]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - drivers/md/dm-crypt.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[thirdparty/kernel/linux.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
28 #include <asm/page.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <keys/user-type.h>
38
39 #include <linux/device-mapper.h>
40
41 #define DM_MSG_PREFIX "crypt"
42
43 /*
44 * context holding the current state of a multi-part conversion
45 */
46 struct convert_context {
47 struct completion restart;
48 struct bio *bio_in;
49 struct bio *bio_out;
50 struct bvec_iter iter_in;
51 struct bvec_iter iter_out;
52 u64 cc_sector;
53 atomic_t cc_pending;
54 union {
55 struct skcipher_request *req;
56 struct aead_request *req_aead;
57 } r;
58
59 };
60
61 /*
62 * per bio private data
63 */
64 struct dm_crypt_io {
65 struct crypt_config *cc;
66 struct bio *base_bio;
67 u8 *integrity_metadata;
68 bool integrity_metadata_from_pool;
69 struct work_struct work;
70
71 struct convert_context ctx;
72
73 atomic_t io_pending;
74 blk_status_t error;
75 sector_t sector;
76
77 struct rb_node rb_node;
78 } CRYPTO_MINALIGN_ATTR;
79
80 struct dm_crypt_request {
81 struct convert_context *ctx;
82 struct scatterlist sg_in[4];
83 struct scatterlist sg_out[4];
84 u64 iv_sector;
85 };
86
87 struct crypt_config;
88
89 struct crypt_iv_operations {
90 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
91 const char *opts);
92 void (*dtr)(struct crypt_config *cc);
93 int (*init)(struct crypt_config *cc);
94 int (*wipe)(struct crypt_config *cc);
95 int (*generator)(struct crypt_config *cc, u8 *iv,
96 struct dm_crypt_request *dmreq);
97 int (*post)(struct crypt_config *cc, u8 *iv,
98 struct dm_crypt_request *dmreq);
99 };
100
101 struct iv_essiv_private {
102 struct crypto_shash *hash_tfm;
103 u8 *salt;
104 };
105
106 struct iv_benbi_private {
107 int shift;
108 };
109
110 #define LMK_SEED_SIZE 64 /* hash + 0 */
111 struct iv_lmk_private {
112 struct crypto_shash *hash_tfm;
113 u8 *seed;
114 };
115
116 #define TCW_WHITENING_SIZE 16
117 struct iv_tcw_private {
118 struct crypto_shash *crc32_tfm;
119 u8 *iv_seed;
120 u8 *whitening;
121 };
122
123 /*
124 * Crypt: maps a linear range of a block device
125 * and encrypts / decrypts at the same time.
126 */
127 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
128 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
129
130 enum cipher_flags {
131 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cihper */
132 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
133 };
134
135 /*
136 * The fields in here must be read only after initialization.
137 */
138 struct crypt_config {
139 struct dm_dev *dev;
140 sector_t start;
141
142 struct percpu_counter n_allocated_pages;
143
144 struct workqueue_struct *io_queue;
145 struct workqueue_struct *crypt_queue;
146
147 spinlock_t write_thread_lock;
148 struct task_struct *write_thread;
149 struct rb_root write_tree;
150
151 char *cipher;
152 char *cipher_string;
153 char *cipher_auth;
154 char *key_string;
155
156 const struct crypt_iv_operations *iv_gen_ops;
157 union {
158 struct iv_essiv_private essiv;
159 struct iv_benbi_private benbi;
160 struct iv_lmk_private lmk;
161 struct iv_tcw_private tcw;
162 } iv_gen_private;
163 u64 iv_offset;
164 unsigned int iv_size;
165 unsigned short int sector_size;
166 unsigned char sector_shift;
167
168 /* ESSIV: struct crypto_cipher *essiv_tfm */
169 void *iv_private;
170 union {
171 struct crypto_skcipher **tfms;
172 struct crypto_aead **tfms_aead;
173 } cipher_tfm;
174 unsigned tfms_count;
175 unsigned long cipher_flags;
176
177 /*
178 * Layout of each crypto request:
179 *
180 * struct skcipher_request
181 * context
182 * padding
183 * struct dm_crypt_request
184 * padding
185 * IV
186 *
187 * The padding is added so that dm_crypt_request and the IV are
188 * correctly aligned.
189 */
190 unsigned int dmreq_start;
191
192 unsigned int per_bio_data_size;
193
194 unsigned long flags;
195 unsigned int key_size;
196 unsigned int key_parts; /* independent parts in key buffer */
197 unsigned int key_extra_size; /* additional keys length */
198 unsigned int key_mac_size; /* MAC key size for authenc(...) */
199
200 unsigned int integrity_tag_size;
201 unsigned int integrity_iv_size;
202 unsigned int on_disk_tag_size;
203
204 /*
205 * pool for per bio private data, crypto requests,
206 * encryption requeusts/buffer pages and integrity tags
207 */
208 unsigned tag_pool_max_sectors;
209 mempool_t tag_pool;
210 mempool_t req_pool;
211 mempool_t page_pool;
212
213 struct bio_set bs;
214 struct mutex bio_alloc_lock;
215
216 u8 *authenc_key; /* space for keys in authenc() format (if used) */
217 u8 key[0];
218 };
219
220 #define MIN_IOS 64
221 #define MAX_TAG_SIZE 480
222 #define POOL_ENTRY_SIZE 512
223
224 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
225 static unsigned dm_crypt_clients_n = 0;
226 static volatile unsigned long dm_crypt_pages_per_client;
227 #define DM_CRYPT_MEMORY_PERCENT 2
228 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_PAGES * 16)
229
230 static void clone_init(struct dm_crypt_io *, struct bio *);
231 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
232 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
233 struct scatterlist *sg);
234
235 /*
236 * Use this to access cipher attributes that are independent of the key.
237 */
238 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
239 {
240 return cc->cipher_tfm.tfms[0];
241 }
242
243 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
244 {
245 return cc->cipher_tfm.tfms_aead[0];
246 }
247
248 /*
249 * Different IV generation algorithms:
250 *
251 * plain: the initial vector is the 32-bit little-endian version of the sector
252 * number, padded with zeros if necessary.
253 *
254 * plain64: the initial vector is the 64-bit little-endian version of the sector
255 * number, padded with zeros if necessary.
256 *
257 * plain64be: the initial vector is the 64-bit big-endian version of the sector
258 * number, padded with zeros if necessary.
259 *
260 * essiv: "encrypted sector|salt initial vector", the sector number is
261 * encrypted with the bulk cipher using a salt as key. The salt
262 * should be derived from the bulk cipher's key via hashing.
263 *
264 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
265 * (needed for LRW-32-AES and possible other narrow block modes)
266 *
267 * null: the initial vector is always zero. Provides compatibility with
268 * obsolete loop_fish2 devices. Do not use for new devices.
269 *
270 * lmk: Compatible implementation of the block chaining mode used
271 * by the Loop-AES block device encryption system
272 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
273 * It operates on full 512 byte sectors and uses CBC
274 * with an IV derived from the sector number, the data and
275 * optionally extra IV seed.
276 * This means that after decryption the first block
277 * of sector must be tweaked according to decrypted data.
278 * Loop-AES can use three encryption schemes:
279 * version 1: is plain aes-cbc mode
280 * version 2: uses 64 multikey scheme with lmk IV generator
281 * version 3: the same as version 2 with additional IV seed
282 * (it uses 65 keys, last key is used as IV seed)
283 *
284 * tcw: Compatible implementation of the block chaining mode used
285 * by the TrueCrypt device encryption system (prior to version 4.1).
286 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
287 * It operates on full 512 byte sectors and uses CBC
288 * with an IV derived from initial key and the sector number.
289 * In addition, whitening value is applied on every sector, whitening
290 * is calculated from initial key, sector number and mixed using CRC32.
291 * Note that this encryption scheme is vulnerable to watermarking attacks
292 * and should be used for old compatible containers access only.
