]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - drivers/md/md.c
md: fix for divide error in status_resync
[thirdparty/kernel/linux.git] / drivers / md / md.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38 */
39
40 #include <linux/sched/signal.h>
41 #include <linux/kthread.h>
42 #include <linux/blkdev.h>
43 #include <linux/badblocks.h>
44 #include <linux/sysctl.h>
45 #include <linux/seq_file.h>
46 #include <linux/fs.h>
47 #include <linux/poll.h>
48 #include <linux/ctype.h>
49 #include <linux/string.h>
50 #include <linux/hdreg.h>
51 #include <linux/proc_fs.h>
52 #include <linux/random.h>
53 #include <linux/module.h>
54 #include <linux/reboot.h>
55 #include <linux/file.h>
56 #include <linux/compat.h>
57 #include <linux/delay.h>
58 #include <linux/raid/md_p.h>
59 #include <linux/raid/md_u.h>
60 #include <linux/slab.h>
61 #include <linux/percpu-refcount.h>
62
63 #include <trace/events/block.h>
64 #include "md.h"
65 #include "md-bitmap.h"
66 #include "md-cluster.h"
67
68 #ifndef MODULE
69 static void autostart_arrays(int part);
70 #endif
71
72 /* pers_list is a list of registered personalities protected
73 * by pers_lock.
74 * pers_lock does extra service to protect accesses to
75 * mddev->thread when the mutex cannot be held.
76 */
77 static LIST_HEAD(pers_list);
78 static DEFINE_SPINLOCK(pers_lock);
79
80 static struct kobj_type md_ktype;
81
82 struct md_cluster_operations *md_cluster_ops;
83 EXPORT_SYMBOL(md_cluster_ops);
84 static struct module *md_cluster_mod;
85
86 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
87 static struct workqueue_struct *md_wq;
88 static struct workqueue_struct *md_misc_wq;
89
90 static int remove_and_add_spares(struct mddev *mddev,
91 struct md_rdev *this);
92 static void mddev_detach(struct mddev *mddev);
93
94 /*
95 * Default number of read corrections we'll attempt on an rdev
96 * before ejecting it from the array. We divide the read error
97 * count by 2 for every hour elapsed between read errors.
98 */
99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
100 /*
101 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
102 * is 1000 KB/sec, so the extra system load does not show up that much.
103 * Increase it if you want to have more _guaranteed_ speed. Note that
104 * the RAID driver will use the maximum available bandwidth if the IO
105 * subsystem is idle. There is also an 'absolute maximum' reconstruction
106 * speed limit - in case reconstruction slows down your system despite
107 * idle IO detection.
108 *
109 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
110 * or /sys/block/mdX/md/sync_speed_{min,max}
111 */
112
113 static int sysctl_speed_limit_min = 1000;
114 static int sysctl_speed_limit_max = 200000;
115 static inline int speed_min(struct mddev *mddev)
116 {
117 return mddev->sync_speed_min ?
118 mddev->sync_speed_min : sysctl_speed_limit_min;
119 }
120
121 static inline int speed_max(struct mddev *mddev)
122 {
123 return mddev->sync_speed_max ?
124 mddev->sync_speed_max : sysctl_speed_limit_max;
125 }
126
127 static struct ctl_table_header *raid_table_header;
128
129 static struct ctl_table raid_table[] = {
130 {
131 .procname = "speed_limit_min",
132 .data = &sysctl_speed_limit_min,
133 .maxlen = sizeof(int),
134 .mode = S_IRUGO|S_IWUSR,
135 .proc_handler = proc_dointvec,
136 },
137 {
138 .procname = "speed_limit_max",
139 .data = &sysctl_speed_limit_max,
140 .maxlen = sizeof(int),
141 .mode = S_IRUGO|S_IWUSR,
142 .proc_handler = proc_dointvec,
143 },
144 { }
145 };
146
147 static struct ctl_table raid_dir_table[] = {
148 {
149 .procname = "raid",
150 .maxlen = 0,
151 .mode = S_IRUGO|S_IXUGO,
152 .child = raid_table,
153 },
154 { }
155 };
156
157 static struct ctl_table raid_root_table[] = {
158 {
159 .procname = "dev",
160 .maxlen = 0,
161 .mode = 0555,
162 .child = raid_dir_table,
163 },
164 { }
165 };
166
167 static const struct block_device_operations md_fops;
168
169 static int start_readonly;
170
171 /*
172 * The original mechanism for creating an md device is to create
173 * a device node in /dev and to open it. This causes races with device-close.
174 * The preferred method is to write to the "new_array" module parameter.
175 * This can avoid races.
176 * Setting create_on_open to false disables the original mechanism
177 * so all the races disappear.
178 */
179 static bool create_on_open = true;
180
181 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
182 struct mddev *mddev)
183 {
184 if (!mddev || !bioset_initialized(&mddev->bio_set))
185 return bio_alloc(gfp_mask, nr_iovecs);
186
187 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set);
188 }
189 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
190
191 static struct bio *md_bio_alloc_sync(struct mddev *mddev)
192 {
193 if (!mddev || !bioset_initialized(&mddev->sync_set))
194 return bio_alloc(GFP_NOIO, 1);
195
196 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
197 }
198
199 /*
200 * We have a system wide 'event count' that is incremented
201 * on any 'interesting' event, and readers of /proc/mdstat
202 * can use 'poll' or 'select' to find out when the event
203 * count increases.
204 *
205 * Events are:
206 * start array, stop array, error, add device, remove device,
207 * start build, activate spare
208 */
209 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
210 static atomic_t md_event_count;
211 void md_new_event(struct mddev *mddev)
212 {
213 atomic_inc(&md_event_count);
214 wake_up(&md_event_waiters);
215 }
216 EXPORT_SYMBOL_GPL(md_new_event);
217
218 /*
219 * Enables to iterate over all existing md arrays
220 * all_mddevs_lock protects this list.
221 */
222 static LIST_HEAD(all_mddevs);
223 static DEFINE_SPINLOCK(all_mddevs_lock);
224
225 /*
226 * iterates through all used mddevs in the system.
227 * We take care to grab the all_mddevs_lock whenever navigating
228 * the list, and to always hold a refcount when unlocked.
229 * Any code which breaks out of this loop while own
230 * a reference to the current mddev and must mddev_put it.
231 */
232 #define for_each_mddev(_mddev,_tmp) \
233 \
234 for (({ spin_lock(&all_mddevs_lock); \
235 _tmp = all_mddevs.next; \
236 _mddev = NULL;}); \
237 ({ if (_tmp != &all_mddevs) \
238 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
239 spin_unlock(&all_mddevs_lock); \
240 if (_mddev) mddev_put(_mddev); \
241 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
242 _tmp != &all_mddevs;}); \
243 ({ spin_lock(&all_mddevs_lock); \
244 _tmp = _tmp->next;}) \
245 )
246
247 /* Rather than calling directly into the personality make_request function,
248 * IO requests come here first so that we can check if the device is
249 * being suspended pending a reconfiguration.
250 * We hold a refcount over the call to ->make_request. By the time that
251 * call has finished, the bio has been linked into some internal structure
252 * and so is visible to ->quiesce(), so we don't need the refcount any more.
253 */
254 static bool is_suspended(struct mddev *mddev, struct bio *bio)
255 {
256 if (mddev->suspended)
257 return true;
258 if (bio_data_dir(bio) != WRITE)
259 return false;
260 if (mddev->suspend_lo >= mddev->suspend_hi)
261 return false;
262 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
263 return false;
264 if (bio_end_sector(bio) < mddev->suspend_lo)
265 return false;
266 return true;
267 }
268
269 void md_handle_request(struct mddev *mddev, struct bio *bio)
270 {
271 check_suspended:
272 rcu_read_lock();
273 if (is_suspended(mddev, bio)) {
274 DEFINE_WAIT(__wait);
275 for (;;) {
276 prepare_to_wait(&mddev->sb_wait, &__wait,
277 TASK_UNINTERRUPTIBLE);
278 if (!is_suspended(mddev, bio))
279 break;
280 rcu_read_unlock();
281 schedule();
282 rcu_read_lock();
283 }
284 finish_wait(&mddev->sb_wait, &__wait);
285 }
286 atomic_inc(&mddev->active_io);
287 rcu_read_unlock();
288
289 if (!mddev->pers->make_request(mddev, bio)) {
290 atomic_dec(&mddev->active_io);
291 wake_up(&mddev->sb_wait);
292 goto check_suspended;
293 }
294
295 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
296 wake_up(&mddev->sb_wait);
297 }
298 EXPORT_SYMBOL(md_handle_request);
299
300 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
301 {
302 const int rw = bio_data_dir(bio);
303 const int sgrp = op_stat_group(bio_op(bio));
304 struct mddev *mddev = q->queuedata;
305 unsigned int sectors;
306
307 blk_queue_split(q, &bio);
308
309 if (mddev == NULL || mddev->pers == NULL) {
310 bio_io_error(bio);
311 return BLK_QC_T_NONE;
312 }
313 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
314 if (bio_sectors(bio) != 0)
315 bio->bi_status = BLK_STS_IOERR;
316 bio_endio(bio);
317 return BLK_QC_T_NONE;
318 }
319
320 /*
321 * save the sectors now since our bio can
322 * go away inside make_request
323 */
324 sectors = bio_sectors(bio);
325 /* bio could be mergeable after passing to underlayer */
326 bio->bi_opf &= ~REQ_NOMERGE;
327
328 md_handle_request(mddev, bio);
329
330 part_stat_lock();
331 part_stat_inc(&mddev->gendisk->part0, ios[sgrp]);
332 part_stat_add(&mddev->gendisk->part0, sectors[sgrp], sectors);
333 part_stat_unlock();
334
335 return BLK_QC_T_NONE;
336 }
337
338 /* mddev_suspend makes sure no new requests are submitted
339 * to the device, and that any requests that have been submitted
340 * are completely handled.
341 * Once mddev_detach() is called and completes, the module will be
342 * completely unused.
343 */
344 void mddev_suspend(struct mddev *mddev)
345 {
346 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
347 lockdep_assert_held(&mddev->reconfig_mutex);
348 if (mddev->suspended++)
349 return;
350 synchronize_rcu();
351 wake_up(&mddev->sb_wait);
352 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
353 smp_mb__after_atomic();
354 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
355 mddev->pers->quiesce(mddev, 1);
356 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
357 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
358
359 del_timer_sync(&mddev->safemode_timer);
360 }
361 EXPORT_SYMBOL_GPL(mddev_suspend);
362
363 void mddev_resume(struct mddev *mddev)
364 {
365 lockdep_assert_held(&mddev->reconfig_mutex);
366 if (--mddev->suspended)
367 return;
368 wake_up(&mddev->sb_wait);
369 mddev->pers->quiesce(mddev, 0);
370
371 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
372 md_wakeup_thread(mddev->thread);
373 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
374 }
375 EXPORT_SYMBOL_GPL(mddev_resume);
376
377 int mddev_congested(struct mddev *mddev, int bits)
378 {
379 struct md_personality *pers = mddev->pers;
380 int ret = 0;
381
382 rcu_read_lock();
383 if (mddev->suspended)
384 ret = 1;
385 else if (pers && pers->congested)
386 ret = pers->congested(mddev, bits);
387 rcu_read_unlock();
388 return ret;
389 }
390 EXPORT_SYMBOL_GPL(mddev_congested);
391 static int md_congested(void *data, int bits)
392 {
393 struct mddev *mddev = data;
394 return mddev_congested(mddev, bits);
395 }
396
397 /*
398 * Generic flush handling for md
399 */
400
401 static void md_end_flush(struct bio *bio)
402 {
403 struct md_rdev *rdev = bio->bi_private;
404 struct mddev *mddev = rdev->mddev;
405
406 rdev_dec_pending(rdev, mddev);
407
408 if (atomic_dec_and_test(&mddev->flush_pending)) {
409 /* The pre-request flush has finished */
410 queue_work(md_wq, &mddev->flush_work);
411 }
412 bio_put(bio);
413 }
414
415 static void md_submit_flush_data(struct work_struct *ws);
416
417 static void submit_flushes(struct work_struct *ws)
418 {
419 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
420 struct md_rdev *rdev;
421
422 mddev->start_flush = ktime_get_boottime();
423 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
424 atomic_set(&mddev->flush_pending, 1);
425 rcu_read_lock();
426 rdev_for_each_rcu(rdev, mddev)
427 if (rdev->raid_disk >= 0 &&
428 !test_bit(Faulty, &rdev->flags)) {
429 /* Take two references, one is dropped
430 * when request finishes, one after
431 * we reclaim rcu_read_lock
432 */
433 struct bio *bi;
434 atomic_inc(&rdev->nr_pending);
435 atomic_inc(&rdev->nr_pending);
436 rcu_read_unlock();
437 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
438 bi->bi_end_io = md_end_flush;
439 bi->bi_private = rdev;
440 bio_set_dev(bi, rdev->bdev);
441 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
442 atomic_inc(&mddev->flush_pending);
443 submit_bio(bi);
444 rcu_read_lock();
445 rdev_dec_pending(rdev, mddev);
446 }
447 rcu_read_unlock();
448 if (atomic_dec_and_test(&mddev->flush_pending))
449 queue_work(md_wq, &mddev->flush_work);
450 }
451
452 static void md_submit_flush_data(struct work_struct *ws)
453 {
454 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
455 struct bio *bio = mddev->flush_bio;
456
457 /*
458 * must reset flush_bio before calling into md_handle_request to avoid a
459 * deadlock, because other bios passed md_handle_request suspend check
460 * could wait for this and below md_handle_request could wait for those
461 * bios because of suspend check
462 */
463 mddev->last_flush = mddev->start_flush;
464 mddev->flush_bio = NULL;
465 wake_up(&mddev->sb_wait);
466
467 if (bio->bi_iter.bi_size == 0) {
468 /* an empty barrier - all done */
469 bio_endio(bio);
470 } else {
471 bio->bi_opf &= ~REQ_PREFLUSH;
472 md_handle_request(mddev, bio);
473 }
474 }
475
476 void md_flush_request(struct mddev *mddev, struct bio *bio)
477 {
478 ktime_t start = ktime_get_boottime();
479 spin_lock_irq(&mddev->lock);
480 wait_event_lock_irq(mddev->sb_wait,
481 !mddev->flush_bio ||
482 ktime_after(mddev->last_flush, start),
483 mddev->lock);
484 if (!ktime_after(mddev->last_flush, start)) {
485 WARN_ON(mddev->flush_bio);
486 mddev->flush_bio = bio;
487 bio = NULL;
488 }
489 spin_unlock_irq(&mddev->lock);
490
491 if (!bio) {
492 INIT_WORK(&mddev->flush_work, submit_flushes);
493 queue_work(md_wq, &mddev->flush_work);
494 } else {
495 /* flush was performed for some other bio while we waited. */
496 if (bio->bi_iter.bi_size == 0)
497 /* an empty barrier - all done */
498 bio_endio(bio);
499 else {
500 bio->bi_opf &= ~REQ_PREFLUSH;
501 mddev->pers->make_request(mddev, bio);
502 }
503 }
504 }
505 EXPORT_SYMBOL(md_flush_request);
506
507 static inline struct mddev *mddev_get(struct mddev *mddev)
508 {
509 atomic_inc(&mddev->active);
510 return mddev;
511 }
512
513 static void mddev_delayed_delete(struct work_struct *ws);
514
515 static void mddev_put(struct mddev *mddev)
516 {
517 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
518 return;
519 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
520 mddev->ctime == 0 && !mddev->hold_active) {
521 /* Array is not configured at all, and not held active,
522 * so destroy it */
523 list_del_init(&mddev->all_mddevs);
524
525 /*
526 * Call queue_work inside the spinlock so that
527 * flush_workqueue() after mddev_find will succeed in waiting
528 * for the work to be done.
529 */
530 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
531 queue_work(md_misc_wq, &mddev->del_work);
532 }
533 spin_unlock(&all_mddevs_lock);
534 }
535
536 static void md_safemode_timeout(struct timer_list *t);
537
538 void mddev_init(struct mddev *mddev)
539 {
540 kobject_init(&mddev->kobj, &md_ktype);
541 mutex_init(&mddev->open_mutex);
542 mutex_init(&mddev->reconfig_mutex);
543 mutex_init(&mddev->bitmap_info.mutex);
544 INIT_LIST_HEAD(&mddev->disks);
545 INIT_LIST_HEAD(&mddev->all_mddevs);
546 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
547 atomic_set(&mddev->active, 1);
548 atomic_set(&mddev->openers, 0);
549 atomic_set(&mddev->active_io, 0);
550 spin_lock_init(&mddev->lock);
551 atomic_set(&mddev->flush_pending, 0);
552 init_waitqueue_head(&mddev->sb_wait);
553 init_waitqueue_head(&mddev->recovery_wait);
554 mddev->reshape_position = MaxSector;
555 mddev->reshape_backwards = 0;
556 mddev->last_sync_action = "none";
557 mddev->resync_min = 0;
558 mddev->resync_max = MaxSector;
559 mddev->level = LEVEL_NONE;
560 }
561 EXPORT_SYMBOL_GPL(mddev_init);
562
563 static struct mddev *mddev_find(dev_t unit)
564 {
565 struct mddev *mddev, *new = NULL;
566
567 if (unit && MAJOR(unit) != MD_MAJOR)
568 unit &= ~((1<<MdpMinorShift)-1);
569
570 retry:
571 spin_lock(&all_mddevs_lock);
572
573 if (unit) {
574 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
575 if (mddev->unit == unit) {
576 mddev_get(mddev);
577 spin_unlock(&all_mddevs_lock);
578 kfree(new);
579 return mddev;
580 }
581
582 if (new) {
583 list_add(&new->all_mddevs, &all_mddevs);
584 spin_unlock(&all_mddevs_lock);
585 new->hold_active = UNTIL_IOCTL;
586 return new;
587 }
588 } else if (new) {
589 /* find an unused unit number */
590 static int next_minor = 512;
591 int start = next_minor;
592 int is_free = 0;
593 int dev = 0;
594 while (!is_free) {
595 dev = MKDEV(MD_MAJOR, next_minor);
596 next_minor++;
597 if (next_minor > MINORMASK)
598 next_minor = 0;
599 if (next_minor == start) {
600 /* Oh dear, all in use. */
601 spin_unlock(&all_mddevs_lock);
602 kfree(new);
603 return NULL;
604 }
605
606 is_free = 1;
607 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
608 if (mddev->unit == dev) {
609 is_free = 0;
610 break;
611 }
612 }
613 new->unit = dev;
614 new->md_minor = MINOR(dev);
615 new->hold_active = UNTIL_STOP;
616 list_add(&new->all_mddevs, &all_mddevs);
617 spin_unlock(&all_mddevs_lock);
618 return new;
619 }
620 spin_unlock(&all_mddevs_lock);
621
622 new = kzalloc(sizeof(*new), GFP_KERNEL);
623 if (!new)
624 return NULL;
625
626 new->unit = unit;
627 if (MAJOR(unit) == MD_MAJOR)
628 new->md_minor = MINOR(unit);
629 else
630 new->md_minor = MINOR(unit) >> MdpMinorShift;
631
632 mddev_init(new);
633
634 goto retry;
635 }
636
637 static struct attribute_group md_redundancy_group;
638
639 void mddev_unlock(struct mddev *mddev)
640 {
641 if (mddev->to_remove) {
642 /* These cannot be removed under reconfig_mutex as
643 * an access to the files will try to take reconfig_mutex
644 * while holding the file unremovable, which leads to
645 * a deadlock.
646 * So hold set sysfs_active while the remove in happeing,
647 * and anything else which might set ->to_remove or my
648 * otherwise change the sysfs namespace will fail with
649 * -EBUSY if sysfs_active is still set.
650 * We set sysfs_active under reconfig_mutex and elsewhere
651 * test it under the same mutex to ensure its correct value
652 * is seen.
653 */
654 struct attribute_group *to_remove = mddev->to_remove;
655 mddev->to_remove = NULL;
656 mddev->sysfs_active = 1;
657 mutex_unlock(&mddev->reconfig_mutex);
658
659 if (mddev->kobj.sd) {
660 if (to_remove != &md_redundancy_group)
661 sysfs_remove_group(&mddev->kobj, to_remove);
662 if (mddev->pers == NULL ||
663 mddev->pers->sync_request == NULL) {
664 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
665 if (mddev->sysfs_action)
666 sysfs_put(mddev->sysfs_action);
667 mddev->sysfs_action = NULL;
668 }
669 }
670 mddev->sysfs_active = 0;
671 } else
672 mutex_unlock(&mddev->reconfig_mutex);
673
674 /* As we've dropped the mutex we need a spinlock to
675 * make sure the thread doesn't disappear
676 */
677 spin_lock(&pers_lock);
678 md_wakeup_thread(mddev->thread);
679 wake_up(&mddev->sb_wait);
680 spin_unlock(&pers_lock);
681 }
682 EXPORT_SYMBOL_GPL(mddev_unlock);
683
684 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
685 {
686 struct md_rdev *rdev;
687
688 rdev_for_each_rcu(rdev, mddev)
689 if (rdev->desc_nr == nr)
690 return rdev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
695
696 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
697 {
698 struct md_rdev *rdev;
699
700 rdev_for_each(rdev, mddev)
701 if (rdev->bdev->bd_dev == dev)
702 return rdev;
703
704 return NULL;
705 }
706
707 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
708 {
709 struct md_rdev *rdev;
710
711 rdev_for_each_rcu(rdev, mddev)
712 if (rdev->bdev->bd_dev == dev)
713 return rdev;
714
715 return NULL;
716 }
717 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
718
719 static struct md_personality *find_pers(int level, char *clevel)
720 {
721 struct md_personality *pers;
722 list_for_each_entry(pers, &pers_list, list) {
723 if (level != LEVEL_NONE && pers->level == level)
724 return pers;
725 if (strcmp(pers->name, clevel)==0)
726 return pers;
727 }
728 return NULL;
729 }
730
731 /* return the offset of the super block in 512byte sectors */
732 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
733 {
734 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
735 return MD_NEW_SIZE_SECTORS(num_sectors);
736 }
737
738 static int alloc_disk_sb(struct md_rdev *rdev)
739 {
740 rdev->sb_page = alloc_page(GFP_KERNEL);
741 if (!rdev->sb_page)
742 return -ENOMEM;
743 return 0;
744 }
745
746 void md_rdev_clear(struct md_rdev *rdev)
747 {
748 if (rdev->sb_page) {
749 put_page(rdev->sb_page);
750 rdev->sb_loaded = 0;
751 rdev->sb_page = NULL;
752 rdev->sb_start = 0;
753 rdev->sectors = 0;
754 }
755 if (rdev->bb_page) {
756 put_page(rdev->bb_page);
757 rdev->bb_page = NULL;
758 }
759 badblocks_exit(&rdev->badblocks);
760 }
761 EXPORT_SYMBOL_GPL(md_rdev_clear);
762
763 static void super_written(struct bio *bio)
764 {
765 struct md_rdev *rdev = bio->bi_private;
766 struct mddev *mddev = rdev->mddev;
767
768 if (bio->bi_status) {
769 pr_err("md: super_written gets error=%d\n", bio->bi_status);
770 md_error(mddev, rdev);
771 if (!test_bit(Faulty, &rdev->flags)
772 && (bio->bi_opf & MD_FAILFAST)) {
773 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
774 set_bit(LastDev, &rdev->flags);
775 }
776 } else
777 clear_bit(LastDev, &rdev->flags);
778
779 if (atomic_dec_and_test(&mddev->pending_writes))
780 wake_up(&mddev->sb_wait);
781 rdev_dec_pending(rdev, mddev);
782 bio_put(bio);
783 }
784
785 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
786 sector_t sector, int size, struct page *page)
787 {
788 /* write first size bytes of page to sector of rdev
789 * Increment mddev->pending_writes before returning
790 * and decrement it on completion, waking up sb_wait
791 * if zero is reached.
792 * If an error occurred, call md_error
793 */
794 struct bio *bio;
795 int ff = 0;
796
797 if (!page)
798 return;
799
800 if (test_bit(Faulty, &rdev->flags))
801 return;
802
803 bio = md_bio_alloc_sync(mddev);
804
805 atomic_inc(&rdev->nr_pending);
806
807 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
808 bio->bi_iter.bi_sector = sector;
809 bio_add_page(bio, page, size, 0);
810 bio->bi_private = rdev;
811 bio->bi_end_io = super_written;
812
813 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
814 test_bit(FailFast, &rdev->flags) &&
815 !test_bit(LastDev, &rdev->flags))
816 ff = MD_FAILFAST;
817 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
818
819 atomic_inc(&mddev->pending_writes);
820 submit_bio(bio);
821 }
822
823 int md_super_wait(struct mddev *mddev)
824 {
825 /* wait for all superblock writes that were scheduled to complete */
826 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
827 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
828 return -EAGAIN;
829 return 0;
830 }
831
832 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
833 struct page *page, int op, int op_flags, bool metadata_op)
834 {
835 struct bio *bio = md_bio_alloc_sync(rdev->mddev);
836 int ret;
837
838 if (metadata_op && rdev->meta_bdev)
839 bio_set_dev(bio, rdev->meta_bdev);
840 else
841 bio_set_dev(bio, rdev->bdev);
842 bio_set_op_attrs(bio, op, op_flags);
843 if (metadata_op)
844 bio->bi_iter.bi_sector = sector + rdev->sb_start;
845 else if (rdev->mddev->reshape_position != MaxSector &&
846 (rdev->mddev->reshape_backwards ==
847 (sector >= rdev->mddev->reshape_position)))
848 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
849 else
850 bio->bi_iter.bi_sector = sector + rdev->data_offset;
851 bio_add_page(bio, page, size, 0);
852
853 submit_bio_wait(bio);
854
855 ret = !bio->bi_status;
856 bio_put(bio);
857 return ret;
858 }
859 EXPORT_SYMBOL_GPL(sync_page_io);
860
861 static int read_disk_sb(struct md_rdev *rdev, int size)
862 {
863 char b[BDEVNAME_SIZE];
864
865 if (rdev->sb_loaded)
866 return 0;
867
868 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
869 goto fail;
870 rdev->sb_loaded = 1;
871 return 0;
872
873 fail:
874 pr_err("md: disabled device %s, could not read superblock.\n",
875 bdevname(rdev->bdev,b));
876 return -EINVAL;
877 }
878
879 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
880 {
881 return sb1->set_uuid0 == sb2->set_uuid0 &&
882 sb1->set_uuid1 == sb2->set_uuid1 &&
883 sb1->set_uuid2 == sb2->set_uuid2 &&
884 sb1->set_uuid3 == sb2->set_uuid3;
885 }
886
887 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
888 {
889 int ret;
890 mdp_super_t *tmp1, *tmp2;
891
892 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
893 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
894
895 if (!tmp1 || !tmp2) {
896 ret = 0;
897 goto abort;
898 }
899
900 *tmp1 = *sb1;
901 *tmp2 = *sb2;
902
903 /*
904 * nr_disks is not constant
905 */
906 tmp1->nr_disks = 0;
907 tmp2->nr_disks = 0;
908
909 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
910 abort:
911 kfree(tmp1);
912 kfree(tmp2);
913 return ret;
914 }
915
916 static u32 md_csum_fold(u32 csum)
917 {
918 csum = (csum & 0xffff) + (csum >> 16);
919 return (csum & 0xffff) + (csum >> 16);
920 }
921
922 static unsigned int calc_sb_csum(mdp_super_t *sb)
923 {
924 u64 newcsum = 0;
925 u32 *sb32 = (u32*)sb;
926 int i;
927 unsigned int disk_csum, csum;
928
929 disk_csum = sb->sb_csum;
930 sb->sb_csum = 0;
931
932 for (i = 0; i < MD_SB_BYTES/4 ; i++)
933 newcsum += sb32[i];
934 csum = (newcsum & 0xffffffff) + (newcsum>>32);
935
936 #ifdef CONFIG_ALPHA
937 /* This used to use csum_partial, which was wrong for several
938 * reasons including that different results are returned on
939 * different architectures. It isn't critical that we get exactly
940 * the same return value as before (we always csum_fold before
941 * testing, and that removes any differences). However as we
942 * know that csum_partial always returned a 16bit value on
943 * alphas, do a fold to maximise conformity to previous behaviour.
944 */
945 sb->sb_csum = md_csum_fold(disk_csum);
946 #else
947 sb->sb_csum = disk_csum;
948 #endif
949 return csum;
950 }
951
952 /*
953 * Handle superblock details.
954 * We want to be able to handle multiple superblock formats
955 * so we have a common interface to them all, and an array of
956 * different handlers.
957 * We rely on user-space to write the initial superblock, and support
958 * reading and updating of superblocks.
959 * Interface methods are:
960 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
961 * loads and validates a superblock on dev.
962 * if refdev != NULL, compare superblocks on both devices
963 * Return:
964 * 0 - dev has a superblock that is compatible with refdev
965 * 1 - dev has a superblock that is compatible and newer than refdev
966 * so dev should be used as the refdev in future
967 * -EINVAL superblock incompatible or invalid
968 * -othererror e.g. -EIO
969 *
970 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
971 * Verify that dev is acceptable into mddev.
972 * The first time, mddev->raid_disks will be 0, and data from
973 * dev should be merged in. Subsequent calls check that dev
974 * is new enough. Return 0 or -EINVAL
975 *
976 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
977 * Update the superblock for rdev with data in mddev
978 * This does not write to disc.
979 *
980 */
981
982 struct super_type {
983 char *name;
984 struct module *owner;
985 int (*load_super)(struct md_rdev *rdev,
986 struct md_rdev *refdev,
987 int minor_version);
988 int (*validate_super)(struct mddev *mddev,
989 struct md_rdev *rdev);
990 void (*sync_super)(struct mddev *mddev,
991 struct md_rdev *rdev);
992 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
993 sector_t num_sectors);
994 int (*allow_new_offset)(struct md_rdev *rdev,
995 unsigned long long new_offset);
996 };
997
998 /*
999 * Check that the given mddev has no bitmap.
1000 *
1001 * This function is called from the run method of all personalities that do not
1002 * support bitmaps. It prints an error message and returns non-zero if mddev
1003 * has a bitmap. Otherwise, it returns 0.
1004 *
1005 */
1006 int md_check_no_bitmap(struct mddev *mddev)
1007 {
1008 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1009 return 0;
1010 pr_warn("%s: bitmaps are not supported for %s\n",
1011 mdname(mddev), mddev->pers->name);
1012 return 1;
1013 }
1014 EXPORT_SYMBOL(md_check_no_bitmap);
1015
1016 /*
1017 * load_super for 0.90.0
1018 */
1019 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1020 {
1021 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1022 mdp_super_t *sb;
1023 int ret;
1024
1025 /*
1026 * Calculate the position of the superblock (512byte sectors),
1027 * it's at the end of the disk.
1028 *
1029 * It also happens to be a multiple of 4Kb.
1030 */
1031 rdev->sb_start = calc_dev_sboffset(rdev);
1032
1033 ret = read_disk_sb(rdev, MD_SB_BYTES);
1034 if (ret)
1035 return ret;
1036
1037 ret = -EINVAL;
1038
1039 bdevname(rdev->bdev, b);
1040 sb = page_address(rdev->sb_page);
1041
1042 if (sb->md_magic != MD_SB_MAGIC) {
1043 pr_warn("md: invalid raid superblock magic on %s\n", b);
1044 goto abort;
1045 }
1046
1047 if (sb->major_version != 0 ||
1048 sb->minor_version < 90 ||
1049 sb->minor_version > 91) {
1050 pr_warn("Bad version number %d.%d on %s\n",
1051 sb->major_version, sb->minor_version, b);
1052 goto abort;
1053 }
1054
1055 if (sb->raid_disks <= 0)
1056 goto abort;
1057
1058 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1059 pr_warn("md: invalid superblock checksum on %s\n", b);
1060 goto abort;
1061 }
1062
1063 rdev->preferred_minor = sb->md_minor;
1064 rdev->data_offset = 0;
1065 rdev->new_data_offset = 0;
1066 rdev->sb_size = MD_SB_BYTES;
1067 rdev->badblocks.shift = -1;
1068
1069 if (sb->level == LEVEL_MULTIPATH)
1070 rdev->desc_nr = -1;
1071 else
1072 rdev->desc_nr = sb->this_disk.number;
1073
1074 if (!refdev) {
1075 ret = 1;
1076 } else {
1077 __u64 ev1, ev2;
1078 mdp_super_t *refsb = page_address(refdev->sb_page);
1079 if (!md_uuid_equal(refsb, sb)) {
1080 pr_warn("md: %s has different UUID to %s\n",
1081 b, bdevname(refdev->bdev,b2));
1082 goto abort;
1083 }
1084 if (!md_sb_equal(refsb, sb)) {
1085 pr_warn("md: %s has same UUID but different superblock to %s\n",
1086 b, bdevname(refdev->bdev, b2));
1087 goto abort;
1088 }
1089 ev1 = md_event(sb);
1090 ev2 = md_event(refsb);
1091 if (ev1 > ev2)
1092 ret = 1;
1093 else
1094 ret = 0;
1095 }
1096 rdev->sectors = rdev->sb_start;
1097 /* Limit to 4TB as metadata cannot record more than that.
