]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - drivers/md/dm-crypt.c
dm crypt: use crypto_shash_digest() in crypt_iv_tcw_whitening()
[thirdparty/kernel/linux.git] / drivers / md / dm-crypt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2003 Jana Saout <jana@saout.de>
4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7 *
8 * This file is released under the GPL.
9 */
10
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/mempool.h>
21 #include <linux/slab.h>
22 #include <linux/crypto.h>
23 #include <linux/workqueue.h>
24 #include <linux/kthread.h>
25 #include <linux/backing-dev.h>
26 #include <linux/atomic.h>
27 #include <linux/scatterlist.h>
28 #include <linux/rbtree.h>
29 #include <linux/ctype.h>
30 #include <asm/page.h>
31 #include <asm/unaligned.h>
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/skcipher.h>
35 #include <crypto/aead.h>
36 #include <crypto/authenc.h>
37 #include <crypto/utils.h>
38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39 #include <linux/key-type.h>
40 #include <keys/user-type.h>
41 #include <keys/encrypted-type.h>
42 #include <keys/trusted-type.h>
43
44 #include <linux/device-mapper.h>
45
46 #include "dm-audit.h"
47
48 #define DM_MSG_PREFIX "crypt"
49
50 /*
51 * context holding the current state of a multi-part conversion
52 */
53 struct convert_context {
54 struct completion restart;
55 struct bio *bio_in;
56 struct bio *bio_out;
57 struct bvec_iter iter_in;
58 struct bvec_iter iter_out;
59 u64 cc_sector;
60 atomic_t cc_pending;
61 union {
62 struct skcipher_request *req;
63 struct aead_request *req_aead;
64 } r;
65
66 };
67
68 /*
69 * per bio private data
70 */
71 struct dm_crypt_io {
72 struct crypt_config *cc;
73 struct bio *base_bio;
74 u8 *integrity_metadata;
75 bool integrity_metadata_from_pool:1;
76 bool in_tasklet:1;
77
78 struct work_struct work;
79 struct tasklet_struct tasklet;
80
81 struct convert_context ctx;
82
83 atomic_t io_pending;
84 blk_status_t error;
85 sector_t sector;
86
87 struct rb_node rb_node;
88 } CRYPTO_MINALIGN_ATTR;
89
90 struct dm_crypt_request {
91 struct convert_context *ctx;
92 struct scatterlist sg_in[4];
93 struct scatterlist sg_out[4];
94 u64 iv_sector;
95 };
96
97 struct crypt_config;
98
99 struct crypt_iv_operations {
100 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
101 const char *opts);
102 void (*dtr)(struct crypt_config *cc);
103 int (*init)(struct crypt_config *cc);
104 int (*wipe)(struct crypt_config *cc);
105 int (*generator)(struct crypt_config *cc, u8 *iv,
106 struct dm_crypt_request *dmreq);
107 int (*post)(struct crypt_config *cc, u8 *iv,
108 struct dm_crypt_request *dmreq);
109 };
110
111 struct iv_benbi_private {
112 int shift;
113 };
114
115 #define LMK_SEED_SIZE 64 /* hash + 0 */
116 struct iv_lmk_private {
117 struct crypto_shash *hash_tfm;
118 u8 *seed;
119 };
120
121 #define TCW_WHITENING_SIZE 16
122 struct iv_tcw_private {
123 struct crypto_shash *crc32_tfm;
124 u8 *iv_seed;
125 u8 *whitening;
126 };
127
128 #define ELEPHANT_MAX_KEY_SIZE 32
129 struct iv_elephant_private {
130 struct crypto_skcipher *tfm;
131 };
132
133 /*
134 * Crypt: maps a linear range of a block device
135 * and encrypts / decrypts at the same time.
136 */
137 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
138 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
139 DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
140 DM_CRYPT_WRITE_INLINE };
141
142 enum cipher_flags {
143 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */
144 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
145 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */
146 };
147
148 /*
149 * The fields in here must be read only after initialization.
150 */
151 struct crypt_config {
152 struct dm_dev *dev;
153 sector_t start;
154
155 struct percpu_counter n_allocated_pages;
156
157 struct workqueue_struct *io_queue;
158 struct workqueue_struct *crypt_queue;
159
160 spinlock_t write_thread_lock;
161 struct task_struct *write_thread;
162 struct rb_root write_tree;
163
164 char *cipher_string;
165 char *cipher_auth;
166 char *key_string;
167
168 const struct crypt_iv_operations *iv_gen_ops;
169 union {
170 struct iv_benbi_private benbi;
171 struct iv_lmk_private lmk;
172 struct iv_tcw_private tcw;
173 struct iv_elephant_private elephant;
174 } iv_gen_private;
175 u64 iv_offset;
176 unsigned int iv_size;
177 unsigned short sector_size;
178 unsigned char sector_shift;
179
180 union {
181 struct crypto_skcipher **tfms;
182 struct crypto_aead **tfms_aead;
183 } cipher_tfm;
184 unsigned int tfms_count;
185 unsigned long cipher_flags;
186
187 /*
188 * Layout of each crypto request:
189 *
190 * struct skcipher_request
191 * context
192 * padding
193 * struct dm_crypt_request
194 * padding
195 * IV
196 *
197 * The padding is added so that dm_crypt_request and the IV are
198 * correctly aligned.
199 */
200 unsigned int dmreq_start;
201
202 unsigned int per_bio_data_size;
203
204 unsigned long flags;
205 unsigned int key_size;
206 unsigned int key_parts; /* independent parts in key buffer */
207 unsigned int key_extra_size; /* additional keys length */
208 unsigned int key_mac_size; /* MAC key size for authenc(...) */
209
210 unsigned int integrity_tag_size;
211 unsigned int integrity_iv_size;
212 unsigned int on_disk_tag_size;
213
214 /*
215 * pool for per bio private data, crypto requests,
216 * encryption requeusts/buffer pages and integrity tags
217 */
218 unsigned int tag_pool_max_sectors;
219 mempool_t tag_pool;
220 mempool_t req_pool;
221 mempool_t page_pool;
222
223 struct bio_set bs;
224 struct mutex bio_alloc_lock;
225
226 u8 *authenc_key; /* space for keys in authenc() format (if used) */
227 u8 key[];
228 };
229
230 #define MIN_IOS 64
231 #define MAX_TAG_SIZE 480
232 #define POOL_ENTRY_SIZE 512
233
234 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
235 static unsigned int dm_crypt_clients_n;
236 static volatile unsigned long dm_crypt_pages_per_client;
237 #define DM_CRYPT_MEMORY_PERCENT 2
238 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16)
239
240 static void crypt_endio(struct bio *clone);
241 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
242 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
243 struct scatterlist *sg);
244
245 static bool crypt_integrity_aead(struct crypt_config *cc);
246
247 /*
248 * Use this to access cipher attributes that are independent of the key.
249 */
250 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
251 {
252 return cc->cipher_tfm.tfms[0];
253 }
254
255 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
256 {
257 return cc->cipher_tfm.tfms_aead[0];
258 }
259
260 /*
261 * Different IV generation algorithms:
262 *
263 * plain: the initial vector is the 32-bit little-endian version of the sector
264 * number, padded with zeros if necessary.
265 *
266 * plain64: the initial vector is the 64-bit little-endian version of the sector
267 * number, padded with zeros if necessary.
268 *
269 * plain64be: the initial vector is the 64-bit big-endian version of the sector
270 * number, padded with zeros if necessary.
271 *
272 * essiv: "encrypted sector|salt initial vector", the sector number is
273 * encrypted with the bulk cipher using a salt as key. The salt
274 * should be derived from the bulk cipher's key via hashing.
275 *
276 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
277 * (needed for LRW-32-AES and possible other narrow block modes)
278 *
279 * null: the initial vector is always zero. Provides compatibility with
280 * obsolete loop_fish2 devices. Do not use for new devices.
281 *
282 * lmk: Compatible implementation of the block chaining mode used
283 * by the Loop-AES block device encryption system
284 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
285 * It operates on full 512 byte sectors and uses CBC
286 * with an IV derived from the sector number, the data and
287 * optionally extra IV seed.
288 * This means that after decryption the first block
289 * of sector must be tweaked according to decrypted data.
290 * Loop-AES can use three encryption schemes:
291 * version 1: is plain aes-cbc mode
292 * version 2: uses 64 multikey scheme with lmk IV generator
293 * version 3: the same as version 2 with additional IV seed
294 * (it uses 65 keys, last key is used as IV seed)
295 *
296 * tcw: Compatible implementation of the block chaining mode used
297 * by the TrueCrypt device encryption system (prior to version 4.1).
298 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
299 * It operates on full 512 byte sectors and uses CBC
300 * with an IV derived from initial key and the sector number.
301 * In addition, whitening value is applied on every sector, whitening
302 * is calculated from initial key, sector number and mixed using CRC32.
303 * Note that this encryption scheme is vulnerable to watermarking attacks
304 * and should be used for old compatible containers access only.
305 *
306 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
307 * The IV is encrypted little-endian byte-offset (with the same key
308 * and cipher as the volume).
309 *
310 * elephant: The extended version of eboiv with additional Elephant diffuser
311 * used with Bitlocker CBC mode.
312 * This mode was used in older Windows systems
313 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
314 */
315
316 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
317 struct dm_crypt_request *dmreq)
318 {
319 memset(iv, 0, cc->iv_size);
320 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
321
322 return 0;
323 }
324
325 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
326 struct dm_crypt_request *dmreq)
327 {
328 memset(iv, 0, cc->iv_size);
329 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
330
331 return 0;
332 }
333
334 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
335 struct dm_crypt_request *dmreq)
336 {
337 memset(iv, 0, cc->iv_size);
338 /* iv_size is at least of size u64; usually it is 16 bytes */
339 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
340
341 return 0;
342 }
343
344 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
345 struct dm_crypt_request *dmreq)
346 {
347 /*
348 * ESSIV encryption of the IV is now handled by the crypto API,
349 * so just pass the plain sector number here.
350 */
351 memset(iv, 0, cc->iv_size);
352 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
353
354 return 0;
355 }
356
357 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
358 const char *opts)
359 {
360 unsigned int bs;
361 int log;
362
363 if (crypt_integrity_aead(cc))
364 bs = crypto_aead_blocksize(any_tfm_aead(cc));
365 else
366 bs = crypto_skcipher_blocksize(any_tfm(cc));
367 log = ilog2(bs);
368
369 /*
370 * We need to calculate how far we must shift the sector count
371 * to get the cipher block count, we use this shift in _gen.