293 *
294 * plumb: unimplemented, see:
295 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
296 */
297
298 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
299 struct dm_crypt_request *dmreq)
300 {
301 memset(iv, 0, cc->iv_size);
302 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
303
304 return 0;
305 }
306
307 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
308 struct dm_crypt_request *dmreq)
309 {
310 memset(iv, 0, cc->iv_size);
311 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
312
313 return 0;
314 }
315
316 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
317 struct dm_crypt_request *dmreq)
318 {
319 memset(iv, 0, cc->iv_size);
320 /* iv_size is at least of size u64; usually it is 16 bytes */
321 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
322
323 return 0;
324 }
325
326 /* Initialise ESSIV - compute salt but no local memory allocations */
327 static int crypt_iv_essiv_init(struct crypt_config *cc)
328 {
329 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
330 SHASH_DESC_ON_STACK(desc, essiv->hash_tfm);
331 struct crypto_cipher *essiv_tfm;
332 int err;
333
334 desc->tfm = essiv->hash_tfm;
335 desc->flags = 0;
336
337 err = crypto_shash_digest(desc, cc->key, cc->key_size, essiv->salt);
338 shash_desc_zero(desc);
339 if (err)
340 return err;
341
342 essiv_tfm = cc->iv_private;
343
344 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
345 crypto_shash_digestsize(essiv->hash_tfm));
346 if (err)
347 return err;
348
349 return 0;
350 }
351
352 /* Wipe salt and reset key derived from volume key */
353 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
354 {
355 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
356 unsigned salt_size = crypto_shash_digestsize(essiv->hash_tfm);
357 struct crypto_cipher *essiv_tfm;
358 int r, err = 0;
359
360 memset(essiv->salt, 0, salt_size);
361
362 essiv_tfm = cc->iv_private;
363 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
364 if (r)
365 err = r;
366
367 return err;
368 }
369
370 /* Allocate the cipher for ESSIV */
371 static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc,
372 struct dm_target *ti,
373 const u8 *salt,
374 unsigned int saltsize)
375 {
376 struct crypto_cipher *essiv_tfm;
377 int err;
378
379 /* Setup the essiv_tfm with the given salt */
380 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, 0);
381 if (IS_ERR(essiv_tfm)) {
382 ti->error = "Error allocating crypto tfm for ESSIV";
383 return essiv_tfm;
384 }
385
386 if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
387 ti->error = "Block size of ESSIV cipher does "
388 "not match IV size of block cipher";
389 crypto_free_cipher(essiv_tfm);
390 return ERR_PTR(-EINVAL);
391 }
392
393 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
394 if (err) {
395 ti->error = "Failed to set key for ESSIV cipher";
396 crypto_free_cipher(essiv_tfm);
397 return ERR_PTR(err);
398 }
399
400 return essiv_tfm;
401 }
402
403 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
404 {
405 struct crypto_cipher *essiv_tfm;
406 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
407
408 crypto_free_shash(essiv->hash_tfm);
409 essiv->hash_tfm = NULL;
410
411 kzfree(essiv->salt);
412 essiv->salt = NULL;
413
414 essiv_tfm = cc->iv_private;
415
416 if (essiv_tfm)
417 crypto_free_cipher(essiv_tfm);
418
419 cc->iv_private = NULL;
420 }
421
422 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
423 const char *opts)
424 {
425 struct crypto_cipher *essiv_tfm = NULL;
426 struct crypto_shash *hash_tfm = NULL;
427 u8 *salt = NULL;
428 int err;
429
430 if (!opts) {
431 ti->error = "Digest algorithm missing for ESSIV mode";
432 return -EINVAL;
433 }
434
435 /* Allocate hash algorithm */
436 hash_tfm = crypto_alloc_shash(opts, 0, 0);
437 if (IS_ERR(hash_tfm)) {
438 ti->error = "Error initializing ESSIV hash";
439 err = PTR_ERR(hash_tfm);
440 goto bad;
441 }
442
443 salt = kzalloc(crypto_shash_digestsize(hash_tfm), GFP_KERNEL);
444 if (!salt) {
445 ti->error = "Error kmallocing salt storage in ESSIV";
446 err = -ENOMEM;
447 goto bad;
448 }
449
450 cc->iv_gen_private.essiv.salt = salt;
451 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
452
453 essiv_tfm = alloc_essiv_cipher(cc, ti, salt,
454 crypto_shash_digestsize(hash_tfm));
455 if (IS_ERR(essiv_tfm)) {
456 crypt_iv_essiv_dtr(cc);
457 return PTR_ERR(essiv_tfm);
458 }
459 cc->iv_private = essiv_tfm;
460
461 return 0;
462
463 bad:
464 if (hash_tfm && !IS_ERR(hash_tfm))
465 crypto_free_shash(hash_tfm);
466 kfree(salt);
467 return err;
468 }
469
470 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
471 struct dm_crypt_request *dmreq)
472 {
473 struct crypto_cipher *essiv_tfm = cc->iv_private;
474
475 memset(iv, 0, cc->iv_size);
476 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
477 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
478
479 return 0;
480 }
481
482 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
483 const char *opts)
484 {
485 unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
486 int log = ilog2(bs);
487
488 /* we need to calculate how far we must shift the sector count
489 * to get the cipher block count, we use this shift in _gen */
490
491 if (1 << log != bs) {
492 ti->error = "cypher blocksize is not a power of 2";
493 return -EINVAL;
494 }
495
496 if (log > 9) {
497 ti->error = "cypher blocksize is > 512";
498 return -EINVAL;
499 }
500
501 cc->iv_gen_private.benbi.shift = 9 - log;
502
503 return 0;
504 }
505
506 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
507 {
508 }
509
510 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
511 struct dm_crypt_request *dmreq)
512 {
513 __be64 val;
514
515 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
516
517 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
518 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
519
520 return 0;
521 }
522
523 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
524 struct dm_crypt_request *dmreq)
525 {
526 memset(iv, 0, cc->iv_size);
527
528 return 0;
529 }
530
531 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
532 {
533 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
534
535 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
536 crypto_free_shash(lmk->hash_tfm);
537 lmk->hash_tfm = NULL;
538
539 kzfree(lmk->seed);
540 lmk->seed = NULL;
541 }
542
543 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
544 const char *opts)
545 {
546 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
547
548 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
549 ti->error = "Unsupported sector size for LMK";
550 return -EINVAL;
551 }
552
553 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
554 if (IS_ERR(lmk->hash_tfm)) {
555 ti->error = "Error initializing LMK hash";
556 return PTR_ERR(lmk->hash_tfm);
557 }
558
559 /* No seed in LMK version 2 */
560 if (cc->key_parts == cc->tfms_count) {
561 lmk->seed = NULL;
562 return 0;
563 }
564
565 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
566 if (!lmk->seed) {
567 crypt_iv_lmk_dtr(cc);
568 ti->error = "Error kmallocing seed storage in LMK";
569 return -ENOMEM;
570 }
571
572 return 0;
573 }
574
575 static int crypt_iv_lmk_init(struct crypt_config *cc)
576 {
577 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
578 int subkey_size = cc->key_size / cc->key_parts;
579
580 /* LMK seed is on the position of LMK_KEYS + 1 key */
581 if (lmk->seed)
582 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
583 crypto_shash_digestsize(lmk->hash_tfm));
584
585 return 0;
586 }
587
588 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
589 {
590 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
591
592 if (lmk->seed)
593 memset(lmk->seed, 0, LMK_SEED_SIZE);
594
595 return 0;
596 }
597
598 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
599 struct dm_crypt_request *dmreq,
600 u8 *data)
601 {
602 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
603 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
604 struct md5_state md5state;
605 __le32 buf[4];
606 int i, r;
607
608 desc->tfm = lmk->hash_tfm;
609 desc->flags = 0;
610
611 r = crypto_shash_init(desc);
612 if (r)
613 return r;
614
615 if (lmk->seed) {
616 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
617 if (r)
618 return r;
619 }
620
621 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
622 r = crypto_shash_update(desc, data + 16, 16 * 31);
623 if (r)
624 return r;
625
626 /* Sector is cropped to 56 bits here */
627 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
628 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
629 buf[2] = cpu_to_le32(4024);
630 buf[3] = 0;
631 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
632 if (r)
633 return r;
634
635 /* No MD5 padding here */
636 r = crypto_shash_export(desc, &md5state);
637 if (r)
638 return r;
639
640 for (i = 0; i < MD5_HASH_WORDS; i++)
641 __cpu_to_le32s(&md5state.hash[i]);
642 memcpy(iv, &md5state.hash, cc->iv_size);
643
644 return 0;
645 }
646
647 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
648 struct dm_crypt_request *dmreq)
649 {
650 struct scatterlist *sg;
651 u8 *src;
652 int r = 0;
653
654 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
655 sg = crypt_get_sg_data(cc, dmreq->sg_in);
656 src = kmap_atomic(sg_page(sg));
657 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
658 kunmap_atomic(src);
659 } else
660 memset(iv, 0, cc->iv_size);
661
662 return r;
663 }
664
665 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
666 struct dm_crypt_request *dmreq)
667 {
668 struct scatterlist *sg;
669 u8 *dst;
670 int r;
671
672 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
673 return 0;
674
675 sg = crypt_get_sg_data(cc, dmreq->sg_out);
676 dst = kmap_atomic(sg_page(sg));
677 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
678
679 /* Tweak the first block of plaintext sector */
680 if (!r)
681 crypto_xor(dst + sg->offset, iv, cc->iv_size);
682
683 kunmap_atomic(dst);
684 return r;
685 }
686
687 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
688 {
689 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
690
691 kzfree(tcw->iv_seed);
692 tcw->iv_seed = NULL;
693 kzfree(tcw->whitening);
694 tcw->whitening = NULL;
695
696 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
697 crypto_free_shash(tcw->crc32_tfm);
698 tcw->crc32_tfm = NULL;
699 }
700
701 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
702 const char *opts)
703 {
704 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
705
706 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
707 ti->error = "Unsupported sector size for TCW";
708 return -EINVAL;
709 }
710
711 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
712 ti->error = "Wrong key size for TCW";
713 return -EINVAL;
714 }
715
716 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
717 if (IS_ERR(tcw->crc32_tfm)) {
718 ti->error = "Error initializing CRC32 in TCW";
719 return PTR_ERR(tcw->crc32_tfm);
720 }
721
722 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
723 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
724 if (!tcw->iv_seed || !tcw->whitening) {
725 crypt_iv_tcw_dtr(cc);
726 ti->error = "Error allocating seed storage in TCW";
727 return -ENOMEM;
728 }
729
730 return 0;
731 }
732
733 static int crypt_iv_tcw_init(struct crypt_config *cc)
734 {
735 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
736 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
737
738 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
739 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
740 TCW_WHITENING_SIZE);
741
742 return 0;
743 }
744
745 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
746 {
747 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
748
749 memset(tcw->iv_seed, 0, cc->iv_size);
750 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
751
752 return 0;
753 }
754
755 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
756 struct dm_crypt_request *dmreq,
757 u8 *data)
758 {
759 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
760 __le64 sector = cpu_to_le64(dmreq->iv_sector);
761 u8 buf[TCW_WHITENING_SIZE];
762 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
763 int i, r;
764
765 /* xor whitening with sector number */
766 crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
767 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
768
769 /* calculate crc32 for every 32bit part and xor it */
770 desc->tfm = tcw->crc32_tfm;
771 desc->flags = 0;
772 for (i = 0; i < 4; i++) {
773 r = crypto_shash_init(desc);
774 if (r)
775 goto out;
776 r = crypto_shash_update(desc, &buf[i * 4], 4);
777 if (r)
778 goto out;
779 r = crypto_shash_final(desc, &buf[i * 4]);
780 if (r)
781 goto out;
782 }
783 crypto_xor(&buf[0], &buf[12], 4);
784 crypto_xor(&buf[4], &buf[8], 4);
785
786 /* apply whitening (8 bytes) to whole sector */
787 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
788 crypto_xor(data + i * 8, buf, 8);
789 out:
790 memzero_explicit(buf, sizeof(buf));
791 return r;
792 }
793
794 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
795 struct dm_crypt_request *dmreq)
796 {
797 struct scatterlist *sg;
798 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
799 __le64 sector = cpu_to_le64(dmreq->iv_sector);
800 u8 *src;
801 int r = 0;
802
803 /* Remove whitening from ciphertext */
804 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
805 sg = crypt_get_sg_data(cc, dmreq->sg_in);
806 src = kmap_atomic(sg_page(sg));
807 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
808 kunmap_atomic(src);
809 }
810
811 /* Calculate IV */