1098 * (not needed for Linear and RAID0 as metadata doesn't
1099 * record this size)
1100 */
1101 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1102 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1103
1104 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1105 /* "this cannot possibly happen" ... */
1106 ret = -EINVAL;
1107
1108 abort:
1109 return ret;
1110 }
1111
1112 /*
1113 * validate_super for 0.90.0
1114 */
1115 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1116 {
1117 mdp_disk_t *desc;
1118 mdp_super_t *sb = page_address(rdev->sb_page);
1119 __u64 ev1 = md_event(sb);
1120
1121 rdev->raid_disk = -1;
1122 clear_bit(Faulty, &rdev->flags);
1123 clear_bit(In_sync, &rdev->flags);
1124 clear_bit(Bitmap_sync, &rdev->flags);
1125 clear_bit(WriteMostly, &rdev->flags);
1126
1127 if (mddev->raid_disks == 0) {
1128 mddev->major_version = 0;
1129 mddev->minor_version = sb->minor_version;
1130 mddev->patch_version = sb->patch_version;
1131 mddev->external = 0;
1132 mddev->chunk_sectors = sb->chunk_size >> 9;
1133 mddev->ctime = sb->ctime;
1134 mddev->utime = sb->utime;
1135 mddev->level = sb->level;
1136 mddev->clevel[0] = 0;
1137 mddev->layout = sb->layout;
1138 mddev->raid_disks = sb->raid_disks;
1139 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1140 mddev->events = ev1;
1141 mddev->bitmap_info.offset = 0;
1142 mddev->bitmap_info.space = 0;
1143 /* bitmap can use 60 K after the 4K superblocks */
1144 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1145 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1146 mddev->reshape_backwards = 0;
1147
1148 if (mddev->minor_version >= 91) {
1149 mddev->reshape_position = sb->reshape_position;
1150 mddev->delta_disks = sb->delta_disks;
1151 mddev->new_level = sb->new_level;
1152 mddev->new_layout = sb->new_layout;
1153 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1154 if (mddev->delta_disks < 0)
1155 mddev->reshape_backwards = 1;
1156 } else {
1157 mddev->reshape_position = MaxSector;
1158 mddev->delta_disks = 0;
1159 mddev->new_level = mddev->level;
1160 mddev->new_layout = mddev->layout;
1161 mddev->new_chunk_sectors = mddev->chunk_sectors;
1162 }
1163
1164 if (sb->state & (1<<MD_SB_CLEAN))
1165 mddev->recovery_cp = MaxSector;
1166 else {
1167 if (sb->events_hi == sb->cp_events_hi &&
1168 sb->events_lo == sb->cp_events_lo) {
1169 mddev->recovery_cp = sb->recovery_cp;
1170 } else
1171 mddev->recovery_cp = 0;
1172 }
1173
1174 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1175 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1176 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1177 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1178
1179 mddev->max_disks = MD_SB_DISKS;
1180
1181 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1182 mddev->bitmap_info.file == NULL) {
1183 mddev->bitmap_info.offset =
1184 mddev->bitmap_info.default_offset;
1185 mddev->bitmap_info.space =
1186 mddev->bitmap_info.default_space;
1187 }
1188
1189 } else if (mddev->pers == NULL) {
1190 /* Insist on good event counter while assembling, except
1191 * for spares (which don't need an event count) */
1192 ++ev1;
1193 if (sb->disks[rdev->desc_nr].state & (
1194 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1195 if (ev1 < mddev->events)
1196 return -EINVAL;
1197 } else if (mddev->bitmap) {
1198 /* if adding to array with a bitmap, then we can accept an
1199 * older device ... but not too old.
1200 */
1201 if (ev1 < mddev->bitmap->events_cleared)
1202 return 0;
1203 if (ev1 < mddev->events)
1204 set_bit(Bitmap_sync, &rdev->flags);
1205 } else {
1206 if (ev1 < mddev->events)
1207 /* just a hot-add of a new device, leave raid_disk at -1 */
1208 return 0;
1209 }
1210
1211 if (mddev->level != LEVEL_MULTIPATH) {
1212 desc = sb->disks + rdev->desc_nr;
1213
1214 if (desc->state & (1<<MD_DISK_FAULTY))
1215 set_bit(Faulty, &rdev->flags);
1216 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1217 desc->raid_disk < mddev->raid_disks */) {
1218 set_bit(In_sync, &rdev->flags);
1219 rdev->raid_disk = desc->raid_disk;
1220 rdev->saved_raid_disk = desc->raid_disk;
1221 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1222 /* active but not in sync implies recovery up to
1223 * reshape position. We don't know exactly where
1224 * that is, so set to zero for now */
1225 if (mddev->minor_version >= 91) {
1226 rdev->recovery_offset = 0;
1227 rdev->raid_disk = desc->raid_disk;
1228 }
1229 }
1230 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1231 set_bit(WriteMostly, &rdev->flags);
1232 if (desc->state & (1<<MD_DISK_FAILFAST))
1233 set_bit(FailFast, &rdev->flags);
1234 } else /* MULTIPATH are always insync */
1235 set_bit(In_sync, &rdev->flags);
1236 return 0;
1237 }
1238
1239 /*
1240 * sync_super for 0.90.0
1241 */
1242 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1243 {
1244 mdp_super_t *sb;
1245 struct md_rdev *rdev2;
1246 int next_spare = mddev->raid_disks;
1247
1248 /* make rdev->sb match mddev data..
1249 *
1250 * 1/ zero out disks
1251 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1252 * 3/ any empty disks < next_spare become removed
1253 *
1254 * disks[0] gets initialised to REMOVED because
1255 * we cannot be sure from other fields if it has
1256 * been initialised or not.
1257 */
1258 int i;
1259 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1260
1261 rdev->sb_size = MD_SB_BYTES;
1262
1263 sb = page_address(rdev->sb_page);
1264
1265 memset(sb, 0, sizeof(*sb));
1266
1267 sb->md_magic = MD_SB_MAGIC;
1268 sb->major_version = mddev->major_version;
1269 sb->patch_version = mddev->patch_version;
1270 sb->gvalid_words = 0; /* ignored */
1271 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1272 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1273 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1274 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1275
1276 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1277 sb->level = mddev->level;
1278 sb->size = mddev->dev_sectors / 2;
1279 sb->raid_disks = mddev->raid_disks;
1280 sb->md_minor = mddev->md_minor;
1281 sb->not_persistent = 0;
1282 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1283 sb->state = 0;
1284 sb->events_hi = (mddev->events>>32);
1285 sb->events_lo = (u32)mddev->events;
1286
1287 if (mddev->reshape_position == MaxSector)
1288 sb->minor_version = 90;
1289 else {
1290 sb->minor_version = 91;
1291 sb->reshape_position = mddev->reshape_position;
1292 sb->new_level = mddev->new_level;
1293 sb->delta_disks = mddev->delta_disks;
1294 sb->new_layout = mddev->new_layout;
1295 sb->new_chunk = mddev->new_chunk_sectors << 9;
1296 }
1297 mddev->minor_version = sb->minor_version;
1298 if (mddev->in_sync)
1299 {
1300 sb->recovery_cp = mddev->recovery_cp;
1301 sb->cp_events_hi = (mddev->events>>32);
1302 sb->cp_events_lo = (u32)mddev->events;
1303 if (mddev->recovery_cp == MaxSector)
1304 sb->state = (1<< MD_SB_CLEAN);
1305 } else
1306 sb->recovery_cp = 0;
1307
1308 sb->layout = mddev->layout;
1309 sb->chunk_size = mddev->chunk_sectors << 9;
1310
1311 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1312 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1313
1314 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1315 rdev_for_each(rdev2, mddev) {
1316 mdp_disk_t *d;
1317 int desc_nr;
1318 int is_active = test_bit(In_sync, &rdev2->flags);
1319
1320 if (rdev2->raid_disk >= 0 &&
1321 sb->minor_version >= 91)
1322 /* we have nowhere to store the recovery_offset,
1323 * but if it is not below the reshape_position,
1324 * we can piggy-back on that.
1325 */
1326 is_active = 1;
1327 if (rdev2->raid_disk < 0 ||
1328 test_bit(Faulty, &rdev2->flags))
1329 is_active = 0;
1330 if (is_active)
1331 desc_nr = rdev2->raid_disk;
1332 else
1333 desc_nr = next_spare++;
1334 rdev2->desc_nr = desc_nr;
1335 d = &sb->disks[rdev2->desc_nr];
1336 nr_disks++;
1337 d->number = rdev2->desc_nr;
1338 d->major = MAJOR(rdev2->bdev->bd_dev);
1339 d->minor = MINOR(rdev2->bdev->bd_dev);
1340 if (is_active)
1341 d->raid_disk = rdev2->raid_disk;
1342 else
1343 d->raid_disk = rdev2->desc_nr; /* compatibility */
1344 if (test_bit(Faulty, &rdev2->flags))
1345 d->state = (1<<MD_DISK_FAULTY);
1346 else if (is_active) {
1347 d->state = (1<<MD_DISK_ACTIVE);
1348 if (test_bit(In_sync, &rdev2->flags))
1349 d->state |= (1<<MD_DISK_SYNC);
1350 active++;
1351 working++;
1352 } else {
1353 d->state = 0;
1354 spare++;
1355 working++;
1356 }
1357 if (test_bit(WriteMostly, &rdev2->flags))
1358 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1359 if (test_bit(FailFast, &rdev2->flags))
1360 d->state |= (1<<MD_DISK_FAILFAST);
1361 }
1362 /* now set the "removed" and "faulty" bits on any missing devices */
1363 for (i=0 ; i < mddev->raid_disks ; i++) {
1364 mdp_disk_t *d = &sb->disks[i];
1365 if (d->state == 0 && d->number == 0) {
1366 d->number = i;
1367 d->raid_disk = i;
1368 d->state = (1<<MD_DISK_REMOVED);
1369 d->state |= (1<<MD_DISK_FAULTY);
1370 failed++;
1371 }
1372 }
1373 sb->nr_disks = nr_disks;
1374 sb->active_disks = active;
1375 sb->working_disks = working;
1376 sb->failed_disks = failed;
1377 sb->spare_disks = spare;
1378
1379 sb->this_disk = sb->disks[rdev->desc_nr];
1380 sb->sb_csum = calc_sb_csum(sb);
1381 }
1382
1383 /*
1384 * rdev_size_change for 0.90.0
1385 */
1386 static unsigned long long
1387 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1388 {
1389 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1390 return 0; /* component must fit device */
1391 if (rdev->mddev->bitmap_info.offset)
1392 return 0; /* can't move bitmap */
1393 rdev->sb_start = calc_dev_sboffset(rdev);
1394 if (!num_sectors || num_sectors > rdev->sb_start)
1395 num_sectors = rdev->sb_start;
1396 /* Limit to 4TB as metadata cannot record more than that.
1397 * 4TB == 2^32 KB, or 2*2^32 sectors.
1398 */
1399 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1400 num_sectors = (sector_t)(2ULL << 32) - 2;
1401 do {
1402 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1403 rdev->sb_page);
1404 } while (md_super_wait(rdev->mddev) < 0);
1405 return num_sectors;
1406 }
1407
1408 static int
1409 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1410 {
1411 /* non-zero offset changes not possible with v0.90 */
1412 return new_offset == 0;
1413 }
1414
1415 /*
1416 * version 1 superblock
1417 */
1418
1419 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1420 {
1421 __le32 disk_csum;
1422 u32 csum;
1423 unsigned long long newcsum;
1424 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1425 __le32 *isuper = (__le32*)sb;
1426
1427 disk_csum = sb->sb_csum;
1428 sb->sb_csum = 0;
1429 newcsum = 0;
1430 for (; size >= 4; size -= 4)
1431 newcsum += le32_to_cpu(*isuper++);
1432
1433 if (size == 2)
1434 newcsum += le16_to_cpu(*(__le16*) isuper);
1435
1436 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1437 sb->sb_csum = disk_csum;
1438 return cpu_to_le32(csum);
1439 }
1440
1441 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1442 {
1443 struct mdp_superblock_1 *sb;
1444 int ret;
1445 sector_t sb_start;
1446 sector_t sectors;
1447 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1448 int bmask;
1449
1450 /*
1451 * Calculate the position of the superblock in 512byte sectors.
1452 * It is always aligned to a 4K boundary and
1453 * depeding on minor_version, it can be:
1454 * 0: At least 8K, but less than 12K, from end of device
1455 * 1: At start of device
1456 * 2: 4K from start of device.
1457 */
1458 switch(minor_version) {
1459 case 0:
1460 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1461 sb_start -= 8*2;
1462 sb_start &= ~(sector_t)(4*2-1);
1463 break;
1464 case 1:
1465 sb_start = 0;
1466 break;
1467 case 2:
1468 sb_start = 8;
1469 break;
1470 default:
1471 return -EINVAL;
1472 }
1473 rdev->sb_start = sb_start;
1474
1475 /* superblock is rarely larger than 1K, but it can be larger,
1476 * and it is safe to read 4k, so we do that
1477 */
1478 ret = read_disk_sb(rdev, 4096);
1479 if (ret) return ret;
1480
1481 sb = page_address(rdev->sb_page);
1482
1483 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1484 sb->major_version != cpu_to_le32(1) ||
1485 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1486 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1487 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1488 return -EINVAL;
1489
1490 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1491 pr_warn("md: invalid superblock checksum on %s\n",
1492 bdevname(rdev->bdev,b));
1493 return -EINVAL;
1494 }
1495 if (le64_to_cpu(sb->data_size) < 10) {
1496 pr_warn("md: data_size too small on %s\n",
1497 bdevname(rdev->bdev,b));
1498 return -EINVAL;
1499 }
1500 if (sb->pad0 ||
1501 sb->pad3[0] ||
1502 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1503 /* Some padding is non-zero, might be a new feature */
1504 return -EINVAL;
1505
1506 rdev->preferred_minor = 0xffff;
1507 rdev->data_offset = le64_to_cpu(sb->data_offset);
1508 rdev->new_data_offset = rdev->data_offset;
1509 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1510 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1511 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1512 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1513
1514 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1515 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1516 if (rdev->sb_size & bmask)
1517 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1518
1519 if (minor_version
1520 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1521 return -EINVAL;
1522 if (minor_version
1523 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1524 return -EINVAL;
1525
1526 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1527 rdev->desc_nr = -1;
1528 else
1529 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1530
1531 if (!rdev->bb_page) {
1532 rdev->bb_page = alloc_page(GFP_KERNEL);
1533 if (!rdev->bb_page)
1534 return -ENOMEM;
1535 }
1536 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1537 rdev->badblocks.count == 0) {
1538 /* need to load the bad block list.
1539 * Currently we limit it to one page.
1540 */
1541 s32 offset;
1542 sector_t bb_sector;
1543 __le64 *bbp;
1544 int i;
1545 int sectors = le16_to_cpu(sb->bblog_size);
1546 if (sectors > (PAGE_SIZE / 512))
1547 return -EINVAL;
1548 offset = le32_to_cpu(sb->bblog_offset);
1549 if (offset == 0)
1550 return -EINVAL;
1551 bb_sector = (long long)offset;
1552 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1553 rdev->bb_page, REQ_OP_READ, 0, true))
1554 return -EIO;
1555 bbp = (__le64 *)page_address(rdev->bb_page);
1556 rdev->badblocks.shift = sb->bblog_shift;
1557 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1558 u64 bb = le64_to_cpu(*bbp);
1559 int count = bb & (0x3ff);
1560 u64 sector = bb >> 10;
1561 sector <<= sb->bblog_shift;
1562 count <<= sb->bblog_shift;
1563 if (bb + 1 == 0)
1564 break;
1565 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1566 return -EINVAL;
1567 }
1568 } else if (sb->bblog_offset != 0)
1569 rdev->badblocks.shift = 0;
1570
1571 if ((le32_to_cpu(sb->feature_map) &
1572 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1573 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1574 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1575 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1576 }
1577
1578 if (!refdev) {
1579 ret = 1;
1580 } else {
1581 __u64 ev1, ev2;
1582 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1583
1584 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1585 sb->level != refsb->level ||
1586 sb->layout != refsb->layout ||
1587 sb->chunksize != refsb->chunksize) {
1588 pr_warn("md: %s has strangely different superblock to %s\n",
1589 bdevname(rdev->bdev,b),
1590 bdevname(refdev->bdev,b2));
1591 return -EINVAL;
1592 }
1593 ev1 = le64_to_cpu(sb->events);
1594 ev2 = le64_to_cpu(refsb->events);
1595
1596 if (ev1 > ev2)
1597 ret = 1;
1598 else
1599 ret = 0;
1600 }
1601 if (minor_version) {
1602 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1603 sectors -= rdev->data_offset;
1604 } else
1605 sectors = rdev->sb_start;
1606 if (sectors < le64_to_cpu(sb->data_size))
1607 return -EINVAL;
1608 rdev->sectors = le64_to_cpu(sb->data_size);
1609 return ret;
1610 }
1611
1612 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1613 {
1614 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1615 __u64 ev1 = le64_to_cpu(sb->events);
1616
1617 rdev->raid_disk = -1;
1618 clear_bit(Faulty, &rdev->flags);
1619 clear_bit(In_sync, &rdev->flags);
1620 clear_bit(Bitmap_sync, &rdev->flags);
1621 clear_bit(WriteMostly, &rdev->flags);
1622
1623 if (mddev->raid_disks == 0) {
1624 mddev->major_version = 1;
1625 mddev->patch_version = 0;
1626 mddev->external = 0;
1627 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1628 mddev->ctime = le64_to_cpu(sb->ctime);
1629 mddev->utime = le64_to_cpu(sb->utime);
1630 mddev->level = le32_to_cpu(sb->level);
1631 mddev->clevel[0] = 0;
1632 mddev->layout = le32_to_cpu(sb->layout);
1633 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1634 mddev->dev_sectors = le64_to_cpu(sb->size);
1635 mddev->events = ev1;
1636 mddev->bitmap_info.offset = 0;
1637 mddev->bitmap_info.space = 0;
1638 /* Default location for bitmap is 1K after superblock
1639 * using 3K - total of 4K
1640 */
1641 mddev->bitmap_info.default_offset = 1024 >> 9;
1642 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1643 mddev->reshape_backwards = 0;
1644
1645 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1646 memcpy(mddev->uuid, sb->set_uuid, 16);
1647
1648 mddev->max_disks = (4096-256)/2;
1649
1650 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1651 mddev->bitmap_info.file == NULL) {
1652 mddev->bitmap_info.offset =
1653 (__s32)le32_to_cpu(sb->bitmap_offset);
1654 /* Metadata doesn't record how much space is available.
1655 * For 1.0, we assume we can use up to the superblock
1656 * if before, else to 4K beyond superblock.
1657 * For others, assume no change is possible.
1658 */
1659 if (mddev->minor_version > 0)
1660 mddev->bitmap_info.space = 0;
1661 else if (mddev->bitmap_info.offset > 0)
1662 mddev->bitmap_info.space =
1663 8 - mddev->bitmap_info.offset;
1664 else
1665 mddev->bitmap_info.space =
1666 -mddev->bitmap_info.offset;
1667 }
1668
1669 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1670 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1671 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1672 mddev->new_level = le32_to_cpu(sb->new_level);
1673 mddev->new_layout = le32_to_cpu(sb->new_layout);
1674 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1675 if (mddev->delta_disks < 0 ||
1676 (mddev->delta_disks == 0 &&
1677 (le32_to_cpu(sb->feature_map)
1678 & MD_FEATURE_RESHAPE_BACKWARDS)))
1679 mddev->reshape_backwards = 1;
1680 } else {
1681 mddev->reshape_position = MaxSector;
1682 mddev->delta_disks = 0;
1683 mddev->new_level = mddev->level;
1684 mddev->new_layout = mddev->layout;
1685 mddev->new_chunk_sectors = mddev->chunk_sectors;
1686 }
1687
1688 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1689 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1690
1691 if (le32_to_cpu(sb->feature_map) &
1692 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1693 if (le32_to_cpu(sb->feature_map) &
1694 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1695 return -EINVAL;
1696 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1697 (le32_to_cpu(sb->feature_map) &
1698 MD_FEATURE_MULTIPLE_PPLS))
1699 return -EINVAL;
1700 set_bit(MD_HAS_PPL, &mddev->flags);
1701 }
1702 } else if (mddev->pers == NULL) {
1703 /* Insist of good event counter while assembling, except for
1704 * spares (which don't need an event count) */
1705 ++ev1;
1706 if (rdev->desc_nr >= 0 &&
1707 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1708 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1709 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1710 if (ev1 < mddev->events)
1711 return -EINVAL;
1712 } else if (mddev->bitmap) {
1713 /* If adding to array with a bitmap, then we can accept an
1714 * older device, but not too old.
1715 */
1716 if (ev1 < mddev->bitmap->events_cleared)
1717 return 0;
1718 if (ev1 < mddev->events)
1719 set_bit(Bitmap_sync, &rdev->flags);
1720 } else {
1721 if (ev1 < mddev->events)
1722 /* just a hot-add of a new device, leave raid_disk at -1 */
1723 return 0;
1724 }
1725 if (mddev->level != LEVEL_MULTIPATH) {
1726 int role;
1727 if (rdev->desc_nr < 0 ||
1728 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1729 role = MD_DISK_ROLE_SPARE;
1730 rdev->desc_nr = -1;
1731 } else
1732 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1733 switch(role) {
1734 case MD_DISK_ROLE_SPARE: /* spare */
1735 break;
1736 case MD_DISK_ROLE_FAULTY: /* faulty */
1737 set_bit(Faulty, &rdev->flags);
1738 break;
1739 case MD_DISK_ROLE_JOURNAL: /* journal device */
1740 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1741 /* journal device without journal feature */
1742 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1743 return -EINVAL;
1744 }
1745 set_bit(Journal, &rdev->flags);
1746 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1747 rdev->raid_disk = 0;
1748 break;
1749 default:
1750 rdev->saved_raid_disk = role;
1751 if ((le32_to_cpu(sb->feature_map) &
1752 MD_FEATURE_RECOVERY_OFFSET)) {
1753 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1754 if (!(le32_to_cpu(sb->feature_map) &
1755 MD_FEATURE_RECOVERY_BITMAP))
1756 rdev->saved_raid_disk = -1;
1757 } else
1758 set_bit(In_sync, &rdev->flags);
1759 rdev->raid_disk = role;
1760 break;
1761 }
1762 if (sb->devflags & WriteMostly1)
1763 set_bit(WriteMostly, &rdev->flags);
1764 if (sb->devflags & FailFast1)
1765 set_bit(FailFast, &rdev->flags);
1766 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1767 set_bit(Replacement, &rdev->flags);
1768 } else /* MULTIPATH are always insync */
1769 set_bit(In_sync, &rdev->flags);
1770
1771 return 0;
1772 }
1773
1774 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1775 {
1776 struct mdp_superblock_1 *sb;
1777 struct md_rdev *rdev2;
1778 int max_dev, i;
1779 /* make rdev->sb match mddev and rdev data. */
1780
1781 sb = page_address(rdev->sb_page);
1782
1783 sb->feature_map = 0;
1784 sb->pad0 = 0;
1785 sb->recovery_offset = cpu_to_le64(0);
1786 memset(sb->pad3, 0, sizeof(sb->pad3));
1787
1788 sb->utime = cpu_to_le64((__u64)mddev->utime);
1789 sb->events = cpu_to_le64(mddev->events);
1790 if (mddev->in_sync)
1791 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1792 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1793 sb->resync_offset = cpu_to_le64(MaxSector);
1794 else
1795 sb->resync_offset = cpu_to_le64(0);
1796
1797 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1798
1799 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1800 sb->size = cpu_to_le64(mddev->dev_sectors);
1801 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1802 sb->level = cpu_to_le32(mddev->level);
1803 sb->layout = cpu_to_le32(mddev->layout);
1804 if (test_bit(FailFast, &rdev->flags))
1805 sb->devflags |= FailFast1;
1806 else
1807 sb->devflags &= ~FailFast1;
1808
1809 if (test_bit(WriteMostly, &rdev->flags))
1810 sb->devflags |= WriteMostly1;
1811 else
1812 sb->devflags &= ~WriteMostly1;
1813 sb->data_offset = cpu_to_le64(rdev->data_offset);
1814 sb->data_size = cpu_to_le64(rdev->sectors);
1815
1816 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1817 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1818 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1819 }
1820
1821 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1822 !test_bit(In_sync, &rdev->flags)) {
1823 sb->feature_map |=
1824 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1825 sb->recovery_offset =
1826 cpu_to_le64(rdev->recovery_offset);
1827 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1828 sb->feature_map |=
1829 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1830 }
1831 /* Note: recovery_offset and journal_tail share space */
1832 if (test_bit(Journal, &rdev->flags))
1833 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1834 if (test_bit(Replacement, &rdev->flags))
1835 sb->feature_map |=
1836 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1837
1838 if (mddev->reshape_position != MaxSector) {
1839 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1840 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1841 sb->new_layout = cpu_to_le32(mddev->new_layout);
1842 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1843 sb->new_level = cpu_to_le32(mddev->new_level);
1844 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1845 if (mddev->delta_disks == 0 &&
1846 mddev->reshape_backwards)
1847 sb->feature_map
1848 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1849 if (rdev->new_data_offset != rdev->data_offset) {
1850 sb->feature_map
1851 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1852 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1853 - rdev->data_offset));
1854 }
1855 }
1856
1857 if (mddev_is_clustered(mddev))
1858 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1859
1860 if (rdev->badblocks.count == 0)
1861 /* Nothing to do for bad blocks*/ ;
1862 else if (sb->bblog_offset == 0)
1863 /* Cannot record bad blocks on this device */
1864 md_error(mddev, rdev);
1865 else {
1866 struct badblocks *bb = &rdev->badblocks;
1867 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
1868 u64 *p = bb->page;
1869 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1870 if (bb->changed) {
1871 unsigned seq;
1872
1873 retry:
1874 seq = read_seqbegin(&bb->lock);
1875
1876 memset(bbp, 0xff, PAGE_SIZE);
1877
1878 for (i = 0 ; i < bb->count ; i++) {
1879 u64 internal_bb = p[i];
1880 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1881 | BB_LEN(internal_bb));
1882 bbp[i] = cpu_to_le64(store_bb);
1883 }
1884 bb->changed = 0;
1885 if (read_seqretry(&bb->lock, seq))
1886 goto retry;
1887
1888 bb->sector = (rdev->sb_start +
1889 (int)le32_to_cpu(sb->bblog_offset));
1890 bb->size = le16_to_cpu(sb->bblog_size);
1891 }
1892 }
1893
1894 max_dev = 0;
1895 rdev_for_each(rdev2, mddev)
1896 if (rdev2->desc_nr+1 > max_dev)
1897 max_dev = rdev2->desc_nr+1;
1898
1899 if (max_dev > le32_to_cpu(sb->max_dev)) {
1900 int bmask;
1901 sb->max_dev = cpu_to_le32(max_dev);
1902 rdev->sb_size = max_dev * 2 + 256;
1903 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1904 if (rdev->sb_size & bmask)
1905 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1906 } else
1907 max_dev = le32_to_cpu(sb->max_dev);
1908
1909 for (i=0; i<max_dev;i++)
1910 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1911
1912 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1913 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1914
1915 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
1916 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
1917 sb->feature_map |=
1918 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
1919 else
1920 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
1921 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
1922 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
1923 }
1924
1925 rdev_for_each(rdev2, mddev) {
1926 i = rdev2->desc_nr;
1927 if (test_bit(Faulty, &rdev2->flags))
1928 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1929 else if (test_bit(In_sync, &rdev2->flags))
1930 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1931 else if (test_bit(Journal, &rdev2->flags))
1932 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1933 else if (rdev2->raid_disk >= 0)
1934 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1935 else
1936 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1937 }
1938
1939 sb->sb_csum = calc_sb_1_csum(sb);
1940 }
1941
1942 static unsigned long long
1943 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1944 {
1945 struct mdp_superblock_1 *sb;
1946 sector_t max_sectors;
1947 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1948 return 0; /* component must fit device */
1949 if (rdev->data_offset != rdev->new_data_offset)
1950 return 0; /* too confusing */
1951 if (rdev->sb_start < rdev->data_offset) {
1952 /* minor versions 1 and 2; superblock before data */
1953 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1954 max_sectors -= rdev->data_offset;
1955 if (!num_sectors || num_sectors > max_sectors)
1956 num_sectors = max_sectors;
1957 } else if (rdev->mddev->bitmap_info.offset) {
1958 /* minor version 0 with bitmap we can't move */
1959 return 0;
1960 } else {
1961 /* minor version 0; superblock after data */
1962 sector_t sb_start;
1963 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1964 sb_start &= ~(sector_t)(4*2 - 1);
1965 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1966 if (!num_sectors || num_sectors > max_sectors)
1967 num_sectors = max_sectors;
1968 rdev->sb_start = sb_start;
1969 }
1970 sb = page_address(rdev->sb_page);
1971 sb->data_size = cpu_to_le64(num_sectors);
1972 sb->super_offset = cpu_to_le64(rdev->sb_start);
1973 sb->sb_csum = calc_sb_1_csum(sb);
1974 do {
1975 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1976 rdev->sb_page);
1977 } while (md_super_wait(rdev->mddev) < 0);
1978 return num_sectors;
1979
1980 }
1981
1982 static int
1983 super_1_allow_new_offset(struct md_rdev *rdev,
1984 unsigned long long new_offset)
1985 {
1986 /* All necessary checks on new >= old have been done */
1987 struct bitmap *bitmap;
1988 if (new_offset >= rdev->data_offset)
1989 return 1;
1990
1991 /* with 1.0 metadata, there is no metadata to tread on
1992 * so we can always move back */
1993 if (rdev->mddev->minor_version == 0)
1994 return 1;
1995
1996 /* otherwise we must be sure not to step on
1997 * any metadata, so stay:
1998 * 36K beyond start of superblock
1999 * beyond end of badblocks
2000 * beyond write-intent bitmap
2001 */
2002 if (rdev->sb_start + (32+4)*2 > new_offset)
2003 return 0;
2004 bitmap = rdev->mddev->bitmap;
2005 if (bitmap && !rdev->mddev->bitmap_info.file &&
2006 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2007 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2008 return 0;
2009 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2010 return 0;
2011
2012 return 1;
2013 }
2014
2015 static struct super_type super_types[] = {
2016 [0] = {
2017 .name = "0.90.0",
2018 .owner = THIS_MODULE,
2019 .load_super = super_90_load,
2020 .validate_super = super_90_validate,
2021 .sync_super = super_90_sync,
2022 .rdev_size_change = super_90_rdev_size_change,
2023 .allow_new_offset = super_90_allow_new_offset,
2024 },
2025 [1] = {
2026 .name = "md-1",
2027 .owner = THIS_MODULE,
2028 .load_super = super_1_load,
2029 .validate_super = super_1_validate,
2030 .sync_super = super_1_sync,
2031 .rdev_size_change = super_1_rdev_size_change,
2032 .allow_new_offset = super_1_allow_new_offset,
2033 },
2034 };
2035
2036 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2037 {
2038 if (mddev->sync_super) {
2039 mddev->sync_super(mddev, rdev);
2040 return;
2041 }
2042
2043 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2044
2045 super_types[mddev->major_version].sync_super(mddev, rdev);
2046 }
2047
2048 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2049 {
2050 struct md_rdev *rdev, *rdev2;
2051
2052 rcu_read_lock();
2053 rdev_for_each_rcu(rdev, mddev1) {
2054 if (test_bit(Faulty, &rdev->flags) ||
2055 test_bit(Journal, &rdev->flags) ||
2056 rdev->raid_disk == -1)
2057 continue;
2058 rdev_for_each_rcu(rdev2, mddev2) {
2059 if (test_bit(Faulty, &rdev2->flags) ||
2060 test_bit(Journal, &rdev2->flags) ||
2061 rdev2->raid_disk == -1)
2062 continue;
2063 if (rdev->bdev->bd_contains ==
2064 rdev2->bdev->bd_contains) {
2065 rcu_read_unlock();
2066 return 1;
2067 }
2068 }
2069 }
2070 rcu_read_unlock();
2071 return 0;
2072 }
2073
2074 static LIST_HEAD(pending_raid_disks);
2075
2076 /*
2077 * Try to register data integrity profile for an mddev
2078 *
2079 * This is called when an array is started and after a disk has been kicked
2080 * from the array. It only succeeds if all working and active component devices
2081 * are integrity capable with matching profiles.
2082 */
2083 int md_integrity_register(struct mddev *mddev)
2084 {
2085 struct md_rdev *rdev, *reference = NULL;
2086
2087 if (list_empty(&mddev->disks))
2088 return 0; /* nothing to do */
2089 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2090 return 0; /* shouldn't register, or already is */
2091 rdev_for_each(rdev, mddev) {
2092 /* skip spares and non-functional disks */
2093 if (test_bit(Faulty, &rdev->flags))
2094 continue;
2095 if (rdev->raid_disk < 0)
2096 continue;
2097 if (!reference) {
2098 /* Use the first rdev as the reference */
2099 reference = rdev;
2100 continue;
2101 }
2102 /* does this rdev's profile match the reference profile? */
2103 if (blk_integrity_compare(reference->bdev->bd_disk,
2104 rdev->bdev->bd_disk) < 0)
2105 return -EINVAL;
2106 }
2107 if (!reference || !bdev_get_integrity(reference->bdev))
2108 return 0;
2109 /*
2110 * All component devices are integrity capable and have matching
2111 * profiles, register the common profile for the md device.
2112 */
2113 blk_integrity_register(mddev->gendisk,
2114 bdev_get_integrity(reference->bdev));
2115
2116 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2117 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) {
2118 pr_err("md: failed to create integrity pool for %s\n",
2119 mdname(mddev));
2120 return -EINVAL;
2121 }
2122 return 0;
2123 }
2124 EXPORT_SYMBOL(md_integrity_register);
2125
2126 /*
2127 * Attempt to add an rdev, but only if it is consistent with the current
2128 * integrity profile
2129 */
2130 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2131 {
2132 struct blk_integrity *bi_mddev;
2133 char name[BDEVNAME_SIZE];
2134
2135 if (!mddev->gendisk)
2136 return 0;
2137
2138 bi_mddev = blk_get_integrity(mddev->gendisk);
2139
2140 if (!bi_mddev) /* nothing to do */
2141 return 0;
2142
2143 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2144 pr_err("%s: incompatible integrity profile for %s\n",
2145 mdname(mddev), bdevname(rdev->bdev, name));
2146 return -ENXIO;
2147 }
2148
2149 return 0;
2150 }
2151 EXPORT_SYMBOL(md_integrity_add_rdev);
2152
2153 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2154 {
2155 char b[BDEVNAME_SIZE];
2156 struct kobject *ko;
2157 int err;
2158
2159 /* prevent duplicates */
2160 if (find_rdev(mddev, rdev->bdev->bd_dev))
2161 return -EEXIST;
2162
2163 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
2164 mddev->pers)
2165 return -EROFS;
2166
2167 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2168 if (!test_bit(Journal, &rdev->flags) &&
2169 rdev->sectors &&
2170 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2171 if (mddev->pers) {
2172 /* Cannot change size, so fail
2173 * If mddev->level <= 0, then we don't care
2174 * about aligning sizes (e.g. linear)
2175 */
2176 if (mddev->level > 0)
2177 return -ENOSPC;
2178 } else
2179 mddev->dev_sectors = rdev->sectors;
2180 }
2181
2182 /* Verify rdev->desc_nr is unique.