372 */
373 if (1 << log != bs) {
374 ti->error = "cypher blocksize is not a power of 2";
375 return -EINVAL;
376 }
377
378 if (log > 9) {
379 ti->error = "cypher blocksize is > 512";
380 return -EINVAL;
381 }
382
383 cc->iv_gen_private.benbi.shift = 9 - log;
384
385 return 0;
386 }
387
388 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
389 {
390 }
391
392 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
393 struct dm_crypt_request *dmreq)
394 {
395 __be64 val;
396
397 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
398
399 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
400 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
401
402 return 0;
403 }
404
405 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
406 struct dm_crypt_request *dmreq)
407 {
408 memset(iv, 0, cc->iv_size);
409
410 return 0;
411 }
412
413 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
414 {
415 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
416
417 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
418 crypto_free_shash(lmk->hash_tfm);
419 lmk->hash_tfm = NULL;
420
421 kfree_sensitive(lmk->seed);
422 lmk->seed = NULL;
423 }
424
425 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
426 const char *opts)
427 {
428 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
429
430 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
431 ti->error = "Unsupported sector size for LMK";
432 return -EINVAL;
433 }
434
435 lmk->hash_tfm = crypto_alloc_shash("md5", 0,
436 CRYPTO_ALG_ALLOCATES_MEMORY);
437 if (IS_ERR(lmk->hash_tfm)) {
438 ti->error = "Error initializing LMK hash";
439 return PTR_ERR(lmk->hash_tfm);
440 }
441
442 /* No seed in LMK version 2 */
443 if (cc->key_parts == cc->tfms_count) {
444 lmk->seed = NULL;
445 return 0;
446 }
447
448 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
449 if (!lmk->seed) {
450 crypt_iv_lmk_dtr(cc);
451 ti->error = "Error kmallocing seed storage in LMK";
452 return -ENOMEM;
453 }
454
455 return 0;
456 }
457
458 static int crypt_iv_lmk_init(struct crypt_config *cc)
459 {
460 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
461 int subkey_size = cc->key_size / cc->key_parts;
462
463 /* LMK seed is on the position of LMK_KEYS + 1 key */
464 if (lmk->seed)
465 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
466 crypto_shash_digestsize(lmk->hash_tfm));
467
468 return 0;
469 }
470
471 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
472 {
473 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
474
475 if (lmk->seed)
476 memset(lmk->seed, 0, LMK_SEED_SIZE);
477
478 return 0;
479 }
480
481 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
482 struct dm_crypt_request *dmreq,
483 u8 *data)
484 {
485 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
486 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
487 struct md5_state md5state;
488 __le32 buf[4];
489 int i, r;
490
491 desc->tfm = lmk->hash_tfm;
492
493 r = crypto_shash_init(desc);
494 if (r)
495 return r;
496
497 if (lmk->seed) {
498 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
499 if (r)
500 return r;
501 }
502
503 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
504 r = crypto_shash_update(desc, data + 16, 16 * 31);
505 if (r)
506 return r;
507
508 /* Sector is cropped to 56 bits here */
509 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
510 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
511 buf[2] = cpu_to_le32(4024);
512 buf[3] = 0;
513 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
514 if (r)
515 return r;
516
517 /* No MD5 padding here */
518 r = crypto_shash_export(desc, &md5state);
519 if (r)
520 return r;
521
522 for (i = 0; i < MD5_HASH_WORDS; i++)
523 __cpu_to_le32s(&md5state.hash[i]);
524 memcpy(iv, &md5state.hash, cc->iv_size);
525
526 return 0;
527 }
528
529 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
530 struct dm_crypt_request *dmreq)
531 {
532 struct scatterlist *sg;
533 u8 *src;
534 int r = 0;
535
536 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
537 sg = crypt_get_sg_data(cc, dmreq->sg_in);
538 src = kmap_local_page(sg_page(sg));
539 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
540 kunmap_local(src);
541 } else
542 memset(iv, 0, cc->iv_size);
543
544 return r;
545 }
546
547 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
548 struct dm_crypt_request *dmreq)
549 {
550 struct scatterlist *sg;
551 u8 *dst;
552 int r;
553
554 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
555 return 0;
556
557 sg = crypt_get_sg_data(cc, dmreq->sg_out);
558 dst = kmap_local_page(sg_page(sg));
559 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
560
561 /* Tweak the first block of plaintext sector */
562 if (!r)
563 crypto_xor(dst + sg->offset, iv, cc->iv_size);
564
565 kunmap_local(dst);
566 return r;
567 }
568
569 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
570 {
571 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
572
573 kfree_sensitive(tcw->iv_seed);
574 tcw->iv_seed = NULL;
575 kfree_sensitive(tcw->whitening);
576 tcw->whitening = NULL;
577
578 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
579 crypto_free_shash(tcw->crc32_tfm);
580 tcw->crc32_tfm = NULL;
581 }
582
583 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
584 const char *opts)
585 {
586 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
587
588 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
589 ti->error = "Unsupported sector size for TCW";
590 return -EINVAL;
591 }
592
593 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
594 ti->error = "Wrong key size for TCW";
595 return -EINVAL;
596 }
597
598 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
599 CRYPTO_ALG_ALLOCATES_MEMORY);
600 if (IS_ERR(tcw->crc32_tfm)) {
601 ti->error = "Error initializing CRC32 in TCW";
602 return PTR_ERR(tcw->crc32_tfm);
603 }
604
605 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
606 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
607 if (!tcw->iv_seed || !tcw->whitening) {
608 crypt_iv_tcw_dtr(cc);
609 ti->error = "Error allocating seed storage in TCW";
610 return -ENOMEM;
611 }
612
613 return 0;
614 }
615
616 static int crypt_iv_tcw_init(struct crypt_config *cc)
617 {
618 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
619 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
620
621 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
622 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
623 TCW_WHITENING_SIZE);
624
625 return 0;
626 }
627
628 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
629 {
630 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
631
632 memset(tcw->iv_seed, 0, cc->iv_size);
633 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
634
635 return 0;
636 }
637
638 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
639 struct dm_crypt_request *dmreq,
640 u8 *data)
641 {
642 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
643 __le64 sector = cpu_to_le64(dmreq->iv_sector);
644 u8 buf[TCW_WHITENING_SIZE];
645 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
646 int i, r;
647
648 /* xor whitening with sector number */
649 crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
650 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
651
652 /* calculate crc32 for every 32bit part and xor it */
653 desc->tfm = tcw->crc32_tfm;
654 for (i = 0; i < 4; i++) {
655 r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]);
656 if (r)
657 goto out;
658 }
659 crypto_xor(&buf[0], &buf[12], 4);
660 crypto_xor(&buf[4], &buf[8], 4);
661
662 /* apply whitening (8 bytes) to whole sector */
663 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
664 crypto_xor(data + i * 8, buf, 8);
665 out:
666 memzero_explicit(buf, sizeof(buf));
667 return r;
668 }
669
670 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
671 struct dm_crypt_request *dmreq)
672 {
673 struct scatterlist *sg;
674 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
675 __le64 sector = cpu_to_le64(dmreq->iv_sector);
676 u8 *src;
677 int r = 0;
678
679 /* Remove whitening from ciphertext */
680 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
681 sg = crypt_get_sg_data(cc, dmreq->sg_in);
682 src = kmap_local_page(sg_page(sg));
683 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
684 kunmap_local(src);
685 }
686
687 /* Calculate IV */
688 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
689 if (cc->iv_size > 8)
690 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
691 cc->iv_size - 8);
692
693 return r;
694 }
695
696 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
697 struct dm_crypt_request *dmreq)
698 {
699 struct scatterlist *sg;
700 u8 *dst;
701 int r;
702
703 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
704 return 0;
705
706 /* Apply whitening on ciphertext */
707 sg = crypt_get_sg_data(cc, dmreq->sg_out);
708 dst = kmap_local_page(sg_page(sg));
709 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
710 kunmap_local(dst);
711
712 return r;
713 }
714
715 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
716 struct dm_crypt_request *dmreq)
717 {
718 /* Used only for writes, there must be an additional space to store IV */
719 get_random_bytes(iv, cc->iv_size);
720 return 0;
721 }
722
723 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
724 const char *opts)
725 {
726 if (crypt_integrity_aead(cc)) {
727 ti->error = "AEAD transforms not supported for EBOIV";
728 return -EINVAL;
729 }
730
731 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
732 ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
733 return -EINVAL;
734 }
735
736 return 0;
737 }
738
739 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
740 struct dm_crypt_request *dmreq)
741 {
742 struct crypto_skcipher *tfm = any_tfm(cc);
743 struct skcipher_request *req;
744 struct scatterlist src, dst;
745 DECLARE_CRYPTO_WAIT(wait);
746 unsigned int reqsize;
747 int err;
748 u8 *buf;
749
750 reqsize = ALIGN(crypto_skcipher_reqsize(tfm), __alignof__(__le64));
751
752 req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
753 if (!req)
754 return -ENOMEM;
755
756 skcipher_request_set_tfm(req, tfm);
757
758 buf = (u8 *)req + reqsize;
759 memset(buf, 0, cc->iv_size);
760 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
761
762 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
763 sg_init_one(&dst, iv, cc->iv_size);
764 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
765 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
766 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
767 kfree_sensitive(req);
768
769 return err;
770 }
771
772 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
773 {
774 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
775
776 crypto_free_skcipher(elephant->tfm);
777 elephant->tfm = NULL;
778 }
779
780 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
781 const char *opts)
782 {
783 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
784 int r;
785
786 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
787 CRYPTO_ALG_ALLOCATES_MEMORY);
788 if (IS_ERR(elephant->tfm)) {
789 r = PTR_ERR(elephant->tfm);
790 elephant->tfm = NULL;
791 return r;
792 }
793
794 r = crypt_iv_eboiv_ctr(cc, ti, NULL);
795 if (r)
796 crypt_iv_elephant_dtr(cc);
797 return r;
798 }
799
800 static void diffuser_disk_to_cpu(u32 *d, size_t n)
801 {
802 #ifndef __LITTLE_ENDIAN
803 int i;
804
805 for (i = 0; i < n; i++)
806 d[i] = le32_to_cpu((__le32)d[i]);
807 #endif
808 }
809
810 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
811 {
812 #ifndef __LITTLE_ENDIAN
813 int i;
814
815 for (i = 0; i < n; i++)
816 d[i] = cpu_to_le32((u32)d[i]);
817 #endif
818 }
819
820 static void diffuser_a_decrypt(u32 *d, size_t n)
821 {
822 int i, i1, i2, i3;
823
824 for (i = 0; i < 5; i++) {
825 i1 = 0;
826 i2 = n - 2;
827 i3 = n - 5;
828
829 while (i1 < (n - 1)) {
830 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
831 i1++; i2++; i3++;
832
833 if (i3 >= n)
834 i3 -= n;
835
836 d[i1] += d[i2] ^ d[i3];
837 i1++; i2++; i3++;
838
839 if (i2 >= n)
840 i2 -= n;
841
842 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
843 i1++; i2++; i3++;
844
845 d[i1] += d[i2] ^ d[i3];
846 i1++; i2++; i3++;
847 }
848 }
849 }
850
851 static void diffuser_a_encrypt(u32 *d, size_t n)
852 {
853 int i, i1, i2, i3;
854
855 for (i = 0; i < 5; i++) {
856 i1 = n - 1;
857 i2 = n - 2 - 1;
858 i3 = n - 5 - 1;
859
860 while (i1 > 0) {
861 d[i1] -= d[i2] ^ d[i3];
862 i1--; i2--; i3--;
863
864 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
865 i1--; i2--; i3--;
866
867 if (i2 < 0)
868 i2 += n;
869
870 d[i1] -= d[i2] ^ d[i3];
871 i1--; i2--; i3--;
872
873 if (i3 < 0)
874 i3 += n;
875
876 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
877 i1--; i2--; i3--;
878 }
879 }
880 }
881
882 static void diffuser_b_decrypt(u32 *d, size_t n)
883 {
884 int i, i1, i2, i3;
885
886 for (i = 0; i < 3; i++) {
887 i1 = 0;
888 i2 = 2;
889 i3 = 5;
890
891 while (i1 < (n - 1)) {
892 d[i1] += d[i2] ^ d[i3];
893 i1++; i2++; i3++;
894
895 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
896 i1++; i2++; i3++;
897
898 if (i2 >= n)
899 i2 -= n;
900
901 d[i1] += d[i2] ^ d[i3];
902 i1++; i2++; i3++;
903
904 if (i3 >= n)
905 i3 -= n;
906
907 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
908 i1++; i2++; i3++;
909 }
910 }
911 }
912
913 static void diffuser_b_encrypt(u32 *d, size_t n)
914 {
915 int i, i1, i2, i3;
916
917 for (i = 0; i < 3; i++) {
918 i1 = n - 1;
919 i2 = 2 - 1;
920 i3 = 5 - 1;
921
922 while (i1 > 0) {
923 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
924 i1--; i2--; i3--;
925
926 if (i3 < 0)
927 i3 += n;
928
929 d[i1] -= d[i2] ^ d[i3];
930 i1--; i2--; i3--;
931
932 if (i2 < 0)
933 i2 += n;
934
935 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
936 i1--; i2--; i3--;
937
938 d[i1] -= d[i2] ^ d[i3];
939 i1--; i2--; i3--;
940 }
941 }
942 }
943
944 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
945 {
946 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
947 u8 *es, *ks, *data, *data2, *data_offset;
948 struct skcipher_request *req;
949 struct scatterlist *sg, *sg2, src, dst;
950 DECLARE_CRYPTO_WAIT(wait);
951 int i, r;
952
953 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
954 es = kzalloc(16, GFP_NOIO); /* Key for AES */
955 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
956
957 if (!req || !es || !ks) {
958 r = -ENOMEM;
959 goto out;
960 }
961
962 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
963
964 /* E(Ks, e(s)) */
965 sg_init_one(&src, es, 16);
966 sg_init_one(&dst, ks, 16);
967 skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
968 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
969 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
970 if (r)
971 goto out;
972
973 /* E(Ks, e'(s)) */
974 es[15] = 0x80;
975 sg_init_one(&dst, &ks[16], 16);
976 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
977 if (r)
978 goto out;
979
980 sg = crypt_get_sg_data(cc, dmreq->sg_out);
981 data = kmap_local_page(sg_page(sg));
982 data_offset = data + sg->offset;
983
984 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
985 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
986 sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
987 data2 = kmap_local_page(sg_page(sg2));
988 memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
989 kunmap_local(data2);
990 }
991
