_to_iter(bvec->bv_page,
1181 bvec->bv_offset,
1182 bvec->bv_len,
1183 &iter);
1184
1185 if (!iov_iter_count(&iter))
1186 break;
1187
1188 if (ret < bvec->bv_len)
1189 return -EFAULT;
1190 }
1191
1192 return 0;
1193 }
1194
1195 void bio_free_pages(struct bio *bio)
1196 {
1197 struct bio_vec *bvec;
1198 struct bvec_iter_all iter_all;
1199
1200 bio_for_each_segment_all(bvec, bio, iter_all)
1201 __free_page(bvec->bv_page);
1202 }
1203 EXPORT_SYMBOL(bio_free_pages);
1204
1205 /**
1206 * bio_uncopy_user - finish previously mapped bio
1207 * @bio: bio being terminated
1208 *
1209 * Free pages allocated from bio_copy_user_iov() and write back data
1210 * to user space in case of a read.
1211 */
1212 int bio_uncopy_user(struct bio *bio)
1213 {
1214 struct bio_map_data *bmd = bio->bi_private;
1215 int ret = 0;
1216
1217 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1218 /*
1219 * if we're in a workqueue, the request is orphaned, so
1220 * don't copy into a random user address space, just free
1221 * and return -EINTR so user space doesn't expect any data.
1222 */
1223 if (!current->mm)
1224 ret = -EINTR;
1225 else if (bio_data_dir(bio) == READ)
1226 ret = bio_copy_to_iter(bio, bmd->iter);
1227 if (bmd->is_our_pages)
1228 bio_free_pages(bio);
1229 }
1230 kfree(bmd);
1231 bio_put(bio);
1232 return ret;
1233 }
1234
1235 /**
1236 * bio_copy_user_iov - copy user data to bio
1237 * @q: destination block queue
1238 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1239 * @iter: iovec iterator
1240 * @gfp_mask: memory allocation flags
1241 *
1242 * Prepares and returns a bio for indirect user io, bouncing data
1243 * to/from kernel pages as necessary. Must be paired with
1244 * call bio_uncopy_user() on io completion.
1245 */
1246 struct bio *bio_copy_user_iov(struct request_queue *q,
1247 struct rq_map_data *map_data,
1248 struct iov_iter *iter,
1249 gfp_t gfp_mask)
1250 {
1251 struct bio_map_data *bmd;
1252 struct page *page;
1253 struct bio *bio;
1254 int i = 0, ret;
1255 int nr_pages;
1256 unsigned int len = iter->count;
1257 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1258
1259 bmd = bio_alloc_map_data(iter, gfp_mask);
1260 if (!bmd)
1261 return ERR_PTR(-ENOMEM);
1262
1263 /*
1264 * We need to do a deep copy of the iov_iter including the iovecs.
1265 * The caller provided iov might point to an on-stack or otherwise
1266 * shortlived one.