812 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
813 if (cc->iv_size > 8)
814 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
815 cc->iv_size - 8);
816
817 return r;
818 }
819
820 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
821 struct dm_crypt_request *dmreq)
822 {
823 struct scatterlist *sg;
824 u8 *dst;
825 int r;
826
827 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
828 return 0;
829
830 /* Apply whitening on ciphertext */
831 sg = crypt_get_sg_data(cc, dmreq->sg_out);
832 dst = kmap_atomic(sg_page(sg));
833 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
834 kunmap_atomic(dst);
835
836 return r;
837 }
838
839 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
840 struct dm_crypt_request *dmreq)
841 {
842 /* Used only for writes, there must be an additional space to store IV */
843 get_random_bytes(iv, cc->iv_size);
844 return 0;
845 }
846
847 static const struct crypt_iv_operations crypt_iv_plain_ops = {
848 .generator = crypt_iv_plain_gen
849 };
850
851 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
852 .generator = crypt_iv_plain64_gen
853 };
854
855 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
856 .generator = crypt_iv_plain64be_gen
857 };
858
859 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
860 .ctr = crypt_iv_essiv_ctr,
861 .dtr = crypt_iv_essiv_dtr,
862 .init = crypt_iv_essiv_init,
863 .wipe = crypt_iv_essiv_wipe,
864 .generator = crypt_iv_essiv_gen
865 };
866
867 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
868 .ctr = crypt_iv_benbi_ctr,
869 .dtr = crypt_iv_benbi_dtr,
870 .generator = crypt_iv_benbi_gen
871 };
872
873 static const struct crypt_iv_operations crypt_iv_null_ops = {
874 .generator = crypt_iv_null_gen
875 };
876
877 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
878 .ctr = crypt_iv_lmk_ctr,
879 .dtr = crypt_iv_lmk_dtr,
880 .init = crypt_iv_lmk_init,
881 .wipe = crypt_iv_lmk_wipe,
882 .generator = crypt_iv_lmk_gen,
883 .post = crypt_iv_lmk_post
884 };
885
886 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
887 .ctr = crypt_iv_tcw_ctr,
888 .dtr = crypt_iv_tcw_dtr,
889 .init = crypt_iv_tcw_init,
890 .wipe = crypt_iv_tcw_wipe,
891 .generator = crypt_iv_tcw_gen,
892 .post = crypt_iv_tcw_post
893 };
894
895 static struct crypt_iv_operations crypt_iv_random_ops = {
896 .generator = crypt_iv_random_gen
897 };
898
899 /*
900 * Integrity extensions
901 */
902 static bool crypt_integrity_aead(struct crypt_config *cc)
903 {
904 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
905 }
906
907 static bool crypt_integrity_hmac(struct crypt_config *cc)
908 {
909 return crypt_integrity_aead(cc) && cc->key_mac_size;
910 }
911
912 /* Get sg containing data */
913 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
914 struct scatterlist *sg)
915 {
916 if (unlikely(crypt_integrity_aead(cc)))
917 return &sg[2];
918
919 return sg;
920 }
921
922 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
923 {
924 struct bio_integrity_payload *bip;
925 unsigned int tag_len;
926 int ret;
927
928 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
929 return 0;
930
931 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
932 if (IS_ERR(bip))
933 return PTR_ERR(bip);
934
935 tag_len = io->cc->on_disk_tag_size * bio_sectors(bio);
936
937 bip->bip_iter.bi_size = tag_len;
938 bip->bip_iter.bi_sector = io->cc->start + io->sector;
939
940 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
941 tag_len, offset_in_page(io->integrity_metadata));
942 if (unlikely(ret != tag_len))
943 return -ENOMEM;
944
945 return 0;
946 }
947
948 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
949 {
950 #ifdef CONFIG_BLK_DEV_INTEGRITY
951 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
952
953 /* From now we require underlying device with our integrity profile */
954 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
955 ti->error = "Integrity profile not supported.";
956 return -EINVAL;
957 }
958
959 if (bi->tag_size != cc->on_disk_tag_size ||
960 bi->tuple_size != cc->on_disk_tag_size) {
961 ti->error = "Integrity profile tag size mismatch.";
962 return -EINVAL;
963 }
964 if (1 << bi->interval_exp != cc->sector_size) {
965 ti->error = "Integrity profile sector size mismatch.";
966 return -EINVAL;
967 }
968
969 if (crypt_integrity_aead(cc)) {
970 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
971 DMINFO("Integrity AEAD, tag size %u, IV size %u.",
972 cc->integrity_tag_size, cc->integrity_iv_size);
973
974 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
975 ti->error = "Integrity AEAD auth tag size is not supported.";
976 return -EINVAL;
977 }
978 } else if (cc->integrity_iv_size)
979 DMINFO("Additional per-sector space %u bytes for IV.",
980 cc->integrity_iv_size);
981
982 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
983 ti->error = "Not enough space for integrity tag in the profile.";
984 return -EINVAL;
985 }
986
987 return 0;
988 #else
989 ti->error = "Integrity profile not supported.";
990 return -EINVAL;
991 #endif
992 }
993
994 static void crypt_convert_init(struct crypt_config *cc,
995 struct convert_context *ctx,
996 struct bio *bio_out, struct bio *bio_in,
997 sector_t sector)
998 {
999 ctx->bio_in = bio_in;
1000 ctx->bio_out = bio_out;
1001 if (bio_in)
1002 ctx->iter_in = bio_in->bi_iter;
1003 if (bio_out)
1004 ctx->iter_out = bio_out->bi_iter;
1005 ctx->cc_sector = sector + cc->iv_offset;
1006 init_completion(&ctx->restart);
1007 }
1008
1009 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1010 void *req)
1011 {
1012 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1013 }
1014
1015 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1016 {
1017 return (void *)((char *)dmreq - cc->dmreq_start);
1018 }
1019
1020 static u8 *iv_of_dmreq(struct crypt_config *cc,
1021 struct dm_crypt_request *dmreq)
1022 {
1023 if (crypt_integrity_aead(cc))
1024 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1025 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1026 else
1027 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1028 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1029 }
1030
1031 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1032 struct dm_crypt_request *dmreq)
1033 {
1034 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1035 }
1036
1037 static uint64_t *org_sector_of_dmreq(struct crypt_config *cc,
1038 struct dm_crypt_request *dmreq)
1039 {
1040 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1041 return (uint64_t*) ptr;
1042 }
1043
1044 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1045 struct dm_crypt_request *dmreq)
1046 {
1047 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1048 cc->iv_size + sizeof(uint64_t);
1049 return (unsigned int*)ptr;
1050 }
1051
1052 static void *tag_from_dmreq(struct crypt_config *cc,
1053 struct dm_crypt_request *dmreq)
1054 {
1055 struct convert_context *ctx = dmreq->ctx;
1056 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1057
1058 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1059 cc->on_disk_tag_size];
1060 }
1061
1062 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1063 struct dm_crypt_request *dmreq)
1064 {
1065 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1066 }
1067
1068 static int crypt_convert_block_aead(struct crypt_config *cc,
1069 struct convert_context *ctx,
1070 struct aead_request *req,
1071 unsigned int tag_offset)
1072 {
1073 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1074 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1075 struct dm_crypt_request *dmreq;
1076 u8 *iv, *org_iv, *tag_iv, *tag;
1077 uint64_t *sector;
1078 int r = 0;
1079
1080 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1081
1082 /* Reject unexpected unaligned bio. */
1083 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1084 return -EIO;
1085
1086 dmreq = dmreq_of_req(cc, req);
1087 dmreq->iv_sector = ctx->cc_sector;
1088 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1089 dmreq->iv_sector >>= cc->sector_shift;
1090 dmreq->ctx = ctx;
1091
1092 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1093
1094 sector = org_sector_of_dmreq(cc, dmreq);
1095 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1096
1097 iv = iv_of_dmreq(cc, dmreq);
1098 org_iv = org_iv_of_dmreq(cc, dmreq);
1099 tag = tag_from_dmreq(cc, dmreq);
1100 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1101
1102 /* AEAD request:
1103 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1104 * | (authenticated) | (auth+encryption) | |
1105 * | sector_LE | IV | sector in/out | tag in/out |
1106 */
1107 sg_init_table(dmreq->sg_in, 4);
1108 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1109 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1110 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1111 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1112
1113 sg_init_table(dmreq->sg_out, 4);
1114 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1115 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1116 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1117 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1118
1119 if (cc->iv_gen_ops) {
1120 /* For READs use IV stored in integrity metadata */
1121 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1122 memcpy(org_iv, tag_iv, cc->iv_size);
1123 } else {
1124 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1125 if (r < 0)
1126 return r;
1127 /* Store generated IV in integrity metadata */
1128 if (cc->integrity_iv_size)
1129 memcpy(tag_iv, org_iv, cc->iv_size);
1130 }
1131 /* Working copy of IV, to be modified in crypto API */
1132 memcpy(iv, org_iv, cc->iv_size);
1133 }
1134
1135 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1136 if (bio_data_dir(ctx->bio_in) == WRITE) {
1137 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1138 cc->sector_size, iv);
1139 r = crypto_aead_encrypt(req);
1140 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1141 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1142 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1143 } else {
1144 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1145 cc->sector_size + cc->integrity_tag_size, iv);
1146 r = crypto_aead_decrypt(req);
1147 }
1148
1149 if (r == -EBADMSG)
1150 DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1151 (unsigned long long)le64_to_cpu(*sector));
1152
1153 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1154 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1155
1156 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1157 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1158
1159 return r;
1160 }
1161
1162 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1163 struct convert_context *ctx,
1164 struct skcipher_request *req,
1165 unsigned int tag_offset)
1166 {
1167 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1168 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1169 struct scatterlist *sg_in, *sg_out;
1170 struct dm_crypt_request *dmreq;
1171 u8 *iv, *org_iv, *tag_iv;
1172 uint64_t *sector;
1173 int r = 0;
1174
1175 /* Reject unexpected unaligned bio. */
1176 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1177 return -EIO;
1178
1179 dmreq = dmreq_of_req(cc, req);
1180 dmreq->iv_sector = ctx->cc_sector;
1181 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1182 dmreq->iv_sector >>= cc->sector_shift;
1183 dmreq->ctx = ctx;
1184
1185 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1186
1187 iv = iv_of_dmreq(cc, dmreq);
1188 org_iv = org_iv_of_dmreq(cc, dmreq);
1189 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1190
1191 sector = org_sector_of_dmreq(cc, dmreq);
1192 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1193
1194 /* For skcipher we use only the first sg item */
1195 sg_in = &dmreq->sg_in[0];
1196 sg_out = &dmreq->sg_out[0];
1197
1198 sg_init_table(sg_in, 1);
1199 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1200
1201 sg_init_table(sg_out, 1);
1202 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1203
1204 if (cc->iv_gen_ops) {
1205 /* For READs use IV stored in integrity metadata */
1206 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1207 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1208 } else {
1209 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1210 if (r < 0)
1211 return r;
1212 /* Store generated IV in integrity metadata */
1213 if (cc->integrity_iv_size)
1214 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1215 }
1216 /* Working copy of IV, to be modified in crypto API */
1217 memcpy(iv, org_iv, cc->iv_size);
1218 }
1219
1220 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1221
1222 if (bio_data_dir(ctx->bio_in) == WRITE)
1223 r = crypto_skcipher_encrypt(req);
1224 else
1225 r = crypto_skcipher_decrypt(req);
1226
1227 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1228 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1229
1230 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1231 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1232
1233 return r;
1234 }
1235
1236 static void kcryptd_async_done(struct crypto_async_request *async_req,
1237 int error);
1238
1239 static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1240 struct convert_context *ctx)
1241 {
1242 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1243
1244 if (!ctx->r.req)
1245 ctx->r.req = mempool_alloc(&cc->req_pool, GFP_NOIO);
1246
1247 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1248
1249 /*
1250 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1251 * requests if driver request queue is full.