992 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
993 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
994 diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
995 diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
996 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
997 }
998
999 for (i = 0; i < (cc->sector_size / 32); i++)
1000 crypto_xor(data_offset + i * 32, ks, 32);
1001
1002 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1003 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1004 diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1005 diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1006 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1007 }
1008
1009 kunmap_local(data);
1010 out:
1011 kfree_sensitive(ks);
1012 kfree_sensitive(es);
1013 skcipher_request_free(req);
1014 return r;
1015 }
1016
1017 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1018 struct dm_crypt_request *dmreq)
1019 {
1020 int r;
1021
1022 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1023 r = crypt_iv_elephant(cc, dmreq);
1024 if (r)
1025 return r;
1026 }
1027
1028 return crypt_iv_eboiv_gen(cc, iv, dmreq);
1029 }
1030
1031 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1032 struct dm_crypt_request *dmreq)
1033 {
1034 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1035 return crypt_iv_elephant(cc, dmreq);
1036
1037 return 0;
1038 }
1039
1040 static int crypt_iv_elephant_init(struct crypt_config *cc)
1041 {
1042 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1043 int key_offset = cc->key_size - cc->key_extra_size;
1044
1045 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1046 }
1047
1048 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1049 {
1050 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1051 u8 key[ELEPHANT_MAX_KEY_SIZE];
1052
1053 memset(key, 0, cc->key_extra_size);
1054 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1055 }
1056
1057 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1058 .generator = crypt_iv_plain_gen
1059 };
1060
1061 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1062 .generator = crypt_iv_plain64_gen
1063 };
1064
1065 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1066 .generator = crypt_iv_plain64be_gen
1067 };
1068
1069 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1070 .generator = crypt_iv_essiv_gen
1071 };
1072
1073 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1074 .ctr = crypt_iv_benbi_ctr,
1075 .dtr = crypt_iv_benbi_dtr,
1076 .generator = crypt_iv_benbi_gen
1077 };
1078
1079 static const struct crypt_iv_operations crypt_iv_null_ops = {
1080 .generator = crypt_iv_null_gen
1081 };
1082
1083 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1084 .ctr = crypt_iv_lmk_ctr,
1085 .dtr = crypt_iv_lmk_dtr,
1086 .init = crypt_iv_lmk_init,
1087 .wipe = crypt_iv_lmk_wipe,
1088 .generator = crypt_iv_lmk_gen,
1089 .post = crypt_iv_lmk_post
1090 };
1091
1092 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1093 .ctr = crypt_iv_tcw_ctr,
1094 .dtr = crypt_iv_tcw_dtr,
1095 .init = crypt_iv_tcw_init,
1096 .wipe = crypt_iv_tcw_wipe,
1097 .generator = crypt_iv_tcw_gen,
1098 .post = crypt_iv_tcw_post
1099 };
1100
1101 static const struct crypt_iv_operations crypt_iv_random_ops = {
1102 .generator = crypt_iv_random_gen
1103 };
1104
1105 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1106 .ctr = crypt_iv_eboiv_ctr,
1107 .generator = crypt_iv_eboiv_gen
1108 };
1109
1110 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1111 .ctr = crypt_iv_elephant_ctr,
1112 .dtr = crypt_iv_elephant_dtr,
1113 .init = crypt_iv_elephant_init,
1114 .wipe = crypt_iv_elephant_wipe,
1115 .generator = crypt_iv_elephant_gen,
1116 .post = crypt_iv_elephant_post
1117 };
1118
1119 /*
1120 * Integrity extensions
1121 */
1122 static bool crypt_integrity_aead(struct crypt_config *cc)
1123 {
1124 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1125 }
1126
1127 static bool crypt_integrity_hmac(struct crypt_config *cc)
1128 {
1129 return crypt_integrity_aead(cc) && cc->key_mac_size;
1130 }
1131
1132 /* Get sg containing data */
1133 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1134 struct scatterlist *sg)
1135 {
1136 if (unlikely(crypt_integrity_aead(cc)))
1137 return &sg[2];
1138
1139 return sg;
1140 }
1141
1142 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1143 {
1144 struct bio_integrity_payload *bip;
1145 unsigned int tag_len;
1146 int ret;
1147
1148 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1149 return 0;
1150
1151 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1152 if (IS_ERR(bip))
1153 return PTR_ERR(bip);
1154
1155 tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1156
1157 bip->bip_iter.bi_sector = io->cc->start + io->sector;
1158
1159 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1160 tag_len, offset_in_page(io->integrity_metadata));
1161 if (unlikely(ret != tag_len))
1162 return -ENOMEM;
1163
1164 return 0;
1165 }
1166
1167 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1168 {
1169 #ifdef CONFIG_BLK_DEV_INTEGRITY
1170 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1171 struct mapped_device *md = dm_table_get_md(ti->table);
1172
1173 /* From now we require underlying device with our integrity profile */
1174 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1175 ti->error = "Integrity profile not supported.";
1176 return -EINVAL;
1177 }
1178
1179 if (bi->tag_size != cc->on_disk_tag_size ||
1180 bi->tuple_size != cc->on_disk_tag_size) {
1181 ti->error = "Integrity profile tag size mismatch.";
1182 return -EINVAL;
1183 }
1184 if (1 << bi->interval_exp != cc->sector_size) {
1185 ti->error = "Integrity profile sector size mismatch.";
1186 return -EINVAL;
1187 }
1188
1189 if (crypt_integrity_aead(cc)) {
1190 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1191 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1192 cc->integrity_tag_size, cc->integrity_iv_size);
1193
1194 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1195 ti->error = "Integrity AEAD auth tag size is not supported.";
1196 return -EINVAL;
1197 }
1198 } else if (cc->integrity_iv_size)
1199 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1200 cc->integrity_iv_size);
1201
1202 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1203 ti->error = "Not enough space for integrity tag in the profile.";
1204 return -EINVAL;
1205 }
1206
1207 return 0;
1208 #else
1209 ti->error = "Integrity profile not supported.";
1210 return -EINVAL;
1211 #endif
1212 }
1213
1214 static void crypt_convert_init(struct crypt_config *cc,
1215 struct convert_context *ctx,
1216 struct bio *bio_out, struct bio *bio_in,
1217 sector_t sector)
1218 {
1219 ctx->bio_in = bio_in;
1220 ctx->bio_out = bio_out;
1221 if (bio_in)
1222 ctx->iter_in = bio_in->bi_iter;
1223 if (bio_out)
1224 ctx->iter_out = bio_out->bi_iter;
1225 ctx->cc_sector = sector + cc->iv_offset;
1226 init_completion(&ctx->restart);
1227 }
1228
1229 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1230 void *req)
1231 {
1232 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1233 }
1234
1235 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1236 {
1237 return (void *)((char *)dmreq - cc->dmreq_start);
1238 }
1239
1240 static u8 *iv_of_dmreq(struct crypt_config *cc,
1241 struct dm_crypt_request *dmreq)
1242 {
1243 if (crypt_integrity_aead(cc))
1244 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1245 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1246 else
1247 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1248 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1249 }
1250
1251 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1252 struct dm_crypt_request *dmreq)
1253 {
1254 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1255 }
1256
1257 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1258 struct dm_crypt_request *dmreq)
1259 {
1260 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1261
1262 return (__le64 *) ptr;
1263 }
1264
1265 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1266 struct dm_crypt_request *dmreq)
1267 {
1268 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1269 cc->iv_size + sizeof(uint64_t);
1270
1271 return (unsigned int *)ptr;
1272 }
1273
1274 static void *tag_from_dmreq(struct crypt_config *cc,
1275 struct dm_crypt_request *dmreq)
1276 {
1277 struct convert_context *ctx = dmreq->ctx;
1278 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1279
1280 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1281 cc->on_disk_tag_size];
1282 }
1283
1284 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1285 struct dm_crypt_request *dmreq)
1286 {
1287 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1288 }
1289
1290 static int crypt_convert_block_aead(struct crypt_config *cc,
1291 struct convert_context *ctx,
1292 struct aead_request *req,
1293 unsigned int tag_offset)
1294 {
1295 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1296 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1297 struct dm_crypt_request *dmreq;
1298 u8 *iv, *org_iv, *tag_iv, *tag;
1299 __le64 *sector;
1300 int r = 0;
1301
1302 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1303
1304 /* Reject unexpected unaligned bio. */
1305 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1306 return -EIO;
1307
1308 dmreq = dmreq_of_req(cc, req);
1309 dmreq->iv_sector = ctx->cc_sector;
1310 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1311 dmreq->iv_sector >>= cc->sector_shift;
1312 dmreq->ctx = ctx;
1313
1314 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1315
1316 sector = org_sector_of_dmreq(cc, dmreq);
1317 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1318
1319 iv = iv_of_dmreq(cc, dmreq);
1320 org_iv = org_iv_of_dmreq(cc, dmreq);
1321 tag = tag_from_dmreq(cc, dmreq);
1322 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1323
1324 /* AEAD request:
1325 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1326 * | (authenticated) | (auth+encryption) | |
1327 * | sector_LE | IV | sector in/out | tag in/out |
1328 */
1329 sg_init_table(dmreq->sg_in, 4);
1330 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1331 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1332 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1333 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1334
1335 sg_init_table(dmreq->sg_out, 4);
1336 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1337 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1338 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1339 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1340
1341 if (cc->iv_gen_ops) {
1342 /* For READs use IV stored in integrity metadata */
1343 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1344 memcpy(org_iv, tag_iv, cc->iv_size);
1345 } else {
1346 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1347 if (r < 0)
1348 return r;
1349 /* Store generated IV in integrity metadata */
1350 if (cc->integrity_iv_size)
1351 memcpy(tag_iv, org_iv, cc->iv_size);
1352 }
1353 /* Working copy of IV, to be modified in crypto API */
1354 memcpy(iv, org_iv, cc->iv_size);
1355 }
1356
1357 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1358 if (bio_data_dir(ctx->bio_in) == WRITE) {
1359 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1360 cc->sector_size, iv);
1361 r = crypto_aead_encrypt(req);
1362 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1363 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1364 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1365 } else {
1366 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1367 cc->sector_size + cc->integrity_tag_size, iv);
1368 r = crypto_aead_decrypt(req);
1369 }
1370
1371 if (r == -EBADMSG) {
1372 sector_t s = le64_to_cpu(*sector);
1373
1374 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1375 ctx->bio_in->bi_bdev, s);
1376 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1377 ctx->bio_in, s, 0);
1378 }
1379
1380 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1381 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1382
1383 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1384 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1385
1386 return r;
1387 }
1388
1389 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1390 struct convert_context *ctx,
1391 struct skcipher_request *req,
1392 unsigned int tag_offset)
1393 {
1394 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1395 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1396 struct scatterlist *sg_in, *sg_out;
1397 struct dm_crypt_request *dmreq;
1398 u8 *iv, *org_iv, *tag_iv;
1399 __le64 *sector;
1400 int r = 0;
1401
1402 /* Reject unexpected unaligned bio. */
1403 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1404 return -EIO;
1405
1406 dmreq = dmreq_of_req(cc, req);
1407 dmreq->iv_sector = ctx->cc_sector;
1408 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1409 dmreq->iv_sector >>= cc->sector_shift;
1410 dmreq->ctx = ctx;
1411
1412 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1413
1414 iv = iv_of_dmreq(cc, dmreq);
1415 org_iv = org_iv_of_dmreq(cc, dmreq);
1416 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1417
1418 sector = org_sector_of_dmreq(cc, dmreq);
1419 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1420
1421 /* For skcipher we use only the first sg item */
1422 sg_in = &dmreq->sg_in[0];
1423 sg_out = &dmreq->sg_out[0];
1424
1425 sg_init_table(sg_in, 1);
1426 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1427
1428 sg_init_table(sg_out, 1);
1429 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1430
1431 if (cc->iv_gen_ops) {
1432 /* For READs use IV stored in integrity metadata */
1433 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1434 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1435 } else {
1436 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1437 if (r < 0)
1438 return r;
1439 /* Data can be already preprocessed in generator */
1440 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1441 sg_in = sg_out;
1442 /* Store generated IV in integrity metadata */
1443 if (cc->integrity_iv_size)
1444 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1445 }
1446 /* Working copy of IV, to be modified in crypto API */
1447 memcpy(iv, org_iv, cc->iv_size);
1448 }
1449
1450 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1451
1452 if (bio_data_dir(ctx->bio_in) == WRITE)
1453 r = crypto_skcipher_encrypt(req);
1454 else
1455 r = crypto_skcipher_decrypt(req);
1456
1457 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1458 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1459
1460 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1461 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1462
1463 return r;
1464 }
1465
1466 static void kcryptd_async_done(void *async_req, int error);
1467
1468 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1469 struct convert_context *ctx)
1470 {
1471 unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1472
1473 if (!ctx->r.req) {
1474 ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1475 if (!ctx->r.req)
1476 return -ENOMEM;
1477 }
1478
1479 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1480
1481 /*
1482 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1483 * requests if driver request queue is full.