1267 */
1268 bmd->is_our_pages = map_data ? 0 : 1;
1269
1270 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1271 if (nr_pages > BIO_MAX_PAGES)
1272 nr_pages = BIO_MAX_PAGES;
1273
1274 ret = -ENOMEM;
1275 bio = bio_kmalloc(gfp_mask, nr_pages);
1276 if (!bio)
1277 goto out_bmd;
1278
1279 ret = 0;
1280
1281 if (map_data) {
1282 nr_pages = 1 << map_data->page_order;
1283 i = map_data->offset / PAGE_SIZE;
1284 }
1285 while (len) {
1286 unsigned int bytes = PAGE_SIZE;
1287
1288 bytes -= offset;
1289
1290 if (bytes > len)
1291 bytes = len;
1292
1293 if (map_data) {
1294 if (i == map_data->nr_entries * nr_pages) {
1295 ret = -ENOMEM;
1296 break;
1297 }
1298
1299 page = map_data->pages[i / nr_pages];
1300 page += (i % nr_pages);
1301
1302 i++;
1303 } else {
1304 page = alloc_page(q->bounce_gfp | gfp_mask);
1305 if (!page) {
1306 ret = -ENOMEM;
1307 break;
1308 }
1309 }
1310
1311 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1312 if (!map_data)
1313 __free_page(page);
1314 break;
1315 }
1316
1317 len -= bytes;
1318 offset = 0;
1319 }
1320
1321 if (ret)
1322 goto cleanup;
1323
1324 if (map_data)
1325 map_data->offset += bio->bi_iter.bi_size;
1326
1327 /*
1328 * success
1329 */
1330 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1331 (map_data && map_data->from_user)) {
1332 ret = bio_copy_from_iter(bio, iter);
1333 if (ret)
1334 goto cleanup;
1335 } else {
1336 if (bmd->is_our_pages)
1337 zero_fill_bio(bio);
1338 iov_iter_advance(iter, bio->bi_iter.bi_size);
1339 }
1340
1341 bio->bi_private = bmd;
1342 if (map_data && map_data->null_mapped)
1343 bio_set_flag(bio, BIO_NULL_MAPPED);
1344 return bio;
1345 cleanup:
1346 if (!map_data)
1347 bio_free_pages(bio);
1348 bio_put(bio);
1349 out_bmd:
1350 kfree(bmd);
1351 return ERR_PTR(ret);
1352 }
1353
1354 /**
1355 * bio_map_user_iov - map user iovec into bio
1356 * @q: the struct request_queue for the bio
1357 * @iter: iovec iterator
1358 * @gfp_mask: memory allocation flags
1359 *
1360 * Map the user space address into a bio suitable for io to a block
1361 * device. Returns an error pointer in case of error.
1362 */
1363 struct bio *bio_map_user_iov(struct request_queue *q,
1364 struct iov_iter *iter,
1365 gfp_t gfp_mask)
1366 {
1367 int j;
1368 struct bio *bio;
1369 int ret;
1370 struct bio_vec *bvec;
1371 struct bvec_iter_all iter_all;
1372
1373 if (!iov_iter_count(iter))
1374 return ERR_PTR(-EINVAL);
1375
1376 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1377 if (!bio)
1378 return ERR_PTR(-ENOMEM);
1379
1380 while (iov_iter_count(iter)) {
1381 struct page **pages;
1382 ssize_t bytes;
1383 size_t offs, added = 0;
1384 int npages;
1385
1386 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1387 if (unlikely(bytes <= 0)) {
1388 ret = bytes ? bytes : -EFAULT;
1389 goto out_unmap;
1390 }
1391
1392 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1393
1394 if (unlikely(offs & queue_dma_alignment(q))) {
1395 ret = -EINVAL;
1396 j = 0;
1397 } else {
1398 for (j = 0; j < npages; j++) {
1399 struct page *page = pages[j];
1400 unsigned int n = PAGE_SIZE - offs;
1401
1402 if (n > bytes)
1403 n = bytes;
1404
1405 if (!__bio_add_pc_page(q, bio, page, n, offs,
1406 true))
1407 break;
1408
1409 added += n;
1410 bytes -= n;
1411 offs = 0;
1412 }
1413 iov_iter_advance(iter, added);
1414 }
1415 /*
1416 * release the pages we didn't map into the bio, if any
1417 */
1418 while (j < npages)
1419 put_page(pages[j++]);
1420 kvfree(pages);
1421 /* couldn't stuff something into bio? */
1422 if (bytes)
1423 break;
1424 }
1425
1426 bio_set_flag(bio, BIO_USER_MAPPED);
1427
1428 /*
1429 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1430 * it would normally disappear when its bi_end_io is run.