1252 */
1253 skcipher_request_set_callback(ctx->r.req,
1254 CRYPTO_TFM_REQ_MAY_BACKLOG,
1255 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1256 }
1257
1258 static void crypt_alloc_req_aead(struct crypt_config *cc,
1259 struct convert_context *ctx)
1260 {
1261 if (!ctx->r.req_aead)
1262 ctx->r.req_aead = mempool_alloc(&cc->req_pool, GFP_NOIO);
1263
1264 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1265
1266 /*
1267 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1268 * requests if driver request queue is full.
1269 */
1270 aead_request_set_callback(ctx->r.req_aead,
1271 CRYPTO_TFM_REQ_MAY_BACKLOG,
1272 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1273 }
1274
1275 static void crypt_alloc_req(struct crypt_config *cc,
1276 struct convert_context *ctx)
1277 {
1278 if (crypt_integrity_aead(cc))
1279 crypt_alloc_req_aead(cc, ctx);
1280 else
1281 crypt_alloc_req_skcipher(cc, ctx);
1282 }
1283
1284 static void crypt_free_req_skcipher(struct crypt_config *cc,
1285 struct skcipher_request *req, struct bio *base_bio)
1286 {
1287 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1288
1289 if ((struct skcipher_request *)(io + 1) != req)
1290 mempool_free(req, &cc->req_pool);
1291 }
1292
1293 static void crypt_free_req_aead(struct crypt_config *cc,
1294 struct aead_request *req, struct bio *base_bio)
1295 {
1296 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1297
1298 if ((struct aead_request *)(io + 1) != req)
1299 mempool_free(req, &cc->req_pool);
1300 }
1301
1302 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1303 {
1304 if (crypt_integrity_aead(cc))
1305 crypt_free_req_aead(cc, req, base_bio);
1306 else
1307 crypt_free_req_skcipher(cc, req, base_bio);
1308 }
1309
1310 /*
1311 * Encrypt / decrypt data from one bio to another one (can be the same one)
1312 */
1313 static blk_status_t crypt_convert(struct crypt_config *cc,
1314 struct convert_context *ctx)
1315 {
1316 unsigned int tag_offset = 0;
1317 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1318 int r;
1319
1320 atomic_set(&ctx->cc_pending, 1);
1321
1322 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1323
1324 crypt_alloc_req(cc, ctx);
1325 atomic_inc(&ctx->cc_pending);
1326
1327 if (crypt_integrity_aead(cc))
1328 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1329 else
1330 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1331
1332 switch (r) {
1333 /*
1334 * The request was queued by a crypto driver
1335 * but the driver request queue is full, let's wait.
1336 */
1337 case -EBUSY:
1338 wait_for_completion(&ctx->restart);
1339 reinit_completion(&ctx->restart);
1340 /* fall through */
1341 /*
1342 * The request is queued and processed asynchronously,
1343 * completion function kcryptd_async_done() will be called.
1344 */
1345 case -EINPROGRESS:
1346 ctx->r.req = NULL;
1347 ctx->cc_sector += sector_step;
1348 tag_offset++;
1349 continue;
1350 /*
1351 * The request was already processed (synchronously).
1352 */
1353 case 0:
1354 atomic_dec(&ctx->cc_pending);
1355 ctx->cc_sector += sector_step;
1356 tag_offset++;
1357 cond_resched();
1358 continue;
1359 /*
1360 * There was a data integrity error.
1361 */
1362 case -EBADMSG:
1363 atomic_dec(&ctx->cc_pending);
1364 return BLK_STS_PROTECTION;
1365 /*
1366 * There was an error while processing the request.
1367 */
1368 default:
1369 atomic_dec(&ctx->cc_pending);
1370 return BLK_STS_IOERR;
1371 }
1372 }
1373
1374 return 0;
1375 }
1376
1377 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1378
1379 /*
1380 * Generate a new unfragmented bio with the given size
1381 * This should never violate the device limitations (but only because
1382 * max_segment_size is being constrained to PAGE_SIZE).
1383 *
1384 * This function may be called concurrently. If we allocate from the mempool
1385 * concurrently, there is a possibility of deadlock. For example, if we have
1386 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1387 * the mempool concurrently, it may deadlock in a situation where both processes
1388 * have allocated 128 pages and the mempool is exhausted.
1389 *
1390 * In order to avoid this scenario we allocate the pages under a mutex.
1391 *
1392 * In order to not degrade performance with excessive locking, we try
1393 * non-blocking allocations without a mutex first but on failure we fallback
1394 * to blocking allocations with a mutex.
1395 */
1396 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1397 {
1398 struct crypt_config *cc = io->cc;
1399 struct bio *clone;
1400 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1401 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1402 unsigned i, len, remaining_size;
1403 struct page *page;
1404
1405 retry:
1406 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1407 mutex_lock(&cc->bio_alloc_lock);
1408
1409 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1410 if (!clone)
1411 goto out;
1412
1413 clone_init(io, clone);
1414
1415 remaining_size = size;
1416
1417 for (i = 0; i < nr_iovecs; i++) {
1418 page = mempool_alloc(&cc->page_pool, gfp_mask);
1419 if (!page) {
1420 crypt_free_buffer_pages(cc, clone);
1421 bio_put(clone);
1422 gfp_mask |= __GFP_DIRECT_RECLAIM;
1423 goto retry;
1424 }
1425
1426 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1427
1428 bio_add_page(clone, page, len, 0);
1429
1430 remaining_size -= len;
1431 }
1432
1433 /* Allocate space for integrity tags */
1434 if (dm_crypt_integrity_io_alloc(io, clone)) {
1435 crypt_free_buffer_pages(cc, clone);
1436 bio_put(clone);
1437 clone = NULL;
1438 }
1439 out:
1440 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1441 mutex_unlock(&cc->bio_alloc_lock);
1442
1443 return clone;
1444 }
1445
1446 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1447 {
1448 unsigned int i;
1449 struct bio_vec *bv;
1450
1451 bio_for_each_segment_all(bv, clone, i) {
1452 BUG_ON(!bv->bv_page);
1453 mempool_free(bv->bv_page, &cc->page_pool);
1454 }
1455 }
1456
1457 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1458 struct bio *bio, sector_t sector)
1459 {
1460 io->cc = cc;
1461 io->base_bio = bio;
1462 io->sector = sector;
1463 io->error = 0;
1464 io->ctx.r.req = NULL;
1465 io->integrity_metadata = NULL;
1466 io->integrity_metadata_from_pool = false;
1467 atomic_set(&io->io_pending, 0);
1468 }
1469
1470 static void crypt_inc_pending(struct dm_crypt_io *io)
1471 {
1472 atomic_inc(&io->io_pending);
1473 }
1474
1475 /*
1476 * One of the bios was finished. Check for completion of
1477 * the whole request and correctly clean up the buffer.
1478 */
1479 static void crypt_dec_pending(struct dm_crypt_io *io)
1480 {
1481 struct crypt_config *cc = io->cc;
1482 struct bio *base_bio = io->base_bio;
1483 blk_status_t error = io->error;
1484
1485 if (!atomic_dec_and_test(&io->io_pending))
1486 return;
1487
1488 if (io->ctx.r.req)
1489 crypt_free_req(cc, io->ctx.r.req, base_bio);
1490
1491 if (unlikely(io->integrity_metadata_from_pool))
1492 mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1493 else
1494 kfree(io->integrity_metadata);
1495
1496 base_bio->bi_status = error;
1497 bio_endio(base_bio);
1498 }
1499
1500 /*
1501 * kcryptd/kcryptd_io:
1502 *
1503 * Needed because it would be very unwise to do decryption in an
1504 * interrupt context.
1505 *
1506 * kcryptd performs the actual encryption or decryption.
1507 *
1508 * kcryptd_io performs the IO submission.
1509 *
1510 * They must be separated as otherwise the final stages could be
1511 * starved by new requests which can block in the first stages due
1512 * to memory allocation.
1513 *
1514 * The work is done per CPU global for all dm-crypt instances.
1515 * They should not depend on each other and do not block.
1516 */
1517 static void crypt_endio(struct bio *clone)
1518 {
1519 struct dm_crypt_io *io = clone->bi_private;
1520 struct crypt_config *cc = io->cc;
1521 unsigned rw = bio_data_dir(clone);
1522 blk_status_t error;
1523
1524 /*
1525 * free the processed pages
1526 */
1527 if (rw == WRITE)
1528 crypt_free_buffer_pages(cc, clone);
1529
1530 error = clone->bi_status;
1531 bio_put(clone);
1532
1533 if (rw == READ && !error) {
1534 kcryptd_queue_crypt(io);
1535 return;
1536 }
1537
1538 if (unlikely(error))
1539 io->error = error;
1540
1541 crypt_dec_pending(io);
1542 }
1543
1544 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1545 {
1546 struct crypt_config *cc = io->cc;
1547
1548 clone->bi_private = io;
1549 clone->bi_end_io = crypt_endio;
1550 bio_set_dev(clone, cc->dev->bdev);
1551 clone->bi_opf = io->base_bio->bi_opf;
1552 }
1553
1554 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1555 {
1556 struct crypt_config *cc = io->cc;
1557 struct bio *clone;
1558
1559 /*
1560 * We need the original biovec array in order to decrypt
1561 * the whole bio data *afterwards* -- thanks to immutable
1562 * biovecs we don't need to worry about the block layer
1563 * modifying the biovec array; so leverage bio_clone_fast().
1564 */
1565 clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1566 if (!clone)
1567 return 1;
1568
1569 crypt_inc_pending(io);
1570
1571 clone_init(io, clone);
1572 clone->bi_iter.bi_sector = cc->start + io->sector;
1573
1574 if (dm_crypt_integrity_io_alloc(io, clone)) {
1575 crypt_dec_pending(io);
1576 bio_put(clone);
1577 return 1;
1578 }
1579
1580 generic_make_request(clone);
1581 return 0;
1582 }
1583
1584 static void kcryptd_io_read_work(struct work_struct *work)
1585 {
1586 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1587
1588 crypt_inc_pending(io);
1589 if (kcryptd_io_read(io, GFP_NOIO))
1590 io->error = BLK_STS_RESOURCE;
1591 crypt_dec_pending(io);
1592 }
1593
1594 static void kcryptd_queue_read(struct dm_crypt_io *io)
1595 {
1596 struct crypt_config *cc = io->cc;
1597
1598 INIT_WORK(&io->work, kcryptd_io_read_work);
1599 queue_work(cc->io_queue, &io->work);
1600 }
1601
1602 static void kcryptd_io_write(struct dm_crypt_io *io)
1603 {
1604 struct bio *clone = io->ctx.bio_out;
1605
1606 generic_make_request(clone);
1607 }
1608
1609 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1610
1611 static int dmcrypt_write(void *data)
1612 {
1613 struct crypt_config *cc = data;
1614 struct dm_crypt_io *io;
1615
1616 while (1) {
1617 struct rb_root write_tree;
1618 struct blk_plug plug;
1619
1620 spin_lock_irq(&cc->write_thread_lock);
1621 continue_locked:
1622
1623 if (!RB_EMPTY_ROOT(&cc->write_tree))
1624 goto pop_from_list;
1625
1626 set_current_state(TASK_INTERRUPTIBLE);
1627
1628 spin_unlock_irq(&cc->write_thread_lock);
1629
1630 if (unlikely(kthread_should_stop())) {
1631 set_current_state(TASK_RUNNING);
1632 break;
1633 }
1634
1635 schedule();
1636
1637 set_current_state(TASK_RUNNING);
1638 spin_lock_irq(&cc->write_thread_lock);
1639 goto continue_locked;
1640
1641 pop_from_list:
1642 write_tree = cc->write_tree;
1643 cc->write_tree = RB_ROOT;
1644 spin_unlock_irq(&cc->write_thread_lock);
1645
1646 BUG_ON(rb_parent(write_tree.rb_node));
1647
1648 /*
1649 * Note: we cannot walk the tree here with rb_next because
1650 * the structures may be freed when kcryptd_io_write is called.