1484 */
1485 skcipher_request_set_callback(ctx->r.req,
1486 CRYPTO_TFM_REQ_MAY_BACKLOG,
1487 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1488
1489 return 0;
1490 }
1491
1492 static int crypt_alloc_req_aead(struct crypt_config *cc,
1493 struct convert_context *ctx)
1494 {
1495 if (!ctx->r.req_aead) {
1496 ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1497 if (!ctx->r.req_aead)
1498 return -ENOMEM;
1499 }
1500
1501 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1502
1503 /*
1504 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1505 * requests if driver request queue is full.
1506 */
1507 aead_request_set_callback(ctx->r.req_aead,
1508 CRYPTO_TFM_REQ_MAY_BACKLOG,
1509 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1510
1511 return 0;
1512 }
1513
1514 static int crypt_alloc_req(struct crypt_config *cc,
1515 struct convert_context *ctx)
1516 {
1517 if (crypt_integrity_aead(cc))
1518 return crypt_alloc_req_aead(cc, ctx);
1519 else
1520 return crypt_alloc_req_skcipher(cc, ctx);
1521 }
1522
1523 static void crypt_free_req_skcipher(struct crypt_config *cc,
1524 struct skcipher_request *req, struct bio *base_bio)
1525 {
1526 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1527
1528 if ((struct skcipher_request *)(io + 1) != req)
1529 mempool_free(req, &cc->req_pool);
1530 }
1531
1532 static void crypt_free_req_aead(struct crypt_config *cc,
1533 struct aead_request *req, struct bio *base_bio)
1534 {
1535 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1536
1537 if ((struct aead_request *)(io + 1) != req)
1538 mempool_free(req, &cc->req_pool);
1539 }
1540
1541 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1542 {
1543 if (crypt_integrity_aead(cc))
1544 crypt_free_req_aead(cc, req, base_bio);
1545 else
1546 crypt_free_req_skcipher(cc, req, base_bio);
1547 }
1548
1549 /*
1550 * Encrypt / decrypt data from one bio to another one (can be the same one)
1551 */
1552 static blk_status_t crypt_convert(struct crypt_config *cc,
1553 struct convert_context *ctx, bool atomic, bool reset_pending)
1554 {
1555 unsigned int tag_offset = 0;
1556 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1557 int r;
1558
1559 /*
1560 * if reset_pending is set we are dealing with the bio for the first time,
1561 * else we're continuing to work on the previous bio, so don't mess with
1562 * the cc_pending counter
1563 */
1564 if (reset_pending)
1565 atomic_set(&ctx->cc_pending, 1);
1566
1567 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1568
1569 r = crypt_alloc_req(cc, ctx);
1570 if (r) {
1571 complete(&ctx->restart);
1572 return BLK_STS_DEV_RESOURCE;
1573 }
1574
1575 atomic_inc(&ctx->cc_pending);
1576
1577 if (crypt_integrity_aead(cc))
1578 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1579 else
1580 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1581
1582 switch (r) {
1583 /*
1584 * The request was queued by a crypto driver
1585 * but the driver request queue is full, let's wait.
1586 */
1587 case -EBUSY:
1588 if (in_interrupt()) {
1589 if (try_wait_for_completion(&ctx->restart)) {
1590 /*
1591 * we don't have to block to wait for completion,
1592 * so proceed
1593 */
1594 } else {
1595 /*
1596 * we can't wait for completion without blocking
1597 * exit and continue processing in a workqueue
1598 */
1599 ctx->r.req = NULL;
1600 ctx->cc_sector += sector_step;
1601 tag_offset++;
1602 return BLK_STS_DEV_RESOURCE;
1603 }
1604 } else {
1605 wait_for_completion(&ctx->restart);
1606 }
1607 reinit_completion(&ctx->restart);
1608 fallthrough;
1609 /*
1610 * The request is queued and processed asynchronously,
1611 * completion function kcryptd_async_done() will be called.
1612 */
1613 case -EINPROGRESS:
1614 ctx->r.req = NULL;
1615 ctx->cc_sector += sector_step;
1616 tag_offset++;
1617 continue;
1618 /*
1619 * The request was already processed (synchronously).
1620 */
1621 case 0:
1622 atomic_dec(&ctx->cc_pending);
1623 ctx->cc_sector += sector_step;
1624 tag_offset++;
1625 if (!atomic)
1626 cond_resched();
1627 continue;
1628 /*
1629 * There was a data integrity error.
1630 */
1631 case -EBADMSG:
1632 atomic_dec(&ctx->cc_pending);
1633 return BLK_STS_PROTECTION;
1634 /*
1635 * There was an error while processing the request.
1636 */
1637 default:
1638 atomic_dec(&ctx->cc_pending);
1639 return BLK_STS_IOERR;
1640 }
1641 }
1642
1643 return 0;
1644 }
1645
1646 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1647
1648 /*
1649 * Generate a new unfragmented bio with the given size
1650 * This should never violate the device limitations (but only because
1651 * max_segment_size is being constrained to PAGE_SIZE).
1652 *
1653 * This function may be called concurrently. If we allocate from the mempool
1654 * concurrently, there is a possibility of deadlock. For example, if we have
1655 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1656 * the mempool concurrently, it may deadlock in a situation where both processes
1657 * have allocated 128 pages and the mempool is exhausted.
1658 *
1659 * In order to avoid this scenario we allocate the pages under a mutex.
1660 *
1661 * In order to not degrade performance with excessive locking, we try
1662 * non-blocking allocations without a mutex first but on failure we fallback
1663 * to blocking allocations with a mutex.
1664 *
1665 * In order to reduce allocation overhead, we try to allocate compound pages in
1666 * the first pass. If they are not available, we fall back to the mempool.
1667 */
1668 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1669 {
1670 struct crypt_config *cc = io->cc;
1671 struct bio *clone;
1672 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1673 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1674 unsigned int remaining_size;
1675 unsigned int order = MAX_ORDER - 1;
1676
1677 retry:
1678 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1679 mutex_lock(&cc->bio_alloc_lock);
1680
1681 clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1682 GFP_NOIO, &cc->bs);
1683 clone->bi_private = io;
1684 clone->bi_end_io = crypt_endio;
1685
1686 remaining_size = size;
1687
1688 while (remaining_size) {
1689 struct page *pages;
1690 unsigned size_to_add;
1691 unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1692 order = min(order, remaining_order);
1693
1694 while (order > 0) {
1695 pages = alloc_pages(gfp_mask
1696 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1697 order);
1698 if (likely(pages != NULL))
1699 goto have_pages;
1700 order--;
1701 }
1702
1703 pages = mempool_alloc(&cc->page_pool, gfp_mask);
1704 if (!pages) {
1705 crypt_free_buffer_pages(cc, clone);
1706 bio_put(clone);
1707 gfp_mask |= __GFP_DIRECT_RECLAIM;
1708 order = 0;
1709 goto retry;
1710 }
1711
1712 have_pages:
1713 size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1714 __bio_add_page(clone, pages, size_to_add, 0);
1715 remaining_size -= size_to_add;
1716 }
1717
1718 /* Allocate space for integrity tags */
1719 if (dm_crypt_integrity_io_alloc(io, clone)) {
1720 crypt_free_buffer_pages(cc, clone);
1721 bio_put(clone);
1722 clone = NULL;
1723 }
1724
1725 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1726 mutex_unlock(&cc->bio_alloc_lock);
1727
1728 return clone;
1729 }
1730
1731 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1732 {
1733 struct folio_iter fi;
1734
1735 if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1736 bio_for_each_folio_all(fi, clone) {
1737 if (folio_test_large(fi.folio))
1738 folio_put(fi.folio);
1739 else
1740 mempool_free(&fi.folio->page, &cc->page_pool);
1741 }
1742 }
1743 }
1744
1745 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1746 struct bio *bio, sector_t sector)
1747 {
1748 io->cc = cc;
1749 io->base_bio = bio;
1750 io->sector = sector;
1751 io->error = 0;
1752 io->ctx.r.req = NULL;
1753 io->integrity_metadata = NULL;
1754 io->integrity_metadata_from_pool = false;
1755 io->in_tasklet = false;
1756 atomic_set(&io->io_pending, 0);
1757 }
1758
1759 static void crypt_inc_pending(struct dm_crypt_io *io)
1760 {
1761 atomic_inc(&io->io_pending);
1762 }
1763
1764 static void kcryptd_io_bio_endio(struct work_struct *work)
1765 {
1766 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1767
1768 bio_endio(io->base_bio);
1769 }
1770
1771 /*
1772 * One of the bios was finished. Check for completion of
1773 * the whole request and correctly clean up the buffer.
1774 */
1775 static void crypt_dec_pending(struct dm_crypt_io *io)
1776 {
1777 struct crypt_config *cc = io->cc;
1778 struct bio *base_bio = io->base_bio;
1779 blk_status_t error = io->error;
1780
1781 if (!atomic_dec_and_test(&io->io_pending))
1782 return;
1783
1784 if (io->ctx.r.req)
1785 crypt_free_req(cc, io->ctx.r.req, base_bio);
1786
1787 if (unlikely(io->integrity_metadata_from_pool))
1788 mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1789 else
1790 kfree(io->integrity_metadata);
1791
1792 base_bio->bi_status = error;
1793
1794 /*
1795 * If we are running this function from our tasklet,
1796 * we can't call bio_endio() here, because it will call
1797 * clone_endio() from dm.c, which in turn will
1798 * free the current struct dm_crypt_io structure with
1799 * our tasklet. In this case we need to delay bio_endio()
1800 * execution to after the tasklet is done and dequeued.
1801 */
1802 if (io->in_tasklet) {
1803 INIT_WORK(&io->work, kcryptd_io_bio_endio);
1804 queue_work(cc->io_queue, &io->work);
1805 return;
1806 }
1807
1808 bio_endio(base_bio);
1809 }
1810
1811 /*
1812 * kcryptd/kcryptd_io:
1813 *
1814 * Needed because it would be very unwise to do decryption in an
1815 * interrupt context.
1816 *
1817 * kcryptd performs the actual encryption or decryption.
1818 *
1819 * kcryptd_io performs the IO submission.
1820 *
1821 * They must be separated as otherwise the final stages could be
1822 * starved by new requests which can block in the first stages due
1823 * to memory allocation.
1824 *
1825 * The work is done per CPU global for all dm-crypt instances.
1826 * They should not depend on each other and do not block.
1827 */
1828 static void crypt_endio(struct bio *clone)
1829 {
1830 struct dm_crypt_io *io = clone->bi_private;
1831 struct crypt_config *cc = io->cc;
1832 unsigned int rw = bio_data_dir(clone);
1833 blk_status_t error;
1834
1835 /*
1836 * free the processed pages
1837 */
1838 if (rw == WRITE)
1839 crypt_free_buffer_pages(cc, clone);
1840
1841 error = clone->bi_status;
1842 bio_put(clone);
1843
1844 if (rw == READ && !error) {
1845 kcryptd_queue_crypt(io);
1846 return;
1847 }
1848
1849 if (unlikely(error))
1850 io->error = error;
1851
1852 crypt_dec_pending(io);
1853 }
1854
1855 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1856
1857 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1858 {
1859 struct crypt_config *cc = io->cc;
1860 struct bio *clone;
1861
1862 /*
1863 * We need the original biovec array in order to decrypt the whole bio
1864 * data *afterwards* -- thanks to immutable biovecs we don't need to
1865 * worry about the block layer modifying the biovec array; so leverage
1866 * bio_alloc_clone().