2183 * If it is -1, assign a free number, else
2184 * check number is not in use
2185 */
2186 rcu_read_lock();
2187 if (rdev->desc_nr < 0) {
2188 int choice = 0;
2189 if (mddev->pers)
2190 choice = mddev->raid_disks;
2191 while (md_find_rdev_nr_rcu(mddev, choice))
2192 choice++;
2193 rdev->desc_nr = choice;
2194 } else {
2195 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2196 rcu_read_unlock();
2197 return -EBUSY;
2198 }
2199 }
2200 rcu_read_unlock();
2201 if (!test_bit(Journal, &rdev->flags) &&
2202 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2203 pr_warn("md: %s: array is limited to %d devices\n",
2204 mdname(mddev), mddev->max_disks);
2205 return -EBUSY;
2206 }
2207 bdevname(rdev->bdev,b);
2208 strreplace(b, '/', '!');
2209
2210 rdev->mddev = mddev;
2211 pr_debug("md: bind<%s>\n", b);
2212
2213 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2214 goto fail;
2215
2216 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2217 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2218 /* failure here is OK */;
2219 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2220
2221 list_add_rcu(&rdev->same_set, &mddev->disks);
2222 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2223
2224 /* May as well allow recovery to be retried once */
2225 mddev->recovery_disabled++;
2226
2227 return 0;
2228
2229 fail:
2230 pr_warn("md: failed to register dev-%s for %s\n",
2231 b, mdname(mddev));
2232 return err;
2233 }
2234
2235 static void md_delayed_delete(struct work_struct *ws)
2236 {
2237 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2238 kobject_del(&rdev->kobj);
2239 kobject_put(&rdev->kobj);
2240 }
2241
2242 static void unbind_rdev_from_array(struct md_rdev *rdev)
2243 {
2244 char b[BDEVNAME_SIZE];
2245
2246 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2247 list_del_rcu(&rdev->same_set);
2248 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2249 rdev->mddev = NULL;
2250 sysfs_remove_link(&rdev->kobj, "block");
2251 sysfs_put(rdev->sysfs_state);
2252 rdev->sysfs_state = NULL;
2253 rdev->badblocks.count = 0;
2254 /* We need to delay this, otherwise we can deadlock when
2255 * writing to 'remove' to "dev/state". We also need
2256 * to delay it due to rcu usage.
2257 */
2258 synchronize_rcu();
2259 INIT_WORK(&rdev->del_work, md_delayed_delete);
2260 kobject_get(&rdev->kobj);
2261 queue_work(md_misc_wq, &rdev->del_work);
2262 }
2263
2264 /*
2265 * prevent the device from being mounted, repartitioned or
2266 * otherwise reused by a RAID array (or any other kernel
2267 * subsystem), by bd_claiming the device.
2268 */
2269 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2270 {
2271 int err = 0;
2272 struct block_device *bdev;
2273 char b[BDEVNAME_SIZE];
2274
2275 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2276 shared ? (struct md_rdev *)lock_rdev : rdev);
2277 if (IS_ERR(bdev)) {
2278 pr_warn("md: could not open %s.\n", __bdevname(dev, b));
2279 return PTR_ERR(bdev);
2280 }
2281 rdev->bdev = bdev;
2282 return err;
2283 }
2284
2285 static void unlock_rdev(struct md_rdev *rdev)
2286 {
2287 struct block_device *bdev = rdev->bdev;
2288 rdev->bdev = NULL;
2289 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2290 }
2291
2292 void md_autodetect_dev(dev_t dev);
2293
2294 static void export_rdev(struct md_rdev *rdev)
2295 {
2296 char b[BDEVNAME_SIZE];
2297
2298 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2299 md_rdev_clear(rdev);
2300 #ifndef MODULE
2301 if (test_bit(AutoDetected, &rdev->flags))
2302 md_autodetect_dev(rdev->bdev->bd_dev);
2303 #endif
2304 unlock_rdev(rdev);
2305 kobject_put(&rdev->kobj);
2306 }
2307
2308 void md_kick_rdev_from_array(struct md_rdev *rdev)
2309 {
2310 unbind_rdev_from_array(rdev);
2311 export_rdev(rdev);
2312 }
2313 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2314
2315 static void export_array(struct mddev *mddev)
2316 {
2317 struct md_rdev *rdev;
2318
2319 while (!list_empty(&mddev->disks)) {
2320 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2321 same_set);
2322 md_kick_rdev_from_array(rdev);
2323 }
2324 mddev->raid_disks = 0;
2325 mddev->major_version = 0;
2326 }
2327
2328 static bool set_in_sync(struct mddev *mddev)
2329 {
2330 lockdep_assert_held(&mddev->lock);
2331 if (!mddev->in_sync) {
2332 mddev->sync_checkers++;
2333 spin_unlock(&mddev->lock);
2334 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2335 spin_lock(&mddev->lock);
2336 if (!mddev->in_sync &&
2337 percpu_ref_is_zero(&mddev->writes_pending)) {
2338 mddev->in_sync = 1;
2339 /*
2340 * Ensure ->in_sync is visible before we clear
2341 * ->sync_checkers.
2342 */
2343 smp_mb();
2344 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2345 sysfs_notify_dirent_safe(mddev->sysfs_state);
2346 }
2347 if (--mddev->sync_checkers == 0)
2348 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2349 }
2350 if (mddev->safemode == 1)
2351 mddev->safemode = 0;
2352 return mddev->in_sync;
2353 }
2354
2355 static void sync_sbs(struct mddev *mddev, int nospares)
2356 {
2357 /* Update each superblock (in-memory image), but
2358 * if we are allowed to, skip spares which already
2359 * have the right event counter, or have one earlier
2360 * (which would mean they aren't being marked as dirty
2361 * with the rest of the array)
2362 */
2363 struct md_rdev *rdev;
2364 rdev_for_each(rdev, mddev) {
2365 if (rdev->sb_events == mddev->events ||
2366 (nospares &&
2367 rdev->raid_disk < 0 &&
2368 rdev->sb_events+1 == mddev->events)) {
2369 /* Don't update this superblock */
2370 rdev->sb_loaded = 2;
2371 } else {
2372 sync_super(mddev, rdev);
2373 rdev->sb_loaded = 1;
2374 }
2375 }
2376 }
2377
2378 static bool does_sb_need_changing(struct mddev *mddev)
2379 {
2380 struct md_rdev *rdev;
2381 struct mdp_superblock_1 *sb;
2382 int role;
2383
2384 /* Find a good rdev */
2385 rdev_for_each(rdev, mddev)
2386 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2387 break;
2388
2389 /* No good device found. */
2390 if (!rdev)
2391 return false;
2392
2393 sb = page_address(rdev->sb_page);
2394 /* Check if a device has become faulty or a spare become active */
2395 rdev_for_each(rdev, mddev) {
2396 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2397 /* Device activated? */
2398 if (role == 0xffff && rdev->raid_disk >=0 &&
2399 !test_bit(Faulty, &rdev->flags))
2400 return true;
2401 /* Device turned faulty? */
2402 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2403 return true;
2404 }
2405
2406 /* Check if any mddev parameters have changed */
2407 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2408 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2409 (mddev->layout != le32_to_cpu(sb->layout)) ||
2410 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2411 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2412 return true;
2413
2414 return false;
2415 }
2416
2417 void md_update_sb(struct mddev *mddev, int force_change)
2418 {
2419 struct md_rdev *rdev;
2420 int sync_req;
2421 int nospares = 0;
2422 int any_badblocks_changed = 0;
2423 int ret = -1;
2424
2425 if (mddev->ro) {
2426 if (force_change)
2427 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2428 return;
2429 }
2430
2431 repeat:
2432 if (mddev_is_clustered(mddev)) {
2433 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2434 force_change = 1;
2435 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2436 nospares = 1;
2437 ret = md_cluster_ops->metadata_update_start(mddev);
2438 /* Has someone else has updated the sb */
2439 if (!does_sb_need_changing(mddev)) {
2440 if (ret == 0)
2441 md_cluster_ops->metadata_update_cancel(mddev);
2442 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2443 BIT(MD_SB_CHANGE_DEVS) |
2444 BIT(MD_SB_CHANGE_CLEAN));
2445 return;
2446 }
2447 }
2448
2449 /*
2450 * First make sure individual recovery_offsets are correct
2451 * curr_resync_completed can only be used during recovery.
2452 * During reshape/resync it might use array-addresses rather
2453 * that device addresses.
2454 */
2455 rdev_for_each(rdev, mddev) {
2456 if (rdev->raid_disk >= 0 &&
2457 mddev->delta_disks >= 0 &&
2458 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2459 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2460 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2461 !test_bit(Journal, &rdev->flags) &&
2462 !test_bit(In_sync, &rdev->flags) &&
2463 mddev->curr_resync_completed > rdev->recovery_offset)
2464 rdev->recovery_offset = mddev->curr_resync_completed;
2465
2466 }
2467 if (!mddev->persistent) {
2468 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2469 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2470 if (!mddev->external) {
2471 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2472 rdev_for_each(rdev, mddev) {
2473 if (rdev->badblocks.changed) {
2474 rdev->badblocks.changed = 0;
2475 ack_all_badblocks(&rdev->badblocks);
2476 md_error(mddev, rdev);
2477 }
2478 clear_bit(Blocked, &rdev->flags);
2479 clear_bit(BlockedBadBlocks, &rdev->flags);
2480 wake_up(&rdev->blocked_wait);
2481 }
2482 }
2483 wake_up(&mddev->sb_wait);
2484 return;
2485 }
2486
2487 spin_lock(&mddev->lock);
2488
2489 mddev->utime = ktime_get_real_seconds();
2490
2491 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2492 force_change = 1;
2493 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2494 /* just a clean<-> dirty transition, possibly leave spares alone,
2495 * though if events isn't the right even/odd, we will have to do
2496 * spares after all
2497 */
2498 nospares = 1;
2499 if (force_change)
2500 nospares = 0;
2501 if (mddev->degraded)
2502 /* If the array is degraded, then skipping spares is both
2503 * dangerous and fairly pointless.
2504 * Dangerous because a device that was removed from the array
2505 * might have a event_count that still looks up-to-date,
2506 * so it can be re-added without a resync.
2507 * Pointless because if there are any spares to skip,
2508 * then a recovery will happen and soon that array won't
2509 * be degraded any more and the spare can go back to sleep then.
2510 */
2511 nospares = 0;
2512
2513 sync_req = mddev->in_sync;
2514
2515 /* If this is just a dirty<->clean transition, and the array is clean
2516 * and 'events' is odd, we can roll back to the previous clean state */
2517 if (nospares
2518 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2519 && mddev->can_decrease_events
2520 && mddev->events != 1) {
2521 mddev->events--;
2522 mddev->can_decrease_events = 0;
2523 } else {
2524 /* otherwise we have to go forward and ... */
2525 mddev->events ++;
2526 mddev->can_decrease_events = nospares;
2527 }
2528
2529 /*
2530 * This 64-bit counter should never wrap.
2531 * Either we are in around ~1 trillion A.C., assuming
2532 * 1 reboot per second, or we have a bug...
2533 */
2534 WARN_ON(mddev->events == 0);
2535
2536 rdev_for_each(rdev, mddev) {
2537 if (rdev->badblocks.changed)
2538 any_badblocks_changed++;
2539 if (test_bit(Faulty, &rdev->flags))
2540 set_bit(FaultRecorded, &rdev->flags);
2541 }
2542
2543 sync_sbs(mddev, nospares);
2544 spin_unlock(&mddev->lock);
2545
2546 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2547 mdname(mddev), mddev->in_sync);
2548
2549 if (mddev->queue)
2550 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2551 rewrite:
2552 md_bitmap_update_sb(mddev->bitmap);
2553 rdev_for_each(rdev, mddev) {
2554 char b[BDEVNAME_SIZE];
2555
2556 if (rdev->sb_loaded != 1)
2557 continue; /* no noise on spare devices */
2558
2559 if (!test_bit(Faulty, &rdev->flags)) {
2560 md_super_write(mddev,rdev,
2561 rdev->sb_start, rdev->sb_size,
2562 rdev->sb_page);
2563 pr_debug("md: (write) %s's sb offset: %llu\n",
2564 bdevname(rdev->bdev, b),
2565 (unsigned long long)rdev->sb_start);
2566 rdev->sb_events = mddev->events;
2567 if (rdev->badblocks.size) {
2568 md_super_write(mddev, rdev,
2569 rdev->badblocks.sector,
2570 rdev->badblocks.size << 9,
2571 rdev->bb_page);
2572 rdev->badblocks.size = 0;
2573 }
2574
2575 } else
2576 pr_debug("md: %s (skipping faulty)\n",
2577 bdevname(rdev->bdev, b));
2578
2579 if (mddev->level == LEVEL_MULTIPATH)
2580 /* only need to write one superblock... */
2581 break;
2582 }
2583 if (md_super_wait(mddev) < 0)
2584 goto rewrite;
2585 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2586
2587 if (mddev_is_clustered(mddev) && ret == 0)
2588 md_cluster_ops->metadata_update_finish(mddev);
2589
2590 if (mddev->in_sync != sync_req ||
2591 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2592 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2593 /* have to write it out again */
2594 goto repeat;
2595 wake_up(&mddev->sb_wait);
2596 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2597 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2598
2599 rdev_for_each(rdev, mddev) {
2600 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2601 clear_bit(Blocked, &rdev->flags);
2602
2603 if (any_badblocks_changed)
2604 ack_all_badblocks(&rdev->badblocks);
2605 clear_bit(BlockedBadBlocks, &rdev->flags);
2606 wake_up(&rdev->blocked_wait);
2607 }
2608 }
2609 EXPORT_SYMBOL(md_update_sb);
2610
2611 static int add_bound_rdev(struct md_rdev *rdev)
2612 {
2613 struct mddev *mddev = rdev->mddev;
2614 int err = 0;
2615 bool add_journal = test_bit(Journal, &rdev->flags);
2616
2617 if (!mddev->pers->hot_remove_disk || add_journal) {
2618 /* If there is hot_add_disk but no hot_remove_disk
2619 * then added disks for geometry changes,
2620 * and should be added immediately.
2621 */
2622 super_types[mddev->major_version].
2623 validate_super(mddev, rdev);
2624 if (add_journal)
2625 mddev_suspend(mddev);
2626 err = mddev->pers->hot_add_disk(mddev, rdev);
2627 if (add_journal)
2628 mddev_resume(mddev);
2629 if (err) {
2630 md_kick_rdev_from_array(rdev);
2631 return err;
2632 }
2633 }
2634 sysfs_notify_dirent_safe(rdev->sysfs_state);
2635
2636 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2637 if (mddev->degraded)
2638 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2639 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2640 md_new_event(mddev);
2641 md_wakeup_thread(mddev->thread);
2642 return 0;
2643 }
2644
2645 /* words written to sysfs files may, or may not, be \n terminated.
2646 * We want to accept with case. For this we use cmd_match.
2647 */
2648 static int cmd_match(const char *cmd, const char *str)
2649 {
2650 /* See if cmd, written into a sysfs file, matches
2651 * str. They must either be the same, or cmd can
2652 * have a trailing newline
2653 */
2654 while (*cmd && *str && *cmd == *str) {
2655 cmd++;
2656 str++;
2657 }
2658 if (*cmd == '\n')
2659 cmd++;
2660 if (*str || *cmd)
2661 return 0;
2662 return 1;
2663 }
2664
2665 struct rdev_sysfs_entry {
2666 struct attribute attr;
2667 ssize_t (*show)(struct md_rdev *, char *);
2668 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2669 };
2670
2671 static ssize_t
2672 state_show(struct md_rdev *rdev, char *page)
2673 {
2674 char *sep = ",";
2675 size_t len = 0;
2676 unsigned long flags = READ_ONCE(rdev->flags);
2677
2678 if (test_bit(Faulty, &flags) ||
2679 (!test_bit(ExternalBbl, &flags) &&
2680 rdev->badblocks.unacked_exist))
2681 len += sprintf(page+len, "faulty%s", sep);
2682 if (test_bit(In_sync, &flags))
2683 len += sprintf(page+len, "in_sync%s", sep);
2684 if (test_bit(Journal, &flags))
2685 len += sprintf(page+len, "journal%s", sep);
2686 if (test_bit(WriteMostly, &flags))
2687 len += sprintf(page+len, "write_mostly%s", sep);
2688 if (test_bit(Blocked, &flags) ||
2689 (rdev->badblocks.unacked_exist
2690 && !test_bit(Faulty, &flags)))
2691 len += sprintf(page+len, "blocked%s", sep);
2692 if (!test_bit(Faulty, &flags) &&
2693 !test_bit(Journal, &flags) &&
2694 !test_bit(In_sync, &flags))
2695 len += sprintf(page+len, "spare%s", sep);
2696 if (test_bit(WriteErrorSeen, &flags))
2697 len += sprintf(page+len, "write_error%s", sep);
2698 if (test_bit(WantReplacement, &flags))
2699 len += sprintf(page+len, "want_replacement%s", sep);
2700 if (test_bit(Replacement, &flags))
2701 len += sprintf(page+len, "replacement%s", sep);
2702 if (test_bit(ExternalBbl, &flags))
2703 len += sprintf(page+len, "external_bbl%s", sep);
2704 if (test_bit(FailFast, &flags))
2705 len += sprintf(page+len, "failfast%s", sep);
2706
2707 if (len)
2708 len -= strlen(sep);
2709
2710 return len+sprintf(page+len, "\n");
2711 }
2712
2713 static ssize_t
2714 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2715 {
2716 /* can write
2717 * faulty - simulates an error
2718 * remove - disconnects the device
2719 * writemostly - sets write_mostly
2720 * -writemostly - clears write_mostly
2721 * blocked - sets the Blocked flags
2722 * -blocked - clears the Blocked and possibly simulates an error
2723 * insync - sets Insync providing device isn't active
2724 * -insync - clear Insync for a device with a slot assigned,
2725 * so that it gets rebuilt based on bitmap
2726 * write_error - sets WriteErrorSeen
2727 * -write_error - clears WriteErrorSeen
2728 * {,-}failfast - set/clear FailFast
2729 */
2730 int err = -EINVAL;
2731 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2732 md_error(rdev->mddev, rdev);
2733 if (test_bit(Faulty, &rdev->flags))
2734 err = 0;
2735 else
2736 err = -EBUSY;
2737 } else if (cmd_match(buf, "remove")) {
2738 if (rdev->mddev->pers) {
2739 clear_bit(Blocked, &rdev->flags);
2740 remove_and_add_spares(rdev->mddev, rdev);
2741 }
2742 if (rdev->raid_disk >= 0)
2743 err = -EBUSY;
2744 else {
2745 struct mddev *mddev = rdev->mddev;
2746 err = 0;
2747 if (mddev_is_clustered(mddev))
2748 err = md_cluster_ops->remove_disk(mddev, rdev);
2749
2750 if (err == 0) {
2751 md_kick_rdev_from_array(rdev);
2752 if (mddev->pers) {
2753 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2754 md_wakeup_thread(mddev->thread);
2755 }
2756 md_new_event(mddev);
2757 }
2758 }
2759 } else if (cmd_match(buf, "writemostly")) {
2760 set_bit(WriteMostly, &rdev->flags);
2761 err = 0;
2762 } else if (cmd_match(buf, "-writemostly")) {
2763 clear_bit(WriteMostly, &rdev->flags);
2764 err = 0;
2765 } else if (cmd_match(buf, "blocked")) {
2766 set_bit(Blocked, &rdev->flags);
2767 err = 0;
2768 } else if (cmd_match(buf, "-blocked")) {
2769 if (!test_bit(Faulty, &rdev->flags) &&
2770 !test_bit(ExternalBbl, &rdev->flags) &&
2771 rdev->badblocks.unacked_exist) {
2772 /* metadata handler doesn't understand badblocks,
2773 * so we need to fail the device
2774 */
2775 md_error(rdev->mddev, rdev);
2776 }
2777 clear_bit(Blocked, &rdev->flags);
2778 clear_bit(BlockedBadBlocks, &rdev->flags);
2779 wake_up(&rdev->blocked_wait);
2780 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2781 md_wakeup_thread(rdev->mddev->thread);
2782
2783 err = 0;
2784 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2785 set_bit(In_sync, &rdev->flags);
2786 err = 0;
2787 } else if (cmd_match(buf, "failfast")) {
2788 set_bit(FailFast, &rdev->flags);
2789 err = 0;
2790 } else if (cmd_match(buf, "-failfast")) {
2791 clear_bit(FailFast, &rdev->flags);
2792 err = 0;
2793 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2794 !test_bit(Journal, &rdev->flags)) {
2795 if (rdev->mddev->pers == NULL) {
2796 clear_bit(In_sync, &rdev->flags);
2797 rdev->saved_raid_disk = rdev->raid_disk;
2798 rdev->raid_disk = -1;
2799 err = 0;
2800 }
2801 } else if (cmd_match(buf, "write_error")) {
2802 set_bit(WriteErrorSeen, &rdev->flags);
2803 err = 0;
2804 } else if (cmd_match(buf, "-write_error")) {
2805 clear_bit(WriteErrorSeen, &rdev->flags);
2806 err = 0;
2807 } else if (cmd_match(buf, "want_replacement")) {
2808 /* Any non-spare device that is not a replacement can
2809 * become want_replacement at any time, but we then need to
2810 * check if recovery is needed.
2811 */
2812 if (rdev->raid_disk >= 0 &&
2813 !test_bit(Journal, &rdev->flags) &&
2814 !test_bit(Replacement, &rdev->flags))
2815 set_bit(WantReplacement, &rdev->flags);
2816 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2817 md_wakeup_thread(rdev->mddev->thread);
2818 err = 0;
2819 } else if (cmd_match(buf, "-want_replacement")) {
2820 /* Clearing 'want_replacement' is always allowed.
2821 * Once replacements starts it is too late though.
2822 */
2823 err = 0;
2824 clear_bit(WantReplacement, &rdev->flags);
2825 } else if (cmd_match(buf, "replacement")) {
2826 /* Can only set a device as a replacement when array has not
2827 * yet been started. Once running, replacement is automatic
2828 * from spares, or by assigning 'slot'.
2829 */
2830 if (rdev->mddev->pers)
2831 err = -EBUSY;
2832 else {
2833 set_bit(Replacement, &rdev->flags);
2834 err = 0;
2835 }
2836 } else if (cmd_match(buf, "-replacement")) {
2837 /* Similarly, can only clear Replacement before start */
2838 if (rdev->mddev->pers)
2839 err = -EBUSY;
2840 else {
2841 clear_bit(Replacement, &rdev->flags);
2842 err = 0;
2843 }
2844 } else if (cmd_match(buf, "re-add")) {
2845 if (!rdev->mddev->pers)
2846 err = -EINVAL;
2847 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
2848 rdev->saved_raid_disk >= 0) {
2849 /* clear_bit is performed _after_ all the devices
2850 * have their local Faulty bit cleared. If any writes
2851 * happen in the meantime in the local node, they
2852 * will land in the local bitmap, which will be synced
2853 * by this node eventually
2854 */
2855 if (!mddev_is_clustered(rdev->mddev) ||
2856 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2857 clear_bit(Faulty, &rdev->flags);
2858 err = add_bound_rdev(rdev);
2859 }
2860 } else
2861 err = -EBUSY;
2862 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
2863 set_bit(ExternalBbl, &rdev->flags);
2864 rdev->badblocks.shift = 0;
2865 err = 0;
2866 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
2867 clear_bit(ExternalBbl, &rdev->flags);
2868 err = 0;
2869 }
2870 if (!err)
2871 sysfs_notify_dirent_safe(rdev->sysfs_state);
2872 return err ? err : len;
2873 }
2874 static struct rdev_sysfs_entry rdev_state =
2875 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2876
2877 static ssize_t
2878 errors_show(struct md_rdev *rdev, char *page)
2879 {
2880 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2881 }
2882
2883 static ssize_t
2884 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2885 {
2886 unsigned int n;
2887 int rv;
2888
2889 rv = kstrtouint(buf, 10, &n);
2890 if (rv < 0)
2891 return rv;
2892 atomic_set(&rdev->corrected_errors, n);
2893 return len;
2894 }
2895 static struct rdev_sysfs_entry rdev_errors =
2896 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2897
2898 static ssize_t
2899 slot_show(struct md_rdev *rdev, char *page)
2900 {
2901 if (test_bit(Journal, &rdev->flags))
2902 return sprintf(page, "journal\n");
2903 else if (rdev->raid_disk < 0)
2904 return sprintf(page, "none\n");
2905 else
2906 return sprintf(page, "%d\n", rdev->raid_disk);
2907 }
2908
2909 static ssize_t
2910 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2911 {
2912 int slot;
2913 int err;
2914
2915 if (test_bit(Journal, &rdev->flags))
2916 return -EBUSY;
2917 if (strncmp(buf, "none", 4)==0)
2918 slot = -1;
2919 else {
2920 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2921 if (err < 0)
2922 return err;
2923 }
2924 if (rdev->mddev->pers && slot == -1) {
2925 /* Setting 'slot' on an active array requires also
2926 * updating the 'rd%d' link, and communicating
2927 * with the personality with ->hot_*_disk.
2928 * For now we only support removing
2929 * failed/spare devices. This normally happens automatically,
2930 * but not when the metadata is externally managed.
2931 */
2932 if (rdev->raid_disk == -1)
2933 return -EEXIST;
2934 /* personality does all needed checks */
2935 if (rdev->mddev->pers->hot_remove_disk == NULL)
2936 return -EINVAL;
2937 clear_bit(Blocked, &rdev->flags);
2938 remove_and_add_spares(rdev->mddev, rdev);
2939 if (rdev->raid_disk >= 0)
2940 return -EBUSY;
2941 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2942 md_wakeup_thread(rdev->mddev->thread);
2943 } else if (rdev->mddev->pers) {
2944 /* Activating a spare .. or possibly reactivating
2945 * if we ever get bitmaps working here.
2946 */
2947 int err;
2948
2949 if (rdev->raid_disk != -1)
2950 return -EBUSY;
2951
2952 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2953 return -EBUSY;
2954
2955 if (rdev->mddev->pers->hot_add_disk == NULL)
2956 return -EINVAL;
2957
2958 if (slot >= rdev->mddev->raid_disks &&
2959 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2960 return -ENOSPC;
2961
2962 rdev->raid_disk = slot;
2963 if (test_bit(In_sync, &rdev->flags))
2964 rdev->saved_raid_disk = slot;
2965 else
2966 rdev->saved_raid_disk = -1;
2967 clear_bit(In_sync, &rdev->flags);
2968 clear_bit(Bitmap_sync, &rdev->flags);
2969 err = rdev->mddev->pers->
2970 hot_add_disk(rdev->mddev, rdev);
2971 if (err) {
2972 rdev->raid_disk = -1;
2973 return err;
2974 } else
2975 sysfs_notify_dirent_safe(rdev->sysfs_state);
2976 if (sysfs_link_rdev(rdev->mddev, rdev))
2977 /* failure here is OK */;
2978 /* don't wakeup anyone, leave that to userspace. */
2979 } else {
2980 if (slot >= rdev->mddev->raid_disks &&
2981 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2982 return -ENOSPC;
2983 rdev->raid_disk = slot;
2984 /* assume it is working */
2985 clear_bit(Faulty, &rdev->flags);
2986 clear_bit(WriteMostly, &rdev->flags);
2987 set_bit(In_sync, &rdev->flags);
2988 sysfs_notify_dirent_safe(rdev->sysfs_state);
2989 }
2990 return len;
2991 }
2992
2993 static struct rdev_sysfs_entry rdev_slot =
2994 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2995
2996 static ssize_t
2997 offset_show(struct md_rdev *rdev, char *page)
2998 {
2999 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3000 }
3001
3002 static ssize_t
3003 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3004 {
3005 unsigned long long offset;
3006 if (kstrtoull(buf, 10, &offset) < 0)
3007 return -EINVAL;
3008 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3009 return -EBUSY;
3010 if (rdev->sectors && rdev->mddev->external)
3011 /* Must set offset before size, so overlap checks
3012 * can be sane */
3013 return -EBUSY;
3014 rdev->data_offset = offset;
3015 rdev->new_data_offset = offset;
3016 return len;
3017 }
3018
3019 static struct rdev_sysfs_entry rdev_offset =
3020 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3021
3022 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3023 {
3024 return sprintf(page, "%llu\n",
3025 (unsigned long long)rdev->new_data_offset);
3026 }
3027
3028 static ssize_t new_offset_store(struct md_rdev *rdev,
3029 const char *buf, size_t len)
3030 {
3031 unsigned long long new_offset;
3032 struct mddev *mddev = rdev->mddev;
3033
3034 if (kstrtoull(buf, 10, &new_offset) < 0)
3035 return -EINVAL;
3036
3037 if (mddev->sync_thread ||
3038 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3039 return -EBUSY;
3040 if (new_offset == rdev->data_offset)
3041 /* reset is always permitted */
3042 ;
3043 else if (new_offset > rdev->data_offset) {
3044 /* must not push array size beyond rdev_sectors */
3045 if (new_offset - rdev->data_offset
3046 + mddev->dev_sectors > rdev->sectors)
3047 return -E2BIG;
3048 }
3049 /* Metadata worries about other space details. */
3050
3051 /* decreasing the offset is inconsistent with a backwards
3052 * reshape.
3053 */
3054 if (new_offset < rdev->data_offset &&
3055 mddev->reshape_backwards)
3056 return -EINVAL;
3057 /* Increasing offset is inconsistent with forwards
3058 * reshape. reshape_direction should be set to
3059 * 'backwards' first.
3060 */
3061 if (new_offset > rdev->data_offset &&
3062 !mddev->reshape_backwards)
3063 return -EINVAL;
3064
3065 if (mddev->pers && mddev->persistent &&
3066 !super_types[mddev->major_version]
3067 .allow_new_offset(rdev, new_offset))
3068 return -E2BIG;
3069 rdev->new_data_offset = new_offset;
3070 if (new_offset > rdev->data_offset)
3071 mddev->reshape_backwards = 1;
3072 else if (new_offset < rdev->data_offset)
3073 mddev->reshape_backwards = 0;
3074
3075 return len;
3076 }
3077 static struct rdev_sysfs_entry rdev_new_offset =
3078 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3079
3080 static ssize_t
3081 rdev_size_show(struct md_rdev *rdev, char *page)
3082 {
3083 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3084 }
3085
3086 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3087 {
3088 /* check if two start/length pairs overlap */
3089 if (s1+l1 <= s2)
3090 return 0;
3091 if (s2+l2 <= s1)
3092 return 0;
3093 return 1;
3094 }
3095
3096 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3097 {
3098 unsigned long long blocks;
3099 sector_t new;
3100
3101 if (kstrtoull(buf, 10, &blocks) < 0)
3102 return -EINVAL;
3103
3104 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3105 return -EINVAL; /* sector conversion overflow */
3106
3107 new = blocks * 2;
3108 if (new != blocks * 2)
3109 return -EINVAL; /* unsigned long long to sector_t overflow */
3110
3111 *sectors = new;
3112 return 0;
3113 }
3114
3115 static ssize_t
3116 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3117 {
3118 struct mddev *my_mddev = rdev->mddev;
3119 sector_t oldsectors = rdev->sectors;
3120 sector_t sectors;
3121
3122 if (test_bit(Journal, &rdev->flags))
3123 return -EBUSY;
3124 if (strict_blocks_to_sectors(buf, &sectors) < 0)
3125 return -EINVAL;
3126 if (rdev->data_offset != rdev->new_data_offset)
3127 return -EINVAL; /* too confusing */
3128 if (my_mddev->pers && rdev->raid_disk >= 0) {
3129 if (my_mddev->persistent) {
3130 sectors = super_types[my_mddev->major_version].
3131 rdev_size_change(rdev, sectors);
3132 if (!sectors)
3133 return -EBUSY;
3134 } else if (!sectors)
3135 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3136 rdev->data_offset;
3137 if (!my_mddev->pers->resize)
3138 /* Cannot change size for RAID0 or Linear etc */
3139 return -EINVAL;
3140 }
3141 if (sectors < my_mddev->dev_sectors)
3142 return -EINVAL; /* component must fit device */
3143
3144 rdev->sectors = sectors;
3145 if (sectors > oldsectors && my_mddev->external) {
3146 /* Need to check that all other rdevs with the same
3147 * ->bdev do not overlap. 'rcu' is sufficient to walk
3148 * the rdev lists safely.
3149 * This check does not provide a hard guarantee, it
3150 * just helps avoid dangerous mistakes.
3151 */
3152 struct mddev *mddev;
3153 int overlap = 0;
3154 struct list_head *tmp;
3155
3156 rcu_read_lock();
3157 for_each_mddev(mddev, tmp) {
3158 struct md_rdev *rdev2;
3159
3160 rdev_for_each(rdev2, mddev)
3161 if (rdev->bdev == rdev2->bdev &&
3162 rdev != rdev2 &&
3163 overlaps(rdev->data_offset, rdev->sectors,
3164 rdev2->data_offset,
3165 rdev2->sectors)) {
3166 overlap = 1;
3167 break;
3168 }
3169 if (overlap) {
3170 mddev_put(mddev);
3171 break;
3172 }
3173 }
3174 rcu_read_unlock();
3175 if (overlap) {
3176 /* Someone else could have slipped in a size
3177 * change here, but doing so is just silly.