1431 * however, we need it for the unmap, so grab an extra
1432 * reference to it
1433 */
1434 bio_get(bio);
1435 return bio;
1436
1437 out_unmap:
1438 bio_for_each_segment_all(bvec, bio, iter_all) {
1439 put_page(bvec->bv_page);
1440 }
1441 bio_put(bio);
1442 return ERR_PTR(ret);
1443 }
1444
1445 static void __bio_unmap_user(struct bio *bio)
1446 {
1447 struct bio_vec *bvec;
1448 struct bvec_iter_all iter_all;
1449
1450 /*
1451 * make sure we dirty pages we wrote to
1452 */
1453 bio_for_each_segment_all(bvec, bio, iter_all) {
1454 if (bio_data_dir(bio) == READ)
1455 set_page_dirty_lock(bvec->bv_page);
1456
1457 put_page(bvec->bv_page);
1458 }
1459
1460 bio_put(bio);
1461 }
1462
1463 /**
1464 * bio_unmap_user - unmap a bio
1465 * @bio: the bio being unmapped
1466 *
1467 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1468 * process context.
1469 *
1470 * bio_unmap_user() may sleep.
1471 */
1472 void bio_unmap_user(struct bio *bio)
1473 {
1474 __bio_unmap_user(bio);
1475 bio_put(bio);
1476 }
1477
1478 static void bio_map_kern_endio(struct bio *bio)
1479 {
1480 bio_put(bio);
1481 }
1482
1483 /**
1484 * bio_map_kern - map kernel address into bio
1485 * @q: the struct request_queue for the bio
1486 * @data: pointer to buffer to map
1487 * @len: length in bytes
1488 * @gfp_mask: allocation flags for bio allocation
1489 *
1490 * Map the kernel address into a bio suitable for io to a block
1491 * device. Returns an error pointer in case of error.
1492 */
1493 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1494 gfp_t gfp_mask)
1495 {
1496 unsigned long kaddr = (unsigned long)data;
1497 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1498 unsigned long start = kaddr >> PAGE_SHIFT;
1499 const int nr_pages = end - start;
1500 int offset, i;
1501 struct bio *bio;
1502
1503 bio = bio_kmalloc(gfp_mask, nr_pages);
1504 if (!bio)
1505 return ERR_PTR(-ENOMEM);
1506
1507 offset = offset_in_page(kaddr);
1508 for (i = 0; i < nr_pages; i++) {
1509 unsigned int bytes = PAGE_SIZE - offset;
1510
1511 if (len <= 0)
1512 break;
1513
1514 if (bytes > len)
1515 bytes = len;
1516
1517 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1518 offset) < bytes) {
1519 /* we don't support partial mappings */
1520 bio_put(bio);
1521 return ERR_PTR(-EINVAL);
1522 }
1523
1524 data += bytes;
1525 len -= bytes;
1526 offset = 0;
1527 }
1528
1529 bio->bi_end_io = bio_map_kern_endio;
1530 return bio;
1531 }
1532 EXPORT_SYMBOL(bio_map_kern);
1533
1534 static void bio_copy_kern_endio(struct bio *bio)
1535 {
1536 bio_free_pages(bio);
1537 bio_put(bio);
1538 }
1539
1540 static void bio_copy_kern_endio_read(struct bio *bio)
1541 {
1542 char *p = bio->bi_private;
1543 struct bio_vec *bvec;
1544 struct bvec_iter_all iter_all;
1545
1546 bio_for_each_segment_all(bvec, bio, iter_all) {
1547 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1548 p += bvec->bv_len;
1549 }
1550
1551 bio_copy_kern_endio(bio);
1552 }
1553
1554 /**
1555 * bio_copy_kern - copy kernel address into bio
1556 * @q: the struct request_queue for the bio
1557 * @data: pointer to buffer to copy
1558 * @len: length in bytes
1559 * @gfp_mask: allocation flags for bio and page allocation
1560 * @reading: data direction is READ
1561 *
1562 * copy the kernel address into a bio suitable for io to a block
1563 * device. Returns an error pointer in case of error.