1867 */
1868 clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1869 if (!clone)
1870 return 1;
1871 clone->bi_private = io;
1872 clone->bi_end_io = crypt_endio;
1873
1874 crypt_inc_pending(io);
1875
1876 clone->bi_iter.bi_sector = cc->start + io->sector;
1877
1878 if (dm_crypt_integrity_io_alloc(io, clone)) {
1879 crypt_dec_pending(io);
1880 bio_put(clone);
1881 return 1;
1882 }
1883
1884 dm_submit_bio_remap(io->base_bio, clone);
1885 return 0;
1886 }
1887
1888 static void kcryptd_io_read_work(struct work_struct *work)
1889 {
1890 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1891
1892 crypt_inc_pending(io);
1893 if (kcryptd_io_read(io, GFP_NOIO))
1894 io->error = BLK_STS_RESOURCE;
1895 crypt_dec_pending(io);
1896 }
1897
1898 static void kcryptd_queue_read(struct dm_crypt_io *io)
1899 {
1900 struct crypt_config *cc = io->cc;
1901
1902 INIT_WORK(&io->work, kcryptd_io_read_work);
1903 queue_work(cc->io_queue, &io->work);
1904 }
1905
1906 static void kcryptd_io_write(struct dm_crypt_io *io)
1907 {
1908 struct bio *clone = io->ctx.bio_out;
1909
1910 dm_submit_bio_remap(io->base_bio, clone);
1911 }
1912
1913 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1914
1915 static int dmcrypt_write(void *data)
1916 {
1917 struct crypt_config *cc = data;
1918 struct dm_crypt_io *io;
1919
1920 while (1) {
1921 struct rb_root write_tree;
1922 struct blk_plug plug;
1923
1924 spin_lock_irq(&cc->write_thread_lock);
1925 continue_locked:
1926
1927 if (!RB_EMPTY_ROOT(&cc->write_tree))
1928 goto pop_from_list;
1929
1930 set_current_state(TASK_INTERRUPTIBLE);
1931
1932 spin_unlock_irq(&cc->write_thread_lock);
1933
1934 if (unlikely(kthread_should_stop())) {
1935 set_current_state(TASK_RUNNING);
1936 break;
1937 }
1938
1939 schedule();
1940
1941 set_current_state(TASK_RUNNING);
1942 spin_lock_irq(&cc->write_thread_lock);
1943 goto continue_locked;
1944
1945 pop_from_list:
1946 write_tree = cc->write_tree;
1947 cc->write_tree = RB_ROOT;
1948 spin_unlock_irq(&cc->write_thread_lock);
1949
1950 BUG_ON(rb_parent(write_tree.rb_node));
1951
1952 /*
1953 * Note: we cannot walk the tree here with rb_next because
1954 * the structures may be freed when kcryptd_io_write is called.
1955 */
1956 blk_start_plug(&plug);
1957 do {
1958 io = crypt_io_from_node(rb_first(&write_tree));
1959 rb_erase(&io->rb_node, &write_tree);
1960 kcryptd_io_write(io);
1961 cond_resched();
1962 } while (!RB_EMPTY_ROOT(&write_tree));
1963 blk_finish_plug(&plug);
1964 }
1965 return 0;
1966 }
1967
1968 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1969 {
1970 struct bio *clone = io->ctx.bio_out;
1971 struct crypt_config *cc = io->cc;
1972 unsigned long flags;
1973 sector_t sector;
1974 struct rb_node **rbp, *parent;
1975
1976 if (unlikely(io->error)) {
1977 crypt_free_buffer_pages(cc, clone);
1978 bio_put(clone);
1979 crypt_dec_pending(io);
1980 return;
1981 }
1982
1983 /* crypt_convert should have filled the clone bio */
1984 BUG_ON(io->ctx.iter_out.bi_size);
1985
1986 clone->bi_iter.bi_sector = cc->start + io->sector;
1987
1988 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
1989 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
1990 dm_submit_bio_remap(io->base_bio, clone);
1991 return;
1992 }
1993
1994 spin_lock_irqsave(&cc->write_thread_lock, flags);
1995 if (RB_EMPTY_ROOT(&cc->write_tree))
1996 wake_up_process(cc->write_thread);
1997 rbp = &cc->write_tree.rb_node;
1998 parent = NULL;
1999 sector = io->sector;
2000 while (*rbp) {
2001 parent = *rbp;
2002 if (sector < crypt_io_from_node(parent)->sector)
2003 rbp = &(*rbp)->rb_left;
2004 else
2005 rbp = &(*rbp)->rb_right;
2006 }
2007 rb_link_node(&io->rb_node, parent, rbp);
2008 rb_insert_color(&io->rb_node, &cc->write_tree);
2009 spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2010 }
2011
2012 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2013 struct convert_context *ctx)
2014
2015 {
2016 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2017 return false;
2018
2019 /*
2020 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2021 * constraints so they do not need to be issued inline by
2022 * kcryptd_crypt_write_convert().
2023 */
2024 switch (bio_op(ctx->bio_in)) {
2025 case REQ_OP_WRITE:
2026 case REQ_OP_WRITE_ZEROES:
2027 return true;
2028 default:
2029 return false;
2030 }
2031 }
2032
2033 static void kcryptd_crypt_write_continue(struct work_struct *work)
2034 {
2035 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2036 struct crypt_config *cc = io->cc;
2037 struct convert_context *ctx = &io->ctx;
2038 int crypt_finished;
2039 sector_t sector = io->sector;
2040 blk_status_t r;
2041
2042 wait_for_completion(&ctx->restart);
2043 reinit_completion(&ctx->restart);
2044
2045 r = crypt_convert(cc, &io->ctx, true, false);
2046 if (r)
2047 io->error = r;
2048 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2049 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2050 /* Wait for completion signaled by kcryptd_async_done() */
2051 wait_for_completion(&ctx->restart);
2052 crypt_finished = 1;
2053 }
2054
2055 /* Encryption was already finished, submit io now */
2056 if (crypt_finished) {
2057 kcryptd_crypt_write_io_submit(io, 0);
2058 io->sector = sector;
2059 }
2060
2061 crypt_dec_pending(io);
2062 }
2063
2064 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2065 {
2066 struct crypt_config *cc = io->cc;
2067 struct convert_context *ctx = &io->ctx;
2068 struct bio *clone;
2069 int crypt_finished;
2070 sector_t sector = io->sector;
2071 blk_status_t r;
2072
2073 /*
2074 * Prevent io from disappearing until this function completes.
2075 */
2076 crypt_inc_pending(io);
2077 crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2078
2079 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2080 if (unlikely(!clone)) {
2081 io->error = BLK_STS_IOERR;
2082 goto dec;
2083 }
2084
2085 io->ctx.bio_out = clone;
2086 io->ctx.iter_out = clone->bi_iter;
2087
2088 sector += bio_sectors(clone);
2089
2090 crypt_inc_pending(io);
2091 r = crypt_convert(cc, ctx,
2092 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2093 /*
2094 * Crypto API backlogged the request, because its queue was full
2095 * and we're in softirq context, so continue from a workqueue
2096 * (TODO: is it actually possible to be in softirq in the write path?)
2097 */
2098 if (r == BLK_STS_DEV_RESOURCE) {
2099 INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2100 queue_work(cc->crypt_queue, &io->work);
2101 return;
2102 }
2103 if (r)
2104 io->error = r;
2105 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2106 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2107 /* Wait for completion signaled by kcryptd_async_done() */
2108 wait_for_completion(&ctx->restart);
2109 crypt_finished = 1;
2110 }
2111
2112 /* Encryption was already finished, submit io now */
2113 if (crypt_finished) {
2114 kcryptd_crypt_write_io_submit(io, 0);
2115 io->sector = sector;
2116 }
2117
2118 dec:
2119 crypt_dec_pending(io);
2120 }
2121
2122 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2123 {
2124 crypt_dec_pending(io);
2125 }
2126
2127 static void kcryptd_crypt_read_continue(struct work_struct *work)
2128 {
2129 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2130 struct crypt_config *cc = io->cc;
2131 blk_status_t r;
2132
2133 wait_for_completion(&io->ctx.restart);
2134 reinit_completion(&io->ctx.restart);
2135
2136 r = crypt_convert(cc, &io->ctx, true, false);
2137 if (r)
2138 io->error = r;
2139
2140 if (atomic_dec_and_test(&io->ctx.cc_pending))
2141 kcryptd_crypt_read_done(io);
2142
2143 crypt_dec_pending(io);
2144 }
2145
2146 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2147 {
2148 struct crypt_config *cc = io->cc;
2149 blk_status_t r;
2150
2151 crypt_inc_pending(io);
2152
2153 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2154 io->sector);
2155
2156 r = crypt_convert(cc, &io->ctx,
2157 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2158 /*
2159 * Crypto API backlogged the request, because its queue was full
2160 * and we're in softirq context, so continue from a workqueue
2161 */
2162 if (r == BLK_STS_DEV_RESOURCE) {
2163 INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2164 queue_work(cc->crypt_queue, &io->work);
2165 return;
2166 }
2167 if (r)
2168 io->error = r;
2169
2170 if (atomic_dec_and_test(&io->ctx.cc_pending))
2171 kcryptd_crypt_read_done(io);
2172
2173 crypt_dec_pending(io);
2174 }
2175
2176 static void kcryptd_async_done(void *data, int error)
2177 {
2178 struct dm_crypt_request *dmreq = data;
2179 struct convert_context *ctx = dmreq->ctx;
2180 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2181 struct crypt_config *cc = io->cc;
2182
2183 /*
2184 * A request from crypto driver backlog is going to be processed now,
2185 * finish the completion and continue in crypt_convert().
2186 * (Callback will be called for the second time for this request.)
2187 */
2188 if (error == -EINPROGRESS) {
2189 complete(&ctx->restart);
2190 return;
2191 }
2192
2193 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2194 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2195
2196 if (error == -EBADMSG) {
2197 sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2198
2199 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2200 ctx->bio_in->bi_bdev, s);
2201 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2202 ctx->bio_in, s, 0);
2203 io->error = BLK_STS_PROTECTION;
2204 } else if (error < 0)
2205 io->error = BLK_STS_IOERR;
2206
2207 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2208
2209 if (!atomic_dec_and_test(&ctx->cc_pending))
2210 return;
2211
2212 /*
2213 * The request is fully completed: for inline writes, let
2214 * kcryptd_crypt_write_convert() do the IO submission.
2215 */
2216 if (bio_data_dir(io->base_bio) == READ) {
2217 kcryptd_crypt_read_done(io);
2218 return;
2219 }
2220
2221 if (kcryptd_crypt_write_inline(cc, ctx)) {
2222 complete(&ctx->restart);
2223 return;
2224 }
2225
2226 kcryptd_crypt_write_io_submit(io, 1);
2227 }
2228
2229 static void kcryptd_crypt(struct work_struct *work)
2230 {
2231 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2232
2233 if (bio_data_dir(io->base_bio) == READ)
2234 kcryptd_crypt_read_convert(io);
2235 else
2236 kcryptd_crypt_write_convert(io);
2237 }
2238
2239 static void kcryptd_crypt_tasklet(unsigned long work)
2240 {
2241 kcryptd_crypt((struct work_struct *)work);
2242 }
2243
2244 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2245 {
2246 struct crypt_config *cc = io->cc;
2247
2248 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2249 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2250 /*
2251 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2252 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2253 * it is being executed with irqs disabled.
2254 */
2255 if (in_hardirq() || irqs_disabled()) {
2256 io->in_tasklet = true;
2257 tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
2258 tasklet_schedule(&io->tasklet);
2259 return;
2260 }
2261
2262 kcryptd_crypt(&io->work);
2263 return;
2264 }
2265
2266 INIT_WORK(&io->work, kcryptd_crypt);
2267 queue_work(cc->crypt_queue, &io->work);
2268 }
2269
2270 static void crypt_free_tfms_aead(struct crypt_config *cc)
2271 {
2272 if (!cc->cipher_tfm.tfms_aead)
2273 return;
2274
2275 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2276 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2277 cc->cipher_tfm.tfms_aead[0] = NULL;
2278 }
2279
2280 kfree(cc->cipher_tfm.tfms_aead);
2281 cc->cipher_tfm.tfms_aead = NULL;
2282 }
2283
2284 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2285 {
2286 unsigned int i;
2287
2288 if (!cc->cipher_tfm.tfms)
2289 return;
2290
2291 for (i = 0; i < cc->tfms_count; i++)
2292 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2293 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2294 cc->cipher_tfm.tfms[i] = NULL;
2295 }
2296
2297 kfree(cc->cipher_tfm.tfms);
2298 cc->cipher_tfm.tfms = NULL;
2299 }
2300
2301 static void crypt_free_tfms(struct crypt_config *cc)
2302 {
2303 if (crypt_integrity_aead(cc))
2304 crypt_free_tfms_aead(cc);
2305 else
2306 crypt_free_tfms_skcipher(cc);
2307 }
2308
2309 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2310 {
2311 unsigned int i;
2312 int err;
2313
2314 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2315 sizeof(struct crypto_skcipher *),
2316 GFP_KERNEL);
2317 if (!cc->cipher_tfm.tfms)
2318 return -ENOMEM;
2319
2320 for (i = 0; i < cc->tfms_count; i++) {
2321 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2322 CRYPTO_ALG_ALLOCATES_MEMORY);
2323 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2324 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2325 crypt_free_tfms(cc);
2326 return err;
2327 }
2328 }
2329
2330 /*
2331 * dm-crypt performance can vary greatly depending on which crypto
2332 * algorithm implementation is used. Help people debug performance
2333 * problems by logging the ->cra_driver_name.