1651 */
1652 blk_start_plug(&plug);
1653 do {
1654 io = crypt_io_from_node(rb_first(&write_tree));
1655 rb_erase(&io->rb_node, &write_tree);
1656 kcryptd_io_write(io);
1657 } while (!RB_EMPTY_ROOT(&write_tree));
1658 blk_finish_plug(&plug);
1659 }
1660 return 0;
1661 }
1662
1663 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1664 {
1665 struct bio *clone = io->ctx.bio_out;
1666 struct crypt_config *cc = io->cc;
1667 unsigned long flags;
1668 sector_t sector;
1669 struct rb_node **rbp, *parent;
1670
1671 if (unlikely(io->error)) {
1672 crypt_free_buffer_pages(cc, clone);
1673 bio_put(clone);
1674 crypt_dec_pending(io);
1675 return;
1676 }
1677
1678 /* crypt_convert should have filled the clone bio */
1679 BUG_ON(io->ctx.iter_out.bi_size);
1680
1681 clone->bi_iter.bi_sector = cc->start + io->sector;
1682
1683 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1684 generic_make_request(clone);
1685 return;
1686 }
1687
1688 spin_lock_irqsave(&cc->write_thread_lock, flags);
1689 if (RB_EMPTY_ROOT(&cc->write_tree))
1690 wake_up_process(cc->write_thread);
1691 rbp = &cc->write_tree.rb_node;
1692 parent = NULL;
1693 sector = io->sector;
1694 while (*rbp) {
1695 parent = *rbp;
1696 if (sector < crypt_io_from_node(parent)->sector)
1697 rbp = &(*rbp)->rb_left;
1698 else
1699 rbp = &(*rbp)->rb_right;
1700 }
1701 rb_link_node(&io->rb_node, parent, rbp);
1702 rb_insert_color(&io->rb_node, &cc->write_tree);
1703 spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1704 }
1705
1706 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1707 {
1708 struct crypt_config *cc = io->cc;
1709 struct bio *clone;
1710 int crypt_finished;
1711 sector_t sector = io->sector;
1712 blk_status_t r;
1713
1714 /*
1715 * Prevent io from disappearing until this function completes.
1716 */
1717 crypt_inc_pending(io);
1718 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1719
1720 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1721 if (unlikely(!clone)) {
1722 io->error = BLK_STS_IOERR;
1723 goto dec;
1724 }
1725
1726 io->ctx.bio_out = clone;
1727 io->ctx.iter_out = clone->bi_iter;
1728
1729 sector += bio_sectors(clone);
1730
1731 crypt_inc_pending(io);
1732 r = crypt_convert(cc, &io->ctx);
1733 if (r)
1734 io->error = r;
1735 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1736
1737 /* Encryption was already finished, submit io now */
1738 if (crypt_finished) {
1739 kcryptd_crypt_write_io_submit(io, 0);
1740 io->sector = sector;
1741 }
1742
1743 dec:
1744 crypt_dec_pending(io);
1745 }
1746
1747 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1748 {
1749 crypt_dec_pending(io);
1750 }
1751
1752 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1753 {
1754 struct crypt_config *cc = io->cc;
1755 blk_status_t r;
1756
1757 crypt_inc_pending(io);
1758
1759 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1760 io->sector);
1761
1762 r = crypt_convert(cc, &io->ctx);
1763 if (r)
1764 io->error = r;
1765
1766 if (atomic_dec_and_test(&io->ctx.cc_pending))
1767 kcryptd_crypt_read_done(io);
1768
1769 crypt_dec_pending(io);
1770 }
1771
1772 static void kcryptd_async_done(struct crypto_async_request *async_req,
1773 int error)
1774 {
1775 struct dm_crypt_request *dmreq = async_req->data;
1776 struct convert_context *ctx = dmreq->ctx;
1777 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1778 struct crypt_config *cc = io->cc;
1779
1780 /*
1781 * A request from crypto driver backlog is going to be processed now,
1782 * finish the completion and continue in crypt_convert().
1783 * (Callback will be called for the second time for this request.)
1784 */
1785 if (error == -EINPROGRESS) {
1786 complete(&ctx->restart);
1787 return;
1788 }
1789
1790 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1791 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1792
1793 if (error == -EBADMSG) {
1794 DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1795 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1796 io->error = BLK_STS_PROTECTION;
1797 } else if (error < 0)
1798 io->error = BLK_STS_IOERR;
1799
1800 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1801
1802 if (!atomic_dec_and_test(&ctx->cc_pending))
1803 return;
1804
1805 if (bio_data_dir(io->base_bio) == READ)
1806 kcryptd_crypt_read_done(io);
1807 else
1808 kcryptd_crypt_write_io_submit(io, 1);
1809 }
1810
1811 static void kcryptd_crypt(struct work_struct *work)
1812 {
1813 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1814
1815 if (bio_data_dir(io->base_bio) == READ)
1816 kcryptd_crypt_read_convert(io);
1817 else
1818 kcryptd_crypt_write_convert(io);
1819 }
1820
1821 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1822 {
1823 struct crypt_config *cc = io->cc;
1824
1825 INIT_WORK(&io->work, kcryptd_crypt);
1826 queue_work(cc->crypt_queue, &io->work);
1827 }
1828
1829 static void crypt_free_tfms_aead(struct crypt_config *cc)
1830 {
1831 if (!cc->cipher_tfm.tfms_aead)
1832 return;
1833
1834 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1835 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1836 cc->cipher_tfm.tfms_aead[0] = NULL;
1837 }
1838
1839 kfree(cc->cipher_tfm.tfms_aead);
1840 cc->cipher_tfm.tfms_aead = NULL;
1841 }
1842
1843 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1844 {
1845 unsigned i;
1846
1847 if (!cc->cipher_tfm.tfms)
1848 return;
1849
1850 for (i = 0; i < cc->tfms_count; i++)
1851 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1852 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1853 cc->cipher_tfm.tfms[i] = NULL;
1854 }
1855
1856 kfree(cc->cipher_tfm.tfms);
1857 cc->cipher_tfm.tfms = NULL;
1858 }
1859
1860 static void crypt_free_tfms(struct crypt_config *cc)
1861 {
1862 if (crypt_integrity_aead(cc))
1863 crypt_free_tfms_aead(cc);
1864 else
1865 crypt_free_tfms_skcipher(cc);
1866 }
1867
1868 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1869 {
1870 unsigned i;
1871 int err;
1872
1873 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
1874 sizeof(struct crypto_skcipher *),
1875 GFP_KERNEL);
1876 if (!cc->cipher_tfm.tfms)
1877 return -ENOMEM;
1878
1879 for (i = 0; i < cc->tfms_count; i++) {
1880 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1881 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1882 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1883 crypt_free_tfms(cc);
1884 return err;
1885 }
1886 }
1887
1888 /*
1889 * dm-crypt performance can vary greatly depending on which crypto
1890 * algorithm implementation is used. Help people debug performance
1891 * problems by logging the ->cra_driver_name.
1892 */
1893 DMINFO("%s using implementation \"%s\"", ciphermode,
1894 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
1895 return 0;
1896 }
1897
1898 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1899 {
1900 int err;
1901
1902 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1903 if (!cc->cipher_tfm.tfms)
1904 return -ENOMEM;
1905
1906 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1907 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1908 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1909 crypt_free_tfms(cc);
1910 return err;
1911 }
1912
1913 DMINFO("%s using implementation \"%s\"", ciphermode,
1914 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
1915 return 0;
1916 }
1917
1918 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1919 {
1920 if (crypt_integrity_aead(cc))
1921 return crypt_alloc_tfms_aead(cc, ciphermode);
1922 else
1923 return crypt_alloc_tfms_skcipher(cc, ciphermode);
1924 }
1925
1926 static unsigned crypt_subkey_size(struct crypt_config *cc)
1927 {
1928 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1929 }
1930
1931 static unsigned crypt_authenckey_size(struct crypt_config *cc)
1932 {
1933 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1934 }
1935
1936 /*
1937 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1938 * the key must be for some reason in special format.
1939 * This funcion converts cc->key to this special format.