1564 */
1565 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1566 gfp_t gfp_mask, int reading)
1567 {
1568 unsigned long kaddr = (unsigned long)data;
1569 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1570 unsigned long start = kaddr >> PAGE_SHIFT;
1571 struct bio *bio;
1572 void *p = data;
1573 int nr_pages = 0;
1574
1575 /*
1576 * Overflow, abort
1577 */
1578 if (end < start)
1579 return ERR_PTR(-EINVAL);
1580
1581 nr_pages = end - start;
1582 bio = bio_kmalloc(gfp_mask, nr_pages);
1583 if (!bio)
1584 return ERR_PTR(-ENOMEM);
1585
1586 while (len) {
1587 struct page *page;
1588 unsigned int bytes = PAGE_SIZE;
1589
1590 if (bytes > len)
1591 bytes = len;
1592
1593 page = alloc_page(q->bounce_gfp | gfp_mask);
1594 if (!page)
1595 goto cleanup;
1596
1597 if (!reading)
1598 memcpy(page_address(page), p, bytes);
1599
1600 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1601 break;
1602
1603 len -= bytes;
1604 p += bytes;
1605 }
1606
1607 if (reading) {
1608 bio->bi_end_io = bio_copy_kern_endio_read;
1609 bio->bi_private = data;
1610 } else {
1611 bio->bi_end_io = bio_copy_kern_endio;
1612 }
1613
1614 return bio;
1615
1616 cleanup:
1617 bio_free_pages(bio);
1618 bio_put(bio);
1619 return ERR_PTR(-ENOMEM);
1620 }
1621
1622 /*
1623 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1624 * for performing direct-IO in BIOs.
1625 *
1626 * The problem is that we cannot run set_page_dirty() from interrupt context
1627 * because the required locks are not interrupt-safe. So what we can do is to
1628 * mark the pages dirty _before_ performing IO. And in interrupt context,
1629 * check that the pages are still dirty. If so, fine. If not, redirty them
1630 * in process context.
1631 *
1632 * We special-case compound pages here: normally this means reads into hugetlb
1633 * pages. The logic in here doesn't really work right for compound pages
1634 * because the VM does not uniformly chase down the head page in all cases.
1635 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1636 * handle them at all. So we skip compound pages here at an early stage.
1637 *
1638 * Note that this code is very hard to test under normal circumstances because
1639 * direct-io pins the pages with get_user_pages(). This makes
1640 * is_page_cache_freeable return false, and the VM will not clean the pages.
1641 * But other code (eg, flusher threads) could clean the pages if they are mapped
1642 * pagecache.
1643 *
1644 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1645 * deferred bio dirtying paths.
1646 */
1647
1648 /*
1649 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1650 */
1651 void bio_set_pages_dirty(struct bio *bio)
1652 {
1653 struct bio_vec *bvec;
1654 struct bvec_iter_all iter_all;
1655
1656 bio_for_each_segment_all(bvec, bio, iter_all) {
1657 if (!PageCompound(bvec->bv_page))
1658 set_page_dirty_lock(bvec->bv_page);
1659 }
1660 }
1661
1662 /*
1663 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1664 * If they are, then fine. If, however, some pages are clean then they must
1665 * have been written out during the direct-IO read. So we take another ref on
1666 * the BIO and re-dirty the pages in process context.
1667 *
1668 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1669 * here on. It will run one put_page() against each page and will run one
1670 * bio_put() against the BIO.