3178 * We put oldsectors back because we *know* it is
3179 * safe, and trust userspace not to race with
3180 * itself
3181 */
3182 rdev->sectors = oldsectors;
3183 return -EBUSY;
3184 }
3185 }
3186 return len;
3187 }
3188
3189 static struct rdev_sysfs_entry rdev_size =
3190 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3191
3192 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3193 {
3194 unsigned long long recovery_start = rdev->recovery_offset;
3195
3196 if (test_bit(In_sync, &rdev->flags) ||
3197 recovery_start == MaxSector)
3198 return sprintf(page, "none\n");
3199
3200 return sprintf(page, "%llu\n", recovery_start);
3201 }
3202
3203 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3204 {
3205 unsigned long long recovery_start;
3206
3207 if (cmd_match(buf, "none"))
3208 recovery_start = MaxSector;
3209 else if (kstrtoull(buf, 10, &recovery_start))
3210 return -EINVAL;
3211
3212 if (rdev->mddev->pers &&
3213 rdev->raid_disk >= 0)
3214 return -EBUSY;
3215
3216 rdev->recovery_offset = recovery_start;
3217 if (recovery_start == MaxSector)
3218 set_bit(In_sync, &rdev->flags);
3219 else
3220 clear_bit(In_sync, &rdev->flags);
3221 return len;
3222 }
3223
3224 static struct rdev_sysfs_entry rdev_recovery_start =
3225 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3226
3227 /* sysfs access to bad-blocks list.
3228 * We present two files.
3229 * 'bad-blocks' lists sector numbers and lengths of ranges that
3230 * are recorded as bad. The list is truncated to fit within
3231 * the one-page limit of sysfs.
3232 * Writing "sector length" to this file adds an acknowledged
3233 * bad block list.
3234 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3235 * been acknowledged. Writing to this file adds bad blocks
3236 * without acknowledging them. This is largely for testing.
3237 */
3238 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3239 {
3240 return badblocks_show(&rdev->badblocks, page, 0);
3241 }
3242 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3243 {
3244 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3245 /* Maybe that ack was all we needed */
3246 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3247 wake_up(&rdev->blocked_wait);
3248 return rv;
3249 }
3250 static struct rdev_sysfs_entry rdev_bad_blocks =
3251 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3252
3253 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3254 {
3255 return badblocks_show(&rdev->badblocks, page, 1);
3256 }
3257 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3258 {
3259 return badblocks_store(&rdev->badblocks, page, len, 1);
3260 }
3261 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3262 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3263
3264 static ssize_t
3265 ppl_sector_show(struct md_rdev *rdev, char *page)
3266 {
3267 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3268 }
3269
3270 static ssize_t
3271 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3272 {
3273 unsigned long long sector;
3274
3275 if (kstrtoull(buf, 10, &sector) < 0)
3276 return -EINVAL;
3277 if (sector != (sector_t)sector)
3278 return -EINVAL;
3279
3280 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3281 rdev->raid_disk >= 0)
3282 return -EBUSY;
3283
3284 if (rdev->mddev->persistent) {
3285 if (rdev->mddev->major_version == 0)
3286 return -EINVAL;
3287 if ((sector > rdev->sb_start &&
3288 sector - rdev->sb_start > S16_MAX) ||
3289 (sector < rdev->sb_start &&
3290 rdev->sb_start - sector > -S16_MIN))
3291 return -EINVAL;
3292 rdev->ppl.offset = sector - rdev->sb_start;
3293 } else if (!rdev->mddev->external) {
3294 return -EBUSY;
3295 }
3296 rdev->ppl.sector = sector;
3297 return len;
3298 }
3299
3300 static struct rdev_sysfs_entry rdev_ppl_sector =
3301 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3302
3303 static ssize_t
3304 ppl_size_show(struct md_rdev *rdev, char *page)
3305 {
3306 return sprintf(page, "%u\n", rdev->ppl.size);
3307 }
3308
3309 static ssize_t
3310 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3311 {
3312 unsigned int size;
3313
3314 if (kstrtouint(buf, 10, &size) < 0)
3315 return -EINVAL;
3316
3317 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3318 rdev->raid_disk >= 0)
3319 return -EBUSY;
3320
3321 if (rdev->mddev->persistent) {
3322 if (rdev->mddev->major_version == 0)
3323 return -EINVAL;
3324 if (size > U16_MAX)
3325 return -EINVAL;
3326 } else if (!rdev->mddev->external) {
3327 return -EBUSY;
3328 }
3329 rdev->ppl.size = size;
3330 return len;
3331 }
3332
3333 static struct rdev_sysfs_entry rdev_ppl_size =
3334 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3335
3336 static struct attribute *rdev_default_attrs[] = {
3337 &rdev_state.attr,
3338 &rdev_errors.attr,
3339 &rdev_slot.attr,
3340 &rdev_offset.attr,
3341 &rdev_new_offset.attr,
3342 &rdev_size.attr,
3343 &rdev_recovery_start.attr,
3344 &rdev_bad_blocks.attr,
3345 &rdev_unack_bad_blocks.attr,
3346 &rdev_ppl_sector.attr,
3347 &rdev_ppl_size.attr,
3348 NULL,
3349 };
3350 static ssize_t
3351 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3352 {
3353 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3354 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3355
3356 if (!entry->show)
3357 return -EIO;
3358 if (!rdev->mddev)
3359 return -EBUSY;
3360 return entry->show(rdev, page);
3361 }
3362
3363 static ssize_t
3364 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3365 const char *page, size_t length)
3366 {
3367 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3368 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3369 ssize_t rv;
3370 struct mddev *mddev = rdev->mddev;
3371
3372 if (!entry->store)
3373 return -EIO;
3374 if (!capable(CAP_SYS_ADMIN))
3375 return -EACCES;
3376 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3377 if (!rv) {
3378 if (rdev->mddev == NULL)
3379 rv = -ENODEV;
3380 else
3381 rv = entry->store(rdev, page, length);
3382 mddev_unlock(mddev);
3383 }
3384 return rv;
3385 }
3386
3387 static void rdev_free(struct kobject *ko)
3388 {
3389 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3390 kfree(rdev);
3391 }
3392 static const struct sysfs_ops rdev_sysfs_ops = {
3393 .show = rdev_attr_show,
3394 .store = rdev_attr_store,
3395 };
3396 static struct kobj_type rdev_ktype = {
3397 .release = rdev_free,
3398 .sysfs_ops = &rdev_sysfs_ops,
3399 .default_attrs = rdev_default_attrs,
3400 };
3401
3402 int md_rdev_init(struct md_rdev *rdev)
3403 {
3404 rdev->desc_nr = -1;
3405 rdev->saved_raid_disk = -1;
3406 rdev->raid_disk = -1;
3407 rdev->flags = 0;
3408 rdev->data_offset = 0;
3409 rdev->new_data_offset = 0;
3410 rdev->sb_events = 0;
3411 rdev->last_read_error = 0;
3412 rdev->sb_loaded = 0;
3413 rdev->bb_page = NULL;
3414 atomic_set(&rdev->nr_pending, 0);
3415 atomic_set(&rdev->read_errors, 0);
3416 atomic_set(&rdev->corrected_errors, 0);
3417
3418 INIT_LIST_HEAD(&rdev->same_set);
3419 init_waitqueue_head(&rdev->blocked_wait);
3420
3421 /* Add space to store bad block list.
3422 * This reserves the space even on arrays where it cannot
3423 * be used - I wonder if that matters
3424 */
3425 return badblocks_init(&rdev->badblocks, 0);
3426 }
3427 EXPORT_SYMBOL_GPL(md_rdev_init);
3428 /*
3429 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3430 *
3431 * mark the device faulty if:
3432 *
3433 * - the device is nonexistent (zero size)
3434 * - the device has no valid superblock
3435 *
3436 * a faulty rdev _never_ has rdev->sb set.
3437 */
3438 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3439 {
3440 char b[BDEVNAME_SIZE];
3441 int err;
3442 struct md_rdev *rdev;
3443 sector_t size;
3444
3445 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3446 if (!rdev)
3447 return ERR_PTR(-ENOMEM);
3448
3449 err = md_rdev_init(rdev);
3450 if (err)
3451 goto abort_free;
3452 err = alloc_disk_sb(rdev);
3453 if (err)
3454 goto abort_free;
3455
3456 err = lock_rdev(rdev, newdev, super_format == -2);
3457 if (err)
3458 goto abort_free;
3459
3460 kobject_init(&rdev->kobj, &rdev_ktype);
3461
3462 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3463 if (!size) {
3464 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3465 bdevname(rdev->bdev,b));
3466 err = -EINVAL;
3467 goto abort_free;
3468 }
3469
3470 if (super_format >= 0) {
3471 err = super_types[super_format].
3472 load_super(rdev, NULL, super_minor);
3473 if (err == -EINVAL) {
3474 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3475 bdevname(rdev->bdev,b),
3476 super_format, super_minor);
3477 goto abort_free;
3478 }
3479 if (err < 0) {
3480 pr_warn("md: could not read %s's sb, not importing!\n",
3481 bdevname(rdev->bdev,b));
3482 goto abort_free;
3483 }
3484 }
3485
3486 return rdev;
3487
3488 abort_free:
3489 if (rdev->bdev)
3490 unlock_rdev(rdev);
3491 md_rdev_clear(rdev);
3492 kfree(rdev);
3493 return ERR_PTR(err);
3494 }
3495
3496 /*
3497 * Check a full RAID array for plausibility
3498 */
3499
3500 static void analyze_sbs(struct mddev *mddev)
3501 {
3502 int i;
3503 struct md_rdev *rdev, *freshest, *tmp;
3504 char b[BDEVNAME_SIZE];
3505
3506 freshest = NULL;
3507 rdev_for_each_safe(rdev, tmp, mddev)
3508 switch (super_types[mddev->major_version].
3509 load_super(rdev, freshest, mddev->minor_version)) {
3510 case 1:
3511 freshest = rdev;
3512 break;
3513 case 0:
3514 break;
3515 default:
3516 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3517 bdevname(rdev->bdev,b));
3518 md_kick_rdev_from_array(rdev);
3519 }
3520
3521 super_types[mddev->major_version].
3522 validate_super(mddev, freshest);
3523
3524 i = 0;
3525 rdev_for_each_safe(rdev, tmp, mddev) {
3526 if (mddev->max_disks &&
3527 (rdev->desc_nr >= mddev->max_disks ||
3528 i > mddev->max_disks)) {
3529 pr_warn("md: %s: %s: only %d devices permitted\n",
3530 mdname(mddev), bdevname(rdev->bdev, b),
3531 mddev->max_disks);
3532 md_kick_rdev_from_array(rdev);
3533 continue;
3534 }
3535 if (rdev != freshest) {
3536 if (super_types[mddev->major_version].
3537 validate_super(mddev, rdev)) {
3538 pr_warn("md: kicking non-fresh %s from array!\n",
3539 bdevname(rdev->bdev,b));
3540 md_kick_rdev_from_array(rdev);
3541 continue;
3542 }
3543 }
3544 if (mddev->level == LEVEL_MULTIPATH) {
3545 rdev->desc_nr = i++;
3546 rdev->raid_disk = rdev->desc_nr;
3547 set_bit(In_sync, &rdev->flags);
3548 } else if (rdev->raid_disk >=
3549 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3550 !test_bit(Journal, &rdev->flags)) {
3551 rdev->raid_disk = -1;
3552 clear_bit(In_sync, &rdev->flags);
3553 }
3554 }
3555 }
3556
3557 /* Read a fixed-point number.
3558 * Numbers in sysfs attributes should be in "standard" units where
3559 * possible, so time should be in seconds.
3560 * However we internally use a a much smaller unit such as
3561 * milliseconds or jiffies.
3562 * This function takes a decimal number with a possible fractional
3563 * component, and produces an integer which is the result of
3564 * multiplying that number by 10^'scale'.
3565 * all without any floating-point arithmetic.
3566 */
3567 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3568 {
3569 unsigned long result = 0;
3570 long decimals = -1;
3571 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3572 if (*cp == '.')
3573 decimals = 0;
3574 else if (decimals < scale) {
3575 unsigned int value;
3576 value = *cp - '0';
3577 result = result * 10 + value;
3578 if (decimals >= 0)
3579 decimals++;
3580 }
3581 cp++;
3582 }
3583 if (*cp == '\n')
3584 cp++;
3585 if (*cp)
3586 return -EINVAL;
3587 if (decimals < 0)
3588 decimals = 0;
3589 while (decimals < scale) {
3590 result *= 10;
3591 decimals ++;
3592 }
3593 *res = result;
3594 return 0;
3595 }
3596
3597 static ssize_t
3598 safe_delay_show(struct mddev *mddev, char *page)
3599 {
3600 int msec = (mddev->safemode_delay*1000)/HZ;
3601 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3602 }
3603 static ssize_t
3604 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3605 {
3606 unsigned long msec;
3607
3608 if (mddev_is_clustered(mddev)) {
3609 pr_warn("md: Safemode is disabled for clustered mode\n");
3610 return -EINVAL;
3611 }
3612
3613 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3614 return -EINVAL;
3615 if (msec == 0)
3616 mddev->safemode_delay = 0;
3617 else {
3618 unsigned long old_delay = mddev->safemode_delay;
3619 unsigned long new_delay = (msec*HZ)/1000;
3620
3621 if (new_delay == 0)
3622 new_delay = 1;
3623 mddev->safemode_delay = new_delay;
3624 if (new_delay < old_delay || old_delay == 0)
3625 mod_timer(&mddev->safemode_timer, jiffies+1);
3626 }
3627 return len;
3628 }
3629 static struct md_sysfs_entry md_safe_delay =
3630 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3631
3632 static ssize_t
3633 level_show(struct mddev *mddev, char *page)
3634 {
3635 struct md_personality *p;
3636 int ret;
3637 spin_lock(&mddev->lock);
3638 p = mddev->pers;
3639 if (p)
3640 ret = sprintf(page, "%s\n", p->name);
3641 else if (mddev->clevel[0])
3642 ret = sprintf(page, "%s\n", mddev->clevel);
3643 else if (mddev->level != LEVEL_NONE)
3644 ret = sprintf(page, "%d\n", mddev->level);
3645 else
3646 ret = 0;
3647 spin_unlock(&mddev->lock);
3648 return ret;
3649 }
3650
3651 static ssize_t
3652 level_store(struct mddev *mddev, const char *buf, size_t len)
3653 {
3654 char clevel[16];
3655 ssize_t rv;
3656 size_t slen = len;
3657 struct md_personality *pers, *oldpers;
3658 long level;
3659 void *priv, *oldpriv;
3660 struct md_rdev *rdev;
3661
3662 if (slen == 0 || slen >= sizeof(clevel))
3663 return -EINVAL;
3664
3665 rv = mddev_lock(mddev);
3666 if (rv)
3667 return rv;
3668
3669 if (mddev->pers == NULL) {
3670 strncpy(mddev->clevel, buf, slen);
3671 if (mddev->clevel[slen-1] == '\n')
3672 slen--;
3673 mddev->clevel[slen] = 0;
3674 mddev->level = LEVEL_NONE;
3675 rv = len;
3676 goto out_unlock;
3677 }
3678 rv = -EROFS;
3679 if (mddev->ro)
3680 goto out_unlock;
3681
3682 /* request to change the personality. Need to ensure:
3683 * - array is not engaged in resync/recovery/reshape
3684 * - old personality can be suspended
3685 * - new personality will access other array.
3686 */
3687
3688 rv = -EBUSY;
3689 if (mddev->sync_thread ||
3690 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3691 mddev->reshape_position != MaxSector ||
3692 mddev->sysfs_active)
3693 goto out_unlock;
3694
3695 rv = -EINVAL;
3696 if (!mddev->pers->quiesce) {
3697 pr_warn("md: %s: %s does not support online personality change\n",
3698 mdname(mddev), mddev->pers->name);
3699 goto out_unlock;
3700 }
3701
3702 /* Now find the new personality */
3703 strncpy(clevel, buf, slen);
3704 if (clevel[slen-1] == '\n')
3705 slen--;
3706 clevel[slen] = 0;
3707 if (kstrtol(clevel, 10, &level))
3708 level = LEVEL_NONE;
3709
3710 if (request_module("md-%s", clevel) != 0)
3711 request_module("md-level-%s", clevel);
3712 spin_lock(&pers_lock);
3713 pers = find_pers(level, clevel);
3714 if (!pers || !try_module_get(pers->owner)) {
3715 spin_unlock(&pers_lock);
3716 pr_warn("md: personality %s not loaded\n", clevel);
3717 rv = -EINVAL;
3718 goto out_unlock;
3719 }
3720 spin_unlock(&pers_lock);
3721
3722 if (pers == mddev->pers) {
3723 /* Nothing to do! */
3724 module_put(pers->owner);
3725 rv = len;
3726 goto out_unlock;
3727 }
3728 if (!pers->takeover) {
3729 module_put(pers->owner);
3730 pr_warn("md: %s: %s does not support personality takeover\n",
3731 mdname(mddev), clevel);
3732 rv = -EINVAL;
3733 goto out_unlock;
3734 }
3735
3736 rdev_for_each(rdev, mddev)
3737 rdev->new_raid_disk = rdev->raid_disk;
3738
3739 /* ->takeover must set new_* and/or delta_disks
3740 * if it succeeds, and may set them when it fails.
3741 */
3742 priv = pers->takeover(mddev);
3743 if (IS_ERR(priv)) {
3744 mddev->new_level = mddev->level;
3745 mddev->new_layout = mddev->layout;
3746 mddev->new_chunk_sectors = mddev->chunk_sectors;
3747 mddev->raid_disks -= mddev->delta_disks;
3748 mddev->delta_disks = 0;
3749 mddev->reshape_backwards = 0;
3750 module_put(pers->owner);
3751 pr_warn("md: %s: %s would not accept array\n",
3752 mdname(mddev), clevel);
3753 rv = PTR_ERR(priv);
3754 goto out_unlock;
3755 }
3756
3757 /* Looks like we have a winner */
3758 mddev_suspend(mddev);
3759 mddev_detach(mddev);
3760
3761 spin_lock(&mddev->lock);
3762 oldpers = mddev->pers;
3763 oldpriv = mddev->private;
3764 mddev->pers = pers;
3765 mddev->private = priv;
3766 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3767 mddev->level = mddev->new_level;
3768 mddev->layout = mddev->new_layout;
3769 mddev->chunk_sectors = mddev->new_chunk_sectors;
3770 mddev->delta_disks = 0;
3771 mddev->reshape_backwards = 0;
3772 mddev->degraded = 0;
3773 spin_unlock(&mddev->lock);
3774
3775 if (oldpers->sync_request == NULL &&
3776 mddev->external) {
3777 /* We are converting from a no-redundancy array
3778 * to a redundancy array and metadata is managed
3779 * externally so we need to be sure that writes
3780 * won't block due to a need to transition
3781 * clean->dirty
3782 * until external management is started.
3783 */
3784 mddev->in_sync = 0;
3785 mddev->safemode_delay = 0;
3786 mddev->safemode = 0;
3787 }
3788
3789 oldpers->free(mddev, oldpriv);
3790
3791 if (oldpers->sync_request == NULL &&
3792 pers->sync_request != NULL) {
3793 /* need to add the md_redundancy_group */
3794 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3795 pr_warn("md: cannot register extra attributes for %s\n",
3796 mdname(mddev));
3797 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3798 }
3799 if (oldpers->sync_request != NULL &&
3800 pers->sync_request == NULL) {
3801 /* need to remove the md_redundancy_group */
3802 if (mddev->to_remove == NULL)
3803 mddev->to_remove = &md_redundancy_group;
3804 }
3805
3806 module_put(oldpers->owner);
3807
3808 rdev_for_each(rdev, mddev) {
3809 if (rdev->raid_disk < 0)
3810 continue;
3811 if (rdev->new_raid_disk >= mddev->raid_disks)
3812 rdev->new_raid_disk = -1;
3813 if (rdev->new_raid_disk == rdev->raid_disk)
3814 continue;
3815 sysfs_unlink_rdev(mddev, rdev);
3816 }
3817 rdev_for_each(rdev, mddev) {
3818 if (rdev->raid_disk < 0)
3819 continue;
3820 if (rdev->new_raid_disk == rdev->raid_disk)
3821 continue;
3822 rdev->raid_disk = rdev->new_raid_disk;
3823 if (rdev->raid_disk < 0)
3824 clear_bit(In_sync, &rdev->flags);
3825 else {
3826 if (sysfs_link_rdev(mddev, rdev))
3827 pr_warn("md: cannot register rd%d for %s after level change\n",
3828 rdev->raid_disk, mdname(mddev));
3829 }
3830 }
3831
3832 if (pers->sync_request == NULL) {
3833 /* this is now an array without redundancy, so
3834 * it must always be in_sync
3835 */
3836 mddev->in_sync = 1;
3837 del_timer_sync(&mddev->safemode_timer);
3838 }
3839 blk_set_stacking_limits(&mddev->queue->limits);
3840 pers->run(mddev);
3841 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3842 mddev_resume(mddev);
3843 if (!mddev->thread)
3844 md_update_sb(mddev, 1);
3845 sysfs_notify(&mddev->kobj, NULL, "level");
3846 md_new_event(mddev);
3847 rv = len;
3848 out_unlock:
3849 mddev_unlock(mddev);
3850 return rv;
3851 }
3852
3853 static struct md_sysfs_entry md_level =
3854 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3855
3856 static ssize_t
3857 layout_show(struct mddev *mddev, char *page)
3858 {
3859 /* just a number, not meaningful for all levels */
3860 if (mddev->reshape_position != MaxSector &&
3861 mddev->layout != mddev->new_layout)
3862 return sprintf(page, "%d (%d)\n",
3863 mddev->new_layout, mddev->layout);
3864 return sprintf(page, "%d\n", mddev->layout);
3865 }
3866
3867 static ssize_t
3868 layout_store(struct mddev *mddev, const char *buf, size_t len)
3869 {
3870 unsigned int n;
3871 int err;
3872
3873 err = kstrtouint(buf, 10, &n);
3874 if (err < 0)
3875 return err;
3876 err = mddev_lock(mddev);
3877 if (err)
3878 return err;
3879
3880 if (mddev->pers) {
3881 if (mddev->pers->check_reshape == NULL)
3882 err = -EBUSY;
3883 else if (mddev->ro)
3884 err = -EROFS;
3885 else {
3886 mddev->new_layout = n;
3887 err = mddev->pers->check_reshape(mddev);
3888 if (err)
3889 mddev->new_layout = mddev->layout;
3890 }
3891 } else {
3892 mddev->new_layout = n;
3893 if (mddev->reshape_position == MaxSector)
3894 mddev->layout = n;
3895 }
3896 mddev_unlock(mddev);
3897 return err ?: len;
3898 }
3899 static struct md_sysfs_entry md_layout =
3900 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3901
3902 static ssize_t
3903 raid_disks_show(struct mddev *mddev, char *page)
3904 {
3905 if (mddev->raid_disks == 0)
3906 return 0;
3907 if (mddev->reshape_position != MaxSector &&
3908 mddev->delta_disks != 0)
3909 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3910 mddev->raid_disks - mddev->delta_disks);
3911 return sprintf(page, "%d\n", mddev->raid_disks);
3912 }
3913
3914 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3915
3916 static ssize_t
3917 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3918 {
3919 unsigned int n;
3920 int err;
3921
3922 err = kstrtouint(buf, 10, &n);
3923 if (err < 0)
3924 return err;
3925
3926 err = mddev_lock(mddev);
3927 if (err)
3928 return err;
3929 if (mddev->pers)
3930 err = update_raid_disks(mddev, n);
3931 else if (mddev->reshape_position != MaxSector) {
3932 struct md_rdev *rdev;
3933 int olddisks = mddev->raid_disks - mddev->delta_disks;
3934
3935 err = -EINVAL;
3936 rdev_for_each(rdev, mddev) {
3937 if (olddisks < n &&
3938 rdev->data_offset < rdev->new_data_offset)
3939 goto out_unlock;
3940 if (olddisks > n &&
3941 rdev->data_offset > rdev->new_data_offset)
3942 goto out_unlock;
3943 }
3944 err = 0;
3945 mddev->delta_disks = n - olddisks;
3946 mddev->raid_disks = n;
3947 mddev->reshape_backwards = (mddev->delta_disks < 0);
3948 } else
3949 mddev->raid_disks = n;
3950 out_unlock:
3951 mddev_unlock(mddev);
3952 return err ? err : len;
3953 }
3954 static struct md_sysfs_entry md_raid_disks =
3955 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3956
3957 static ssize_t
3958 chunk_size_show(struct mddev *mddev, char *page)
3959 {
3960 if (mddev->reshape_position != MaxSector &&
3961 mddev->chunk_sectors != mddev->new_chunk_sectors)
3962 return sprintf(page, "%d (%d)\n",
3963 mddev->new_chunk_sectors << 9,
3964 mddev->chunk_sectors << 9);
3965 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3966 }
3967
3968 static ssize_t
3969 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3970 {
3971 unsigned long n;
3972 int err;
3973
3974 err = kstrtoul(buf, 10, &n);
3975 if (err < 0)
3976 return err;
3977
3978 err = mddev_lock(mddev);
3979 if (err)
3980 return err;
3981 if (mddev->pers) {
3982 if (mddev->pers->check_reshape == NULL)
3983 err = -EBUSY;
3984 else if (mddev->ro)
3985 err = -EROFS;
3986 else {
3987 mddev->new_chunk_sectors = n >> 9;
3988 err = mddev->pers->check_reshape(mddev);
3989 if (err)
3990 mddev->new_chunk_sectors = mddev->chunk_sectors;
3991 }
3992 } else {
3993 mddev->new_chunk_sectors = n >> 9;
3994 if (mddev->reshape_position == MaxSector)
3995 mddev->chunk_sectors = n >> 9;
3996 }
3997 mddev_unlock(mddev);
3998 return err ?: len;
3999 }
4000 static struct md_sysfs_entry md_chunk_size =
4001 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4002
4003 static ssize_t
4004 resync_start_show(struct mddev *mddev, char *page)
4005 {
4006 if (mddev->recovery_cp == MaxSector)
4007 return sprintf(page, "none\n");
4008 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4009 }
4010
4011 static ssize_t
4012 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4013 {
4014 unsigned long long n;
4015 int err;
4016
4017 if (cmd_match(buf, "none"))
4018 n = MaxSector;
4019 else {
4020 err = kstrtoull(buf, 10, &n);
4021 if (err < 0)
4022 return err;
4023 if (n != (sector_t)n)
4024 return -EINVAL;
4025 }
4026
4027 err = mddev_lock(mddev);
4028 if (err)
4029 return err;
4030 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4031 err = -EBUSY;
4032
4033 if (!err) {
4034 mddev->recovery_cp = n;
4035 if (mddev->pers)
4036 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4037 }
4038 mddev_unlock(mddev);
4039 return err ?: len;
4040 }
4041 static struct md_sysfs_entry md_resync_start =
4042 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4043 resync_start_show, resync_start_store);
4044
4045 /*
4046 * The array state can be:
4047 *
4048 * clear
4049 * No devices, no size, no level
4050 * Equivalent to STOP_ARRAY ioctl
4051 * inactive
4052 * May have some settings, but array is not active
4053 * all IO results in error
4054 * When written, doesn't tear down array, but just stops it
4055 * suspended (not supported yet)
4056 * All IO requests will block. The array can be reconfigured.
4057 * Writing this, if accepted, will block until array is quiescent
4058 * readonly
4059 * no resync can happen. no superblocks get written.
4060 * write requests fail
4061 * read-auto
4062 * like readonly, but behaves like 'clean' on a write request.
4063 *
4064 * clean - no pending writes, but otherwise active.
4065 * When written to inactive array, starts without resync
4066 * If a write request arrives then
4067 * if metadata is known, mark 'dirty' and switch to 'active'.
4068 * if not known, block and switch to write-pending
4069 * If written to an active array that has pending writes, then fails.
4070 * active
4071 * fully active: IO and resync can be happening.
4072 * When written to inactive array, starts with resync
4073 *
4074 * write-pending
4075 * clean, but writes are blocked waiting for 'active' to be written.
4076 *
4077 * active-idle
4078 * like active, but no writes have been seen for a while (100msec).
4079 *
4080 */
4081 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4082 write_pending, active_idle, bad_word};
4083 static char *array_states[] = {
4084 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4085 "write-pending", "active-idle", NULL };
4086
4087 static int match_word(const char *word, char **list)
4088 {
4089 int n;
4090 for (n=0; list[n]; n++)
4091 if (cmd_match(word, list[n]))
4092 break;
4093 return n;
4094 }
4095
4096 static ssize_t
4097 array_state_show(struct mddev *mddev, char *page)
4098 {
4099 enum array_state st = inactive;
4100
4101 if (mddev->pers)
4102 switch(mddev->ro) {
4103 case 1:
4104 st = readonly;
4105 break;
4106 case 2:
4107 st = read_auto;
4108 break;
4109 case 0:
4110 spin_lock(&mddev->lock);
4111 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4112 st = write_pending;
4113 else if (mddev->in_sync)
4114 st = clean;
4115 else if (mddev->safemode)
4116 st = active_idle;
4117 else
4118 st = active;
4119 spin_unlock(&mddev->lock);
4120 }
4121 else {
4122 if (list_empty(&mddev->disks) &&
4123 mddev->raid_disks == 0 &&
4124 mddev->dev_sectors == 0)
4125 st = clear;
4126 else
4127 st = inactive;
4128 }
4129 return sprintf(page, "%s\n", array_states[st]);
4130 }
4131
4132 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4133 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4134 static int do_md_run(struct mddev *mddev);
4135 static int restart_array(struct mddev *mddev);
4136
4137 static ssize_t
4138 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4139 {
4140 int err = 0;
4141 enum array_state st = match_word(buf, array_states);
4142
4143 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4144 /* don't take reconfig_mutex when toggling between
4145 * clean and active
4146 */
4147 spin_lock(&mddev->lock);
4148 if (st == active) {
4149 restart_array(mddev);
4150 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4151 md_wakeup_thread(mddev->thread);
4152 wake_up(&mddev->sb_wait);
4153 } else /* st == clean */ {
4154 restart_array(mddev);
4155 if (!set_in_sync(mddev))
4156 err = -EBUSY;
4157 }
4158 if (!err)
4159 sysfs_notify_dirent_safe(mddev->sysfs_state);
4160 spin_unlock(&mddev->lock);
4161 return err ?: len;
4162 }
4163 err = mddev_lock(mddev);
4164 if (err)
4165 return err;
4166 err = -EINVAL;
4167 switch(st) {
4168 case bad_word:
4169 break;
4170 case clear:
4171 /* stopping an active array */
4172 err = do_md_stop(mddev, 0, NULL);
4173 break;
4174 case inactive:
4175 /* stopping an active array */
4176 if (mddev->pers)
4177 err = do_md_stop(mddev, 2, NULL);
4178 else
4179 err = 0; /* already inactive */
4180 break;
4181 case suspended:
4182 break; /* not supported yet */
4183 case readonly:
4184 if (mddev->pers)
4185 err = md_set_readonly(mddev, NULL);
4186 else {
4187 mddev->ro = 1;
4188 set_disk_ro(mddev->gendisk, 1);
4189 err = do_md_run(mddev);
4190 }
4191 break;
4192 case read_auto:
4193 if (mddev->pers) {
4194 if (mddev->ro == 0)
4195 err = md_set_readonly(mddev, NULL);
4196 else if (mddev->ro == 1)
4197 err = restart_array(mddev);
4198 if (err == 0) {
4199 mddev->ro = 2;
4200 set_disk_ro(mddev->gendisk, 0);
4201 }
4202 } else {
4203 mddev->ro = 2;
4204 err = do_md_run(mddev);
4205 }
4206 break;
4207 case clean:
4208 if (mddev->pers) {
4209 err = restart_array(mddev);
4210 if (err)
4211 break;
4212 spin_lock(&mddev->lock);
4213 if (!set_in_sync(mddev))
4214 err = -EBUSY;
4215 spin_unlock(&mddev->lock);
4216 } else
4217 err = -EINVAL;
4218 break;
4219 case active:
4220 if (mddev->pers) {
4221 err = restart_array(mddev);
4222 if (err)
4223 break;
4224 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4225 wake_up(&mddev->sb_wait);
4226 err = 0;
4227 } else {
4228 mddev->ro = 0;
4229 set_disk_ro(mddev->gendisk, 0);
4230 err = do_md_run(mddev);
4231 }
4232 break;
4233 case write_pending:
4234 case active_idle:
4235 /* these cannot be set */
4236 break;
4237 }
4238
4239 if (!err) {
4240 if (mddev->hold_active == UNTIL_IOCTL)
4241 mddev->hold_active = 0;
4242 sysfs_notify_dirent_safe(mddev->sysfs_state);
4243 }
4244 mddev_unlock(mddev);
4245 return err ?: len;
4246 }
4247 static struct md_sysfs_entry md_array_state =
4248 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4249
4250 static ssize_t
4251 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4252 return sprintf(page, "%d\n",
4253 atomic_read(&mddev->max_corr_read_errors));
4254 }
4255
4256 static ssize_t
4257 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4258 {
4259 unsigned int n;
4260 int rv;
4261
4262 rv = kstrtouint(buf, 10, &n);
4263 if (rv < 0)
4264 return rv;
4265 atomic_set(&mddev->max_corr_read_errors, n);
4266 return len;
4267 }
4268
4269 static struct md_sysfs_entry max_corr_read_errors =
4270 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4271 max_corrected_read_errors_store);
4272
4273 static ssize_t
4274 null_show(struct mddev *mddev, char *page)
4275 {
4276 return -EINVAL;
4277 }
4278
4279 static ssize_t
4280 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4281 {
4282 /* buf must be %d:%d\n? giving major and minor numbers */
4283 /* The new device is added to the array.
4284 * If the array has a persistent superblock, we read the
4285 * superblock to initialise info and check validity.
4286 * Otherwise, only checking done is that in bind_rdev_to_array,
4287 * which mainly checks size.