2334 */
2335 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2336 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2337 return 0;
2338 }
2339
2340 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2341 {
2342 int err;
2343
2344 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2345 if (!cc->cipher_tfm.tfms)
2346 return -ENOMEM;
2347
2348 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2349 CRYPTO_ALG_ALLOCATES_MEMORY);
2350 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2351 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2352 crypt_free_tfms(cc);
2353 return err;
2354 }
2355
2356 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2357 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2358 return 0;
2359 }
2360
2361 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2362 {
2363 if (crypt_integrity_aead(cc))
2364 return crypt_alloc_tfms_aead(cc, ciphermode);
2365 else
2366 return crypt_alloc_tfms_skcipher(cc, ciphermode);
2367 }
2368
2369 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2370 {
2371 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2372 }
2373
2374 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2375 {
2376 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2377 }
2378
2379 /*
2380 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2381 * the key must be for some reason in special format.
2382 * This funcion converts cc->key to this special format.
2383 */
2384 static void crypt_copy_authenckey(char *p, const void *key,
2385 unsigned int enckeylen, unsigned int authkeylen)
2386 {
2387 struct crypto_authenc_key_param *param;
2388 struct rtattr *rta;
2389
2390 rta = (struct rtattr *)p;
2391 param = RTA_DATA(rta);
2392 param->enckeylen = cpu_to_be32(enckeylen);
2393 rta->rta_len = RTA_LENGTH(sizeof(*param));
2394 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2395 p += RTA_SPACE(sizeof(*param));
2396 memcpy(p, key + enckeylen, authkeylen);
2397 p += authkeylen;
2398 memcpy(p, key, enckeylen);
2399 }
2400
2401 static int crypt_setkey(struct crypt_config *cc)
2402 {
2403 unsigned int subkey_size;
2404 int err = 0, i, r;
2405
2406 /* Ignore extra keys (which are used for IV etc) */
2407 subkey_size = crypt_subkey_size(cc);
2408
2409 if (crypt_integrity_hmac(cc)) {
2410 if (subkey_size < cc->key_mac_size)
2411 return -EINVAL;
2412
2413 crypt_copy_authenckey(cc->authenc_key, cc->key,
2414 subkey_size - cc->key_mac_size,
2415 cc->key_mac_size);
2416 }
2417
2418 for (i = 0; i < cc->tfms_count; i++) {
2419 if (crypt_integrity_hmac(cc))
2420 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2421 cc->authenc_key, crypt_authenckey_size(cc));
2422 else if (crypt_integrity_aead(cc))
2423 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2424 cc->key + (i * subkey_size),
2425 subkey_size);
2426 else
2427 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2428 cc->key + (i * subkey_size),
2429 subkey_size);
2430 if (r)
2431 err = r;
2432 }
2433
2434 if (crypt_integrity_hmac(cc))
2435 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2436
2437 return err;
2438 }
2439
2440 #ifdef CONFIG_KEYS
2441
2442 static bool contains_whitespace(const char *str)
2443 {
2444 while (*str)
2445 if (isspace(*str++))
2446 return true;
2447 return false;
2448 }
2449
2450 static int set_key_user(struct crypt_config *cc, struct key *key)
2451 {
2452 const struct user_key_payload *ukp;
2453
2454 ukp = user_key_payload_locked(key);
2455 if (!ukp)
2456 return -EKEYREVOKED;
2457
2458 if (cc->key_size != ukp->datalen)
2459 return -EINVAL;
2460
2461 memcpy(cc->key, ukp->data, cc->key_size);
2462
2463 return 0;
2464 }
2465
2466 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2467 {
2468 const struct encrypted_key_payload *ekp;
2469
2470 ekp = key->payload.data[0];
2471 if (!ekp)
2472 return -EKEYREVOKED;
2473
2474 if (cc->key_size != ekp->decrypted_datalen)
2475 return -EINVAL;
2476
2477 memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2478
2479 return 0;
2480 }
2481
2482 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2483 {
2484 const struct trusted_key_payload *tkp;
2485
2486 tkp = key->payload.data[0];
2487 if (!tkp)
2488 return -EKEYREVOKED;
2489
2490 if (cc->key_size != tkp->key_len)
2491 return -EINVAL;
2492
2493 memcpy(cc->key, tkp->key, cc->key_size);
2494
2495 return 0;
2496 }
2497
2498 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2499 {
2500 char *new_key_string, *key_desc;
2501 int ret;
2502 struct key_type *type;
2503 struct key *key;
2504 int (*set_key)(struct crypt_config *cc, struct key *key);
2505
2506 /*
2507 * Reject key_string with whitespace. dm core currently lacks code for
2508 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2509 */
2510 if (contains_whitespace(key_string)) {
2511 DMERR("whitespace chars not allowed in key string");
2512 return -EINVAL;
2513 }
2514
2515 /* look for next ':' separating key_type from key_description */
2516 key_desc = strchr(key_string, ':');
2517 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2518 return -EINVAL;
2519
2520 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2521 type = &key_type_logon;
2522 set_key = set_key_user;
2523 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2524 type = &key_type_user;
2525 set_key = set_key_user;
2526 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2527 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2528 type = &key_type_encrypted;
2529 set_key = set_key_encrypted;
2530 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2531 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2532 type = &key_type_trusted;
2533 set_key = set_key_trusted;
2534 } else {
2535 return -EINVAL;
2536 }
2537
2538 new_key_string = kstrdup(key_string, GFP_KERNEL);
2539 if (!new_key_string)
2540 return -ENOMEM;
2541
2542 key = request_key(type, key_desc + 1, NULL);
2543 if (IS_ERR(key)) {
2544 kfree_sensitive(new_key_string);
2545 return PTR_ERR(key);
2546 }
2547
2548 down_read(&key->sem);
2549
2550 ret = set_key(cc, key);
2551 if (ret < 0) {
2552 up_read(&key->sem);
2553 key_put(key);
2554 kfree_sensitive(new_key_string);
2555 return ret;
2556 }
2557
2558 up_read(&key->sem);
2559 key_put(key);
2560
2561 /* clear the flag since following operations may invalidate previously valid key */
2562 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2563
2564 ret = crypt_setkey(cc);
2565
2566 if (!ret) {
2567 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2568 kfree_sensitive(cc->key_string);
2569 cc->key_string = new_key_string;
2570 } else
2571 kfree_sensitive(new_key_string);
2572
2573 return ret;
2574 }
2575
2576 static int get_key_size(char **key_string)
2577 {
2578 char *colon, dummy;
2579 int ret;
2580
2581 if (*key_string[0] != ':')
2582 return strlen(*key_string) >> 1;
2583
2584 /* look for next ':' in key string */
2585 colon = strpbrk(*key_string + 1, ":");
2586 if (!colon)
2587 return -EINVAL;
2588
2589 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2590 return -EINVAL;
2591
2592 *key_string = colon;
2593
2594 /* remaining key string should be :<logon|user>:<key_desc> */
2595
2596 return ret;
2597 }
2598
2599 #else
2600
2601 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2602 {
2603 return -EINVAL;
2604 }
2605
2606 static int get_key_size(char **key_string)
2607 {
2608 return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2609 }
2610
2611 #endif /* CONFIG_KEYS */
2612
2613 static int crypt_set_key(struct crypt_config *cc, char *key)
2614 {
2615 int r = -EINVAL;
2616 int key_string_len = strlen(key);
2617
2618 /* Hyphen (which gives a key_size of zero) means there is no key. */
2619 if (!cc->key_size && strcmp(key, "-"))
2620 goto out;
2621
2622 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2623 if (key[0] == ':') {
2624 r = crypt_set_keyring_key(cc, key + 1);
2625 goto out;
2626 }
2627
2628 /* clear the flag since following operations may invalidate previously valid key */
2629 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2630
2631 /* wipe references to any kernel keyring key */
2632 kfree_sensitive(cc->key_string);
2633 cc->key_string = NULL;
2634
2635 /* Decode key from its hex representation. */
2636 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2637 goto out;
2638
2639 r = crypt_setkey(cc);
2640 if (!r)
2641 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2642
2643 out:
2644 /* Hex key string not needed after here, so wipe it. */
2645 memset(key, '0', key_string_len);
2646
2647 return r;
2648 }
2649
2650 static int crypt_wipe_key(struct crypt_config *cc)
2651 {
2652 int r;
2653
2654 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2655 get_random_bytes(&cc->key, cc->key_size);
2656
2657 /* Wipe IV private keys */
2658 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2659 r = cc->iv_gen_ops->wipe(cc);
2660 if (r)
2661 return r;
2662 }
2663
2664 kfree_sensitive(cc->key_string);
2665 cc->key_string = NULL;
2666 r = crypt_setkey(cc);
2667 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2668
2669 return r;
2670 }
2671
2672 static void crypt_calculate_pages_per_client(void)
2673 {
2674 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2675
2676 if (!dm_crypt_clients_n)
2677 return;
2678
2679 pages /= dm_crypt_clients_n;
2680 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2681 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2682 dm_crypt_pages_per_client = pages;
2683 }
2684
2685 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2686 {
2687 struct crypt_config *cc = pool_data;
2688 struct page *page;
2689
2690 /*
2691 * Note, percpu_counter_read_positive() may over (and under) estimate
2692 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2693 * but avoids potential spinlock contention of an exact result.
2694 */
2695 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2696 likely(gfp_mask & __GFP_NORETRY))
2697 return NULL;
2698
2699 page = alloc_page(gfp_mask);
2700 if (likely(page != NULL))
2701 percpu_counter_add(&cc->n_allocated_pages, 1);
2702
2703 return page;
2704 }
2705
2706 static void crypt_page_free(void *page, void *pool_data)
2707 {
2708 struct crypt_config *cc = pool_data;
2709
2710 __free_page(page);
2711 percpu_counter_sub(&cc->n_allocated_pages, 1);
2712 }
2713
2714 static void crypt_dtr(struct dm_target *ti)
2715 {
2716 struct crypt_config *cc = ti->private;
2717
2718 ti->private = NULL;
2719
2720 if (!cc)
2721 return;
2722
2723 if (cc->write_thread)
2724 kthread_stop(cc->write_thread);
2725
2726 if (cc->io_queue)
2727 destroy_workqueue(cc->io_queue);
2728 if (cc->crypt_queue)
2729 destroy_workqueue(cc->crypt_queue);
2730
2731 crypt_free_tfms(cc);
2732
2733 bioset_exit(&cc->bs);
2734
2735 mempool_exit(&cc->page_pool);
2736 mempool_exit(&cc->req_pool);
2737 mempool_exit(&cc->tag_pool);
2738
2739 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2740 percpu_counter_destroy(&cc->n_allocated_pages);
2741
2742 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2743 cc->iv_gen_ops->dtr(cc);
2744
2745 if (cc->dev)
2746 dm_put_device(ti, cc->dev);
2747
2748 kfree_sensitive(cc->cipher_string);
2749 kfree_sensitive(cc->key_string);
2750 kfree_sensitive(cc->cipher_auth);
2751 kfree_sensitive(cc->authenc_key);
2752
2753 mutex_destroy(&cc->bio_alloc_lock);
2754
2755 /* Must zero key material before freeing */
2756 kfree_sensitive(cc);
2757
2758 spin_lock(&dm_crypt_clients_lock);
2759 WARN_ON(!dm_crypt_clients_n);
2760 dm_crypt_clients_n--;
2761 crypt_calculate_pages_per_client();
2762 spin_unlock(&dm_crypt_clients_lock);
2763
2764 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2765 }
2766
2767 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2768 {
2769 struct crypt_config *cc = ti->private;
2770
2771 if (crypt_integrity_aead(cc))
2772 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2773 else
2774 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2775
2776 if (cc->iv_size)
2777 /* at least a 64 bit sector number should fit in our buffer */
2778 cc->iv_size = max(cc->iv_size,
2779 (unsigned int)(sizeof(u64) / sizeof(u8)));
2780 else if (ivmode) {
2781 DMWARN("Selected cipher does not support IVs");
2782 ivmode = NULL;
2783 }
2784
2785 /* Choose ivmode, see comments at iv code. */
2786 if (ivmode == NULL)
2787 cc->iv_gen_ops = NULL;
2788 else if (strcmp(ivmode, "plain") == 0)
2789 cc->iv_gen_ops = &crypt_iv_plain_ops;
2790 else if (strcmp(ivmode, "plain64") == 0)
2791 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2792 else if (strcmp(ivmode, "plain64be") == 0)
2793 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2794 else if (strcmp(ivmode, "essiv") == 0)
2795 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2796 else if (strcmp(ivmode, "benbi") == 0)
2797 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2798 else if (strcmp(ivmode, "null") == 0)
2799 cc->iv_gen_ops = &crypt_iv_null_ops;
2800 else if (strcmp(ivmode, "eboiv") == 0)
2801 cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2802 else if (strcmp(ivmode, "elephant") == 0) {
2803 cc->iv_gen_ops = &crypt_iv_elephant_ops;
2804 cc->key_parts = 2;
2805 cc->key_extra_size = cc->key_size / 2;
2806 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2807 return -EINVAL;
2808 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2809 } else if (strcmp(ivmode, "lmk") == 0) {
2810 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2811 /*
2812 * Version 2 and 3 is recognised according
2813 * to length of provided multi-key string.