1671 */
1672
1673 static void bio_dirty_fn(struct work_struct *work);
1674
1675 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1676 static DEFINE_SPINLOCK(bio_dirty_lock);
1677 static struct bio *bio_dirty_list;
1678
1679 /*
1680 * This runs in process context
1681 */
1682 static void bio_dirty_fn(struct work_struct *work)
1683 {
1684 struct bio *bio, *next;
1685
1686 spin_lock_irq(&bio_dirty_lock);
1687 next = bio_dirty_list;
1688 bio_dirty_list = NULL;
1689 spin_unlock_irq(&bio_dirty_lock);
1690
1691 while ((bio = next) != NULL) {
1692 next = bio->bi_private;
1693
1694 bio_set_pages_dirty(bio);
1695 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1696 bio_release_pages(bio);
1697 bio_put(bio);
1698 }
1699 }
1700
1701 void bio_check_pages_dirty(struct bio *bio)
1702 {
1703 struct bio_vec *bvec;
1704 unsigned long flags;
1705 struct bvec_iter_all iter_all;
1706
1707 bio_for_each_segment_all(bvec, bio, iter_all) {
1708 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1709 goto defer;
1710 }
1711
1712 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1713 bio_release_pages(bio);
1714 bio_put(bio);
1715 return;
1716 defer:
1717 spin_lock_irqsave(&bio_dirty_lock, flags);
1718 bio->bi_private = bio_dirty_list;
1719 bio_dirty_list = bio;
1720 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1721 schedule_work(&bio_dirty_work);
1722 }
1723
1724 void update_io_ticks(struct hd_struct *part, unsigned long now)
1725 {
1726 unsigned long stamp;
1727 again:
1728 stamp = READ_ONCE(part->stamp);
1729 if (unlikely(stamp != now)) {
1730 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1731 __part_stat_add(part, io_ticks, 1);
1732 }
1733 }
1734 if (part->partno) {
1735 part = &part_to_disk(part)->part0;
1736 goto again;
1737 }
1738 }
1739
1740 void generic_start_io_acct(struct request_queue *q, int op,
1741 unsigned long sectors, struct hd_struct *part)
1742 {
1743 const int sgrp = op_stat_group(op);
1744
1745 part_stat_lock();
1746
1747 update_io_ticks(part, jiffies);
1748 part_stat_inc(part, ios[sgrp]);
1749 part_stat_add(part, sectors[sgrp], sectors);
1750 part_inc_in_flight(q, part, op_is_write(op));
1751
1752 part_stat_unlock();
1753 }
1754 EXPORT_SYMBOL(generic_start_io_acct);
1755
1756 void generic_end_io_acct(struct request_queue *q, int req_op,
1757 struct hd_struct *part, unsigned long start_time)
1758 {
1759 unsigned long now = jiffies;
1760 unsigned long duration = now - start_time;
1761 const int sgrp = op_stat_group(req_op);
1762
1763 part_stat_lock();
1764
1765 update_io_ticks(part, now);
1766 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1767 part_stat_add(part, time_in_queue, duration);
1768 part_dec_in_flight(q, part, op_is_write(req_op));
1769
1770 part_stat_unlock();
1771 }
1772 EXPORT_SYMBOL(generic_end_io_acct);
1773
1774 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1775 void bio_flush_dcache_pages(struct bio *bi)
1776 {
1777 struct bio_vec bvec;
1778 struct bvec_iter iter;
1779
1780 bio_for_each_segment(bvec, bi, iter)
1781 flush_dcache_page(bvec.bv_page);
1782 }
1783 EXPORT_SYMBOL(bio_flush_dcache_pages);
1784 #endif
1785
1786 static inline bool bio_remaining_done(struct bio *bio)
1787 {
1788 /*
1789 * If we're not chaining, then ->__bi_remaining is always 1 and
1790 * we always end io on the first invocation.
1791 */
1792 if (!bio_flagged(bio, BIO_CHAIN))
1793 return true;
1794
1795 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1796
1797 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1798 bio_clear_flag(bio, BIO_CHAIN);
1799 return true;
1800 }
1801
1802 return false;
1803 }
1804
1805 /**
1806 * bio_endio - end I/O on a bio
1807 * @bio: bio
1808 *
1809 * Description:
1810 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1811 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1812 * bio unless they own it and thus know that it has an end_io function.
1813 *
1814 * bio_endio() can be called several times on a bio that has been chained
1815 * using bio_chain(). The ->bi_end_io() function will only be called the
1816 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1817 * generated if BIO_TRACE_COMPLETION is set.