4288 */
4289 char *e;
4290 int major = simple_strtoul(buf, &e, 10);
4291 int minor;
4292 dev_t dev;
4293 struct md_rdev *rdev;
4294 int err;
4295
4296 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4297 return -EINVAL;
4298 minor = simple_strtoul(e+1, &e, 10);
4299 if (*e && *e != '\n')
4300 return -EINVAL;
4301 dev = MKDEV(major, minor);
4302 if (major != MAJOR(dev) ||
4303 minor != MINOR(dev))
4304 return -EOVERFLOW;
4305
4306 flush_workqueue(md_misc_wq);
4307
4308 err = mddev_lock(mddev);
4309 if (err)
4310 return err;
4311 if (mddev->persistent) {
4312 rdev = md_import_device(dev, mddev->major_version,
4313 mddev->minor_version);
4314 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4315 struct md_rdev *rdev0
4316 = list_entry(mddev->disks.next,
4317 struct md_rdev, same_set);
4318 err = super_types[mddev->major_version]
4319 .load_super(rdev, rdev0, mddev->minor_version);
4320 if (err < 0)
4321 goto out;
4322 }
4323 } else if (mddev->external)
4324 rdev = md_import_device(dev, -2, -1);
4325 else
4326 rdev = md_import_device(dev, -1, -1);
4327
4328 if (IS_ERR(rdev)) {
4329 mddev_unlock(mddev);
4330 return PTR_ERR(rdev);
4331 }
4332 err = bind_rdev_to_array(rdev, mddev);
4333 out:
4334 if (err)
4335 export_rdev(rdev);
4336 mddev_unlock(mddev);
4337 if (!err)
4338 md_new_event(mddev);
4339 return err ? err : len;
4340 }
4341
4342 static struct md_sysfs_entry md_new_device =
4343 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4344
4345 static ssize_t
4346 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4347 {
4348 char *end;
4349 unsigned long chunk, end_chunk;
4350 int err;
4351
4352 err = mddev_lock(mddev);
4353 if (err)
4354 return err;
4355 if (!mddev->bitmap)
4356 goto out;
4357 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4358 while (*buf) {
4359 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4360 if (buf == end) break;
4361 if (*end == '-') { /* range */
4362 buf = end + 1;
4363 end_chunk = simple_strtoul(buf, &end, 0);
4364 if (buf == end) break;
4365 }
4366 if (*end && !isspace(*end)) break;
4367 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4368 buf = skip_spaces(end);
4369 }
4370 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4371 out:
4372 mddev_unlock(mddev);
4373 return len;
4374 }
4375
4376 static struct md_sysfs_entry md_bitmap =
4377 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4378
4379 static ssize_t
4380 size_show(struct mddev *mddev, char *page)
4381 {
4382 return sprintf(page, "%llu\n",
4383 (unsigned long long)mddev->dev_sectors / 2);
4384 }
4385
4386 static int update_size(struct mddev *mddev, sector_t num_sectors);
4387
4388 static ssize_t
4389 size_store(struct mddev *mddev, const char *buf, size_t len)
4390 {
4391 /* If array is inactive, we can reduce the component size, but
4392 * not increase it (except from 0).
4393 * If array is active, we can try an on-line resize
4394 */
4395 sector_t sectors;
4396 int err = strict_blocks_to_sectors(buf, &sectors);
4397
4398 if (err < 0)
4399 return err;
4400 err = mddev_lock(mddev);
4401 if (err)
4402 return err;
4403 if (mddev->pers) {
4404 err = update_size(mddev, sectors);
4405 if (err == 0)
4406 md_update_sb(mddev, 1);
4407 } else {
4408 if (mddev->dev_sectors == 0 ||
4409 mddev->dev_sectors > sectors)
4410 mddev->dev_sectors = sectors;
4411 else
4412 err = -ENOSPC;
4413 }
4414 mddev_unlock(mddev);
4415 return err ? err : len;
4416 }
4417
4418 static struct md_sysfs_entry md_size =
4419 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4420
4421 /* Metadata version.
4422 * This is one of
4423 * 'none' for arrays with no metadata (good luck...)
4424 * 'external' for arrays with externally managed metadata,
4425 * or N.M for internally known formats
4426 */
4427 static ssize_t
4428 metadata_show(struct mddev *mddev, char *page)
4429 {
4430 if (mddev->persistent)
4431 return sprintf(page, "%d.%d\n",
4432 mddev->major_version, mddev->minor_version);
4433 else if (mddev->external)
4434 return sprintf(page, "external:%s\n", mddev->metadata_type);
4435 else
4436 return sprintf(page, "none\n");
4437 }
4438
4439 static ssize_t
4440 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4441 {
4442 int major, minor;
4443 char *e;
4444 int err;
4445 /* Changing the details of 'external' metadata is
4446 * always permitted. Otherwise there must be
4447 * no devices attached to the array.
4448 */
4449
4450 err = mddev_lock(mddev);
4451 if (err)
4452 return err;
4453 err = -EBUSY;
4454 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4455 ;
4456 else if (!list_empty(&mddev->disks))
4457 goto out_unlock;
4458
4459 err = 0;
4460 if (cmd_match(buf, "none")) {
4461 mddev->persistent = 0;
4462 mddev->external = 0;
4463 mddev->major_version = 0;
4464 mddev->minor_version = 90;
4465 goto out_unlock;
4466 }
4467 if (strncmp(buf, "external:", 9) == 0) {
4468 size_t namelen = len-9;
4469 if (namelen >= sizeof(mddev->metadata_type))
4470 namelen = sizeof(mddev->metadata_type)-1;
4471 strncpy(mddev->metadata_type, buf+9, namelen);
4472 mddev->metadata_type[namelen] = 0;
4473 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4474 mddev->metadata_type[--namelen] = 0;
4475 mddev->persistent = 0;
4476 mddev->external = 1;
4477 mddev->major_version = 0;
4478 mddev->minor_version = 90;
4479 goto out_unlock;
4480 }
4481 major = simple_strtoul(buf, &e, 10);
4482 err = -EINVAL;
4483 if (e==buf || *e != '.')
4484 goto out_unlock;
4485 buf = e+1;
4486 minor = simple_strtoul(buf, &e, 10);
4487 if (e==buf || (*e && *e != '\n') )
4488 goto out_unlock;
4489 err = -ENOENT;
4490 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4491 goto out_unlock;
4492 mddev->major_version = major;
4493 mddev->minor_version = minor;
4494 mddev->persistent = 1;
4495 mddev->external = 0;
4496 err = 0;
4497 out_unlock:
4498 mddev_unlock(mddev);
4499 return err ?: len;
4500 }
4501
4502 static struct md_sysfs_entry md_metadata =
4503 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4504
4505 static ssize_t
4506 action_show(struct mddev *mddev, char *page)
4507 {
4508 char *type = "idle";
4509 unsigned long recovery = mddev->recovery;
4510 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4511 type = "frozen";
4512 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4513 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4514 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4515 type = "reshape";
4516 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4517 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4518 type = "resync";
4519 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4520 type = "check";
4521 else
4522 type = "repair";
4523 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4524 type = "recover";
4525 else if (mddev->reshape_position != MaxSector)
4526 type = "reshape";
4527 }
4528 return sprintf(page, "%s\n", type);
4529 }
4530
4531 static ssize_t
4532 action_store(struct mddev *mddev, const char *page, size_t len)
4533 {
4534 if (!mddev->pers || !mddev->pers->sync_request)
4535 return -EINVAL;
4536
4537
4538 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4539 if (cmd_match(page, "frozen"))
4540 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4541 else
4542 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4543 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4544 mddev_lock(mddev) == 0) {
4545 flush_workqueue(md_misc_wq);
4546 if (mddev->sync_thread) {
4547 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4548 md_reap_sync_thread(mddev);
4549 }
4550 mddev_unlock(mddev);
4551 }
4552 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4553 return -EBUSY;
4554 else if (cmd_match(page, "resync"))
4555 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4556 else if (cmd_match(page, "recover")) {
4557 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4558 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4559 } else if (cmd_match(page, "reshape")) {
4560 int err;
4561 if (mddev->pers->start_reshape == NULL)
4562 return -EINVAL;
4563 err = mddev_lock(mddev);
4564 if (!err) {
4565 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4566 err = -EBUSY;
4567 else {
4568 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4569 err = mddev->pers->start_reshape(mddev);
4570 }
4571 mddev_unlock(mddev);
4572 }
4573 if (err)
4574 return err;
4575 sysfs_notify(&mddev->kobj, NULL, "degraded");
4576 } else {
4577 if (cmd_match(page, "check"))
4578 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4579 else if (!cmd_match(page, "repair"))
4580 return -EINVAL;
4581 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4582 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4583 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4584 }
4585 if (mddev->ro == 2) {
4586 /* A write to sync_action is enough to justify
4587 * canceling read-auto mode
4588 */
4589 mddev->ro = 0;
4590 md_wakeup_thread(mddev->sync_thread);
4591 }
4592 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4593 md_wakeup_thread(mddev->thread);
4594 sysfs_notify_dirent_safe(mddev->sysfs_action);
4595 return len;
4596 }
4597
4598 static struct md_sysfs_entry md_scan_mode =
4599 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4600
4601 static ssize_t
4602 last_sync_action_show(struct mddev *mddev, char *page)
4603 {
4604 return sprintf(page, "%s\n", mddev->last_sync_action);
4605 }
4606
4607 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4608
4609 static ssize_t
4610 mismatch_cnt_show(struct mddev *mddev, char *page)
4611 {
4612 return sprintf(page, "%llu\n",
4613 (unsigned long long)
4614 atomic64_read(&mddev->resync_mismatches));
4615 }
4616
4617 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4618
4619 static ssize_t
4620 sync_min_show(struct mddev *mddev, char *page)
4621 {
4622 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4623 mddev->sync_speed_min ? "local": "system");
4624 }
4625
4626 static ssize_t
4627 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4628 {
4629 unsigned int min;
4630 int rv;
4631
4632 if (strncmp(buf, "system", 6)==0) {
4633 min = 0;
4634 } else {
4635 rv = kstrtouint(buf, 10, &min);
4636 if (rv < 0)
4637 return rv;
4638 if (min == 0)
4639 return -EINVAL;
4640 }
4641 mddev->sync_speed_min = min;
4642 return len;
4643 }
4644
4645 static struct md_sysfs_entry md_sync_min =
4646 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4647
4648 static ssize_t
4649 sync_max_show(struct mddev *mddev, char *page)
4650 {
4651 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4652 mddev->sync_speed_max ? "local": "system");
4653 }
4654
4655 static ssize_t
4656 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4657 {
4658 unsigned int max;
4659 int rv;
4660
4661 if (strncmp(buf, "system", 6)==0) {
4662 max = 0;
4663 } else {
4664 rv = kstrtouint(buf, 10, &max);
4665 if (rv < 0)
4666 return rv;
4667 if (max == 0)
4668 return -EINVAL;
4669 }
4670 mddev->sync_speed_max = max;
4671 return len;
4672 }
4673
4674 static struct md_sysfs_entry md_sync_max =
4675 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4676
4677 static ssize_t
4678 degraded_show(struct mddev *mddev, char *page)
4679 {
4680 return sprintf(page, "%d\n", mddev->degraded);
4681 }
4682 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4683
4684 static ssize_t
4685 sync_force_parallel_show(struct mddev *mddev, char *page)
4686 {
4687 return sprintf(page, "%d\n", mddev->parallel_resync);
4688 }
4689
4690 static ssize_t
4691 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4692 {
4693 long n;
4694
4695 if (kstrtol(buf, 10, &n))
4696 return -EINVAL;
4697
4698 if (n != 0 && n != 1)
4699 return -EINVAL;
4700
4701 mddev->parallel_resync = n;
4702
4703 if (mddev->sync_thread)
4704 wake_up(&resync_wait);
4705
4706 return len;
4707 }
4708
4709 /* force parallel resync, even with shared block devices */
4710 static struct md_sysfs_entry md_sync_force_parallel =
4711 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4712 sync_force_parallel_show, sync_force_parallel_store);
4713
4714 static ssize_t
4715 sync_speed_show(struct mddev *mddev, char *page)
4716 {
4717 unsigned long resync, dt, db;
4718 if (mddev->curr_resync == 0)
4719 return sprintf(page, "none\n");
4720 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4721 dt = (jiffies - mddev->resync_mark) / HZ;
4722 if (!dt) dt++;
4723 db = resync - mddev->resync_mark_cnt;
4724 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4725 }
4726
4727 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4728
4729 static ssize_t
4730 sync_completed_show(struct mddev *mddev, char *page)
4731 {
4732 unsigned long long max_sectors, resync;
4733
4734 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4735 return sprintf(page, "none\n");
4736
4737 if (mddev->curr_resync == 1 ||
4738 mddev->curr_resync == 2)
4739 return sprintf(page, "delayed\n");
4740
4741 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4742 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4743 max_sectors = mddev->resync_max_sectors;
4744 else
4745 max_sectors = mddev->dev_sectors;
4746
4747 resync = mddev->curr_resync_completed;
4748 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4749 }
4750
4751 static struct md_sysfs_entry md_sync_completed =
4752 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4753
4754 static ssize_t
4755 min_sync_show(struct mddev *mddev, char *page)
4756 {
4757 return sprintf(page, "%llu\n",
4758 (unsigned long long)mddev->resync_min);
4759 }
4760 static ssize_t
4761 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4762 {
4763 unsigned long long min;
4764 int err;
4765
4766 if (kstrtoull(buf, 10, &min))
4767 return -EINVAL;
4768
4769 spin_lock(&mddev->lock);
4770 err = -EINVAL;
4771 if (min > mddev->resync_max)
4772 goto out_unlock;
4773
4774 err = -EBUSY;
4775 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4776 goto out_unlock;
4777
4778 /* Round down to multiple of 4K for safety */
4779 mddev->resync_min = round_down(min, 8);
4780 err = 0;
4781
4782 out_unlock:
4783 spin_unlock(&mddev->lock);
4784 return err ?: len;
4785 }
4786
4787 static struct md_sysfs_entry md_min_sync =
4788 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4789
4790 static ssize_t
4791 max_sync_show(struct mddev *mddev, char *page)
4792 {
4793 if (mddev->resync_max == MaxSector)
4794 return sprintf(page, "max\n");
4795 else
4796 return sprintf(page, "%llu\n",
4797 (unsigned long long)mddev->resync_max);
4798 }
4799 static ssize_t
4800 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4801 {
4802 int err;
4803 spin_lock(&mddev->lock);
4804 if (strncmp(buf, "max", 3) == 0)
4805 mddev->resync_max = MaxSector;
4806 else {
4807 unsigned long long max;
4808 int chunk;
4809
4810 err = -EINVAL;
4811 if (kstrtoull(buf, 10, &max))
4812 goto out_unlock;
4813 if (max < mddev->resync_min)
4814 goto out_unlock;
4815
4816 err = -EBUSY;
4817 if (max < mddev->resync_max &&
4818 mddev->ro == 0 &&
4819 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4820 goto out_unlock;
4821
4822 /* Must be a multiple of chunk_size */
4823 chunk = mddev->chunk_sectors;
4824 if (chunk) {
4825 sector_t temp = max;
4826
4827 err = -EINVAL;
4828 if (sector_div(temp, chunk))
4829 goto out_unlock;
4830 }
4831 mddev->resync_max = max;
4832 }
4833 wake_up(&mddev->recovery_wait);
4834 err = 0;
4835 out_unlock:
4836 spin_unlock(&mddev->lock);
4837 return err ?: len;
4838 }
4839
4840 static struct md_sysfs_entry md_max_sync =
4841 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4842
4843 static ssize_t
4844 suspend_lo_show(struct mddev *mddev, char *page)
4845 {
4846 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4847 }
4848
4849 static ssize_t
4850 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4851 {
4852 unsigned long long new;
4853 int err;
4854
4855 err = kstrtoull(buf, 10, &new);
4856 if (err < 0)
4857 return err;
4858 if (new != (sector_t)new)
4859 return -EINVAL;
4860
4861 err = mddev_lock(mddev);
4862 if (err)
4863 return err;
4864 err = -EINVAL;
4865 if (mddev->pers == NULL ||
4866 mddev->pers->quiesce == NULL)
4867 goto unlock;
4868 mddev_suspend(mddev);
4869 mddev->suspend_lo = new;
4870 mddev_resume(mddev);
4871
4872 err = 0;
4873 unlock:
4874 mddev_unlock(mddev);
4875 return err ?: len;
4876 }
4877 static struct md_sysfs_entry md_suspend_lo =
4878 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4879
4880 static ssize_t
4881 suspend_hi_show(struct mddev *mddev, char *page)
4882 {
4883 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4884 }
4885
4886 static ssize_t
4887 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4888 {
4889 unsigned long long new;
4890 int err;
4891
4892 err = kstrtoull(buf, 10, &new);
4893 if (err < 0)
4894 return err;
4895 if (new != (sector_t)new)
4896 return -EINVAL;
4897
4898 err = mddev_lock(mddev);
4899 if (err)
4900 return err;
4901 err = -EINVAL;
4902 if (mddev->pers == NULL)
4903 goto unlock;
4904
4905 mddev_suspend(mddev);
4906 mddev->suspend_hi = new;
4907 mddev_resume(mddev);
4908
4909 err = 0;
4910 unlock:
4911 mddev_unlock(mddev);
4912 return err ?: len;
4913 }
4914 static struct md_sysfs_entry md_suspend_hi =
4915 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4916
4917 static ssize_t
4918 reshape_position_show(struct mddev *mddev, char *page)
4919 {
4920 if (mddev->reshape_position != MaxSector)
4921 return sprintf(page, "%llu\n",
4922 (unsigned long long)mddev->reshape_position);
4923 strcpy(page, "none\n");
4924 return 5;
4925 }
4926
4927 static ssize_t
4928 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4929 {
4930 struct md_rdev *rdev;
4931 unsigned long long new;
4932 int err;
4933
4934 err = kstrtoull(buf, 10, &new);
4935 if (err < 0)
4936 return err;
4937 if (new != (sector_t)new)
4938 return -EINVAL;
4939 err = mddev_lock(mddev);
4940 if (err)
4941 return err;
4942 err = -EBUSY;
4943 if (mddev->pers)
4944 goto unlock;
4945 mddev->reshape_position = new;
4946 mddev->delta_disks = 0;
4947 mddev->reshape_backwards = 0;
4948 mddev->new_level = mddev->level;
4949 mddev->new_layout = mddev->layout;
4950 mddev->new_chunk_sectors = mddev->chunk_sectors;
4951 rdev_for_each(rdev, mddev)
4952 rdev->new_data_offset = rdev->data_offset;
4953 err = 0;
4954 unlock:
4955 mddev_unlock(mddev);
4956 return err ?: len;
4957 }
4958
4959 static struct md_sysfs_entry md_reshape_position =
4960 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4961 reshape_position_store);
4962
4963 static ssize_t
4964 reshape_direction_show(struct mddev *mddev, char *page)
4965 {
4966 return sprintf(page, "%s\n",
4967 mddev->reshape_backwards ? "backwards" : "forwards");
4968 }
4969
4970 static ssize_t
4971 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4972 {
4973 int backwards = 0;
4974 int err;
4975
4976 if (cmd_match(buf, "forwards"))
4977 backwards = 0;
4978 else if (cmd_match(buf, "backwards"))
4979 backwards = 1;
4980 else
4981 return -EINVAL;
4982 if (mddev->reshape_backwards == backwards)
4983 return len;
4984
4985 err = mddev_lock(mddev);
4986 if (err)
4987 return err;
4988 /* check if we are allowed to change */
4989 if (mddev->delta_disks)
4990 err = -EBUSY;
4991 else if (mddev->persistent &&
4992 mddev->major_version == 0)
4993 err = -EINVAL;
4994 else
4995 mddev->reshape_backwards = backwards;
4996 mddev_unlock(mddev);
4997 return err ?: len;
4998 }
4999
5000 static struct md_sysfs_entry md_reshape_direction =
5001 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5002 reshape_direction_store);
5003
5004 static ssize_t
5005 array_size_show(struct mddev *mddev, char *page)
5006 {
5007 if (mddev->external_size)
5008 return sprintf(page, "%llu\n",
5009 (unsigned long long)mddev->array_sectors/2);
5010 else
5011 return sprintf(page, "default\n");
5012 }
5013
5014 static ssize_t
5015 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5016 {
5017 sector_t sectors;
5018 int err;
5019
5020 err = mddev_lock(mddev);
5021 if (err)
5022 return err;
5023
5024 /* cluster raid doesn't support change array_sectors */
5025 if (mddev_is_clustered(mddev)) {
5026 mddev_unlock(mddev);
5027 return -EINVAL;
5028 }
5029
5030 if (strncmp(buf, "default", 7) == 0) {
5031 if (mddev->pers)
5032 sectors = mddev->pers->size(mddev, 0, 0);
5033 else
5034 sectors = mddev->array_sectors;
5035
5036 mddev->external_size = 0;
5037 } else {
5038 if (strict_blocks_to_sectors(buf, &sectors) < 0)
5039 err = -EINVAL;
5040 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5041 err = -E2BIG;
5042 else
5043 mddev->external_size = 1;
5044 }
5045
5046 if (!err) {
5047 mddev->array_sectors = sectors;
5048 if (mddev->pers) {
5049 set_capacity(mddev->gendisk, mddev->array_sectors);
5050 revalidate_disk(mddev->gendisk);
5051 }
5052 }
5053 mddev_unlock(mddev);
5054 return err ?: len;
5055 }
5056
5057 static struct md_sysfs_entry md_array_size =
5058 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5059 array_size_store);
5060
5061 static ssize_t
5062 consistency_policy_show(struct mddev *mddev, char *page)
5063 {
5064 int ret;
5065
5066 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5067 ret = sprintf(page, "journal\n");
5068 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5069 ret = sprintf(page, "ppl\n");
5070 } else if (mddev->bitmap) {
5071 ret = sprintf(page, "bitmap\n");
5072 } else if (mddev->pers) {
5073 if (mddev->pers->sync_request)
5074 ret = sprintf(page, "resync\n");
5075 else
5076 ret = sprintf(page, "none\n");
5077 } else {
5078 ret = sprintf(page, "unknown\n");
5079 }
5080
5081 return ret;
5082 }
5083
5084 static ssize_t
5085 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5086 {
5087 int err = 0;
5088
5089 if (mddev->pers) {
5090 if (mddev->pers->change_consistency_policy)
5091 err = mddev->pers->change_consistency_policy(mddev, buf);
5092 else
5093 err = -EBUSY;
5094 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5095 set_bit(MD_HAS_PPL, &mddev->flags);
5096 } else {
5097 err = -EINVAL;
5098 }
5099
5100 return err ? err : len;
5101 }
5102
5103 static struct md_sysfs_entry md_consistency_policy =
5104 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5105 consistency_policy_store);
5106
5107 static struct attribute *md_default_attrs[] = {
5108 &md_level.attr,
5109 &md_layout.attr,
5110 &md_raid_disks.attr,
5111 &md_chunk_size.attr,
5112 &md_size.attr,
5113 &md_resync_start.attr,
5114 &md_metadata.attr,
5115 &md_new_device.attr,
5116 &md_safe_delay.attr,
5117 &md_array_state.attr,
5118 &md_reshape_position.attr,
5119 &md_reshape_direction.attr,
5120 &md_array_size.attr,
5121 &max_corr_read_errors.attr,
5122 &md_consistency_policy.attr,
5123 NULL,
5124 };
5125
5126 static struct attribute *md_redundancy_attrs[] = {
5127 &md_scan_mode.attr,
5128 &md_last_scan_mode.attr,
5129 &md_mismatches.attr,
5130 &md_sync_min.attr,
5131 &md_sync_max.attr,
5132 &md_sync_speed.attr,
5133 &md_sync_force_parallel.attr,
5134 &md_sync_completed.attr,
5135 &md_min_sync.attr,
5136 &md_max_sync.attr,
5137 &md_suspend_lo.attr,
5138 &md_suspend_hi.attr,
5139 &md_bitmap.attr,
5140 &md_degraded.attr,
5141 NULL,
5142 };
5143 static struct attribute_group md_redundancy_group = {
5144 .name = NULL,
5145 .attrs = md_redundancy_attrs,
5146 };
5147
5148 static ssize_t
5149 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5150 {
5151 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5152 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5153 ssize_t rv;
5154
5155 if (!entry->show)
5156 return -EIO;
5157 spin_lock(&all_mddevs_lock);
5158 if (list_empty(&mddev->all_mddevs)) {
5159 spin_unlock(&all_mddevs_lock);
5160 return -EBUSY;
5161 }
5162 mddev_get(mddev);
5163 spin_unlock(&all_mddevs_lock);
5164
5165 rv = entry->show(mddev, page);
5166 mddev_put(mddev);
5167 return rv;
5168 }
5169
5170 static ssize_t
5171 md_attr_store(struct kobject *kobj, struct attribute *attr,
5172 const char *page, size_t length)
5173 {
5174 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5175 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5176 ssize_t rv;
5177
5178 if (!entry->store)
5179 return -EIO;
5180 if (!capable(CAP_SYS_ADMIN))
5181 return -EACCES;
5182 spin_lock(&all_mddevs_lock);
5183 if (list_empty(&mddev->all_mddevs)) {
5184 spin_unlock(&all_mddevs_lock);
5185 return -EBUSY;
5186 }
5187 mddev_get(mddev);
5188 spin_unlock(&all_mddevs_lock);
5189 rv = entry->store(mddev, page, length);
5190 mddev_put(mddev);
5191 return rv;
5192 }
5193
5194 static void md_free(struct kobject *ko)
5195 {
5196 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5197
5198 if (mddev->sysfs_state)
5199 sysfs_put(mddev->sysfs_state);
5200
5201 if (mddev->gendisk)
5202 del_gendisk(mddev->gendisk);
5203 if (mddev->queue)
5204 blk_cleanup_queue(mddev->queue);
5205 if (mddev->gendisk)
5206 put_disk(mddev->gendisk);
5207 percpu_ref_exit(&mddev->writes_pending);
5208
5209 bioset_exit(&mddev->bio_set);
5210 bioset_exit(&mddev->sync_set);
5211 kfree(mddev);
5212 }
5213
5214 static const struct sysfs_ops md_sysfs_ops = {
5215 .show = md_attr_show,
5216 .store = md_attr_store,
5217 };
5218 static struct kobj_type md_ktype = {
5219 .release = md_free,
5220 .sysfs_ops = &md_sysfs_ops,
5221 .default_attrs = md_default_attrs,
5222 };
5223
5224 int mdp_major = 0;
5225
5226 static void mddev_delayed_delete(struct work_struct *ws)
5227 {
5228 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5229
5230 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5231 kobject_del(&mddev->kobj);
5232 kobject_put(&mddev->kobj);
5233 }
5234
5235 static void no_op(struct percpu_ref *r) {}
5236
5237 int mddev_init_writes_pending(struct mddev *mddev)
5238 {
5239 if (mddev->writes_pending.percpu_count_ptr)
5240 return 0;
5241 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0)
5242 return -ENOMEM;
5243 /* We want to start with the refcount at zero */
5244 percpu_ref_put(&mddev->writes_pending);
5245 return 0;
5246 }
5247 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5248
5249 static int md_alloc(dev_t dev, char *name)
5250 {
5251 /*
5252 * If dev is zero, name is the name of a device to allocate with
5253 * an arbitrary minor number. It will be "md_???"
5254 * If dev is non-zero it must be a device number with a MAJOR of
5255 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5256 * the device is being created by opening a node in /dev.
5257 * If "name" is not NULL, the device is being created by
5258 * writing to /sys/module/md_mod/parameters/new_array.
5259 */
5260 static DEFINE_MUTEX(disks_mutex);
5261 struct mddev *mddev = mddev_find(dev);
5262 struct gendisk *disk;
5263 int partitioned;
5264 int shift;
5265 int unit;
5266 int error;
5267
5268 if (!mddev)
5269 return -ENODEV;
5270
5271 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5272 shift = partitioned ? MdpMinorShift : 0;
5273 unit = MINOR(mddev->unit) >> shift;
5274
5275 /* wait for any previous instance of this device to be
5276 * completely removed (mddev_delayed_delete).
5277 */
5278 flush_workqueue(md_misc_wq);
5279
5280 mutex_lock(&disks_mutex);
5281 error = -EEXIST;
5282 if (mddev->gendisk)
5283 goto abort;
5284
5285 if (name && !dev) {
5286 /* Need to ensure that 'name' is not a duplicate.
5287 */
5288 struct mddev *mddev2;
5289 spin_lock(&all_mddevs_lock);
5290
5291 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5292 if (mddev2->gendisk &&
5293 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5294 spin_unlock(&all_mddevs_lock);
5295 goto abort;
5296 }
5297 spin_unlock(&all_mddevs_lock);
5298 }
5299 if (name && dev)
5300 /*
5301 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5302 */
5303 mddev->hold_active = UNTIL_STOP;
5304
5305 error = -ENOMEM;
5306 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5307 if (!mddev->queue)
5308 goto abort;
5309 mddev->queue->queuedata = mddev;
5310
5311 blk_queue_make_request(mddev->queue, md_make_request);
5312 blk_set_stacking_limits(&mddev->queue->limits);
5313
5314 disk = alloc_disk(1 << shift);
5315 if (!disk) {
5316 blk_cleanup_queue(mddev->queue);
5317 mddev->queue = NULL;
5318 goto abort;
5319 }
5320 disk->major = MAJOR(mddev->unit);
5321 disk->first_minor = unit << shift;
5322 if (name)
5323 strcpy(disk->disk_name, name);
5324 else if (partitioned)
5325 sprintf(disk->disk_name, "md_d%d", unit);
5326 else
5327 sprintf(disk->disk_name, "md%d", unit);
5328 disk->fops = &md_fops;
5329 disk->private_data = mddev;
5330 disk->queue = mddev->queue;
5331 blk_queue_write_cache(mddev->queue, true, true);
5332 /* Allow extended partitions. This makes the
5333 * 'mdp' device redundant, but we can't really
5334 * remove it now.
5335 */
5336 disk->flags |= GENHD_FL_EXT_DEVT;
5337 mddev->gendisk = disk;
5338 /* As soon as we call add_disk(), another thread could get
5339 * through to md_open, so make sure it doesn't get too far
5340 */
5341 mutex_lock(&mddev->open_mutex);
5342 add_disk(disk);
5343
5344 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5345 if (error) {
5346 /* This isn't possible, but as kobject_init_and_add is marked
5347 * __must_check, we must do something with the result
5348 */
5349 pr_debug("md: cannot register %s/md - name in use\n",
5350 disk->disk_name);
5351 error = 0;
5352 }
5353 if (mddev->kobj.sd &&
5354 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5355 pr_debug("pointless warning\n");
5356 mutex_unlock(&mddev->open_mutex);
5357 abort:
5358 mutex_unlock(&disks_mutex);
5359 if (!error && mddev->kobj.sd) {
5360 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5361 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5362 }
5363 mddev_put(mddev);
5364 return error;
5365 }
5366
5367 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5368 {
5369 if (create_on_open)
5370 md_alloc(dev, NULL);
5371 return NULL;
5372 }
5373
5374 static int add_named_array(const char *val, const struct kernel_param *kp)
5375 {
5376 /*
5377 * val must be "md_*" or "mdNNN".
5378 * For "md_*" we allocate an array with a large free minor number, and
5379 * set the name to val. val must not already be an active name.
5380 * For "mdNNN" we allocate an array with the minor number NNN
5381 * which must not already be in use.
5382 */
5383 int len = strlen(val);
5384 char buf[DISK_NAME_LEN];
5385 unsigned long devnum;
5386
5387 while (len && val[len-1] == '\n')
5388 len--;
5389 if (len >= DISK_NAME_LEN)
5390 return -E2BIG;
5391 strlcpy(buf, val, len+1);
5392 if (strncmp(buf, "md_", 3) == 0)
5393 return md_alloc(0, buf);
5394 if (strncmp(buf, "md", 2) == 0 &&
5395 isdigit(buf[2]) &&
5396 kstrtoul(buf+2, 10, &devnum) == 0 &&
5397 devnum <= MINORMASK)
5398 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5399
5400 return -EINVAL;
5401 }
5402
5403 static void md_safemode_timeout(struct timer_list *t)
5404 {
5405 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5406
5407 mddev->safemode = 1;
5408 if (mddev->external)
5409 sysfs_notify_dirent_safe(mddev->sysfs_state);
5410
5411 md_wakeup_thread(mddev->thread);
5412 }
5413
5414 static int start_dirty_degraded;
5415
5416 int md_run(struct mddev *mddev)
5417 {
5418 int err;
5419 struct md_rdev *rdev;
5420 struct md_personality *pers;
5421
5422 if (list_empty(&mddev->disks))
5423 /* cannot run an array with no devices.. */
5424 return -EINVAL;
5425
5426 if (mddev->pers)
5427 return -EBUSY;
5428 /* Cannot run until previous stop completes properly */
5429 if (mddev->sysfs_active)
5430 return -EBUSY;
5431
5432 /*
5433 * Analyze all RAID superblock(s)
5434 */
5435 if (!mddev->raid_disks) {
5436 if (!mddev->persistent)
5437 return -EINVAL;
5438 analyze_sbs(mddev);
5439 }
5440
5441 if (mddev->level != LEVEL_NONE)
5442 request_module("md-level-%d", mddev->level);
5443 else if (mddev->clevel[0])
5444 request_module("md-%s", mddev->clevel);
5445
5446 /*
5447 * Drop all container device buffers, from now on
5448 * the only valid external interface is through the md
5449 * device.
5450 */
5451 mddev->has_superblocks = false;
5452 rdev_for_each(rdev, mddev) {
5453 if (test_bit(Faulty, &rdev->flags))
5454 continue;
5455 sync_blockdev(rdev->bdev);
5456 invalidate_bdev(rdev->bdev);
5457 if (mddev->ro != 1 &&
5458 (bdev_read_only(rdev->bdev) ||
5459 bdev_read_only(rdev->meta_bdev))) {
5460 mddev->ro = 1;
5461 if (mddev->gendisk)
5462 set_disk_ro(mddev->gendisk, 1);
5463 }
5464
5465 if (rdev->sb_page)
5466 mddev->has_superblocks = true;
5467
5468 /* perform some consistency tests on the device.