1940 */
1941 static void crypt_copy_authenckey(char *p, const void *key,
1942 unsigned enckeylen, unsigned authkeylen)
1943 {
1944 struct crypto_authenc_key_param *param;
1945 struct rtattr *rta;
1946
1947 rta = (struct rtattr *)p;
1948 param = RTA_DATA(rta);
1949 param->enckeylen = cpu_to_be32(enckeylen);
1950 rta->rta_len = RTA_LENGTH(sizeof(*param));
1951 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1952 p += RTA_SPACE(sizeof(*param));
1953 memcpy(p, key + enckeylen, authkeylen);
1954 p += authkeylen;
1955 memcpy(p, key, enckeylen);
1956 }
1957
1958 static int crypt_setkey(struct crypt_config *cc)
1959 {
1960 unsigned subkey_size;
1961 int err = 0, i, r;
1962
1963 /* Ignore extra keys (which are used for IV etc) */
1964 subkey_size = crypt_subkey_size(cc);
1965
1966 if (crypt_integrity_hmac(cc)) {
1967 if (subkey_size < cc->key_mac_size)
1968 return -EINVAL;
1969
1970 crypt_copy_authenckey(cc->authenc_key, cc->key,
1971 subkey_size - cc->key_mac_size,
1972 cc->key_mac_size);
1973 }
1974
1975 for (i = 0; i < cc->tfms_count; i++) {
1976 if (crypt_integrity_hmac(cc))
1977 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1978 cc->authenc_key, crypt_authenckey_size(cc));
1979 else if (crypt_integrity_aead(cc))
1980 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1981 cc->key + (i * subkey_size),
1982 subkey_size);
1983 else
1984 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1985 cc->key + (i * subkey_size),
1986 subkey_size);
1987 if (r)
1988 err = r;
1989 }
1990
1991 if (crypt_integrity_hmac(cc))
1992 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1993
1994 return err;
1995 }
1996
1997 #ifdef CONFIG_KEYS
1998
1999 static bool contains_whitespace(const char *str)
2000 {
2001 while (*str)
2002 if (isspace(*str++))
2003 return true;
2004 return false;
2005 }
2006
2007 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2008 {
2009 char *new_key_string, *key_desc;
2010 int ret;
2011 struct key *key;
2012 const struct user_key_payload *ukp;
2013
2014 /*
2015 * Reject key_string with whitespace. dm core currently lacks code for
2016 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2017 */
2018 if (contains_whitespace(key_string)) {
2019 DMERR("whitespace chars not allowed in key string");
2020 return -EINVAL;
2021 }
2022
2023 /* look for next ':' separating key_type from key_description */
2024 key_desc = strpbrk(key_string, ":");
2025 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2026 return -EINVAL;
2027
2028 if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2029 strncmp(key_string, "user:", key_desc - key_string + 1))
2030 return -EINVAL;
2031
2032 new_key_string = kstrdup(key_string, GFP_KERNEL);
2033 if (!new_key_string)
2034 return -ENOMEM;
2035
2036 key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2037 key_desc + 1, NULL);
2038 if (IS_ERR(key)) {
2039 kzfree(new_key_string);
2040 return PTR_ERR(key);
2041 }
2042
2043 down_read(&key->sem);
2044
2045 ukp = user_key_payload_locked(key);
2046 if (!ukp) {
2047 up_read(&key->sem);
2048 key_put(key);
2049 kzfree(new_key_string);
2050 return -EKEYREVOKED;
2051 }
2052
2053 if (cc->key_size != ukp->datalen) {
2054 up_read(&key->sem);
2055 key_put(key);
2056 kzfree(new_key_string);
2057 return -EINVAL;
2058 }
2059
2060 memcpy(cc->key, ukp->data, cc->key_size);
2061
2062 up_read(&key->sem);
2063 key_put(key);
2064
2065 /* clear the flag since following operations may invalidate previously valid key */
2066 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2067
2068 ret = crypt_setkey(cc);
2069
2070 if (!ret) {
2071 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2072 kzfree(cc->key_string);
2073 cc->key_string = new_key_string;
2074 } else
2075 kzfree(new_key_string);
2076
2077 return ret;
2078 }
2079
2080 static int get_key_size(char **key_string)
2081 {
2082 char *colon, dummy;
2083 int ret;
2084
2085 if (*key_string[0] != ':')
2086 return strlen(*key_string) >> 1;
2087
2088 /* look for next ':' in key string */
2089 colon = strpbrk(*key_string + 1, ":");
2090 if (!colon)
2091 return -EINVAL;
2092
2093 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2094 return -EINVAL;
2095
2096 *key_string = colon;
2097
2098 /* remaining key string should be :<logon|user>:<key_desc> */
2099
2100 return ret;
2101 }
2102
2103 #else
2104
2105 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2106 {
2107 return -EINVAL;
2108 }
2109
2110 static int get_key_size(char **key_string)
2111 {
2112 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2113 }
2114
2115 #endif
2116
2117 static int crypt_set_key(struct crypt_config *cc, char *key)
2118 {
2119 int r = -EINVAL;
2120 int key_string_len = strlen(key);
2121
2122 /* Hyphen (which gives a key_size of zero) means there is no key. */
2123 if (!cc->key_size && strcmp(key, "-"))
2124 goto out;
2125
2126 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2127 if (key[0] == ':') {
2128 r = crypt_set_keyring_key(cc, key + 1);
2129 goto out;
2130 }
2131
2132 /* clear the flag since following operations may invalidate previously valid key */
2133 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2134
2135 /* wipe references to any kernel keyring key */
2136 kzfree(cc->key_string);
2137 cc->key_string = NULL;
2138
2139 /* Decode key from its hex representation. */
2140 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2141 goto out;
2142
2143 r = crypt_setkey(cc);
2144 if (!r)
2145 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2146
2147 out:
2148 /* Hex key string not needed after here, so wipe it. */
2149 memset(key, '0', key_string_len);
2150
2151 return r;
2152 }
2153
2154 static int crypt_wipe_key(struct crypt_config *cc)
2155 {
2156 int r;
2157
2158 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2159 get_random_bytes(&cc->key, cc->key_size);
2160 kzfree(cc->key_string);
2161 cc->key_string = NULL;
2162 r = crypt_setkey(cc);
2163 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2164
2165 return r;
2166 }
2167
2168 static void crypt_calculate_pages_per_client(void)
2169 {
2170 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2171
2172 if (!dm_crypt_clients_n)
2173 return;
2174
2175 pages /= dm_crypt_clients_n;
2176 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2177 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2178 dm_crypt_pages_per_client = pages;
2179 }
2180
2181 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2182 {
2183 struct crypt_config *cc = pool_data;
2184 struct page *page;
2185
2186 if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
2187 likely(gfp_mask & __GFP_NORETRY))
2188 return NULL;
2189
2190 page = alloc_page(gfp_mask);
2191 if (likely(page != NULL))
2192 percpu_counter_add(&cc->n_allocated_pages, 1);
2193
2194 return page;
2195 }
2196
2197 static void crypt_page_free(void *page, void *pool_data)
2198 {
2199 struct crypt_config *cc = pool_data;
2200
2201 __free_page(page);
2202 percpu_counter_sub(&cc->n_allocated_pages, 1);
2203 }
2204
2205 static void crypt_dtr(struct dm_target *ti)
2206 {
2207 struct crypt_config *cc = ti->private;
2208
2209 ti->private = NULL;
2210
2211 if (!cc)
2212 return;
2213
2214 if (cc->write_thread)
2215 kthread_stop(cc->write_thread);
2216
2217 if (cc->io_queue)
2218 destroy_workqueue(cc->io_queue);
2219 if (cc->crypt_queue)
2220 destroy_workqueue(cc->crypt_queue);
2221
2222 crypt_free_tfms(cc);
2223
2224 bioset_exit(&cc->bs);
2225
2226 mempool_exit(&cc->page_pool);
2227 mempool_exit(&cc->req_pool);
2228 mempool_exit(&cc->tag_pool);
2229
2230 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2231 percpu_counter_destroy(&cc->n_allocated_pages);
2232
2233 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2234 cc->iv_gen_ops->dtr(cc);
2235
2236 if (cc->dev)
2237 dm_put_device(ti, cc->dev);
2238
2239 kzfree(cc->cipher);
2240 kzfree(cc->cipher_string);
2241 kzfree(cc->key_string);
2242 kzfree(cc->cipher_auth);
2243 kzfree(cc->authenc_key);
2244
2245 mutex_destroy(&cc->bio_alloc_lock);
2246
2247 /* Must zero key material before freeing */
2248 kzfree(cc);
2249
2250 spin_lock(&dm_crypt_clients_lock);
2251 WARN_ON(!dm_crypt_clients_n);
2252 dm_crypt_clients_n--;
2253 crypt_calculate_pages_per_client();
2254 spin_unlock(&dm_crypt_clients_lock);
2255 }
2256
2257 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2258 {
2259 struct crypt_config *cc = ti->private;
2260
2261 if (crypt_integrity_aead(cc))
2262 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2263 else
2264 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2265
2266 if (cc->iv_size)
2267 /* at least a 64 bit sector number should fit in our buffer */
2268 cc->iv_size = max(cc->iv_size,
2269 (unsigned int)(sizeof(u64) / sizeof(u8)));
2270 else if (ivmode) {
2271 DMWARN("Selected cipher does not support IVs");
2272 ivmode = NULL;
2273 }
2274
2275 /* Choose ivmode, see comments at iv code. */
2276 if (ivmode == NULL)
2277 cc->iv_gen_ops = NULL;
2278 else if (strcmp(ivmode, "plain") == 0)
2279 cc->iv_gen_ops = &crypt_iv_plain_ops;
2280 else if (strcmp(ivmode, "plain64") == 0)
2281 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2282 else if (strcmp(ivmode, "plain64be") == 0)
2283 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2284 else if (strcmp(ivmode, "essiv") == 0)
2285 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2286 else if (strcmp(ivmode, "benbi") == 0)
2287 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2288 else if (strcmp(ivmode, "null") == 0)
2289 cc->iv_gen_ops = &crypt_iv_null_ops;
2290 else if (strcmp(ivmode, "lmk") == 0) {
2291 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2292 /*
2293 * Version 2 and 3 is recognised according
2294 * to length of provided multi-key string.
2295 * If present (version 3), last key is used as IV seed.
2296 * All keys (including IV seed) are always the same size.
2297 */
2298 if (cc->key_size % cc->key_parts) {
2299 cc->key_parts++;
2300 cc->key_extra_size = cc->key_size / cc->key_parts;
2301 }
2302 } else if (strcmp(ivmode, "tcw") == 0) {
2303 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2304 cc->key_parts += 2; /* IV + whitening */
2305 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2306 } else if (strcmp(ivmode, "random") == 0) {
2307 cc->iv_gen_ops = &crypt_iv_random_ops;
2308 /* Need storage space in integrity fields. */
2309 cc->integrity_iv_size = cc->iv_size;
2310 } else {
2311 ti->error = "Invalid IV mode";
2312 return -EINVAL;
2313 }
2314
2315 return 0;
2316 }
2317
2318 /*
2319 * Workaround to parse cipher algorithm from crypto API spec.
2320 * The cc->cipher is currently used only in ESSIV.
2321 * This should be probably done by crypto-api calls (once available...)
2322 */
2323 static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
2324 {
2325 const char *alg_name = NULL;
2326 char *start, *end;
2327
2328 if (crypt_integrity_aead(cc)) {
2329 alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
2330 if (!alg_name)
2331 return -EINVAL;
2332 if (crypt_integrity_hmac(cc)) {
2333 alg_name = strchr(alg_name, ',');
2334 if (!alg_name)
2335 return -EINVAL;
2336 }
2337 alg_name++;
2338 } else {
2339 alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
2340 if (!alg_name)
2341 return -EINVAL;
2342 }
2343
2344 start = strchr(alg_name, '(');
2345 end = strchr(alg_name, ')');
2346
2347 if (!start && !end) {
2348 cc->cipher = kstrdup(alg_name, GFP_KERNEL);
2349 return cc->cipher ? 0 : -ENOMEM;
2350 }
2351
2352 if (!start || !end || ++start >= end)
2353 return -EINVAL;
2354
2355 cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
2356 if (!cc->cipher)
2357 return -ENOMEM;
2358
2359 strncpy(cc->cipher, start, end - start);
2360
2361 return 0;
2362 }
2363
2364 /*
2365 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2366 * The HMAC is needed to calculate tag size (HMAC digest size).
2367 * This should be probably done by crypto-api calls (once available...)