1818 **/
1819 void bio_endio(struct bio *bio)
1820 {
1821 again:
1822 if (!bio_remaining_done(bio))
1823 return;
1824 if (!bio_integrity_endio(bio))
1825 return;
1826
1827 if (bio->bi_disk)
1828 rq_qos_done_bio(bio->bi_disk->queue, bio);
1829
1830 /*
1831 * Need to have a real endio function for chained bios, otherwise
1832 * various corner cases will break (like stacking block devices that
1833 * save/restore bi_end_io) - however, we want to avoid unbounded
1834 * recursion and blowing the stack. Tail call optimization would
1835 * handle this, but compiling with frame pointers also disables
1836 * gcc's sibling call optimization.
1837 */
1838 if (bio->bi_end_io == bio_chain_endio) {
1839 bio = __bio_chain_endio(bio);
1840 goto again;
1841 }
1842
1843 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1844 trace_block_bio_complete(bio->bi_disk->queue, bio,
1845 blk_status_to_errno(bio->bi_status));
1846 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1847 }
1848
1849 blk_throtl_bio_endio(bio);
1850 /* release cgroup info */
1851 bio_uninit(bio);
1852 if (bio->bi_end_io)
1853 bio->bi_end_io(bio);
1854 }
1855 EXPORT_SYMBOL(bio_endio);
1856
1857 /**
1858 * bio_split - split a bio
1859 * @bio: bio to split
1860 * @sectors: number of sectors to split from the front of @bio
1861 * @gfp: gfp mask
1862 * @bs: bio set to allocate from
1863 *
1864 * Allocates and returns a new bio which represents @sectors from the start of
1865 * @bio, and updates @bio to represent the remaining sectors.
1866 *
1867 * Unless this is a discard request the newly allocated bio will point
1868 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1869 * @bio is not freed before the split.
1870 */
1871 struct bio *bio_split(struct bio *bio, int sectors,
1872 gfp_t gfp, struct bio_set *bs)
1873 {
1874 struct bio *split;
1875
1876 BUG_ON(sectors <= 0);
1877 BUG_ON(sectors >= bio_sectors(bio));
1878
1879 split = bio_clone_fast(bio, gfp, bs);
1880 if (!split)
1881 return NULL;
1882
1883 split->bi_iter.bi_size = sectors << 9;
1884
1885 if (bio_integrity(split))
1886 bio_integrity_trim(split);
1887
1888 bio_advance(bio, split->bi_iter.bi_size);
1889
1890 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1891 bio_set_flag(split, BIO_TRACE_COMPLETION);
1892
1893 return split;
1894 }
1895 EXPORT_SYMBOL(bio_split);
1896
1897 /**
1898 * bio_trim - trim a bio
1899 * @bio: bio to trim
1900 * @offset: number of sectors to trim from the front of @bio
1901 * @size: size we want to trim @bio to, in sectors
1902 */
1903 void bio_trim(struct bio *bio, int offset, int size)
1904 {
1905 /* 'bio' is a cloned bio which we need to trim to match
1906 * the given offset and size.
1907 */
1908
1909 size <<= 9;
1910 if (offset == 0 && size == bio->bi_iter.bi_size)
1911 return;
1912
1913 bio_clear_flag(bio, BIO_SEG_VALID);
1914
1915 bio_advance(bio, offset << 9);
1916
1917 bio->bi_iter.bi_size = size;
1918
1919 if (bio_integrity(bio))
1920 bio_integrity_trim(bio);
1921
1922 }
1923 EXPORT_SYMBOL_GPL(bio_trim);
1924
1925 /*
1926 * create memory pools for biovec's in a bio_set.
1927 * use the global biovec slabs created for general use.
1928 */
1929 int biovec_init_pool(mempool_t *pool, int pool_entries)
1930 {
1931 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1932
1933 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1934 }
1935
1936 /*
1937 * bioset_exit - exit a bioset initialized with bioset_init()
1938 *
1939 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1940 * kzalloc()).