5469 * We don't want the data to overlap the metadata,
5470 * Internal Bitmap issues have been handled elsewhere.
5471 */
5472 if (rdev->meta_bdev) {
5473 /* Nothing to check */;
5474 } else if (rdev->data_offset < rdev->sb_start) {
5475 if (mddev->dev_sectors &&
5476 rdev->data_offset + mddev->dev_sectors
5477 > rdev->sb_start) {
5478 pr_warn("md: %s: data overlaps metadata\n",
5479 mdname(mddev));
5480 return -EINVAL;
5481 }
5482 } else {
5483 if (rdev->sb_start + rdev->sb_size/512
5484 > rdev->data_offset) {
5485 pr_warn("md: %s: metadata overlaps data\n",
5486 mdname(mddev));
5487 return -EINVAL;
5488 }
5489 }
5490 sysfs_notify_dirent_safe(rdev->sysfs_state);
5491 }
5492
5493 if (!bioset_initialized(&mddev->bio_set)) {
5494 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5495 if (err)
5496 return err;
5497 }
5498 if (!bioset_initialized(&mddev->sync_set)) {
5499 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5500 if (err)
5501 return err;
5502 }
5503
5504 spin_lock(&pers_lock);
5505 pers = find_pers(mddev->level, mddev->clevel);
5506 if (!pers || !try_module_get(pers->owner)) {
5507 spin_unlock(&pers_lock);
5508 if (mddev->level != LEVEL_NONE)
5509 pr_warn("md: personality for level %d is not loaded!\n",
5510 mddev->level);
5511 else
5512 pr_warn("md: personality for level %s is not loaded!\n",
5513 mddev->clevel);
5514 err = -EINVAL;
5515 goto abort;
5516 }
5517 spin_unlock(&pers_lock);
5518 if (mddev->level != pers->level) {
5519 mddev->level = pers->level;
5520 mddev->new_level = pers->level;
5521 }
5522 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5523
5524 if (mddev->reshape_position != MaxSector &&
5525 pers->start_reshape == NULL) {
5526 /* This personality cannot handle reshaping... */
5527 module_put(pers->owner);
5528 err = -EINVAL;
5529 goto abort;
5530 }
5531
5532 if (pers->sync_request) {
5533 /* Warn if this is a potentially silly
5534 * configuration.
5535 */
5536 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5537 struct md_rdev *rdev2;
5538 int warned = 0;
5539
5540 rdev_for_each(rdev, mddev)
5541 rdev_for_each(rdev2, mddev) {
5542 if (rdev < rdev2 &&
5543 rdev->bdev->bd_contains ==
5544 rdev2->bdev->bd_contains) {
5545 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5546 mdname(mddev),
5547 bdevname(rdev->bdev,b),
5548 bdevname(rdev2->bdev,b2));
5549 warned = 1;
5550 }
5551 }
5552
5553 if (warned)
5554 pr_warn("True protection against single-disk failure might be compromised.\n");
5555 }
5556
5557 mddev->recovery = 0;
5558 /* may be over-ridden by personality */
5559 mddev->resync_max_sectors = mddev->dev_sectors;
5560
5561 mddev->ok_start_degraded = start_dirty_degraded;
5562
5563 if (start_readonly && mddev->ro == 0)
5564 mddev->ro = 2; /* read-only, but switch on first write */
5565
5566 err = pers->run(mddev);
5567 if (err)
5568 pr_warn("md: pers->run() failed ...\n");
5569 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5570 WARN_ONCE(!mddev->external_size,
5571 "%s: default size too small, but 'external_size' not in effect?\n",
5572 __func__);
5573 pr_warn("md: invalid array_size %llu > default size %llu\n",
5574 (unsigned long long)mddev->array_sectors / 2,
5575 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5576 err = -EINVAL;
5577 }
5578 if (err == 0 && pers->sync_request &&
5579 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5580 struct bitmap *bitmap;
5581
5582 bitmap = md_bitmap_create(mddev, -1);
5583 if (IS_ERR(bitmap)) {
5584 err = PTR_ERR(bitmap);
5585 pr_warn("%s: failed to create bitmap (%d)\n",
5586 mdname(mddev), err);
5587 } else
5588 mddev->bitmap = bitmap;
5589
5590 }
5591 if (err) {
5592 mddev_detach(mddev);
5593 if (mddev->private)
5594 pers->free(mddev, mddev->private);
5595 mddev->private = NULL;
5596 module_put(pers->owner);
5597 md_bitmap_destroy(mddev);
5598 goto abort;
5599 }
5600 if (mddev->queue) {
5601 bool nonrot = true;
5602
5603 rdev_for_each(rdev, mddev) {
5604 if (rdev->raid_disk >= 0 &&
5605 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
5606 nonrot = false;
5607 break;
5608 }
5609 }
5610 if (mddev->degraded)
5611 nonrot = false;
5612 if (nonrot)
5613 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
5614 else
5615 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
5616 mddev->queue->backing_dev_info->congested_data = mddev;
5617 mddev->queue->backing_dev_info->congested_fn = md_congested;
5618 }
5619 if (pers->sync_request) {
5620 if (mddev->kobj.sd &&
5621 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5622 pr_warn("md: cannot register extra attributes for %s\n",
5623 mdname(mddev));
5624 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5625 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5626 mddev->ro = 0;
5627
5628 atomic_set(&mddev->max_corr_read_errors,
5629 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5630 mddev->safemode = 0;
5631 if (mddev_is_clustered(mddev))
5632 mddev->safemode_delay = 0;
5633 else
5634 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5635 mddev->in_sync = 1;
5636 smp_wmb();
5637 spin_lock(&mddev->lock);
5638 mddev->pers = pers;
5639 spin_unlock(&mddev->lock);
5640 rdev_for_each(rdev, mddev)
5641 if (rdev->raid_disk >= 0)
5642 if (sysfs_link_rdev(mddev, rdev))
5643 /* failure here is OK */;
5644
5645 if (mddev->degraded && !mddev->ro)
5646 /* This ensures that recovering status is reported immediately
5647 * via sysfs - until a lack of spares is confirmed.
5648 */
5649 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5650 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5651
5652 if (mddev->sb_flags)
5653 md_update_sb(mddev, 0);
5654
5655 md_new_event(mddev);
5656 sysfs_notify_dirent_safe(mddev->sysfs_state);
5657 sysfs_notify_dirent_safe(mddev->sysfs_action);
5658 sysfs_notify(&mddev->kobj, NULL, "degraded");
5659 return 0;
5660
5661 abort:
5662 bioset_exit(&mddev->bio_set);
5663 bioset_exit(&mddev->sync_set);
5664 return err;
5665 }
5666 EXPORT_SYMBOL_GPL(md_run);
5667
5668 static int do_md_run(struct mddev *mddev)
5669 {
5670 int err;
5671
5672 err = md_run(mddev);
5673 if (err)
5674 goto out;
5675 err = md_bitmap_load(mddev);
5676 if (err) {
5677 md_bitmap_destroy(mddev);
5678 goto out;
5679 }
5680
5681 if (mddev_is_clustered(mddev))
5682 md_allow_write(mddev);
5683
5684 /* run start up tasks that require md_thread */
5685 md_start(mddev);
5686
5687 md_wakeup_thread(mddev->thread);
5688 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5689
5690 set_capacity(mddev->gendisk, mddev->array_sectors);
5691 revalidate_disk(mddev->gendisk);
5692 mddev->changed = 1;
5693 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5694 out:
5695 return err;
5696 }
5697
5698 int md_start(struct mddev *mddev)
5699 {
5700 int ret = 0;
5701
5702 if (mddev->pers->start) {
5703 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
5704 md_wakeup_thread(mddev->thread);
5705 ret = mddev->pers->start(mddev);
5706 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
5707 md_wakeup_thread(mddev->sync_thread);
5708 }
5709 return ret;
5710 }
5711 EXPORT_SYMBOL_GPL(md_start);
5712
5713 static int restart_array(struct mddev *mddev)
5714 {
5715 struct gendisk *disk = mddev->gendisk;
5716 struct md_rdev *rdev;
5717 bool has_journal = false;
5718 bool has_readonly = false;
5719
5720 /* Complain if it has no devices */
5721 if (list_empty(&mddev->disks))
5722 return -ENXIO;
5723 if (!mddev->pers)
5724 return -EINVAL;
5725 if (!mddev->ro)
5726 return -EBUSY;
5727
5728 rcu_read_lock();
5729 rdev_for_each_rcu(rdev, mddev) {
5730 if (test_bit(Journal, &rdev->flags) &&
5731 !test_bit(Faulty, &rdev->flags))
5732 has_journal = true;
5733 if (bdev_read_only(rdev->bdev))
5734 has_readonly = true;
5735 }
5736 rcu_read_unlock();
5737 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
5738 /* Don't restart rw with journal missing/faulty */
5739 return -EINVAL;
5740 if (has_readonly)
5741 return -EROFS;
5742
5743 mddev->safemode = 0;
5744 mddev->ro = 0;
5745 set_disk_ro(disk, 0);
5746 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
5747 /* Kick recovery or resync if necessary */
5748 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5749 md_wakeup_thread(mddev->thread);
5750 md_wakeup_thread(mddev->sync_thread);
5751 sysfs_notify_dirent_safe(mddev->sysfs_state);
5752 return 0;
5753 }
5754
5755 static void md_clean(struct mddev *mddev)
5756 {
5757 mddev->array_sectors = 0;
5758 mddev->external_size = 0;
5759 mddev->dev_sectors = 0;
5760 mddev->raid_disks = 0;
5761 mddev->recovery_cp = 0;
5762 mddev->resync_min = 0;
5763 mddev->resync_max = MaxSector;
5764 mddev->reshape_position = MaxSector;
5765 mddev->external = 0;
5766 mddev->persistent = 0;
5767 mddev->level = LEVEL_NONE;
5768 mddev->clevel[0] = 0;
5769 mddev->flags = 0;
5770 mddev->sb_flags = 0;
5771 mddev->ro = 0;
5772 mddev->metadata_type[0] = 0;
5773 mddev->chunk_sectors = 0;
5774 mddev->ctime = mddev->utime = 0;
5775 mddev->layout = 0;
5776 mddev->max_disks = 0;
5777 mddev->events = 0;
5778 mddev->can_decrease_events = 0;
5779 mddev->delta_disks = 0;
5780 mddev->reshape_backwards = 0;
5781 mddev->new_level = LEVEL_NONE;
5782 mddev->new_layout = 0;
5783 mddev->new_chunk_sectors = 0;
5784 mddev->curr_resync = 0;
5785 atomic64_set(&mddev->resync_mismatches, 0);
5786 mddev->suspend_lo = mddev->suspend_hi = 0;
5787 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5788 mddev->recovery = 0;
5789 mddev->in_sync = 0;
5790 mddev->changed = 0;
5791 mddev->degraded = 0;
5792 mddev->safemode = 0;
5793 mddev->private = NULL;
5794 mddev->cluster_info = NULL;
5795 mddev->bitmap_info.offset = 0;
5796 mddev->bitmap_info.default_offset = 0;
5797 mddev->bitmap_info.default_space = 0;
5798 mddev->bitmap_info.chunksize = 0;
5799 mddev->bitmap_info.daemon_sleep = 0;
5800 mddev->bitmap_info.max_write_behind = 0;
5801 mddev->bitmap_info.nodes = 0;
5802 }
5803
5804 static void __md_stop_writes(struct mddev *mddev)
5805 {
5806 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5807 flush_workqueue(md_misc_wq);
5808 if (mddev->sync_thread) {
5809 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5810 md_reap_sync_thread(mddev);
5811 }
5812
5813 del_timer_sync(&mddev->safemode_timer);
5814
5815 if (mddev->pers && mddev->pers->quiesce) {
5816 mddev->pers->quiesce(mddev, 1);
5817 mddev->pers->quiesce(mddev, 0);
5818 }
5819 md_bitmap_flush(mddev);
5820
5821 if (mddev->ro == 0 &&
5822 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5823 mddev->sb_flags)) {
5824 /* mark array as shutdown cleanly */
5825 if (!mddev_is_clustered(mddev))
5826 mddev->in_sync = 1;
5827 md_update_sb(mddev, 1);
5828 }
5829 }
5830
5831 void md_stop_writes(struct mddev *mddev)
5832 {
5833 mddev_lock_nointr(mddev);
5834 __md_stop_writes(mddev);
5835 mddev_unlock(mddev);
5836 }
5837 EXPORT_SYMBOL_GPL(md_stop_writes);
5838
5839 static void mddev_detach(struct mddev *mddev)
5840 {
5841 md_bitmap_wait_behind_writes(mddev);
5842 if (mddev->pers && mddev->pers->quiesce) {
5843 mddev->pers->quiesce(mddev, 1);
5844 mddev->pers->quiesce(mddev, 0);
5845 }
5846 md_unregister_thread(&mddev->thread);
5847 if (mddev->queue)
5848 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5849 }
5850
5851 static void __md_stop(struct mddev *mddev)
5852 {
5853 struct md_personality *pers = mddev->pers;
5854 md_bitmap_destroy(mddev);
5855 mddev_detach(mddev);
5856 /* Ensure ->event_work is done */
5857 flush_workqueue(md_misc_wq);
5858 spin_lock(&mddev->lock);
5859 mddev->pers = NULL;
5860 spin_unlock(&mddev->lock);
5861 pers->free(mddev, mddev->private);
5862 mddev->private = NULL;
5863 if (pers->sync_request && mddev->to_remove == NULL)
5864 mddev->to_remove = &md_redundancy_group;
5865 module_put(pers->owner);
5866 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5867 }
5868
5869 void md_stop(struct mddev *mddev)
5870 {
5871 /* stop the array and free an attached data structures.
5872 * This is called from dm-raid
5873 */
5874 __md_stop(mddev);
5875 bioset_exit(&mddev->bio_set);
5876 bioset_exit(&mddev->sync_set);
5877 }
5878
5879 EXPORT_SYMBOL_GPL(md_stop);
5880
5881 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5882 {
5883 int err = 0;
5884 int did_freeze = 0;
5885
5886 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5887 did_freeze = 1;
5888 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5889 md_wakeup_thread(mddev->thread);
5890 }
5891 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5892 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5893 if (mddev->sync_thread)
5894 /* Thread might be blocked waiting for metadata update
5895 * which will now never happen */
5896 wake_up_process(mddev->sync_thread->tsk);
5897
5898 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
5899 return -EBUSY;
5900 mddev_unlock(mddev);
5901 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5902 &mddev->recovery));
5903 wait_event(mddev->sb_wait,
5904 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
5905 mddev_lock_nointr(mddev);
5906
5907 mutex_lock(&mddev->open_mutex);
5908 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5909 mddev->sync_thread ||
5910 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5911 pr_warn("md: %s still in use.\n",mdname(mddev));
5912 if (did_freeze) {
5913 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5914 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5915 md_wakeup_thread(mddev->thread);
5916 }
5917 err = -EBUSY;
5918 goto out;
5919 }
5920 if (mddev->pers) {
5921 __md_stop_writes(mddev);
5922
5923 err = -ENXIO;
5924 if (mddev->ro==1)
5925 goto out;
5926 mddev->ro = 1;
5927 set_disk_ro(mddev->gendisk, 1);
5928 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5929 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5930 md_wakeup_thread(mddev->thread);
5931 sysfs_notify_dirent_safe(mddev->sysfs_state);
5932 err = 0;
5933 }
5934 out:
5935 mutex_unlock(&mddev->open_mutex);
5936 return err;
5937 }
5938
5939 /* mode:
5940 * 0 - completely stop and dis-assemble array
5941 * 2 - stop but do not disassemble array
5942 */
5943 static int do_md_stop(struct mddev *mddev, int mode,
5944 struct block_device *bdev)
5945 {
5946 struct gendisk *disk = mddev->gendisk;
5947 struct md_rdev *rdev;
5948 int did_freeze = 0;
5949
5950 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5951 did_freeze = 1;
5952 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5953 md_wakeup_thread(mddev->thread);
5954 }
5955 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5956 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5957 if (mddev->sync_thread)
5958 /* Thread might be blocked waiting for metadata update
5959 * which will now never happen */
5960 wake_up_process(mddev->sync_thread->tsk);
5961
5962 mddev_unlock(mddev);
5963 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5964 !test_bit(MD_RECOVERY_RUNNING,
5965 &mddev->recovery)));
5966 mddev_lock_nointr(mddev);
5967
5968 mutex_lock(&mddev->open_mutex);
5969 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5970 mddev->sysfs_active ||
5971 mddev->sync_thread ||
5972 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5973 pr_warn("md: %s still in use.\n",mdname(mddev));
5974 mutex_unlock(&mddev->open_mutex);
5975 if (did_freeze) {
5976 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5977 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5978 md_wakeup_thread(mddev->thread);
5979 }
5980 return -EBUSY;
5981 }
5982 if (mddev->pers) {
5983 if (mddev->ro)
5984 set_disk_ro(disk, 0);
5985
5986 __md_stop_writes(mddev);
5987 __md_stop(mddev);
5988 mddev->queue->backing_dev_info->congested_fn = NULL;
5989
5990 /* tell userspace to handle 'inactive' */
5991 sysfs_notify_dirent_safe(mddev->sysfs_state);
5992
5993 rdev_for_each(rdev, mddev)
5994 if (rdev->raid_disk >= 0)
5995 sysfs_unlink_rdev(mddev, rdev);
5996
5997 set_capacity(disk, 0);
5998 mutex_unlock(&mddev->open_mutex);
5999 mddev->changed = 1;
6000 revalidate_disk(disk);
6001
6002 if (mddev->ro)
6003 mddev->ro = 0;
6004 } else
6005 mutex_unlock(&mddev->open_mutex);
6006 /*
6007 * Free resources if final stop
6008 */
6009 if (mode == 0) {
6010 pr_info("md: %s stopped.\n", mdname(mddev));
6011
6012 if (mddev->bitmap_info.file) {
6013 struct file *f = mddev->bitmap_info.file;
6014 spin_lock(&mddev->lock);
6015 mddev->bitmap_info.file = NULL;
6016 spin_unlock(&mddev->lock);
6017 fput(f);
6018 }
6019 mddev->bitmap_info.offset = 0;
6020
6021 export_array(mddev);
6022
6023 md_clean(mddev);
6024 if (mddev->hold_active == UNTIL_STOP)
6025 mddev->hold_active = 0;
6026 }
6027 md_new_event(mddev);
6028 sysfs_notify_dirent_safe(mddev->sysfs_state);
6029 return 0;
6030 }
6031
6032 #ifndef MODULE
6033 static void autorun_array(struct mddev *mddev)
6034 {
6035 struct md_rdev *rdev;
6036 int err;
6037
6038 if (list_empty(&mddev->disks))
6039 return;
6040
6041 pr_info("md: running: ");
6042
6043 rdev_for_each(rdev, mddev) {
6044 char b[BDEVNAME_SIZE];
6045 pr_cont("<%s>", bdevname(rdev->bdev,b));
6046 }
6047 pr_cont("\n");
6048
6049 err = do_md_run(mddev);
6050 if (err) {
6051 pr_warn("md: do_md_run() returned %d\n", err);
6052 do_md_stop(mddev, 0, NULL);
6053 }
6054 }
6055
6056 /*
6057 * lets try to run arrays based on all disks that have arrived
6058 * until now. (those are in pending_raid_disks)
6059 *
6060 * the method: pick the first pending disk, collect all disks with
6061 * the same UUID, remove all from the pending list and put them into
6062 * the 'same_array' list. Then order this list based on superblock
6063 * update time (freshest comes first), kick out 'old' disks and
6064 * compare superblocks. If everything's fine then run it.
6065 *
6066 * If "unit" is allocated, then bump its reference count
6067 */
6068 static void autorun_devices(int part)
6069 {
6070 struct md_rdev *rdev0, *rdev, *tmp;
6071 struct mddev *mddev;
6072 char b[BDEVNAME_SIZE];
6073
6074 pr_info("md: autorun ...\n");
6075 while (!list_empty(&pending_raid_disks)) {
6076 int unit;
6077 dev_t dev;
6078 LIST_HEAD(candidates);
6079 rdev0 = list_entry(pending_raid_disks.next,
6080 struct md_rdev, same_set);
6081
6082 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6083 INIT_LIST_HEAD(&candidates);
6084 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6085 if (super_90_load(rdev, rdev0, 0) >= 0) {
6086 pr_debug("md: adding %s ...\n",
6087 bdevname(rdev->bdev,b));
6088 list_move(&rdev->same_set, &candidates);
6089 }
6090 /*
6091 * now we have a set of devices, with all of them having
6092 * mostly sane superblocks. It's time to allocate the
6093 * mddev.
6094 */
6095 if (part) {
6096 dev = MKDEV(mdp_major,
6097 rdev0->preferred_minor << MdpMinorShift);
6098 unit = MINOR(dev) >> MdpMinorShift;
6099 } else {
6100 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6101 unit = MINOR(dev);
6102 }
6103 if (rdev0->preferred_minor != unit) {
6104 pr_warn("md: unit number in %s is bad: %d\n",
6105 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6106 break;
6107 }
6108
6109 md_probe(dev, NULL, NULL);
6110 mddev = mddev_find(dev);
6111 if (!mddev || !mddev->gendisk) {
6112 if (mddev)
6113 mddev_put(mddev);
6114 break;
6115 }
6116 if (mddev_lock(mddev))
6117 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6118 else if (mddev->raid_disks || mddev->major_version
6119 || !list_empty(&mddev->disks)) {
6120 pr_warn("md: %s already running, cannot run %s\n",
6121 mdname(mddev), bdevname(rdev0->bdev,b));
6122 mddev_unlock(mddev);
6123 } else {
6124 pr_debug("md: created %s\n", mdname(mddev));
6125 mddev->persistent = 1;
6126 rdev_for_each_list(rdev, tmp, &candidates) {
6127 list_del_init(&rdev->same_set);
6128 if (bind_rdev_to_array(rdev, mddev))
6129 export_rdev(rdev);
6130 }
6131 autorun_array(mddev);
6132 mddev_unlock(mddev);
6133 }
6134 /* on success, candidates will be empty, on error
6135 * it won't...
6136 */
6137 rdev_for_each_list(rdev, tmp, &candidates) {
6138 list_del_init(&rdev->same_set);
6139 export_rdev(rdev);
6140 }
6141 mddev_put(mddev);
6142 }
6143 pr_info("md: ... autorun DONE.\n");
6144 }
6145 #endif /* !MODULE */
6146
6147 static int get_version(void __user *arg)
6148 {
6149 mdu_version_t ver;
6150
6151 ver.major = MD_MAJOR_VERSION;
6152 ver.minor = MD_MINOR_VERSION;
6153 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6154
6155 if (copy_to_user(arg, &ver, sizeof(ver)))
6156 return -EFAULT;
6157
6158 return 0;
6159 }
6160
6161 static int get_array_info(struct mddev *mddev, void __user *arg)
6162 {
6163 mdu_array_info_t info;
6164 int nr,working,insync,failed,spare;
6165 struct md_rdev *rdev;
6166
6167 nr = working = insync = failed = spare = 0;
6168 rcu_read_lock();
6169 rdev_for_each_rcu(rdev, mddev) {
6170 nr++;
6171 if (test_bit(Faulty, &rdev->flags))
6172 failed++;
6173 else {
6174 working++;
6175 if (test_bit(In_sync, &rdev->flags))
6176 insync++;
6177 else if (test_bit(Journal, &rdev->flags))
6178 /* TODO: add journal count to md_u.h */
6179 ;
6180 else
6181 spare++;
6182 }
6183 }
6184 rcu_read_unlock();
6185
6186 info.major_version = mddev->major_version;
6187 info.minor_version = mddev->minor_version;
6188 info.patch_version = MD_PATCHLEVEL_VERSION;
6189 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6190 info.level = mddev->level;
6191 info.size = mddev->dev_sectors / 2;
6192 if (info.size != mddev->dev_sectors / 2) /* overflow */
6193 info.size = -1;
6194 info.nr_disks = nr;
6195 info.raid_disks = mddev->raid_disks;
6196 info.md_minor = mddev->md_minor;
6197 info.not_persistent= !mddev->persistent;
6198
6199 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6200 info.state = 0;
6201 if (mddev->in_sync)
6202 info.state = (1<<MD_SB_CLEAN);
6203 if (mddev->bitmap && mddev->bitmap_info.offset)
6204 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6205 if (mddev_is_clustered(mddev))
6206 info.state |= (1<<MD_SB_CLUSTERED);
6207 info.active_disks = insync;
6208 info.working_disks = working;
6209 info.failed_disks = failed;
6210 info.spare_disks = spare;
6211
6212 info.layout = mddev->layout;
6213 info.chunk_size = mddev->chunk_sectors << 9;
6214
6215 if (copy_to_user(arg, &info, sizeof(info)))
6216 return -EFAULT;
6217
6218 return 0;
6219 }
6220
6221 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6222 {
6223 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6224 char *ptr;
6225 int err;
6226
6227 file = kzalloc(sizeof(*file), GFP_NOIO);
6228 if (!file)
6229 return -ENOMEM;
6230
6231 err = 0;
6232 spin_lock(&mddev->lock);
6233 /* bitmap enabled */
6234 if (mddev->bitmap_info.file) {
6235 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6236 sizeof(file->pathname));
6237 if (IS_ERR(ptr))
6238 err = PTR_ERR(ptr);
6239 else
6240 memmove(file->pathname, ptr,
6241 sizeof(file->pathname)-(ptr-file->pathname));
6242 }
6243 spin_unlock(&mddev->lock);
6244
6245 if (err == 0 &&
6246 copy_to_user(arg, file, sizeof(*file)))
6247 err = -EFAULT;
6248
6249 kfree(file);
6250 return err;
6251 }
6252
6253 static int get_disk_info(struct mddev *mddev, void __user * arg)
6254 {
6255 mdu_disk_info_t info;
6256 struct md_rdev *rdev;
6257
6258 if (copy_from_user(&info, arg, sizeof(info)))
6259 return -EFAULT;
6260
6261 rcu_read_lock();
6262 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6263 if (rdev) {
6264 info.major = MAJOR(rdev->bdev->bd_dev);
6265 info.minor = MINOR(rdev->bdev->bd_dev);
6266 info.raid_disk = rdev->raid_disk;
6267 info.state = 0;
6268 if (test_bit(Faulty, &rdev->flags))
6269 info.state |= (1<<MD_DISK_FAULTY);
6270 else if (test_bit(In_sync, &rdev->flags)) {
6271 info.state |= (1<<MD_DISK_ACTIVE);
6272 info.state |= (1<<MD_DISK_SYNC);
6273 }
6274 if (test_bit(Journal, &rdev->flags))
6275 info.state |= (1<<MD_DISK_JOURNAL);
6276 if (test_bit(WriteMostly, &rdev->flags))
6277 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6278 if (test_bit(FailFast, &rdev->flags))
6279 info.state |= (1<<MD_DISK_FAILFAST);
6280 } else {
6281 info.major = info.minor = 0;
6282 info.raid_disk = -1;
6283 info.state = (1<<MD_DISK_REMOVED);
6284 }
6285 rcu_read_unlock();
6286
6287 if (copy_to_user(arg, &info, sizeof(info)))
6288 return -EFAULT;
6289
6290 return 0;
6291 }
6292
6293 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
6294 {
6295 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6296 struct md_rdev *rdev;
6297 dev_t dev = MKDEV(info->major,info->minor);
6298
6299 if (mddev_is_clustered(mddev) &&
6300 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6301 pr_warn("%s: Cannot add to clustered mddev.\n",
6302 mdname(mddev));
6303 return -EINVAL;
6304 }
6305
6306 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6307 return -EOVERFLOW;
6308
6309 if (!mddev->raid_disks) {
6310 int err;
6311 /* expecting a device which has a superblock */
6312 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6313 if (IS_ERR(rdev)) {
6314 pr_warn("md: md_import_device returned %ld\n",
6315 PTR_ERR(rdev));
6316 return PTR_ERR(rdev);
6317 }
6318 if (!list_empty(&mddev->disks)) {
6319 struct md_rdev *rdev0
6320 = list_entry(mddev->disks.next,
6321 struct md_rdev, same_set);
6322 err = super_types[mddev->major_version]
6323 .load_super(rdev, rdev0, mddev->minor_version);
6324 if (err < 0) {
6325 pr_warn("md: %s has different UUID to %s\n",
6326 bdevname(rdev->bdev,b),
6327 bdevname(rdev0->bdev,b2));
6328 export_rdev(rdev);
6329 return -EINVAL;
6330 }
6331 }
6332 err = bind_rdev_to_array(rdev, mddev);
6333 if (err)
6334 export_rdev(rdev);
6335 return err;
6336 }
6337
6338 /*
6339 * add_new_disk can be used once the array is assembled
6340 * to add "hot spares". They must already have a superblock
6341 * written
6342 */
6343 if (mddev->pers) {
6344 int err;
6345 if (!mddev->pers->hot_add_disk) {
6346 pr_warn("%s: personality does not support diskops!\n",
6347 mdname(mddev));
6348 return -EINVAL;
6349 }
6350 if (mddev->persistent)
6351 rdev = md_import_device(dev, mddev->major_version,
6352 mddev->minor_version);
6353 else
6354 rdev = md_import_device(dev, -1, -1);
6355 if (IS_ERR(rdev)) {
6356 pr_warn("md: md_import_device returned %ld\n",
6357 PTR_ERR(rdev));
6358 return PTR_ERR(rdev);
6359 }
6360 /* set saved_raid_disk if appropriate */
6361 if (!mddev->persistent) {
6362 if (info->state & (1<<MD_DISK_SYNC) &&
6363 info->raid_disk < mddev->raid_disks) {
6364 rdev->raid_disk = info->raid_disk;
6365 set_bit(In_sync, &rdev->flags);
6366 clear_bit(Bitmap_sync, &rdev->flags);
6367 } else
6368 rdev->raid_disk = -1;
6369 rdev->saved_raid_disk = rdev->raid_disk;
6370 } else
6371 super_types[mddev->major_version].
6372 validate_super(mddev, rdev);
6373 if ((info->state & (1<<MD_DISK_SYNC)) &&
6374 rdev->raid_disk != info->raid_disk) {
6375 /* This was a hot-add request, but events doesn't
6376 * match, so reject it.
6377 */
6378 export_rdev(rdev);
6379 return -EINVAL;
6380 }
6381
6382 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6383 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6384 set_bit(WriteMostly, &rdev->flags);
6385 else
6386 clear_bit(WriteMostly, &rdev->flags);
6387 if (info->state & (1<<MD_DISK_FAILFAST))
6388 set_bit(FailFast, &rdev->flags);
6389 else
6390 clear_bit(FailFast, &rdev->flags);
6391
6392 if (info->state & (1<<MD_DISK_JOURNAL)) {
6393 struct md_rdev *rdev2;
6394 bool has_journal = false;
6395
6396 /* make sure no existing journal disk */
6397 rdev_for_each(rdev2, mddev) {
6398 if (test_bit(Journal, &rdev2->flags)) {
6399 has_journal = true;
6400 break;
6401 }
6402 }
6403 if (has_journal || mddev->bitmap) {
6404 export_rdev(rdev);
6405 return -EBUSY;
6406 }
6407 set_bit(Journal, &rdev->flags);
6408 }
6409 /*
6410 * check whether the device shows up in other nodes
6411 */
6412 if (mddev_is_clustered(mddev)) {
6413 if (info->state & (1 << MD_DISK_CANDIDATE))
6414 set_bit(Candidate, &rdev->flags);
6415 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6416 /* --add initiated by this node */
6417 err = md_cluster_ops->add_new_disk(mddev, rdev);
6418 if (err) {
6419 export_rdev(rdev);
6420 return err;
6421 }
6422 }
6423 }
6424
6425 rdev->raid_disk = -1;
6426 err = bind_rdev_to_array(rdev, mddev);
6427
6428 if (err)
6429 export_rdev(rdev);
6430
6431 if (mddev_is_clustered(mddev)) {
6432 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6433 if (!err) {
6434 err = md_cluster_ops->new_disk_ack(mddev,
6435 err == 0);
6436 if (err)
6437 md_kick_rdev_from_array(rdev);
6438 }
6439 } else {
6440 if (err)
6441 md_cluster_ops->add_new_disk_cancel(mddev);
6442 else
6443 err = add_bound_rdev(rdev);
6444 }
6445
6446 } else if (!err)
6447 err = add_bound_rdev(rdev);
6448
6449 return err;
6450 }
6451
6452 /* otherwise, add_new_disk is only allowed
6453 * for major_version==0 superblocks
6454 */
6455 if (mddev->major_version != 0) {
6456 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6457 return -EINVAL;
6458 }
6459
6460 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6461 int err;
6462 rdev = md_import_device(dev, -1, 0);
6463 if (IS_ERR(rdev)) {
6464 pr_warn("md: error, md_import_device() returned %ld\n",
6465 PTR_ERR(rdev));
6466 return PTR_ERR(rdev);
6467 }
6468 rdev->desc_nr = info->number;
6469 if (info->raid_disk < mddev->raid_disks)
6470 rdev->raid_disk = info->raid_disk;
6471 else
6472 rdev->raid_disk = -1;
6473
6474 if (rdev->raid_disk < mddev->raid_disks)
6475 if (info->state & (1<<MD_DISK_SYNC))
6476 set_bit(In_sync, &rdev->flags);
6477
6478 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6479 set_bit(WriteMostly, &rdev->flags);
6480 if (info->state & (1<<MD_DISK_FAILFAST))
6481 set_bit(FailFast, &rdev->flags);
6482
6483 if (!mddev->persistent) {
6484 pr_debug("md: nonpersistent superblock ...\n");
6485 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6486 } else
6487 rdev->sb_start = calc_dev_sboffset(rdev);
6488 rdev->sectors = rdev->sb_start;
6489
6490 err = bind_rdev_to_array(rdev, mddev);
6491 if (err) {
6492 export_rdev(rdev);
6493 return err;
6494 }
6495 }
6496
6497 return 0;
6498 }
6499
6500 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6501 {
6502 char b[BDEVNAME_SIZE];
6503 struct md_rdev *rdev;
6504
6505 if (!mddev->pers)
6506 return -ENODEV;
6507
6508 rdev = find_rdev(mddev, dev);
6509 if (!rdev)
6510 return -ENXIO;
6511
6512 if (rdev->raid_disk < 0)
6513 goto kick_rdev;
6514
6515 clear_bit(Blocked, &rdev->flags);
6516 remove_and_add_spares(mddev, rdev);
6517
6518 if (rdev->raid_disk >= 0)
6519 goto busy;
6520
6521 kick_rdev:
6522 if (mddev_is_clustered(mddev))
6523 md_cluster_ops->remove_disk(mddev, rdev);
6524
6525 md_kick_rdev_from_array(rdev);
6526 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6527 if (mddev->thread)
6528 md_wakeup_thread(mddev->thread);
6529 else
6530 md_update_sb(mddev, 1);
6531 md_new_event(mddev);
6532
6533 return 0;
6534 busy:
6535 pr_debug("md: cannot remove active disk %s from %s ...\n",
6536 bdevname(rdev->bdev,b), mdname(mddev));
6537 return -EBUSY;
6538 }
6539
6540 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6541 {
6542 char b[BDEVNAME_SIZE];
6543 int err;
6544 struct md_rdev *rdev;
6545
6546 if (!mddev->pers)
6547 return -ENODEV;
6548
6549 if (mddev->major_version != 0) {
6550 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6551 mdname(mddev));
6552 return -EINVAL;
6553 }
6554 if (!mddev->pers->hot_add_disk) {
6555 pr_warn("%s: personality does not support diskops!\n",
6556 mdname(mddev));
6557 return -EINVAL;
6558 }
6559
6560 rdev = md_import_device(dev, -1, 0);
6561 if (IS_ERR(rdev)) {
6562 pr_warn("md: error, md_import_device() returned %ld\n",
6563 PTR_ERR(rdev));
6564 return -EINVAL;
6565 }
6566
6567 if (mddev->persistent)
6568 rdev->sb_start = calc_dev_sboffset(rdev);
6569 else
6570 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6571
6572 rdev->sectors = rdev->sb_start;
6573
6574 if (test_bit(Faulty, &rdev->flags)) {
6575 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6576 bdevname(rdev->bdev,b), mdname(mddev));
6577 err = -EINVAL;
6578 goto abort_export;
6579 }
6580
6581 clear_bit(In_sync, &rdev->flags);
6582 rdev->desc_nr = -1;
6583 rdev->saved_raid_disk = -1;
6584 err = bind_rdev_to_array(rdev, mddev);
6585 if (err)
6586 goto abort_export;
6587
6588 /*
6589 * The rest should better be atomic, we can have disk failures
6590 * noticed in interrupt contexts ...