2368 */
2369 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2370 {
2371 char *start, *end, *mac_alg = NULL;
2372 struct crypto_ahash *mac;
2373
2374 if (!strstarts(cipher_api, "authenc("))
2375 return 0;
2376
2377 start = strchr(cipher_api, '(');
2378 end = strchr(cipher_api, ',');
2379 if (!start || !end || ++start > end)
2380 return -EINVAL;
2381
2382 mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2383 if (!mac_alg)
2384 return -ENOMEM;
2385 strncpy(mac_alg, start, end - start);
2386
2387 mac = crypto_alloc_ahash(mac_alg, 0, 0);
2388 kfree(mac_alg);
2389
2390 if (IS_ERR(mac))
2391 return PTR_ERR(mac);
2392
2393 cc->key_mac_size = crypto_ahash_digestsize(mac);
2394 crypto_free_ahash(mac);
2395
2396 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2397 if (!cc->authenc_key)
2398 return -ENOMEM;
2399
2400 return 0;
2401 }
2402
2403 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2404 char **ivmode, char **ivopts)
2405 {
2406 struct crypt_config *cc = ti->private;
2407 char *tmp, *cipher_api;
2408 int ret = -EINVAL;
2409
2410 cc->tfms_count = 1;
2411
2412 /*
2413 * New format (capi: prefix)
2414 * capi:cipher_api_spec-iv:ivopts
2415 */
2416 tmp = &cipher_in[strlen("capi:")];
2417
2418 /* Separate IV options if present, it can contain another '-' in hash name */
2419 *ivopts = strrchr(tmp, ':');
2420 if (*ivopts) {
2421 **ivopts = '\0';
2422 (*ivopts)++;
2423 }
2424 /* Parse IV mode */
2425 *ivmode = strrchr(tmp, '-');
2426 if (*ivmode) {
2427 **ivmode = '\0';
2428 (*ivmode)++;
2429 }
2430 /* The rest is crypto API spec */
2431 cipher_api = tmp;
2432
2433 if (*ivmode && !strcmp(*ivmode, "lmk"))
2434 cc->tfms_count = 64;
2435
2436 cc->key_parts = cc->tfms_count;
2437
2438 /* Allocate cipher */
2439 ret = crypt_alloc_tfms(cc, cipher_api);
2440 if (ret < 0) {
2441 ti->error = "Error allocating crypto tfm";
2442 return ret;
2443 }
2444
2445 /* Alloc AEAD, can be used only in new format. */
2446 if (crypt_integrity_aead(cc)) {
2447 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2448 if (ret < 0) {
2449 ti->error = "Invalid AEAD cipher spec";
2450 return -ENOMEM;
2451 }
2452 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2453 } else
2454 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2455
2456 ret = crypt_ctr_blkdev_cipher(cc);
2457 if (ret < 0) {
2458 ti->error = "Cannot allocate cipher string";
2459 return -ENOMEM;
2460 }
2461
2462 return 0;
2463 }
2464
2465 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2466 char **ivmode, char **ivopts)
2467 {
2468 struct crypt_config *cc = ti->private;
2469 char *tmp, *cipher, *chainmode, *keycount;
2470 char *cipher_api = NULL;
2471 int ret = -EINVAL;
2472 char dummy;
2473
2474 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2475 ti->error = "Bad cipher specification";
2476 return -EINVAL;
2477 }
2478
2479 /*
2480 * Legacy dm-crypt cipher specification
2481 * cipher[:keycount]-mode-iv:ivopts
2482 */
2483 tmp = cipher_in;
2484 keycount = strsep(&tmp, "-");
2485 cipher = strsep(&keycount, ":");
2486
2487 if (!keycount)
2488 cc->tfms_count = 1;
2489 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2490 !is_power_of_2(cc->tfms_count)) {
2491 ti->error = "Bad cipher key count specification";
2492 return -EINVAL;
2493 }
2494 cc->key_parts = cc->tfms_count;
2495
2496 cc->cipher = kstrdup(cipher, GFP_KERNEL);
2497 if (!cc->cipher)
2498 goto bad_mem;
2499
2500 chainmode = strsep(&tmp, "-");
2501 *ivmode = strsep(&tmp, ":");
2502 *ivopts = tmp;
2503
2504 /*
2505 * For compatibility with the original dm-crypt mapping format, if
2506 * only the cipher name is supplied, use cbc-plain.
2507 */
2508 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2509 chainmode = "cbc";
2510 *ivmode = "plain";
2511 }
2512
2513 if (strcmp(chainmode, "ecb") && !*ivmode) {
2514 ti->error = "IV mechanism required";
2515 return -EINVAL;
2516 }
2517
2518 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2519 if (!cipher_api)
2520 goto bad_mem;
2521
2522 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2523 "%s(%s)", chainmode, cipher);
2524 if (ret < 0) {
2525 kfree(cipher_api);
2526 goto bad_mem;
2527 }
2528
2529 /* Allocate cipher */
2530 ret = crypt_alloc_tfms(cc, cipher_api);
2531 if (ret < 0) {
2532 ti->error = "Error allocating crypto tfm";
2533 kfree(cipher_api);
2534 return ret;
2535 }
2536 kfree(cipher_api);
2537
2538 return 0;
2539 bad_mem:
2540 ti->error = "Cannot allocate cipher strings";
2541 return -ENOMEM;
2542 }
2543
2544 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2545 {
2546 struct crypt_config *cc = ti->private;
2547 char *ivmode = NULL, *ivopts = NULL;
2548 int ret;
2549
2550 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2551 if (!cc->cipher_string) {
2552 ti->error = "Cannot allocate cipher strings";
2553 return -ENOMEM;
2554 }
2555
2556 if (strstarts(cipher_in, "capi:"))
2557 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2558 else
2559 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2560 if (ret)
2561 return ret;
2562
2563 /* Initialize IV */
2564 ret = crypt_ctr_ivmode(ti, ivmode);
2565 if (ret < 0)
2566 return ret;
2567
2568 /* Initialize and set key */
2569 ret = crypt_set_key(cc, key);
2570 if (ret < 0) {
2571 ti->error = "Error decoding and setting key";
2572 return ret;
2573 }
2574
2575 /* Allocate IV */
2576 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2577 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2578 if (ret < 0) {
2579 ti->error = "Error creating IV";
2580 return ret;
2581 }
2582 }
2583
2584 /* Initialize IV (set keys for ESSIV etc) */
2585 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2586 ret = cc->iv_gen_ops->init(cc);
2587 if (ret < 0) {
2588 ti->error = "Error initialising IV";
2589 return ret;
2590 }
2591 }
2592
2593 /* wipe the kernel key payload copy */
2594 if (cc->key_string)
2595 memset(cc->key, 0, cc->key_size * sizeof(u8));
2596
2597 return ret;
2598 }
2599
2600 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2601 {
2602 struct crypt_config *cc = ti->private;
2603 struct dm_arg_set as;
2604 static const struct dm_arg _args[] = {
2605 {0, 6, "Invalid number of feature args"},
2606 };
2607 unsigned int opt_params, val;
2608 const char *opt_string, *sval;
2609 char dummy;
2610 int ret;
2611
2612 /* Optional parameters */
2613 as.argc = argc;
2614 as.argv = argv;
2615
2616 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2617 if (ret)
2618 return ret;
2619
2620 while (opt_params--) {
2621 opt_string = dm_shift_arg(&as);
2622 if (!opt_string) {
2623 ti->error = "Not enough feature arguments";
2624 return -EINVAL;
2625 }
2626
2627 if (!strcasecmp(opt_string, "allow_discards"))
2628 ti->num_discard_bios = 1;
2629
2630 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2631 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2632
2633 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2634 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2635 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2636 if (val == 0 || val > MAX_TAG_SIZE) {
2637 ti->error = "Invalid integrity arguments";
2638 return -EINVAL;
2639 }
2640 cc->on_disk_tag_size = val;
2641 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2642 if (!strcasecmp(sval, "aead")) {
2643 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2644 } else if (strcasecmp(sval, "none")) {
2645 ti->error = "Unknown integrity profile";
2646 return -EINVAL;
2647 }
2648
2649 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2650 if (!cc->cipher_auth)
2651 return -ENOMEM;
2652 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2653 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2654 cc->sector_size > 4096 ||
2655 (cc->sector_size & (cc->sector_size - 1))) {
2656 ti->error = "Invalid feature value for sector_size";
2657 return -EINVAL;
2658 }
2659 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2660 ti->error = "Device size is not multiple of sector_size feature";
2661 return -EINVAL;
2662 }
2663 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2664 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
2665 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2666 else {
2667 ti->error = "Invalid feature arguments";
2668 return -EINVAL;
2669 }
2670 }
2671
2672 return 0;
2673 }
2674
2675 /*
2676 * Construct an encryption mapping:
2677 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2678 */
2679 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2680 {
2681 struct crypt_config *cc;
2682 const char *devname = dm_table_device_name(ti->table);
2683 int key_size;
2684 unsigned int align_mask;
2685 unsigned long long tmpll;
2686 int ret;
2687 size_t iv_size_padding, additional_req_size;
2688 char dummy;
2689
2690 if (argc < 5) {
2691 ti->error = "Not enough arguments";
2692 return -EINVAL;
2693 }
2694
2695 key_size = get_key_size(&argv[1]);
2696 if (key_size < 0) {
2697 ti->error = "Cannot parse key size";
2698 return -EINVAL;
2699 }
2700
2701 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
2702 if (!cc) {
2703 ti->error = "Cannot allocate encryption context";
2704 return -ENOMEM;
2705 }
2706 cc->key_size = key_size;
2707 cc->sector_size = (1 << SECTOR_SHIFT);
2708 cc->sector_shift = 0;
2709
2710 ti->private = cc;
2711
2712 spin_lock(&dm_crypt_clients_lock);
2713 dm_crypt_clients_n++;
2714 crypt_calculate_pages_per_client();
2715 spin_unlock(&dm_crypt_clients_lock);
2716
2717 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
2718 if (ret < 0)
2719 goto bad;
2720
2721 /* Optional parameters need to be read before cipher constructor */
2722 if (argc > 5) {
2723 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2724 if (ret)
2725 goto bad;
2726 }
2727
2728 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2729 if (ret < 0)
2730 goto bad;
2731
2732 if (crypt_integrity_aead(cc)) {
2733 cc->dmreq_start = sizeof(struct aead_request);
2734 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2735 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2736 } else {
2737 cc->dmreq_start = sizeof(struct skcipher_request);
2738 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2739 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2740 }
2741 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2742
2743 if (align_mask < CRYPTO_MINALIGN) {
2744 /* Allocate the padding exactly */
2745 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2746 & align_mask;
2747 } else {
2748 /*
2749 * If the cipher requires greater alignment than kmalloc
2750 * alignment, we don't know the exact position of the
2751 * initialization vector. We must assume worst case.