1941 */
1942 void bioset_exit(struct bio_set *bs)
1943 {
1944 if (bs->rescue_workqueue)
1945 destroy_workqueue(bs->rescue_workqueue);
1946 bs->rescue_workqueue = NULL;
1947
1948 mempool_exit(&bs->bio_pool);
1949 mempool_exit(&bs->bvec_pool);
1950
1951 bioset_integrity_free(bs);
1952 if (bs->bio_slab)
1953 bio_put_slab(bs);
1954 bs->bio_slab = NULL;
1955 }
1956 EXPORT_SYMBOL(bioset_exit);
1957
1958 /**
1959 * bioset_init - Initialize a bio_set
1960 * @bs: pool to initialize
1961 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1962 * @front_pad: Number of bytes to allocate in front of the returned bio
1963 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1964 * and %BIOSET_NEED_RESCUER
1965 *
1966 * Description:
1967 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1968 * to ask for a number of bytes to be allocated in front of the bio.
1969 * Front pad allocation is useful for embedding the bio inside
1970 * another structure, to avoid allocating extra data to go with the bio.
1971 * Note that the bio must be embedded at the END of that structure always,
1972 * or things will break badly.
1973 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1974 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1975 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1976 * dispatch queued requests when the mempool runs out of space.
1977 *
1978 */
1979 int bioset_init(struct bio_set *bs,
1980 unsigned int pool_size,
1981 unsigned int front_pad,
1982 int flags)
1983 {
1984 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1985
1986 bs->front_pad = front_pad;
1987
1988 spin_lock_init(&bs->rescue_lock);
1989 bio_list_init(&bs->rescue_list);
1990 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1991
1992 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1993 if (!bs->bio_slab)
1994 return -ENOMEM;
1995
1996 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1997 goto bad;
1998
1999 if ((flags & BIOSET_NEED_BVECS) &&
2000 biovec_init_pool(&bs->bvec_pool, pool_size))
2001 goto bad;
2002
2003 if (!(flags & BIOSET_NEED_RESCUER))
2004 return 0;
2005
2006 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2007 if (!bs->rescue_workqueue)
2008 goto bad;
2009
2010 return 0;
2011 bad:
2012 bioset_exit(bs);
2013 return -ENOMEM;
2014 }
2015 EXPORT_SYMBOL(bioset_init);
2016
2017 /*
2018 * Initialize and setup a new bio_set, based on the settings from
2019 * another bio_set.
2020 */
2021 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2022 {
2023 int flags;
2024
2025 flags = 0;
2026 if (src->bvec_pool.min_nr)
2027 flags |= BIOSET_NEED_BVECS;
2028 if (src->rescue_workqueue)
2029 flags |= BIOSET_NEED_RESCUER;
2030
2031 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2032 }
2033 EXPORT_SYMBOL(bioset_init_from_src);
2034
2035 #ifdef CONFIG_BLK_CGROUP
2036
2037 /**
2038 * bio_disassociate_blkg - puts back the blkg reference if associated
2039 * @bio: target bio
2040 *
2041 * Helper to disassociate the blkg from @bio if a blkg is associated.
2042 */
2043 void bio_disassociate_blkg(struct bio *bio)
2044 {
2045 if (bio->bi_blkg) {
2046 blkg_put(bio->bi_blkg);
2047 bio->bi_blkg = NULL;
2048 }
2049 }
2050 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2051
2052 /**
2053 * __bio_associate_blkg - associate a bio with the a blkg
2054 * @bio: target bio
2055 * @blkg: the blkg to associate
2056 *
2057 * This tries to associate @bio with the specified @blkg. Association failure
2058 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2059 * be anything between @blkg and the root_blkg. This situation only happens
2060 * when a cgroup is dying and then the remaining bios will spill to the closest
2061 * alive blkg.
2062 *
2063 * A reference will be taken on the @blkg and will be released when @bio is
2064 * freed.