6591 */
6592
6593 rdev->raid_disk = -1;
6594
6595 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6596 if (!mddev->thread)
6597 md_update_sb(mddev, 1);
6598 /*
6599 * Kick recovery, maybe this spare has to be added to the
6600 * array immediately.
6601 */
6602 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6603 md_wakeup_thread(mddev->thread);
6604 md_new_event(mddev);
6605 return 0;
6606
6607 abort_export:
6608 export_rdev(rdev);
6609 return err;
6610 }
6611
6612 static int set_bitmap_file(struct mddev *mddev, int fd)
6613 {
6614 int err = 0;
6615
6616 if (mddev->pers) {
6617 if (!mddev->pers->quiesce || !mddev->thread)
6618 return -EBUSY;
6619 if (mddev->recovery || mddev->sync_thread)
6620 return -EBUSY;
6621 /* we should be able to change the bitmap.. */
6622 }
6623
6624 if (fd >= 0) {
6625 struct inode *inode;
6626 struct file *f;
6627
6628 if (mddev->bitmap || mddev->bitmap_info.file)
6629 return -EEXIST; /* cannot add when bitmap is present */
6630 f = fget(fd);
6631
6632 if (f == NULL) {
6633 pr_warn("%s: error: failed to get bitmap file\n",
6634 mdname(mddev));
6635 return -EBADF;
6636 }
6637
6638 inode = f->f_mapping->host;
6639 if (!S_ISREG(inode->i_mode)) {
6640 pr_warn("%s: error: bitmap file must be a regular file\n",
6641 mdname(mddev));
6642 err = -EBADF;
6643 } else if (!(f->f_mode & FMODE_WRITE)) {
6644 pr_warn("%s: error: bitmap file must open for write\n",
6645 mdname(mddev));
6646 err = -EBADF;
6647 } else if (atomic_read(&inode->i_writecount) != 1) {
6648 pr_warn("%s: error: bitmap file is already in use\n",
6649 mdname(mddev));
6650 err = -EBUSY;
6651 }
6652 if (err) {
6653 fput(f);
6654 return err;
6655 }
6656 mddev->bitmap_info.file = f;
6657 mddev->bitmap_info.offset = 0; /* file overrides offset */
6658 } else if (mddev->bitmap == NULL)
6659 return -ENOENT; /* cannot remove what isn't there */
6660 err = 0;
6661 if (mddev->pers) {
6662 if (fd >= 0) {
6663 struct bitmap *bitmap;
6664
6665 bitmap = md_bitmap_create(mddev, -1);
6666 mddev_suspend(mddev);
6667 if (!IS_ERR(bitmap)) {
6668 mddev->bitmap = bitmap;
6669 err = md_bitmap_load(mddev);
6670 } else
6671 err = PTR_ERR(bitmap);
6672 if (err) {
6673 md_bitmap_destroy(mddev);
6674 fd = -1;
6675 }
6676 mddev_resume(mddev);
6677 } else if (fd < 0) {
6678 mddev_suspend(mddev);
6679 md_bitmap_destroy(mddev);
6680 mddev_resume(mddev);
6681 }
6682 }
6683 if (fd < 0) {
6684 struct file *f = mddev->bitmap_info.file;
6685 if (f) {
6686 spin_lock(&mddev->lock);
6687 mddev->bitmap_info.file = NULL;
6688 spin_unlock(&mddev->lock);
6689 fput(f);
6690 }
6691 }
6692
6693 return err;
6694 }
6695
6696 /*
6697 * set_array_info is used two different ways
6698 * The original usage is when creating a new array.
6699 * In this usage, raid_disks is > 0 and it together with
6700 * level, size, not_persistent,layout,chunksize determine the
6701 * shape of the array.
6702 * This will always create an array with a type-0.90.0 superblock.
6703 * The newer usage is when assembling an array.
6704 * In this case raid_disks will be 0, and the major_version field is
6705 * use to determine which style super-blocks are to be found on the devices.
6706 * The minor and patch _version numbers are also kept incase the
6707 * super_block handler wishes to interpret them.
6708 */
6709 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6710 {
6711
6712 if (info->raid_disks == 0) {
6713 /* just setting version number for superblock loading */
6714 if (info->major_version < 0 ||
6715 info->major_version >= ARRAY_SIZE(super_types) ||
6716 super_types[info->major_version].name == NULL) {
6717 /* maybe try to auto-load a module? */
6718 pr_warn("md: superblock version %d not known\n",
6719 info->major_version);
6720 return -EINVAL;
6721 }
6722 mddev->major_version = info->major_version;
6723 mddev->minor_version = info->minor_version;
6724 mddev->patch_version = info->patch_version;
6725 mddev->persistent = !info->not_persistent;
6726 /* ensure mddev_put doesn't delete this now that there
6727 * is some minimal configuration.
6728 */
6729 mddev->ctime = ktime_get_real_seconds();
6730 return 0;
6731 }
6732 mddev->major_version = MD_MAJOR_VERSION;
6733 mddev->minor_version = MD_MINOR_VERSION;
6734 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6735 mddev->ctime = ktime_get_real_seconds();
6736
6737 mddev->level = info->level;
6738 mddev->clevel[0] = 0;
6739 mddev->dev_sectors = 2 * (sector_t)info->size;
6740 mddev->raid_disks = info->raid_disks;
6741 /* don't set md_minor, it is determined by which /dev/md* was
6742 * openned
6743 */
6744 if (info->state & (1<<MD_SB_CLEAN))
6745 mddev->recovery_cp = MaxSector;
6746 else
6747 mddev->recovery_cp = 0;
6748 mddev->persistent = ! info->not_persistent;
6749 mddev->external = 0;
6750
6751 mddev->layout = info->layout;
6752 mddev->chunk_sectors = info->chunk_size >> 9;
6753
6754 if (mddev->persistent) {
6755 mddev->max_disks = MD_SB_DISKS;
6756 mddev->flags = 0;
6757 mddev->sb_flags = 0;
6758 }
6759 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6760
6761 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6762 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6763 mddev->bitmap_info.offset = 0;
6764
6765 mddev->reshape_position = MaxSector;
6766
6767 /*
6768 * Generate a 128 bit UUID
6769 */
6770 get_random_bytes(mddev->uuid, 16);
6771
6772 mddev->new_level = mddev->level;
6773 mddev->new_chunk_sectors = mddev->chunk_sectors;
6774 mddev->new_layout = mddev->layout;
6775 mddev->delta_disks = 0;
6776 mddev->reshape_backwards = 0;
6777
6778 return 0;
6779 }
6780
6781 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6782 {
6783 lockdep_assert_held(&mddev->reconfig_mutex);
6784
6785 if (mddev->external_size)
6786 return;
6787
6788 mddev->array_sectors = array_sectors;
6789 }
6790 EXPORT_SYMBOL(md_set_array_sectors);
6791
6792 static int update_size(struct mddev *mddev, sector_t num_sectors)
6793 {
6794 struct md_rdev *rdev;
6795 int rv;
6796 int fit = (num_sectors == 0);
6797 sector_t old_dev_sectors = mddev->dev_sectors;
6798
6799 if (mddev->pers->resize == NULL)
6800 return -EINVAL;
6801 /* The "num_sectors" is the number of sectors of each device that
6802 * is used. This can only make sense for arrays with redundancy.
6803 * linear and raid0 always use whatever space is available. We can only
6804 * consider changing this number if no resync or reconstruction is
6805 * happening, and if the new size is acceptable. It must fit before the
6806 * sb_start or, if that is <data_offset, it must fit before the size
6807 * of each device. If num_sectors is zero, we find the largest size
6808 * that fits.
6809 */
6810 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6811 mddev->sync_thread)
6812 return -EBUSY;
6813 if (mddev->ro)
6814 return -EROFS;
6815
6816 rdev_for_each(rdev, mddev) {
6817 sector_t avail = rdev->sectors;
6818
6819 if (fit && (num_sectors == 0 || num_sectors > avail))
6820 num_sectors = avail;
6821 if (avail < num_sectors)
6822 return -ENOSPC;
6823 }
6824 rv = mddev->pers->resize(mddev, num_sectors);
6825 if (!rv) {
6826 if (mddev_is_clustered(mddev))
6827 md_cluster_ops->update_size(mddev, old_dev_sectors);
6828 else if (mddev->queue) {
6829 set_capacity(mddev->gendisk, mddev->array_sectors);
6830 revalidate_disk(mddev->gendisk);
6831 }
6832 }
6833 return rv;
6834 }
6835
6836 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6837 {
6838 int rv;
6839 struct md_rdev *rdev;
6840 /* change the number of raid disks */
6841 if (mddev->pers->check_reshape == NULL)
6842 return -EINVAL;
6843 if (mddev->ro)
6844 return -EROFS;
6845 if (raid_disks <= 0 ||
6846 (mddev->max_disks && raid_disks >= mddev->max_disks))
6847 return -EINVAL;
6848 if (mddev->sync_thread ||
6849 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6850 mddev->reshape_position != MaxSector)
6851 return -EBUSY;
6852
6853 rdev_for_each(rdev, mddev) {
6854 if (mddev->raid_disks < raid_disks &&
6855 rdev->data_offset < rdev->new_data_offset)
6856 return -EINVAL;
6857 if (mddev->raid_disks > raid_disks &&
6858 rdev->data_offset > rdev->new_data_offset)
6859 return -EINVAL;
6860 }
6861
6862 mddev->delta_disks = raid_disks - mddev->raid_disks;
6863 if (mddev->delta_disks < 0)
6864 mddev->reshape_backwards = 1;
6865 else if (mddev->delta_disks > 0)
6866 mddev->reshape_backwards = 0;
6867
6868 rv = mddev->pers->check_reshape(mddev);
6869 if (rv < 0) {
6870 mddev->delta_disks = 0;
6871 mddev->reshape_backwards = 0;
6872 }
6873 return rv;
6874 }
6875
6876 /*
6877 * update_array_info is used to change the configuration of an
6878 * on-line array.
6879 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6880 * fields in the info are checked against the array.
6881 * Any differences that cannot be handled will cause an error.
6882 * Normally, only one change can be managed at a time.
6883 */
6884 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6885 {
6886 int rv = 0;
6887 int cnt = 0;
6888 int state = 0;
6889
6890 /* calculate expected state,ignoring low bits */
6891 if (mddev->bitmap && mddev->bitmap_info.offset)
6892 state |= (1 << MD_SB_BITMAP_PRESENT);
6893
6894 if (mddev->major_version != info->major_version ||
6895 mddev->minor_version != info->minor_version ||
6896 /* mddev->patch_version != info->patch_version || */
6897 mddev->ctime != info->ctime ||
6898 mddev->level != info->level ||
6899 /* mddev->layout != info->layout || */
6900 mddev->persistent != !info->not_persistent ||
6901 mddev->chunk_sectors != info->chunk_size >> 9 ||
6902 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6903 ((state^info->state) & 0xfffffe00)
6904 )
6905 return -EINVAL;
6906 /* Check there is only one change */
6907 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6908 cnt++;
6909 if (mddev->raid_disks != info->raid_disks)
6910 cnt++;
6911 if (mddev->layout != info->layout)
6912 cnt++;
6913 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6914 cnt++;
6915 if (cnt == 0)
6916 return 0;
6917 if (cnt > 1)
6918 return -EINVAL;
6919
6920 if (mddev->layout != info->layout) {
6921 /* Change layout
6922 * we don't need to do anything at the md level, the
6923 * personality will take care of it all.
6924 */
6925 if (mddev->pers->check_reshape == NULL)
6926 return -EINVAL;
6927 else {
6928 mddev->new_layout = info->layout;
6929 rv = mddev->pers->check_reshape(mddev);
6930 if (rv)
6931 mddev->new_layout = mddev->layout;
6932 return rv;
6933 }
6934 }
6935 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6936 rv = update_size(mddev, (sector_t)info->size * 2);
6937
6938 if (mddev->raid_disks != info->raid_disks)
6939 rv = update_raid_disks(mddev, info->raid_disks);
6940
6941 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6942 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6943 rv = -EINVAL;
6944 goto err;
6945 }
6946 if (mddev->recovery || mddev->sync_thread) {
6947 rv = -EBUSY;
6948 goto err;
6949 }
6950 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6951 struct bitmap *bitmap;
6952 /* add the bitmap */
6953 if (mddev->bitmap) {
6954 rv = -EEXIST;
6955 goto err;
6956 }
6957 if (mddev->bitmap_info.default_offset == 0) {
6958 rv = -EINVAL;
6959 goto err;
6960 }
6961 mddev->bitmap_info.offset =
6962 mddev->bitmap_info.default_offset;
6963 mddev->bitmap_info.space =
6964 mddev->bitmap_info.default_space;
6965 bitmap = md_bitmap_create(mddev, -1);
6966 mddev_suspend(mddev);
6967 if (!IS_ERR(bitmap)) {
6968 mddev->bitmap = bitmap;
6969 rv = md_bitmap_load(mddev);
6970 } else
6971 rv = PTR_ERR(bitmap);
6972 if (rv)
6973 md_bitmap_destroy(mddev);
6974 mddev_resume(mddev);
6975 } else {
6976 /* remove the bitmap */
6977 if (!mddev->bitmap) {
6978 rv = -ENOENT;
6979 goto err;
6980 }
6981 if (mddev->bitmap->storage.file) {
6982 rv = -EINVAL;
6983 goto err;
6984 }
6985 if (mddev->bitmap_info.nodes) {
6986 /* hold PW on all the bitmap lock */
6987 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6988 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
6989 rv = -EPERM;
6990 md_cluster_ops->unlock_all_bitmaps(mddev);
6991 goto err;
6992 }
6993
6994 mddev->bitmap_info.nodes = 0;
6995 md_cluster_ops->leave(mddev);
6996 }
6997 mddev_suspend(mddev);
6998 md_bitmap_destroy(mddev);
6999 mddev_resume(mddev);
7000 mddev->bitmap_info.offset = 0;
7001 }
7002 }
7003 md_update_sb(mddev, 1);
7004 return rv;
7005 err:
7006 return rv;
7007 }
7008
7009 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7010 {
7011 struct md_rdev *rdev;
7012 int err = 0;
7013
7014 if (mddev->pers == NULL)
7015 return -ENODEV;
7016
7017 rcu_read_lock();
7018 rdev = md_find_rdev_rcu(mddev, dev);
7019 if (!rdev)
7020 err = -ENODEV;
7021 else {
7022 md_error(mddev, rdev);
7023 if (!test_bit(Faulty, &rdev->flags))
7024 err = -EBUSY;
7025 }
7026 rcu_read_unlock();
7027 return err;
7028 }
7029
7030 /*
7031 * We have a problem here : there is no easy way to give a CHS
7032 * virtual geometry. We currently pretend that we have a 2 heads
7033 * 4 sectors (with a BIG number of cylinders...). This drives
7034 * dosfs just mad... ;-)
7035 */
7036 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7037 {
7038 struct mddev *mddev = bdev->bd_disk->private_data;
7039
7040 geo->heads = 2;
7041 geo->sectors = 4;
7042 geo->cylinders = mddev->array_sectors / 8;
7043 return 0;
7044 }
7045
7046 static inline bool md_ioctl_valid(unsigned int cmd)
7047 {
7048 switch (cmd) {
7049 case ADD_NEW_DISK:
7050 case BLKROSET:
7051 case GET_ARRAY_INFO:
7052 case GET_BITMAP_FILE:
7053 case GET_DISK_INFO:
7054 case HOT_ADD_DISK:
7055 case HOT_REMOVE_DISK:
7056 case RAID_AUTORUN:
7057 case RAID_VERSION:
7058 case RESTART_ARRAY_RW:
7059 case RUN_ARRAY:
7060 case SET_ARRAY_INFO:
7061 case SET_BITMAP_FILE:
7062 case SET_DISK_FAULTY:
7063 case STOP_ARRAY:
7064 case STOP_ARRAY_RO:
7065 case CLUSTERED_DISK_NACK:
7066 return true;
7067 default:
7068 return false;
7069 }
7070 }
7071
7072 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7073 unsigned int cmd, unsigned long arg)
7074 {
7075 int err = 0;
7076 void __user *argp = (void __user *)arg;
7077 struct mddev *mddev = NULL;
7078 int ro;
7079 bool did_set_md_closing = false;
7080
7081 if (!md_ioctl_valid(cmd))
7082 return -ENOTTY;
7083
7084 switch (cmd) {
7085 case RAID_VERSION:
7086 case GET_ARRAY_INFO:
7087 case GET_DISK_INFO:
7088 break;
7089 default:
7090 if (!capable(CAP_SYS_ADMIN))
7091 return -EACCES;
7092 }
7093
7094 /*
7095 * Commands dealing with the RAID driver but not any
7096 * particular array:
7097 */
7098 switch (cmd) {
7099 case RAID_VERSION:
7100 err = get_version(argp);
7101 goto out;
7102
7103 #ifndef MODULE
7104 case RAID_AUTORUN:
7105 err = 0;
7106 autostart_arrays(arg);
7107 goto out;
7108 #endif
7109 default:;
7110 }
7111
7112 /*
7113 * Commands creating/starting a new array:
7114 */
7115
7116 mddev = bdev->bd_disk->private_data;
7117
7118 if (!mddev) {
7119 BUG();
7120 goto out;
7121 }
7122
7123 /* Some actions do not requires the mutex */
7124 switch (cmd) {
7125 case GET_ARRAY_INFO:
7126 if (!mddev->raid_disks && !mddev->external)
7127 err = -ENODEV;
7128 else
7129 err = get_array_info(mddev, argp);
7130 goto out;
7131
7132 case GET_DISK_INFO:
7133 if (!mddev->raid_disks && !mddev->external)
7134 err = -ENODEV;
7135 else
7136 err = get_disk_info(mddev, argp);
7137 goto out;
7138
7139 case SET_DISK_FAULTY:
7140 err = set_disk_faulty(mddev, new_decode_dev(arg));
7141 goto out;
7142
7143 case GET_BITMAP_FILE:
7144 err = get_bitmap_file(mddev, argp);
7145 goto out;
7146
7147 }
7148
7149 if (cmd == ADD_NEW_DISK)
7150 /* need to ensure md_delayed_delete() has completed */
7151 flush_workqueue(md_misc_wq);
7152
7153 if (cmd == HOT_REMOVE_DISK)
7154 /* need to ensure recovery thread has run */
7155 wait_event_interruptible_timeout(mddev->sb_wait,
7156 !test_bit(MD_RECOVERY_NEEDED,
7157 &mddev->recovery),
7158 msecs_to_jiffies(5000));
7159 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7160 /* Need to flush page cache, and ensure no-one else opens
7161 * and writes
7162 */
7163 mutex_lock(&mddev->open_mutex);
7164 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7165 mutex_unlock(&mddev->open_mutex);
7166 err = -EBUSY;
7167 goto out;
7168 }
7169 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags));
7170 set_bit(MD_CLOSING, &mddev->flags);
7171 did_set_md_closing = true;
7172 mutex_unlock(&mddev->open_mutex);
7173 sync_blockdev(bdev);
7174 }
7175 err = mddev_lock(mddev);
7176 if (err) {
7177 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7178 err, cmd);
7179 goto out;
7180 }
7181
7182 if (cmd == SET_ARRAY_INFO) {
7183 mdu_array_info_t info;
7184 if (!arg)
7185 memset(&info, 0, sizeof(info));
7186 else if (copy_from_user(&info, argp, sizeof(info))) {
7187 err = -EFAULT;
7188 goto unlock;
7189 }
7190 if (mddev->pers) {
7191 err = update_array_info(mddev, &info);
7192 if (err) {
7193 pr_warn("md: couldn't update array info. %d\n", err);
7194 goto unlock;
7195 }
7196 goto unlock;
7197 }
7198 if (!list_empty(&mddev->disks)) {
7199 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7200 err = -EBUSY;
7201 goto unlock;
7202 }
7203 if (mddev->raid_disks) {
7204 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7205 err = -EBUSY;
7206 goto unlock;
7207 }
7208 err = set_array_info(mddev, &info);
7209 if (err) {
7210 pr_warn("md: couldn't set array info. %d\n", err);
7211 goto unlock;
7212 }
7213 goto unlock;
7214 }
7215
7216 /*
7217 * Commands querying/configuring an existing array:
7218 */
7219 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7220 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7221 if ((!mddev->raid_disks && !mddev->external)
7222 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7223 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7224 && cmd != GET_BITMAP_FILE) {
7225 err = -ENODEV;
7226 goto unlock;
7227 }
7228
7229 /*
7230 * Commands even a read-only array can execute:
7231 */
7232 switch (cmd) {
7233 case RESTART_ARRAY_RW:
7234 err = restart_array(mddev);
7235 goto unlock;
7236
7237 case STOP_ARRAY:
7238 err = do_md_stop(mddev, 0, bdev);
7239 goto unlock;
7240
7241 case STOP_ARRAY_RO:
7242 err = md_set_readonly(mddev, bdev);
7243 goto unlock;
7244
7245 case HOT_REMOVE_DISK:
7246 err = hot_remove_disk(mddev, new_decode_dev(arg));
7247 goto unlock;
7248
7249 case ADD_NEW_DISK:
7250 /* We can support ADD_NEW_DISK on read-only arrays
7251 * only if we are re-adding a preexisting device.
7252 * So require mddev->pers and MD_DISK_SYNC.
7253 */
7254 if (mddev->pers) {
7255 mdu_disk_info_t info;
7256 if (copy_from_user(&info, argp, sizeof(info)))
7257 err = -EFAULT;
7258 else if (!(info.state & (1<<MD_DISK_SYNC)))
7259 /* Need to clear read-only for this */
7260 break;
7261 else
7262 err = add_new_disk(mddev, &info);
7263 goto unlock;
7264 }
7265 break;
7266
7267 case BLKROSET:
7268 if (get_user(ro, (int __user *)(arg))) {
7269 err = -EFAULT;
7270 goto unlock;
7271 }
7272 err = -EINVAL;
7273
7274 /* if the bdev is going readonly the value of mddev->ro
7275 * does not matter, no writes are coming
7276 */
7277 if (ro)
7278 goto unlock;
7279
7280 /* are we are already prepared for writes? */
7281 if (mddev->ro != 1)
7282 goto unlock;
7283
7284 /* transitioning to readauto need only happen for
7285 * arrays that call md_write_start
7286 */
7287 if (mddev->pers) {
7288 err = restart_array(mddev);
7289 if (err == 0) {
7290 mddev->ro = 2;
7291 set_disk_ro(mddev->gendisk, 0);
7292 }
7293 }
7294 goto unlock;
7295 }
7296
7297 /*
7298 * The remaining ioctls are changing the state of the
7299 * superblock, so we do not allow them on read-only arrays.
7300 */
7301 if (mddev->ro && mddev->pers) {
7302 if (mddev->ro == 2) {
7303 mddev->ro = 0;
7304 sysfs_notify_dirent_safe(mddev->sysfs_state);
7305 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7306 /* mddev_unlock will wake thread */
7307 /* If a device failed while we were read-only, we
7308 * need to make sure the metadata is updated now.
7309 */
7310 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7311 mddev_unlock(mddev);
7312 wait_event(mddev->sb_wait,
7313 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7314 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7315 mddev_lock_nointr(mddev);
7316 }
7317 } else {
7318 err = -EROFS;
7319 goto unlock;
7320 }
7321 }
7322
7323 switch (cmd) {
7324 case ADD_NEW_DISK:
7325 {
7326 mdu_disk_info_t info;
7327 if (copy_from_user(&info, argp, sizeof(info)))
7328 err = -EFAULT;
7329 else
7330 err = add_new_disk(mddev, &info);
7331 goto unlock;
7332 }
7333
7334 case CLUSTERED_DISK_NACK:
7335 if (mddev_is_clustered(mddev))
7336 md_cluster_ops->new_disk_ack(mddev, false);
7337 else
7338 err = -EINVAL;
7339 goto unlock;
7340
7341 case HOT_ADD_DISK:
7342 err = hot_add_disk(mddev, new_decode_dev(arg));
7343 goto unlock;
7344
7345 case RUN_ARRAY:
7346 err = do_md_run(mddev);
7347 goto unlock;
7348
7349 case SET_BITMAP_FILE:
7350 err = set_bitmap_file(mddev, (int)arg);
7351 goto unlock;
7352
7353 default:
7354 err = -EINVAL;
7355 goto unlock;
7356 }
7357
7358 unlock:
7359 if (mddev->hold_active == UNTIL_IOCTL &&
7360 err != -EINVAL)
7361 mddev->hold_active = 0;
7362 mddev_unlock(mddev);
7363 out:
7364 if(did_set_md_closing)
7365 clear_bit(MD_CLOSING, &mddev->flags);
7366 return err;
7367 }
7368 #ifdef CONFIG_COMPAT
7369 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7370 unsigned int cmd, unsigned long arg)
7371 {
7372 switch (cmd) {
7373 case HOT_REMOVE_DISK:
7374 case HOT_ADD_DISK:
7375 case SET_DISK_FAULTY:
7376 case SET_BITMAP_FILE:
7377 /* These take in integer arg, do not convert */
7378 break;
7379 default:
7380 arg = (unsigned long)compat_ptr(arg);
7381 break;
7382 }
7383
7384 return md_ioctl(bdev, mode, cmd, arg);
7385 }
7386 #endif /* CONFIG_COMPAT */
7387
7388 static int md_open(struct block_device *bdev, fmode_t mode)
7389 {
7390 /*
7391 * Succeed if we can lock the mddev, which confirms that
7392 * it isn't being stopped right now.
7393 */
7394 struct mddev *mddev = mddev_find(bdev->bd_dev);
7395 int err;
7396
7397 if (!mddev)
7398 return -ENODEV;
7399
7400 if (mddev->gendisk != bdev->bd_disk) {
7401 /* we are racing with mddev_put which is discarding this
7402 * bd_disk.
7403 */
7404 mddev_put(mddev);
7405 /* Wait until bdev->bd_disk is definitely gone */
7406 flush_workqueue(md_misc_wq);
7407 /* Then retry the open from the top */
7408 return -ERESTARTSYS;
7409 }
7410 BUG_ON(mddev != bdev->bd_disk->private_data);
7411
7412 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7413 goto out;
7414
7415 if (test_bit(MD_CLOSING, &mddev->flags)) {
7416 mutex_unlock(&mddev->open_mutex);
7417 err = -ENODEV;
7418 goto out;
7419 }
7420
7421 err = 0;
7422 atomic_inc(&mddev->openers);
7423 mutex_unlock(&mddev->open_mutex);
7424
7425 check_disk_change(bdev);
7426 out:
7427 if (err)
7428 mddev_put(mddev);
7429 return err;
7430 }
7431
7432 static void md_release(struct gendisk *disk, fmode_t mode)
7433 {
7434 struct mddev *mddev = disk->private_data;
7435
7436 BUG_ON(!mddev);
7437 atomic_dec(&mddev->openers);
7438 mddev_put(mddev);
7439 }
7440
7441 static int md_media_changed(struct gendisk *disk)
7442 {
7443 struct mddev *mddev = disk->private_data;
7444
7445 return mddev->changed;
7446 }
7447
7448 static int md_revalidate(struct gendisk *disk)
7449 {
7450 struct mddev *mddev = disk->private_data;
7451
7452 mddev->changed = 0;
7453 return 0;
7454 }
7455 static const struct block_device_operations md_fops =
7456 {
7457 .owner = THIS_MODULE,
7458 .open = md_open,
7459 .release = md_release,
7460 .ioctl = md_ioctl,
7461 #ifdef CONFIG_COMPAT
7462 .compat_ioctl = md_compat_ioctl,
7463 #endif
7464 .getgeo = md_getgeo,
7465 .media_changed = md_media_changed,
7466 .revalidate_disk= md_revalidate,
7467 };
7468
7469 static int md_thread(void *arg)
7470 {
7471 struct md_thread *thread = arg;
7472
7473 /*
7474 * md_thread is a 'system-thread', it's priority should be very
7475 * high. We avoid resource deadlocks individually in each
7476 * raid personality. (RAID5 does preallocation) We also use RR and
7477 * the very same RT priority as kswapd, thus we will never get
7478 * into a priority inversion deadlock.
7479 *
7480 * we definitely have to have equal or higher priority than
7481 * bdflush, otherwise bdflush will deadlock if there are too
7482 * many dirty RAID5 blocks.
7483 */
7484
7485 allow_signal(SIGKILL);
7486 while (!kthread_should_stop()) {
7487
7488 /* We need to wait INTERRUPTIBLE so that
7489 * we don't add to the load-average.