2752 */
2753 iv_size_padding = align_mask;
2754 }
2755
2756 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
2757 additional_req_size = sizeof(struct dm_crypt_request) +
2758 iv_size_padding + cc->iv_size +
2759 cc->iv_size +
2760 sizeof(uint64_t) +
2761 sizeof(unsigned int);
2762
2763 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
2764 if (ret) {
2765 ti->error = "Cannot allocate crypt request mempool";
2766 goto bad;
2767 }
2768
2769 cc->per_bio_data_size = ti->per_io_data_size =
2770 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2771 ARCH_KMALLOC_MINALIGN);
2772
2773 ret = mempool_init(&cc->page_pool, BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
2774 if (ret) {
2775 ti->error = "Cannot allocate page mempool";
2776 goto bad;
2777 }
2778
2779 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
2780 if (ret) {
2781 ti->error = "Cannot allocate crypt bioset";
2782 goto bad;
2783 }
2784
2785 mutex_init(&cc->bio_alloc_lock);
2786
2787 ret = -EINVAL;
2788 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2789 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2790 ti->error = "Invalid iv_offset sector";
2791 goto bad;
2792 }
2793 cc->iv_offset = tmpll;
2794
2795 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2796 if (ret) {
2797 ti->error = "Device lookup failed";
2798 goto bad;
2799 }
2800
2801 ret = -EINVAL;
2802 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
2803 ti->error = "Invalid device sector";
2804 goto bad;
2805 }
2806 cc->start = tmpll;
2807
2808 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2809 ret = crypt_integrity_ctr(cc, ti);
2810 if (ret)
2811 goto bad;
2812
2813 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2814 if (!cc->tag_pool_max_sectors)
2815 cc->tag_pool_max_sectors = 1;
2816
2817 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
2818 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2819 if (ret) {
2820 ti->error = "Cannot allocate integrity tags mempool";
2821 goto bad;
2822 }
2823
2824 cc->tag_pool_max_sectors <<= cc->sector_shift;
2825 }
2826
2827 ret = -ENOMEM;
2828 cc->io_queue = alloc_workqueue("kcryptd_io/%s",
2829 WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
2830 1, devname);
2831 if (!cc->io_queue) {
2832 ti->error = "Couldn't create kcryptd io queue";
2833 goto bad;
2834 }
2835
2836 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2837 cc->crypt_queue = alloc_workqueue("kcryptd/%s",
2838 WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
2839 1, devname);
2840 else
2841 cc->crypt_queue = alloc_workqueue("kcryptd/%s",
2842 WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2843 num_online_cpus(), devname);
2844 if (!cc->crypt_queue) {
2845 ti->error = "Couldn't create kcryptd queue";
2846 goto bad;
2847 }
2848
2849 spin_lock_init(&cc->write_thread_lock);
2850 cc->write_tree = RB_ROOT;
2851
2852 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
2853 if (IS_ERR(cc->write_thread)) {
2854 ret = PTR_ERR(cc->write_thread);
2855 cc->write_thread = NULL;
2856 ti->error = "Couldn't spawn write thread";
2857 goto bad;
2858 }
2859 wake_up_process(cc->write_thread);
2860
2861 ti->num_flush_bios = 1;
2862
2863 return 0;
2864
2865 bad:
2866 crypt_dtr(ti);
2867 return ret;
2868 }
2869
2870 static int crypt_map(struct dm_target *ti, struct bio *bio)
2871 {
2872 struct dm_crypt_io *io;
2873 struct crypt_config *cc = ti->private;
2874
2875 /*
2876 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2877 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2878 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2879 */
2880 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2881 bio_op(bio) == REQ_OP_DISCARD)) {
2882 bio_set_dev(bio, cc->dev->bdev);
2883 if (bio_sectors(bio))
2884 bio->bi_iter.bi_sector = cc->start +
2885 dm_target_offset(ti, bio->bi_iter.bi_sector);
2886 return DM_MAPIO_REMAPPED;
2887 }
2888
2889 /*
2890 * Check if bio is too large, split as needed.
2891 */
2892 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2893 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2894 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2895
2896 /*
2897 * Ensure that bio is a multiple of internal sector encryption size
2898 * and is aligned to this size as defined in IO hints.
2899 */
2900 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2901 return DM_MAPIO_KILL;
2902
2903 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2904 return DM_MAPIO_KILL;
2905
2906 io = dm_per_bio_data(bio, cc->per_bio_data_size);
2907 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2908
2909 if (cc->on_disk_tag_size) {
2910 unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2911
2912 if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2913 unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2914 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2915 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2916 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2917 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
2918 io->integrity_metadata_from_pool = true;
2919 }
2920 }
2921
2922 if (crypt_integrity_aead(cc))
2923 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2924 else
2925 io->ctx.r.req = (struct skcipher_request *)(io + 1);
2926
2927 if (bio_data_dir(io->base_bio) == READ) {
2928 if (kcryptd_io_read(io, GFP_NOWAIT))
2929 kcryptd_queue_read(io);
2930 } else
2931 kcryptd_queue_crypt(io);
2932
2933 return DM_MAPIO_SUBMITTED;
2934 }
2935
2936 static void crypt_status(struct dm_target *ti, status_type_t type,
2937 unsigned status_flags, char *result, unsigned maxlen)
2938 {
2939 struct crypt_config *cc = ti->private;
2940 unsigned i, sz = 0;
2941 int num_feature_args = 0;
2942
2943 switch (type) {
2944 case STATUSTYPE_INFO:
2945 result[0] = '\0';
2946 break;
2947
2948 case STATUSTYPE_TABLE:
2949 DMEMIT("%s ", cc->cipher_string);
2950
2951 if (cc->key_size > 0) {
2952 if (cc->key_string)
2953 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2954 else
2955 for (i = 0; i < cc->key_size; i++)
2956 DMEMIT("%02x", cc->key[i]);
2957 } else
2958 DMEMIT("-");
2959
2960 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2961 cc->dev->name, (unsigned long long)cc->start);
2962
2963 num_feature_args += !!ti->num_discard_bios;
2964 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2965 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2966 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2967 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2968 if (cc->on_disk_tag_size)
2969 num_feature_args++;
2970 if (num_feature_args) {
2971 DMEMIT(" %d", num_feature_args);
2972 if (ti->num_discard_bios)
2973 DMEMIT(" allow_discards");
2974 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2975 DMEMIT(" same_cpu_crypt");
2976 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2977 DMEMIT(" submit_from_crypt_cpus");
2978 if (cc->on_disk_tag_size)
2979 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2980 if (cc->sector_size != (1 << SECTOR_SHIFT))
2981 DMEMIT(" sector_size:%d", cc->sector_size);
2982 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2983 DMEMIT(" iv_large_sectors");
2984 }
2985
2986 break;
2987 }
2988 }
2989
2990 static void crypt_postsuspend(struct dm_target *ti)
2991 {
2992 struct crypt_config *cc = ti->private;
2993
2994 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2995 }
2996
2997 static int crypt_preresume(struct dm_target *ti)
2998 {
2999 struct crypt_config *cc = ti->private;
3000
3001 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3002 DMERR("aborting resume - crypt key is not set.");
3003 return -EAGAIN;
3004 }
3005
3006 return 0;
3007 }
3008
3009 static void crypt_resume(struct dm_target *ti)
3010 {
3011 struct crypt_config *cc = ti->private;
3012
3013 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3014 }
3015
3016 /* Message interface
3017 * key set <key>
3018 * key wipe
3019 */
3020 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3021 char *result, unsigned maxlen)
3022 {
3023 struct crypt_config *cc = ti->private;
3024 int key_size, ret = -EINVAL;
3025
3026 if (argc < 2)
3027 goto error;
3028
3029 if (!strcasecmp(argv[0], "key")) {
3030 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3031 DMWARN("not suspended during key manipulation.");
3032 return -EINVAL;
3033 }
3034 if (argc == 3 && !strcasecmp(argv[1], "set")) {
3035 /* The key size may not be changed. */
3036 key_size = get_key_size(&argv[2]);
3037 if (key_size < 0 || cc->key_size != key_size) {
3038 memset(argv[2], '0', strlen(argv[2]));
3039 return -EINVAL;
3040 }
3041
3042 ret = crypt_set_key(cc, argv[2]);
3043 if (ret)
3044 return ret;
3045 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3046 ret = cc->iv_gen_ops->init(cc);
3047 /* wipe the kernel key payload copy */
3048 if (cc->key_string)
3049 memset(cc->key, 0, cc->key_size * sizeof(u8));
3050 return ret;
3051 }
3052 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
3053 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
3054 ret = cc->iv_gen_ops->wipe(cc);
3055 if (ret)
3056 return ret;
3057 }
3058 return crypt_wipe_key(cc);
3059 }
3060 }
3061
3062 error:
3063 DMWARN("unrecognised message received.");
3064 return -EINVAL;
3065 }
3066
3067 static int crypt_iterate_devices(struct dm_target *ti,
3068 iterate_devices_callout_fn fn, void *data)
3069 {
3070 struct crypt_config *cc = ti->private;
3071
3072 return fn(ti, cc->dev, cc->start, ti->len, data);
3073 }
3074
3075 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3076 {
3077 struct crypt_config *cc = ti->private;
3078
3079 /*
3080 * Unfortunate constraint that is required to avoid the potential
3081 * for exceeding underlying device's max_segments limits -- due to
3082 * crypt_alloc_buffer() possibly allocating pages for the encryption
3083 * bio that are not as physically contiguous as the original bio.
3084 */
3085 limits->max_segment_size = PAGE_SIZE;
3086
3087 limits->logical_block_size =
3088 max_t(unsigned short, limits->logical_block_size, cc->sector_size);
3089 limits->physical_block_size =
3090 max_t(unsigned, limits->physical_block_size, cc->sector_size);
3091 limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
3092 }
3093
3094 static struct target_type crypt_target = {
3095 .name = "crypt",
3096 .version = {1, 18, 1},
3097 .module = THIS_MODULE,
3098 .ctr = crypt_ctr,
3099 .dtr = crypt_dtr,
3100 .map = crypt_map,
3101 .status = crypt_status,
3102 .postsuspend = crypt_postsuspend,
3103 .preresume = crypt_preresume,
3104 .resume = crypt_resume,
3105 .message = crypt_message,
3106 .iterate_devices = crypt_iterate_devices,
3107 .io_hints = crypt_io_hints,
3108 };
3109
3110 static int __init dm_crypt_init(void)
3111 {
3112 int r;
3113
3114 r = dm_register_target(&crypt_target);
3115 if (r < 0)
3116 DMERR("register failed %d", r);
3117
3118 return r;
3119 }
3120
3121 static void __exit dm_crypt_exit(void)
3122 {
3123 dm_unregister_target(&crypt_target);
3124 }
3125
3126 module_init(dm_crypt_init);
3127 module_exit(dm_crypt_exit);
3128
3129 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3130 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3131 MODULE_LICENSE("GPL");