2065 */
2066 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2067 {
2068 bio_disassociate_blkg(bio);
2069
2070 bio->bi_blkg = blkg_tryget_closest(blkg);
2071 }
2072
2073 /**
2074 * bio_associate_blkg_from_css - associate a bio with a specified css
2075 * @bio: target bio
2076 * @css: target css
2077 *
2078 * Associate @bio with the blkg found by combining the css's blkg and the
2079 * request_queue of the @bio. This falls back to the queue's root_blkg if
2080 * the association fails with the css.
2081 */
2082 void bio_associate_blkg_from_css(struct bio *bio,
2083 struct cgroup_subsys_state *css)
2084 {
2085 struct request_queue *q = bio->bi_disk->queue;
2086 struct blkcg_gq *blkg;
2087
2088 rcu_read_lock();
2089
2090 if (!css || !css->parent)
2091 blkg = q->root_blkg;
2092 else
2093 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2094
2095 __bio_associate_blkg(bio, blkg);
2096
2097 rcu_read_unlock();
2098 }
2099 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2100
2101 #ifdef CONFIG_MEMCG
2102 /**
2103 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2104 * @bio: target bio
2105 * @page: the page to lookup the blkcg from
2106 *
2107 * Associate @bio with the blkg from @page's owning memcg and the respective
2108 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2109 * root_blkg.
2110 */
2111 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2112 {
2113 struct cgroup_subsys_state *css;
2114
2115 if (!page->mem_cgroup)
2116 return;
2117
2118 rcu_read_lock();
2119
2120 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2121 bio_associate_blkg_from_css(bio, css);
2122
2123 rcu_read_unlock();
2124 }
2125 #endif /* CONFIG_MEMCG */
2126
2127 /**
2128 * bio_associate_blkg - associate a bio with a blkg
2129 * @bio: target bio
2130 *
2131 * Associate @bio with the blkg found from the bio's css and request_queue.
2132 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2133 * already associated, the css is reused and association redone as the
2134 * request_queue may have changed.
2135 */
2136 void bio_associate_blkg(struct bio *bio)
2137 {
2138 struct cgroup_subsys_state *css;
2139
2140 rcu_read_lock();
2141
2142 if (bio->bi_blkg)
2143 css = &bio_blkcg(bio)->css;
2144 else
2145 css = blkcg_css();
2146
2147 bio_associate_blkg_from_css(bio, css);
2148
2149 rcu_read_unlock();
2150 }
2151 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2152
2153 /**
2154 * bio_clone_blkg_association - clone blkg association from src to dst bio
2155 * @dst: destination bio
2156 * @src: source bio
2157 */
2158 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2159 {
2160 rcu_read_lock();
2161
2162 if (src->bi_blkg)
2163 __bio_associate_blkg(dst, src->bi_blkg);
2164
2165 rcu_read_unlock();
2166 }
2167 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2168 #endif /* CONFIG_BLK_CGROUP */
2169
2170 static void __init biovec_init_slabs(void)
2171 {
2172 int i;
2173
2174 for (i = 0; i < BVEC_POOL_NR; i++) {
2175 int size;
2176 struct biovec_slab *bvs = bvec_slabs + i;
2177
2178 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2179 bvs->slab = NULL;
2180 continue;
2181 }
2182
2183 size = bvs->nr_vecs * sizeof(struct bio_vec);
2184 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2185 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2186 }
2187 }
2188
2189 static int __init init_bio(void)
2190 {
2191 bio_slab_max = 2;
2192 bio_slab_nr = 0;
2193 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2194 GFP_KERNEL);
2195
2196 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2197
2198 if (!bio_slabs)
2199 panic("bio: can't allocate bios\n");
2200
2201 bio_integrity_init();
2202 biovec_init_slabs();
2203
2204 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2205 panic("bio: can't allocate bios\n");
2206
2207 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2208 panic("bio: can't create integrity pool\n");
2209
2210 return 0;
2211 }
2212 subsys_initcall(init_bio);