2814 * If present (version 3), last key is used as IV seed.
2815 * All keys (including IV seed) are always the same size.
2816 */
2817 if (cc->key_size % cc->key_parts) {
2818 cc->key_parts++;
2819 cc->key_extra_size = cc->key_size / cc->key_parts;
2820 }
2821 } else if (strcmp(ivmode, "tcw") == 0) {
2822 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2823 cc->key_parts += 2; /* IV + whitening */
2824 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2825 } else if (strcmp(ivmode, "random") == 0) {
2826 cc->iv_gen_ops = &crypt_iv_random_ops;
2827 /* Need storage space in integrity fields. */
2828 cc->integrity_iv_size = cc->iv_size;
2829 } else {
2830 ti->error = "Invalid IV mode";
2831 return -EINVAL;
2832 }
2833
2834 return 0;
2835 }
2836
2837 /*
2838 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2839 * The HMAC is needed to calculate tag size (HMAC digest size).
2840 * This should be probably done by crypto-api calls (once available...)
2841 */
2842 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2843 {
2844 char *start, *end, *mac_alg = NULL;
2845 struct crypto_ahash *mac;
2846
2847 if (!strstarts(cipher_api, "authenc("))
2848 return 0;
2849
2850 start = strchr(cipher_api, '(');
2851 end = strchr(cipher_api, ',');
2852 if (!start || !end || ++start > end)
2853 return -EINVAL;
2854
2855 mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2856 if (!mac_alg)
2857 return -ENOMEM;
2858
2859 mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2860 kfree(mac_alg);
2861
2862 if (IS_ERR(mac))
2863 return PTR_ERR(mac);
2864
2865 cc->key_mac_size = crypto_ahash_digestsize(mac);
2866 crypto_free_ahash(mac);
2867
2868 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2869 if (!cc->authenc_key)
2870 return -ENOMEM;
2871
2872 return 0;
2873 }
2874
2875 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2876 char **ivmode, char **ivopts)
2877 {
2878 struct crypt_config *cc = ti->private;
2879 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2880 int ret = -EINVAL;
2881
2882 cc->tfms_count = 1;
2883
2884 /*
2885 * New format (capi: prefix)
2886 * capi:cipher_api_spec-iv:ivopts
2887 */
2888 tmp = &cipher_in[strlen("capi:")];
2889
2890 /* Separate IV options if present, it can contain another '-' in hash name */
2891 *ivopts = strrchr(tmp, ':');
2892 if (*ivopts) {
2893 **ivopts = '\0';
2894 (*ivopts)++;
2895 }
2896 /* Parse IV mode */
2897 *ivmode = strrchr(tmp, '-');
2898 if (*ivmode) {
2899 **ivmode = '\0';
2900 (*ivmode)++;
2901 }
2902 /* The rest is crypto API spec */
2903 cipher_api = tmp;
2904
2905 /* Alloc AEAD, can be used only in new format. */
2906 if (crypt_integrity_aead(cc)) {
2907 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2908 if (ret < 0) {
2909 ti->error = "Invalid AEAD cipher spec";
2910 return ret;
2911 }
2912 }
2913
2914 if (*ivmode && !strcmp(*ivmode, "lmk"))
2915 cc->tfms_count = 64;
2916
2917 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2918 if (!*ivopts) {
2919 ti->error = "Digest algorithm missing for ESSIV mode";
2920 return -EINVAL;
2921 }
2922 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2923 cipher_api, *ivopts);
2924 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2925 ti->error = "Cannot allocate cipher string";
2926 return -ENOMEM;
2927 }
2928 cipher_api = buf;
2929 }
2930
2931 cc->key_parts = cc->tfms_count;
2932
2933 /* Allocate cipher */
2934 ret = crypt_alloc_tfms(cc, cipher_api);
2935 if (ret < 0) {
2936 ti->error = "Error allocating crypto tfm";
2937 return ret;
2938 }
2939
2940 if (crypt_integrity_aead(cc))
2941 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2942 else
2943 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2944
2945 return 0;
2946 }
2947
2948 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2949 char **ivmode, char **ivopts)
2950 {
2951 struct crypt_config *cc = ti->private;
2952 char *tmp, *cipher, *chainmode, *keycount;
2953 char *cipher_api = NULL;
2954 int ret = -EINVAL;
2955 char dummy;
2956
2957 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2958 ti->error = "Bad cipher specification";
2959 return -EINVAL;
2960 }
2961
2962 /*
2963 * Legacy dm-crypt cipher specification
2964 * cipher[:keycount]-mode-iv:ivopts
2965 */
2966 tmp = cipher_in;
2967 keycount = strsep(&tmp, "-");
2968 cipher = strsep(&keycount, ":");
2969
2970 if (!keycount)
2971 cc->tfms_count = 1;
2972 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2973 !is_power_of_2(cc->tfms_count)) {
2974 ti->error = "Bad cipher key count specification";
2975 return -EINVAL;
2976 }
2977 cc->key_parts = cc->tfms_count;
2978
2979 chainmode = strsep(&tmp, "-");
2980 *ivmode = strsep(&tmp, ":");
2981 *ivopts = tmp;
2982
2983 /*
2984 * For compatibility with the original dm-crypt mapping format, if
2985 * only the cipher name is supplied, use cbc-plain.
2986 */
2987 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2988 chainmode = "cbc";
2989 *ivmode = "plain";
2990 }
2991
2992 if (strcmp(chainmode, "ecb") && !*ivmode) {
2993 ti->error = "IV mechanism required";
2994 return -EINVAL;
2995 }
2996
2997 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2998 if (!cipher_api)
2999 goto bad_mem;
3000
3001 if (*ivmode && !strcmp(*ivmode, "essiv")) {
3002 if (!*ivopts) {
3003 ti->error = "Digest algorithm missing for ESSIV mode";
3004 kfree(cipher_api);
3005 return -EINVAL;
3006 }
3007 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3008 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3009 } else {
3010 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3011 "%s(%s)", chainmode, cipher);
3012 }
3013 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3014 kfree(cipher_api);
3015 goto bad_mem;
3016 }
3017
3018 /* Allocate cipher */
3019 ret = crypt_alloc_tfms(cc, cipher_api);
3020 if (ret < 0) {
3021 ti->error = "Error allocating crypto tfm";
3022 kfree(cipher_api);
3023 return ret;
3024 }
3025 kfree(cipher_api);
3026
3027 return 0;
3028 bad_mem:
3029 ti->error = "Cannot allocate cipher strings";
3030 return -ENOMEM;
3031 }
3032
3033 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3034 {
3035 struct crypt_config *cc = ti->private;
3036 char *ivmode = NULL, *ivopts = NULL;
3037 int ret;
3038
3039 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3040 if (!cc->cipher_string) {
3041 ti->error = "Cannot allocate cipher strings";
3042 return -ENOMEM;
3043 }
3044
3045 if (strstarts(cipher_in, "capi:"))
3046 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3047 else
3048 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3049 if (ret)
3050 return ret;
3051
3052 /* Initialize IV */
3053 ret = crypt_ctr_ivmode(ti, ivmode);
3054 if (ret < 0)
3055 return ret;
3056
3057 /* Initialize and set key */
3058 ret = crypt_set_key(cc, key);
3059 if (ret < 0) {
3060 ti->error = "Error decoding and setting key";
3061 return ret;
3062 }
3063
3064 /* Allocate IV */
3065 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3066 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3067 if (ret < 0) {
3068 ti->error = "Error creating IV";
3069 return ret;
3070 }
3071 }
3072
3073 /* Initialize IV (set keys for ESSIV etc) */
3074 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3075 ret = cc->iv_gen_ops->init(cc);
3076 if (ret < 0) {
3077 ti->error = "Error initialising IV";
3078 return ret;
3079 }
3080 }
3081
3082 /* wipe the kernel key payload copy */
3083 if (cc->key_string)
3084 memset(cc->key, 0, cc->key_size * sizeof(u8));
3085
3086 return ret;
3087 }
3088
3089 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3090 {
3091 struct crypt_config *cc = ti->private;
3092 struct dm_arg_set as;
3093 static const struct dm_arg _args[] = {
3094 {0, 8, "Invalid number of feature args"},
3095 };
3096 unsigned int opt_params, val;
3097 const char *opt_string, *sval;
3098 char dummy;
3099 int ret;
3100
3101 /* Optional parameters */
3102 as.argc = argc;
3103 as.argv = argv;
3104
3105 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3106 if (ret)
3107 return ret;
3108
3109 while (opt_params--) {
3110 opt_string = dm_shift_arg(&as);
3111 if (!opt_string) {
3112 ti->error = "Not enough feature arguments";
3113 return -EINVAL;
3114 }
3115
3116 if (!strcasecmp(opt_string, "allow_discards"))
3117 ti->num_discard_bios = 1;
3118
3119 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3120 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3121
3122 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3123 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3124 else if (!strcasecmp(opt_string, "no_read_workqueue"))
3125 set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3126 else if (!strcasecmp(opt_string, "no_write_workqueue"))
3127 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3128 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3129 if (val == 0 || val > MAX_TAG_SIZE) {
3130 ti->error = "Invalid integrity arguments";
3131 return -EINVAL;
3132 }
3133 cc->on_disk_tag_size = val;
3134 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3135 if (!strcasecmp(sval, "aead")) {
3136 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3137 } else if (strcasecmp(sval, "none")) {
3138 ti->error = "Unknown integrity profile";
3139 return -EINVAL;
3140 }
3141
3142 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3143 if (!cc->cipher_auth)
3144 return -ENOMEM;
3145 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3146 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3147 cc->sector_size > 4096 ||
3148 (cc->sector_size & (cc->sector_size - 1))) {
3149 ti->error = "Invalid feature value for sector_size";
3150 return -EINVAL;
3151 }
3152 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3153 ti->error = "Device size is not multiple of sector_size feature";
3154 return -EINVAL;
3155 }
3156 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3157 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
3158 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3159 else {
3160 ti->error = "Invalid feature arguments";
3161 return -EINVAL;
3162 }
3163 }
3164
3165 return 0;
3166 }
3167
3168 #ifdef CONFIG_BLK_DEV_ZONED
3169 static int crypt_report_zones(struct dm_target *ti,
3170 struct dm_report_zones_args *args, unsigned int nr_zones)
3171 {
3172 struct crypt_config *cc = ti->private;
3173
3174 return dm_report_zones(cc->dev->bdev, cc->start,
3175 cc->start + dm_target_offset(ti, args->next_sector),
3176 args, nr_zones);
3177 }
3178 #else
3179 #define crypt_report_zones NULL
3180 #endif
3181
3182 /*
3183 * Construct an encryption mapping:
3184 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3185 */
3186 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3187 {
3188 struct crypt_config *cc;
3189 const char *devname = dm_table_device_name(ti->table);
3190 int key_size;
3191 unsigned int align_mask;
3192 unsigned long long tmpll;
3193 int ret;
3194 size_t iv_size_padding, additional_req_size;
3195 char dummy;
3196
3197 if (argc < 5) {
3198 ti->error = "Not enough arguments";
3199 return -EINVAL;
3200 }
3201
3202 key_size = get_key_size(&argv[1]);
3203 if (key_size < 0) {
3204 ti->error = "Cannot parse key size";
3205 return -EINVAL;
3206 }
3207
3208 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3209 if (!cc) {
3210 ti->error = "Cannot allocate encryption context";
3211 return -ENOMEM;
3212 }
3213 cc->key_size = key_size;
3214 cc->sector_size = (1 << SECTOR_SHIFT);
3215 cc->sector_shift = 0;
3216
3217 ti->private = cc;
3218
3219 spin_lock(&dm_crypt_clients_lock);
3220 dm_crypt_clients_n++;
3221 crypt_calculate_pages_per_client();
3222 spin_unlock(&dm_crypt_clients_lock);
3223
3224 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3225 if (ret < 0)
3226 goto bad;
3227
3228 /* Optional parameters need to be read before cipher constructor */
3229 if (argc > 5) {
3230 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3231 if (ret)
3232 goto bad;
3233 }
3234
3235 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3236 if (ret < 0)
3237 goto bad;
3238
3239 if (crypt_integrity_aead(cc)) {
3240 cc->dmreq_start = sizeof(struct aead_request);
3241 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3242 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3243 } else {
3244 cc->dmreq_start = sizeof(struct skcipher_request);
3245 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3246 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3247 }
3248 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3249
3250 if (align_mask < CRYPTO_MINALIGN) {
3251 /* Allocate the padding exactly */
3252 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3253 & align_mask;
3254 } else {
3255 /*
3256 * If the cipher requires greater alignment than kmalloc
3257 * alignment, we don't know the exact position of the
3258 * initialization vector. We must assume worst case.
3259 */
3260 iv_size_padding = align_mask;
3261 }
3262
3263 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
3264 additional_req_size = sizeof(struct dm_crypt_request) +
3265 iv_size_padding + cc->iv_size +
3266 cc->iv_size +
3267 sizeof(uint64_t) +
3268 sizeof(unsigned int);
3269
3270 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3271 if (ret) {
3272 ti->error = "Cannot allocate crypt request mempool";
3273 goto bad;
3274 }
3275
3276 cc->per_bio_data_size = ti->per_io_data_size =
3277 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3278 ARCH_DMA_MINALIGN);
3279
3280 ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3281 if (ret) {
3282 ti->error = "Cannot allocate page mempool";
3283 goto bad;
3284 }
3285
3286 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3287 if (ret) {
3288 ti->error = "Cannot allocate crypt bioset";
3289 goto bad;
3290 }
3291
3292 mutex_init(&cc->bio_alloc_lock);
3293
3294 ret = -EINVAL;
3295 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3296 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3297 ti->error = "Invalid iv_offset sector";
3298 goto bad;
3299 }
3300 cc->iv_offset = tmpll;
3301
3302 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3303 if (ret) {
3304 ti->error = "Device lookup failed";
3305 goto bad;
3306 }
3307
3308 ret = -EINVAL;
3309 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3310 ti->error = "Invalid device sector";
3311 goto bad;
3312 }
3313 cc->start = tmpll;
3314
3315 if (bdev_is_zoned(cc->dev->bdev)) {
3316 /*
3317 * For zoned block devices, we need to preserve the issuer write
3318 * ordering. To do so, disable write workqueues and force inline
3319 * encryption completion.
3320 */
3321 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3322 set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3323
3324 /*
3325 * All zone append writes to a zone of a zoned block device will
3326 * have the same BIO sector, the start of the zone. When the
3327 * cypher IV mode uses sector values, all data targeting a
3328 * zone will be encrypted using the first sector numbers of the
3329 * zone. This will not result in write errors but will
3330 * cause most reads to fail as reads will use the sector values
3331 * for the actual data locations, resulting in IV mismatch.
3332 * To avoid this problem, ask DM core to emulate zone append
3333 * operations with regular writes.
3334 */
3335 DMDEBUG("Zone append operations will be emulated");
3336 ti->emulate_zone_append = true;
3337 }
3338
3339 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3340 ret = crypt_integrity_ctr(cc, ti);
3341 if (ret)
3342 goto bad;
3343
3344 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3345 if (!cc->tag_pool_max_sectors)
3346 cc->tag_pool_max_sectors = 1;
3347
3348 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3349 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3350 if (ret) {
3351 ti->error = "Cannot allocate integrity tags mempool";
3352 goto bad;
3353 }
3354
3355 cc->tag_pool_max_sectors <<= cc->sector_shift;
3356 }
3357
3358 ret = -ENOMEM;
3359 cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3360 if (!cc->io_queue) {
3361 ti->error = "Couldn't create kcryptd io queue";
3362 goto bad;
3363 }
3364
3365 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3366 cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3367 1, devname);
3368 else
3369 cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3370 WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3371 num_online_cpus(), devname);
3372 if (!cc->crypt_queue) {
3373 ti->error = "Couldn't create kcryptd queue";
3374 goto bad;
3375 }
3376
3377 spin_lock_init(&cc->write_thread_lock);
3378 cc->write_tree = RB_ROOT;
3379
3380 cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3381 if (IS_ERR(cc->write_thread)) {
3382 ret = PTR_ERR(cc->write_thread);
3383 cc->write_thread = NULL;
3384 ti->error = "Couldn't spawn write thread";
3385 goto bad;
3386 }
3387
3388 ti->num_flush_bios = 1;
3389 ti->limit_swap_bios = true;
3390 ti->accounts_remapped_io = true;
3391
3392 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3393 return 0;
3394
3395 bad:
3396 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3397 crypt_dtr(ti);
3398 return ret;
3399 }
3400
3401 static int crypt_map(struct dm_target *ti, struct bio *bio)
3402 {
3403 struct dm_crypt_io *io;
3404 struct crypt_config *cc = ti->private;
3405
3406 /*
3407 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3408 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3409 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3410 */
3411 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3412 bio_op(bio) == REQ_OP_DISCARD)) {
3413 bio_set_dev(bio, cc->dev->bdev);
3414 if (bio_sectors(bio))
3415 bio->bi_iter.bi_sector = cc->start +
3416 dm_target_offset(ti, bio->bi_iter.bi_sector);
3417 return DM_MAPIO_REMAPPED;
3418 }
3419
3420 /*
3421 * Check if bio is too large, split as needed.
3422 */
3423 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3424 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3425 dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3426
3427 /*
3428 * Ensure that bio is a multiple of internal sector encryption size
3429 * and is aligned to this size as defined in IO hints.
3430 */
3431 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3432 return DM_MAPIO_KILL;
3433
3434 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3435 return DM_MAPIO_KILL;
3436
3437 io = dm_per_bio_data(bio, cc->per_bio_data_size);
3438 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3439
3440 if (cc->on_disk_tag_size) {
3441 unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3442
3443 if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3444 io->integrity_metadata = NULL;
3445 else
3446 io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3447
3448 if (unlikely(!io->integrity_metadata)) {
3449 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3450 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3451 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3452 io->integrity_metadata_from_pool = true;
3453 }
3454 }
3455
3456 if (crypt_integrity_aead(cc))
3457 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3458 else
3459 io->ctx.r.req = (struct skcipher_request *)(io + 1);
3460
3461 if (bio_data_dir(io->base_bio) == READ) {
3462 if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3463 kcryptd_queue_read(io);
3464 } else
3465 kcryptd_queue_crypt(io);
3466
3467 return DM_MAPIO_SUBMITTED;
3468 }
3469
3470 static char hex2asc(unsigned char c)
3471 {
3472 return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3473 }
3474
3475 static void crypt_status(struct dm_target *ti, status_type_t type,
3476 unsigned int status_flags, char *result, unsigned int maxlen)
3477 {
3478 struct crypt_config *cc = ti->private;
3479 unsigned int i, sz = 0;
3480 int num_feature_args = 0;
3481
3482 switch (type) {
3483 case STATUSTYPE_INFO:
3484 result[0] = '\0';
3485 break;
3486
3487 case STATUSTYPE_TABLE:
3488 DMEMIT("%s ", cc->cipher_string);
3489
3490 if (cc->key_size > 0) {
3491 if (cc->key_string)
3492 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3493 else {
3494 for (i = 0; i < cc->key_size; i++) {
3495 DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3496 hex2asc(cc->key[i] & 0xf));
3497 }
3498 }
3499 } else
3500 DMEMIT("-");
3501
3502 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3503 cc->dev->name, (unsigned long long)cc->start);
3504
3505 num_feature_args += !!ti->num_discard_bios;
3506 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3507 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3508 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3509 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3510 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3511 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3512 if (cc->on_disk_tag_size)
3513 num_feature_args++;
3514 if (num_feature_args) {
3515 DMEMIT(" %d", num_feature_args);
3516 if (ti->num_discard_bios)
3517 DMEMIT(" allow_discards");
3518 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3519 DMEMIT(" same_cpu_crypt");
3520 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3521 DMEMIT(" submit_from_crypt_cpus");
3522 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3523 DMEMIT(" no_read_workqueue");
3524 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3525 DMEMIT(" no_write_workqueue");
3526 if (cc->on_disk_tag_size)
3527 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3528 if (cc->sector_size != (1 << SECTOR_SHIFT))
3529 DMEMIT(" sector_size:%d", cc->sector_size);
3530 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3531 DMEMIT(" iv_large_sectors");
3532 }
3533 break;
3534
3535 case STATUSTYPE_IMA:
3536 DMEMIT_TARGET_NAME_VERSION(ti->type);
3537 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3538 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3539 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3540 'y' : 'n');
3541 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3542 'y' : 'n');
3543 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3544 'y' : 'n');
3545 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3546 'y' : 'n');
3547
3548 if (cc->on_disk_tag_size)
3549 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3550 cc->on_disk_tag_size, cc->cipher_auth);
3551 if (cc->sector_size != (1 << SECTOR_SHIFT))
3552 DMEMIT(",sector_size=%d", cc->sector_size);
3553 if (cc->cipher_string)
3554 DMEMIT(",cipher_string=%s", cc->cipher_string);
3555
3556 DMEMIT(",key_size=%u", cc->key_size);
3557 DMEMIT(",key_parts=%u", cc->key_parts);
3558 DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3559 DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3560 DMEMIT(";");
3561 break;
3562 }
3563 }
3564
3565 static void crypt_postsuspend(struct dm_target *ti)
3566 {
3567 struct crypt_config *cc = ti->private;
3568
3569 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3570 }
3571
3572 static int crypt_preresume(struct dm_target *ti)
3573 {
3574 struct crypt_config *cc = ti->private;
3575
3576 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3577 DMERR("aborting resume - crypt key is not set.");
3578 return -EAGAIN;
3579 }
3580
3581 return 0;
3582 }
3583
3584 static void crypt_resume(struct dm_target *ti)
3585 {
3586 struct crypt_config *cc = ti->private;
3587
3588 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3589 }
3590
3591 /* Message interface
3592 * key set <key>
3593 * key wipe
3594 */
3595 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3596 char *result, unsigned int maxlen)
3597 {
3598 struct crypt_config *cc = ti->private;
3599 int key_size, ret = -EINVAL;
3600
3601 if (argc < 2)
3602 goto error;
3603
3604 if (!strcasecmp(argv[0], "key")) {
3605 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3606 DMWARN("not suspended during key manipulation.");
3607 return -EINVAL;
3608 }
3609 if (argc == 3 && !strcasecmp(argv[1], "set")) {
3610 /* The key size may not be changed. */
3611 key_size = get_key_size(&argv[2]);
3612 if (key_size < 0 || cc->key_size != key_size) {
3613 memset(argv[2], '0', strlen(argv[2]));
3614 return -EINVAL;
3615 }
3616
3617 ret = crypt_set_key(cc, argv[2]);
3618 if (ret)
3619 return ret;
3620 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3621 ret = cc->iv_gen_ops->init(cc);
3622 /* wipe the kernel key payload copy */
3623 if (cc->key_string)
3624 memset(cc->key, 0, cc->key_size * sizeof(u8));
3625 return ret;
3626 }
3627 if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3628 return crypt_wipe_key(cc);
3629 }
3630
3631 error:
3632 DMWARN("unrecognised message received.");
3633 return -EINVAL;
3634 }
3635
3636 static int crypt_iterate_devices(struct dm_target *ti,
3637 iterate_devices_callout_fn fn, void *data)
3638 {
3639 struct crypt_config *cc = ti->private;
3640
3641 return fn(ti, cc->dev, cc->start, ti->len, data);
3642 }
3643
3644 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3645 {
3646 struct crypt_config *cc = ti->private;
3647
3648 /*
3649 * Unfortunate constraint that is required to avoid the potential
3650 * for exceeding underlying device's max_segments limits -- due to
3651 * crypt_alloc_buffer() possibly allocating pages for the encryption
3652 * bio that are not as physically contiguous as the original bio.
3653 */
3654 limits->max_segment_size = PAGE_SIZE;
3655
3656 limits->logical_block_size =
3657 max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3658 limits->physical_block_size =
3659 max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3660 limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3661 limits->dma_alignment = limits->logical_block_size - 1;
3662 }
3663
3664 static struct target_type crypt_target = {
3665 .name = "crypt",
3666 .version = {1, 24, 0},
3667 .module = THIS_MODULE,
3668 .ctr = crypt_ctr,
3669 .dtr = crypt_dtr,
3670 .features = DM_TARGET_ZONED_HM,
3671 .report_zones = crypt_report_zones,
3672 .map = crypt_map,
3673 .status = crypt_status,
3674 .postsuspend = crypt_postsuspend,
3675 .preresume = crypt_preresume,
3676 .resume = crypt_resume,
3677 .message = crypt_message,
3678 .iterate_devices = crypt_iterate_devices,
3679 .io_hints = crypt_io_hints,
3680 };
3681 module_dm(crypt);
3682
3683 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3684 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3685 MODULE_LICENSE("GPL");