7490 * That means we need to be sure no signals are
7491 * pending
7492 */
7493 if (signal_pending(current))
7494 flush_signals(current);
7495
7496 wait_event_interruptible_timeout
7497 (thread->wqueue,
7498 test_bit(THREAD_WAKEUP, &thread->flags)
7499 || kthread_should_stop() || kthread_should_park(),
7500 thread->timeout);
7501
7502 clear_bit(THREAD_WAKEUP, &thread->flags);
7503 if (kthread_should_park())
7504 kthread_parkme();
7505 if (!kthread_should_stop())
7506 thread->run(thread);
7507 }
7508
7509 return 0;
7510 }
7511
7512 void md_wakeup_thread(struct md_thread *thread)
7513 {
7514 if (thread) {
7515 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7516 set_bit(THREAD_WAKEUP, &thread->flags);
7517 wake_up(&thread->wqueue);
7518 }
7519 }
7520 EXPORT_SYMBOL(md_wakeup_thread);
7521
7522 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7523 struct mddev *mddev, const char *name)
7524 {
7525 struct md_thread *thread;
7526
7527 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7528 if (!thread)
7529 return NULL;
7530
7531 init_waitqueue_head(&thread->wqueue);
7532
7533 thread->run = run;
7534 thread->mddev = mddev;
7535 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7536 thread->tsk = kthread_run(md_thread, thread,
7537 "%s_%s",
7538 mdname(thread->mddev),
7539 name);
7540 if (IS_ERR(thread->tsk)) {
7541 kfree(thread);
7542 return NULL;
7543 }
7544 return thread;
7545 }
7546 EXPORT_SYMBOL(md_register_thread);
7547
7548 void md_unregister_thread(struct md_thread **threadp)
7549 {
7550 struct md_thread *thread = *threadp;
7551 if (!thread)
7552 return;
7553 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7554 /* Locking ensures that mddev_unlock does not wake_up a
7555 * non-existent thread
7556 */
7557 spin_lock(&pers_lock);
7558 *threadp = NULL;
7559 spin_unlock(&pers_lock);
7560
7561 kthread_stop(thread->tsk);
7562 kfree(thread);
7563 }
7564 EXPORT_SYMBOL(md_unregister_thread);
7565
7566 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7567 {
7568 if (!rdev || test_bit(Faulty, &rdev->flags))
7569 return;
7570
7571 if (!mddev->pers || !mddev->pers->error_handler)
7572 return;
7573 mddev->pers->error_handler(mddev,rdev);
7574 if (mddev->degraded)
7575 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7576 sysfs_notify_dirent_safe(rdev->sysfs_state);
7577 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7578 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7579 md_wakeup_thread(mddev->thread);
7580 if (mddev->event_work.func)
7581 queue_work(md_misc_wq, &mddev->event_work);
7582 md_new_event(mddev);
7583 }
7584 EXPORT_SYMBOL(md_error);
7585
7586 /* seq_file implementation /proc/mdstat */
7587
7588 static void status_unused(struct seq_file *seq)
7589 {
7590 int i = 0;
7591 struct md_rdev *rdev;
7592
7593 seq_printf(seq, "unused devices: ");
7594
7595 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7596 char b[BDEVNAME_SIZE];
7597 i++;
7598 seq_printf(seq, "%s ",
7599 bdevname(rdev->bdev,b));
7600 }
7601 if (!i)
7602 seq_printf(seq, "<none>");
7603
7604 seq_printf(seq, "\n");
7605 }
7606
7607 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7608 {
7609 sector_t max_sectors, resync, res;
7610 unsigned long dt, db = 0;
7611 sector_t rt, curr_mark_cnt, resync_mark_cnt;
7612 int scale, recovery_active;
7613 unsigned int per_milli;
7614
7615 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7616 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7617 max_sectors = mddev->resync_max_sectors;
7618 else
7619 max_sectors = mddev->dev_sectors;
7620
7621 resync = mddev->curr_resync;
7622 if (resync <= 3) {
7623 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7624 /* Still cleaning up */
7625 resync = max_sectors;
7626 } else if (resync > max_sectors)
7627 resync = max_sectors;
7628 else
7629 resync -= atomic_read(&mddev->recovery_active);
7630
7631 if (resync == 0) {
7632 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
7633 struct md_rdev *rdev;
7634
7635 rdev_for_each(rdev, mddev)
7636 if (rdev->raid_disk >= 0 &&
7637 !test_bit(Faulty, &rdev->flags) &&
7638 rdev->recovery_offset != MaxSector &&
7639 rdev->recovery_offset) {
7640 seq_printf(seq, "\trecover=REMOTE");
7641 return 1;
7642 }
7643 if (mddev->reshape_position != MaxSector)
7644 seq_printf(seq, "\treshape=REMOTE");
7645 else
7646 seq_printf(seq, "\tresync=REMOTE");
7647 return 1;
7648 }
7649 if (mddev->recovery_cp < MaxSector) {
7650 seq_printf(seq, "\tresync=PENDING");
7651 return 1;
7652 }
7653 return 0;
7654 }
7655 if (resync < 3) {
7656 seq_printf(seq, "\tresync=DELAYED");
7657 return 1;
7658 }
7659
7660 WARN_ON(max_sectors == 0);
7661 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7662 * in a sector_t, and (max_sectors>>scale) will fit in a
7663 * u32, as those are the requirements for sector_div.
7664 * Thus 'scale' must be at least 10
7665 */
7666 scale = 10;
7667 if (sizeof(sector_t) > sizeof(unsigned long)) {
7668 while ( max_sectors/2 > (1ULL<<(scale+32)))
7669 scale++;
7670 }
7671 res = (resync>>scale)*1000;
7672 sector_div(res, (u32)((max_sectors>>scale)+1));
7673
7674 per_milli = res;
7675 {
7676 int i, x = per_milli/50, y = 20-x;
7677 seq_printf(seq, "[");
7678 for (i = 0; i < x; i++)
7679 seq_printf(seq, "=");
7680 seq_printf(seq, ">");
7681 for (i = 0; i < y; i++)
7682 seq_printf(seq, ".");
7683 seq_printf(seq, "] ");
7684 }
7685 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7686 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7687 "reshape" :
7688 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7689 "check" :
7690 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7691 "resync" : "recovery"))),
7692 per_milli/10, per_milli % 10,
7693 (unsigned long long) resync/2,
7694 (unsigned long long) max_sectors/2);
7695
7696 /*
7697 * dt: time from mark until now
7698 * db: blocks written from mark until now
7699 * rt: remaining time
7700 *
7701 * rt is a sector_t, which is always 64bit now. We are keeping
7702 * the original algorithm, but it is not really necessary.
7703 *
7704 * Original algorithm:
7705 * So we divide before multiply in case it is 32bit and close
7706 * to the limit.
7707 * We scale the divisor (db) by 32 to avoid losing precision
7708 * near the end of resync when the number of remaining sectors
7709 * is close to 'db'.
7710 * We then divide rt by 32 after multiplying by db to compensate.
7711 * The '+1' avoids division by zero if db is very small.
7712 */
7713 dt = ((jiffies - mddev->resync_mark) / HZ);
7714 if (!dt) dt++;
7715
7716 curr_mark_cnt = mddev->curr_mark_cnt;
7717 recovery_active = atomic_read(&mddev->recovery_active);
7718 resync_mark_cnt = mddev->resync_mark_cnt;
7719
7720 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
7721 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
7722
7723 rt = max_sectors - resync; /* number of remaining sectors */
7724 rt = div64_u64(rt, db/32+1);
7725 rt *= dt;
7726 rt >>= 5;
7727
7728 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7729 ((unsigned long)rt % 60)/6);
7730
7731 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7732 return 1;
7733 }
7734
7735 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7736 {
7737 struct list_head *tmp;
7738 loff_t l = *pos;
7739 struct mddev *mddev;
7740
7741 if (l >= 0x10000)
7742 return NULL;
7743 if (!l--)
7744 /* header */
7745 return (void*)1;
7746
7747 spin_lock(&all_mddevs_lock);
7748 list_for_each(tmp,&all_mddevs)
7749 if (!l--) {
7750 mddev = list_entry(tmp, struct mddev, all_mddevs);
7751 mddev_get(mddev);
7752 spin_unlock(&all_mddevs_lock);
7753 return mddev;
7754 }
7755 spin_unlock(&all_mddevs_lock);
7756 if (!l--)
7757 return (void*)2;/* tail */
7758 return NULL;
7759 }
7760
7761 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7762 {
7763 struct list_head *tmp;
7764 struct mddev *next_mddev, *mddev = v;
7765
7766 ++*pos;
7767 if (v == (void*)2)
7768 return NULL;
7769
7770 spin_lock(&all_mddevs_lock);
7771 if (v == (void*)1)
7772 tmp = all_mddevs.next;
7773 else
7774 tmp = mddev->all_mddevs.next;
7775 if (tmp != &all_mddevs)
7776 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7777 else {
7778 next_mddev = (void*)2;
7779 *pos = 0x10000;
7780 }
7781 spin_unlock(&all_mddevs_lock);
7782
7783 if (v != (void*)1)
7784 mddev_put(mddev);
7785 return next_mddev;
7786
7787 }
7788
7789 static void md_seq_stop(struct seq_file *seq, void *v)
7790 {
7791 struct mddev *mddev = v;
7792
7793 if (mddev && v != (void*)1 && v != (void*)2)
7794 mddev_put(mddev);
7795 }
7796
7797 static int md_seq_show(struct seq_file *seq, void *v)
7798 {
7799 struct mddev *mddev = v;
7800 sector_t sectors;
7801 struct md_rdev *rdev;
7802
7803 if (v == (void*)1) {
7804 struct md_personality *pers;
7805 seq_printf(seq, "Personalities : ");
7806 spin_lock(&pers_lock);
7807 list_for_each_entry(pers, &pers_list, list)
7808 seq_printf(seq, "[%s] ", pers->name);
7809
7810 spin_unlock(&pers_lock);
7811 seq_printf(seq, "\n");
7812 seq->poll_event = atomic_read(&md_event_count);
7813 return 0;
7814 }
7815 if (v == (void*)2) {
7816 status_unused(seq);
7817 return 0;
7818 }
7819
7820 spin_lock(&mddev->lock);
7821 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7822 seq_printf(seq, "%s : %sactive", mdname(mddev),
7823 mddev->pers ? "" : "in");
7824 if (mddev->pers) {
7825 if (mddev->ro==1)
7826 seq_printf(seq, " (read-only)");
7827 if (mddev->ro==2)
7828 seq_printf(seq, " (auto-read-only)");
7829 seq_printf(seq, " %s", mddev->pers->name);
7830 }
7831
7832 sectors = 0;
7833 rcu_read_lock();
7834 rdev_for_each_rcu(rdev, mddev) {
7835 char b[BDEVNAME_SIZE];
7836 seq_printf(seq, " %s[%d]",
7837 bdevname(rdev->bdev,b), rdev->desc_nr);
7838 if (test_bit(WriteMostly, &rdev->flags))
7839 seq_printf(seq, "(W)");
7840 if (test_bit(Journal, &rdev->flags))
7841 seq_printf(seq, "(J)");
7842 if (test_bit(Faulty, &rdev->flags)) {
7843 seq_printf(seq, "(F)");
7844 continue;
7845 }
7846 if (rdev->raid_disk < 0)
7847 seq_printf(seq, "(S)"); /* spare */
7848 if (test_bit(Replacement, &rdev->flags))
7849 seq_printf(seq, "(R)");
7850 sectors += rdev->sectors;
7851 }
7852 rcu_read_unlock();
7853
7854 if (!list_empty(&mddev->disks)) {
7855 if (mddev->pers)
7856 seq_printf(seq, "\n %llu blocks",
7857 (unsigned long long)
7858 mddev->array_sectors / 2);
7859 else
7860 seq_printf(seq, "\n %llu blocks",
7861 (unsigned long long)sectors / 2);
7862 }
7863 if (mddev->persistent) {
7864 if (mddev->major_version != 0 ||
7865 mddev->minor_version != 90) {
7866 seq_printf(seq," super %d.%d",
7867 mddev->major_version,
7868 mddev->minor_version);
7869 }
7870 } else if (mddev->external)
7871 seq_printf(seq, " super external:%s",
7872 mddev->metadata_type);
7873 else
7874 seq_printf(seq, " super non-persistent");
7875
7876 if (mddev->pers) {
7877 mddev->pers->status(seq, mddev);
7878 seq_printf(seq, "\n ");
7879 if (mddev->pers->sync_request) {
7880 if (status_resync(seq, mddev))
7881 seq_printf(seq, "\n ");
7882 }
7883 } else
7884 seq_printf(seq, "\n ");
7885
7886 md_bitmap_status(seq, mddev->bitmap);
7887
7888 seq_printf(seq, "\n");
7889 }
7890 spin_unlock(&mddev->lock);
7891
7892 return 0;
7893 }
7894
7895 static const struct seq_operations md_seq_ops = {
7896 .start = md_seq_start,
7897 .next = md_seq_next,
7898 .stop = md_seq_stop,
7899 .show = md_seq_show,
7900 };
7901
7902 static int md_seq_open(struct inode *inode, struct file *file)
7903 {
7904 struct seq_file *seq;
7905 int error;
7906
7907 error = seq_open(file, &md_seq_ops);
7908 if (error)
7909 return error;
7910
7911 seq = file->private_data;
7912 seq->poll_event = atomic_read(&md_event_count);
7913 return error;
7914 }
7915
7916 static int md_unloading;
7917 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
7918 {
7919 struct seq_file *seq = filp->private_data;
7920 __poll_t mask;
7921
7922 if (md_unloading)
7923 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
7924 poll_wait(filp, &md_event_waiters, wait);
7925
7926 /* always allow read */
7927 mask = EPOLLIN | EPOLLRDNORM;
7928
7929 if (seq->poll_event != atomic_read(&md_event_count))
7930 mask |= EPOLLERR | EPOLLPRI;
7931 return mask;
7932 }
7933
7934 static const struct file_operations md_seq_fops = {
7935 .owner = THIS_MODULE,
7936 .open = md_seq_open,
7937 .read = seq_read,
7938 .llseek = seq_lseek,
7939 .release = seq_release,
7940 .poll = mdstat_poll,
7941 };
7942
7943 int register_md_personality(struct md_personality *p)
7944 {
7945 pr_debug("md: %s personality registered for level %d\n",
7946 p->name, p->level);
7947 spin_lock(&pers_lock);
7948 list_add_tail(&p->list, &pers_list);
7949 spin_unlock(&pers_lock);
7950 return 0;
7951 }
7952 EXPORT_SYMBOL(register_md_personality);
7953
7954 int unregister_md_personality(struct md_personality *p)
7955 {
7956 pr_debug("md: %s personality unregistered\n", p->name);
7957 spin_lock(&pers_lock);
7958 list_del_init(&p->list);
7959 spin_unlock(&pers_lock);
7960 return 0;
7961 }
7962 EXPORT_SYMBOL(unregister_md_personality);
7963
7964 int register_md_cluster_operations(struct md_cluster_operations *ops,
7965 struct module *module)
7966 {
7967 int ret = 0;
7968 spin_lock(&pers_lock);
7969 if (md_cluster_ops != NULL)
7970 ret = -EALREADY;
7971 else {
7972 md_cluster_ops = ops;
7973 md_cluster_mod = module;
7974 }
7975 spin_unlock(&pers_lock);
7976 return ret;
7977 }
7978 EXPORT_SYMBOL(register_md_cluster_operations);
7979
7980 int unregister_md_cluster_operations(void)
7981 {
7982 spin_lock(&pers_lock);
7983 md_cluster_ops = NULL;
7984 spin_unlock(&pers_lock);
7985 return 0;
7986 }
7987 EXPORT_SYMBOL(unregister_md_cluster_operations);
7988
7989 int md_setup_cluster(struct mddev *mddev, int nodes)
7990 {
7991 if (!md_cluster_ops)
7992 request_module("md-cluster");
7993 spin_lock(&pers_lock);
7994 /* ensure module won't be unloaded */
7995 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7996 pr_warn("can't find md-cluster module or get it's reference.\n");
7997 spin_unlock(&pers_lock);
7998 return -ENOENT;
7999 }
8000 spin_unlock(&pers_lock);
8001
8002 return md_cluster_ops->join(mddev, nodes);
8003 }
8004
8005 void md_cluster_stop(struct mddev *mddev)
8006 {
8007 if (!md_cluster_ops)
8008 return;
8009 md_cluster_ops->leave(mddev);
8010 module_put(md_cluster_mod);
8011 }
8012
8013 static int is_mddev_idle(struct mddev *mddev, int init)
8014 {
8015 struct md_rdev *rdev;
8016 int idle;
8017 int curr_events;
8018
8019 idle = 1;
8020 rcu_read_lock();
8021 rdev_for_each_rcu(rdev, mddev) {
8022 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
8023 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) -
8024 atomic_read(&disk->sync_io);
8025 /* sync IO will cause sync_io to increase before the disk_stats
8026 * as sync_io is counted when a request starts, and
8027 * disk_stats is counted when it completes.
8028 * So resync activity will cause curr_events to be smaller than
8029 * when there was no such activity.
8030 * non-sync IO will cause disk_stat to increase without
8031 * increasing sync_io so curr_events will (eventually)
8032 * be larger than it was before. Once it becomes
8033 * substantially larger, the test below will cause
8034 * the array to appear non-idle, and resync will slow
8035 * down.
8036 * If there is a lot of outstanding resync activity when
8037 * we set last_event to curr_events, then all that activity
8038 * completing might cause the array to appear non-idle
8039 * and resync will be slowed down even though there might
8040 * not have been non-resync activity. This will only
8041 * happen once though. 'last_events' will soon reflect
8042 * the state where there is little or no outstanding
8043 * resync requests, and further resync activity will
8044 * always make curr_events less than last_events.
8045 *
8046 */
8047 if (init || curr_events - rdev->last_events > 64) {
8048 rdev->last_events = curr_events;
8049 idle = 0;
8050 }
8051 }
8052 rcu_read_unlock();
8053 return idle;
8054 }
8055
8056 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8057 {
8058 /* another "blocks" (512byte) blocks have been synced */
8059 atomic_sub(blocks, &mddev->recovery_active);
8060 wake_up(&mddev->recovery_wait);
8061 if (!ok) {
8062 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8063 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8064 md_wakeup_thread(mddev->thread);
8065 // stop recovery, signal do_sync ....
8066 }
8067 }
8068 EXPORT_SYMBOL(md_done_sync);
8069
8070 /* md_write_start(mddev, bi)
8071 * If we need to update some array metadata (e.g. 'active' flag
8072 * in superblock) before writing, schedule a superblock update
8073 * and wait for it to complete.
8074 * A return value of 'false' means that the write wasn't recorded
8075 * and cannot proceed as the array is being suspend.
8076 */
8077 bool md_write_start(struct mddev *mddev, struct bio *bi)
8078 {
8079 int did_change = 0;
8080
8081 if (bio_data_dir(bi) != WRITE)
8082 return true;
8083
8084 BUG_ON(mddev->ro == 1);
8085 if (mddev->ro == 2) {
8086 /* need to switch to read/write */
8087 mddev->ro = 0;
8088 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8089 md_wakeup_thread(mddev->thread);
8090 md_wakeup_thread(mddev->sync_thread);
8091 did_change = 1;
8092 }
8093 rcu_read_lock();
8094 percpu_ref_get(&mddev->writes_pending);
8095 smp_mb(); /* Match smp_mb in set_in_sync() */
8096 if (mddev->safemode == 1)
8097 mddev->safemode = 0;
8098 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8099 if (mddev->in_sync || mddev->sync_checkers) {
8100 spin_lock(&mddev->lock);
8101 if (mddev->in_sync) {
8102 mddev->in_sync = 0;
8103 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8104 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8105 md_wakeup_thread(mddev->thread);
8106 did_change = 1;
8107 }
8108 spin_unlock(&mddev->lock);
8109 }
8110 rcu_read_unlock();
8111 if (did_change)
8112 sysfs_notify_dirent_safe(mddev->sysfs_state);
8113 if (!mddev->has_superblocks)
8114 return true;
8115 wait_event(mddev->sb_wait,
8116 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8117 mddev->suspended);
8118 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8119 percpu_ref_put(&mddev->writes_pending);
8120 return false;
8121 }
8122 return true;
8123 }
8124 EXPORT_SYMBOL(md_write_start);
8125
8126 /* md_write_inc can only be called when md_write_start() has
8127 * already been called at least once of the current request.
8128 * It increments the counter and is useful when a single request
8129 * is split into several parts. Each part causes an increment and
8130 * so needs a matching md_write_end().
8131 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8132 * a spinlocked region.
8133 */
8134 void md_write_inc(struct mddev *mddev, struct bio *bi)
8135 {
8136 if (bio_data_dir(bi) != WRITE)
8137 return;
8138 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8139 percpu_ref_get(&mddev->writes_pending);
8140 }
8141 EXPORT_SYMBOL(md_write_inc);
8142
8143 void md_write_end(struct mddev *mddev)
8144 {
8145 percpu_ref_put(&mddev->writes_pending);
8146
8147 if (mddev->safemode == 2)
8148 md_wakeup_thread(mddev->thread);
8149 else if (mddev->safemode_delay)
8150 /* The roundup() ensures this only performs locking once
8151 * every ->safemode_delay jiffies
8152 */
8153 mod_timer(&mddev->safemode_timer,
8154 roundup(jiffies, mddev->safemode_delay) +
8155 mddev->safemode_delay);
8156 }
8157
8158 EXPORT_SYMBOL(md_write_end);
8159
8160 /* md_allow_write(mddev)
8161 * Calling this ensures that the array is marked 'active' so that writes
8162 * may proceed without blocking. It is important to call this before
8163 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8164 * Must be called with mddev_lock held.
8165 */
8166 void md_allow_write(struct mddev *mddev)
8167 {
8168 if (!mddev->pers)
8169 return;
8170 if (mddev->ro)
8171 return;
8172 if (!mddev->pers->sync_request)
8173 return;
8174
8175 spin_lock(&mddev->lock);
8176 if (mddev->in_sync) {
8177 mddev->in_sync = 0;
8178 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8179 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8180 if (mddev->safemode_delay &&
8181 mddev->safemode == 0)
8182 mddev->safemode = 1;
8183 spin_unlock(&mddev->lock);
8184 md_update_sb(mddev, 0);
8185 sysfs_notify_dirent_safe(mddev->sysfs_state);
8186 /* wait for the dirty state to be recorded in the metadata */
8187 wait_event(mddev->sb_wait,
8188 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8189 } else
8190 spin_unlock(&mddev->lock);
8191 }
8192 EXPORT_SYMBOL_GPL(md_allow_write);
8193
8194 #define SYNC_MARKS 10
8195 #define SYNC_MARK_STEP (3*HZ)
8196 #define UPDATE_FREQUENCY (5*60*HZ)
8197 void md_do_sync(struct md_thread *thread)
8198 {
8199 struct mddev *mddev = thread->mddev;
8200 struct mddev *mddev2;
8201 unsigned int currspeed = 0,
8202 window;
8203 sector_t max_sectors,j, io_sectors, recovery_done;
8204 unsigned long mark[SYNC_MARKS];
8205 unsigned long update_time;
8206 sector_t mark_cnt[SYNC_MARKS];
8207 int last_mark,m;
8208 struct list_head *tmp;
8209 sector_t last_check;
8210 int skipped = 0;
8211 struct md_rdev *rdev;
8212 char *desc, *action = NULL;
8213 struct blk_plug plug;
8214 int ret;
8215
8216 /* just incase thread restarts... */
8217 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8218 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8219 return;
8220 if (mddev->ro) {/* never try to sync a read-only array */
8221 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8222 return;
8223 }
8224
8225 if (mddev_is_clustered(mddev)) {
8226 ret = md_cluster_ops->resync_start(mddev);
8227 if (ret)
8228 goto skip;
8229
8230 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8231 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8232 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8233 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8234 && ((unsigned long long)mddev->curr_resync_completed
8235 < (unsigned long long)mddev->resync_max_sectors))
8236 goto skip;
8237 }
8238
8239 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8240 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8241 desc = "data-check";
8242 action = "check";
8243 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8244 desc = "requested-resync";
8245 action = "repair";
8246 } else
8247 desc = "resync";
8248 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8249 desc = "reshape";
8250 else
8251 desc = "recovery";
8252
8253 mddev->last_sync_action = action ?: desc;
8254
8255 /* we overload curr_resync somewhat here.
8256 * 0 == not engaged in resync at all
8257 * 2 == checking that there is no conflict with another sync
8258 * 1 == like 2, but have yielded to allow conflicting resync to
8259 * commense
8260 * other == active in resync - this many blocks
8261 *
8262 * Before starting a resync we must have set curr_resync to
8263 * 2, and then checked that every "conflicting" array has curr_resync
8264 * less than ours. When we find one that is the same or higher
8265 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8266 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8267 * This will mean we have to start checking from the beginning again.
8268 *
8269 */
8270
8271 do {
8272 int mddev2_minor = -1;
8273 mddev->curr_resync = 2;
8274
8275 try_again:
8276 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8277 goto skip;
8278 for_each_mddev(mddev2, tmp) {
8279 if (mddev2 == mddev)
8280 continue;
8281 if (!mddev->parallel_resync
8282 && mddev2->curr_resync
8283 && match_mddev_units(mddev, mddev2)) {
8284 DEFINE_WAIT(wq);
8285 if (mddev < mddev2 && mddev->curr_resync == 2) {
8286 /* arbitrarily yield */
8287 mddev->curr_resync = 1;
8288 wake_up(&resync_wait);
8289 }
8290 if (mddev > mddev2 && mddev->curr_resync == 1)
8291 /* no need to wait here, we can wait the next
8292 * time 'round when curr_resync == 2
8293 */
8294 continue;
8295 /* We need to wait 'interruptible' so as not to
8296 * contribute to the load average, and not to
8297 * be caught by 'softlockup'
8298 */
8299 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8300 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8301 mddev2->curr_resync >= mddev->curr_resync) {
8302 if (mddev2_minor != mddev2->md_minor) {
8303 mddev2_minor = mddev2->md_minor;
8304 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8305 desc, mdname(mddev),
8306 mdname(mddev2));
8307 }
8308 mddev_put(mddev2);
8309 if (signal_pending(current))
8310 flush_signals(current);
8311 schedule();
8312 finish_wait(&resync_wait, &wq);
8313 goto try_again;
8314 }
8315 finish_wait(&resync_wait, &wq);
8316 }
8317 }
8318 } while (mddev->curr_resync < 2);
8319
8320 j = 0;
8321 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8322 /* resync follows the size requested by the personality,
8323 * which defaults to physical size, but can be virtual size
8324 */
8325 max_sectors = mddev->resync_max_sectors;
8326 atomic64_set(&mddev->resync_mismatches, 0);
8327 /* we don't use the checkpoint if there's a bitmap */
8328 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8329 j = mddev->resync_min;
8330 else if (!mddev->bitmap)
8331 j = mddev->recovery_cp;
8332
8333 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8334 max_sectors = mddev->resync_max_sectors;
8335 /*
8336 * If the original node aborts reshaping then we continue the
8337 * reshaping, so set j again to avoid restart reshape from the
8338 * first beginning
8339 */
8340 if (mddev_is_clustered(mddev) &&
8341 mddev->reshape_position != MaxSector)
8342 j = mddev->reshape_position;
8343 } else {
8344 /* recovery follows the physical size of devices */
8345 max_sectors = mddev->dev_sectors;
8346 j = MaxSector;
8347 rcu_read_lock();
8348 rdev_for_each_rcu(rdev, mddev)
8349 if (rdev->raid_disk >= 0 &&
8350 !test_bit(Journal, &rdev->flags) &&
8351 !test_bit(Faulty, &rdev->flags) &&
8352 !test_bit(In_sync, &rdev->flags) &&
8353 rdev->recovery_offset < j)
8354 j = rdev->recovery_offset;
8355 rcu_read_unlock();
8356
8357 /* If there is a bitmap, we need to make sure all
8358 * writes that started before we added a spare
8359 * complete before we start doing a recovery.
8360 * Otherwise the write might complete and (via
8361 * bitmap_endwrite) set a bit in the bitmap after the
8362 * recovery has checked that bit and skipped that
8363 * region.
8364 */
8365 if (mddev->bitmap) {
8366 mddev->pers->quiesce(mddev, 1);
8367 mddev->pers->quiesce(mddev, 0);
8368 }
8369 }
8370
8371 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8372 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8373 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8374 speed_max(mddev), desc);
8375
8376 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8377
8378 io_sectors = 0;
8379 for (m = 0; m < SYNC_MARKS; m++) {
8380 mark[m] = jiffies;
8381 mark_cnt[m] = io_sectors;
8382 }
8383 last_mark = 0;
8384 mddev->resync_mark = mark[last_mark];
8385 mddev->resync_mark_cnt = mark_cnt[last_mark];
8386
8387 /*
8388 * Tune reconstruction:
8389 */
8390 window = 32*(PAGE_SIZE/512);
8391 pr_debug("md: using %dk window, over a total of %lluk.\n",
8392 window/2, (unsigned long long)max_sectors/2);
8393
8394 atomic_set(&mddev->recovery_active, 0);
8395 last_check = 0;
8396
8397 if (j>2) {
8398 pr_debug("md: resuming %s of %s from checkpoint.\n",
8399 desc, mdname(mddev));
8400 mddev->curr_resync = j;
8401 } else
8402 mddev->curr_resync = 3; /* no longer delayed */
8403 mddev->curr_resync_completed = j;
8404 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8405 md_new_event(mddev);
8406 update_time = jiffies;
8407
8408 blk_start_plug(&plug);
8409 while (j < max_sectors) {
8410 sector_t sectors;
8411
8412 skipped = 0;
8413
8414 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8415 ((mddev->curr_resync > mddev->curr_resync_completed &&
8416 (mddev->curr_resync - mddev->curr_resync_completed)
8417 > (max_sectors >> 4)) ||
8418 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8419 (j - mddev->curr_resync_completed)*2
8420 >= mddev->resync_max - mddev->curr_resync_completed ||
8421 mddev->curr_resync_completed > mddev->resync_max
8422 )) {
8423 /* time to update curr_resync_completed */
8424 wait_event(mddev->recovery_wait,
8425 atomic_read(&mddev->recovery_active) == 0);
8426 mddev->curr_resync_completed = j;
8427 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8428 j > mddev->recovery_cp)
8429 mddev->recovery_cp = j;
8430 update_time = jiffies;
8431 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8432 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8433 }
8434
8435 while (j >= mddev->resync_max &&
8436 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8437 /* As this condition is controlled by user-space,
8438 * we can block indefinitely, so use '_interruptible'
8439 * to avoid triggering warnings.
8440 */
8441 flush_signals(current); /* just in case */
8442 wait_event_interruptible(mddev->recovery_wait,
8443 mddev->resync_max > j
8444 || test_bit(MD_RECOVERY_INTR,
8445 &mddev->recovery));
8446 }
8447
8448 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8449 break;
8450
8451 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8452 if (sectors == 0) {
8453 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8454 break;
8455 }
8456
8457 if (!skipped) { /* actual IO requested */
8458 io_sectors += sectors;
8459 atomic_add(sectors, &mddev->recovery_active);
8460 }
8461
8462 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8463 break;
8464
8465 j += sectors;
8466 if (j > max_sectors)
8467 /* when skipping, extra large numbers can be returned. */
8468 j = max_sectors;
8469 if (j > 2)
8470 mddev->curr_resync = j;
8471 mddev->curr_mark_cnt = io_sectors;
8472 if (last_check == 0)
8473 /* this is the earliest that rebuild will be
8474 * visible in /proc/mdstat
8475 */
8476 md_new_event(mddev);
8477
8478 if (last_check + window > io_sectors || j == max_sectors)
8479 continue;
8480
8481 last_check = io_sectors;
8482 repeat:
8483 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8484 /* step marks */
8485 int next = (last_mark+1) % SYNC_MARKS;
8486
8487 mddev->resync_mark = mark[next];
8488 mddev->resync_mark_cnt = mark_cnt[next];
8489 mark[next] = jiffies;
8490 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8491 last_mark = next;
8492 }
8493
8494 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8495 break;
8496
8497 /*
8498 * this loop exits only if either when we are slower than
8499 * the 'hard' speed limit, or the system was IO-idle for
8500 * a jiffy.
8501 * the system might be non-idle CPU-wise, but we only care
8502 * about not overloading the IO subsystem. (things like an
8503 * e2fsck being done on the RAID array should execute fast)
8504 */
8505 cond_resched();
8506
8507 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8508 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8509 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8510
8511 if (currspeed > speed_min(mddev)) {
8512 if (currspeed > speed_max(mddev)) {
8513 msleep(500);
8514 goto repeat;
8515 }
8516 if (!is_mddev_idle(mddev, 0)) {
8517 /*
8518 * Give other IO more of a chance.
8519 * The faster the devices, the less we wait.
8520 */
8521 wait_event(mddev->recovery_wait,
8522 !atomic_read(&mddev->recovery_active));
8523 }
8524 }
8525 }
8526 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8527 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8528 ? "interrupted" : "done");
8529 /*
8530 * this also signals 'finished resyncing' to md_stop
8531 */
8532 blk_finish_plug(&plug);
8533 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8534
8535 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8536 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8537 mddev->curr_resync > 3) {
8538 mddev->curr_resync_completed = mddev->curr_resync;
8539 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8540 }
8541 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8542
8543 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8544 mddev->curr_resync > 3) {
8545 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8546 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8547 if (mddev->curr_resync >= mddev->recovery_cp) {
8548 pr_debug("md: checkpointing %s of %s.\n",
8549 desc, mdname(mddev));
8550 if (test_bit(MD_RECOVERY_ERROR,
8551 &mddev->recovery))
8552 mddev->recovery_cp =
8553 mddev->curr_resync_completed;
8554 else
8555 mddev->recovery_cp =
8556 mddev->curr_resync;
8557 }
8558 } else
8559 mddev->recovery_cp = MaxSector;
8560 } else {
8561 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8562 mddev->curr_resync = MaxSector;
8563 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8564 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
8565 rcu_read_lock();
8566 rdev_for_each_rcu(rdev, mddev)
8567 if (rdev->raid_disk >= 0 &&
8568 mddev->delta_disks >= 0 &&
8569 !test_bit(Journal, &rdev->flags) &&
8570 !test_bit(Faulty, &rdev->flags) &&
8571 !test_bit(In_sync, &rdev->flags) &&
8572 rdev->recovery_offset < mddev->curr_resync)
8573 rdev->recovery_offset = mddev->curr_resync;
8574 rcu_read_unlock();
8575 }
8576 }
8577 }
8578 skip:
8579 /* set CHANGE_PENDING here since maybe another update is needed,
8580 * so other nodes are informed. It should be harmless for normal
8581 * raid */
8582 set_mask_bits(&mddev->sb_flags, 0,
8583 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
8584
8585 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8586 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8587 mddev->delta_disks > 0 &&
8588 mddev->pers->finish_reshape &&
8589 mddev->pers->size &&
8590 mddev->queue) {
8591 mddev_lock_nointr(mddev);
8592 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
8593 mddev_unlock(mddev);
8594 if (!mddev_is_clustered(mddev)) {
8595 set_capacity(mddev->gendisk, mddev->array_sectors);
8596 revalidate_disk(mddev->gendisk);
8597 }
8598 }
8599
8600 spin_lock(&mddev->lock);
8601 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8602 /* We completed so min/max setting can be forgotten if used. */
8603 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8604 mddev->resync_min = 0;
8605 mddev->resync_max = MaxSector;
8606 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8607 mddev->resync_min = mddev->curr_resync_completed;
8608 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8609 mddev->curr_resync = 0;
8610 spin_unlock(&mddev->lock);
8611
8612 wake_up(&resync_wait);
8613 md_wakeup_thread(mddev->thread);
8614 return;
8615 }
8616 EXPORT_SYMBOL_GPL(md_do_sync);
8617
8618 static int remove_and_add_spares(struct mddev *mddev,
8619 struct md_rdev *this)
8620 {
8621 struct md_rdev *rdev;
8622 int spares = 0;
8623 int removed = 0;
8624 bool remove_some = false;
8625
8626 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8627 /* Mustn't remove devices when resync thread is running */
8628 return 0;
8629
8630 rdev_for_each(rdev, mddev) {
8631 if ((this == NULL || rdev == this) &&
8632 rdev->raid_disk >= 0 &&
8633 !test_bit(Blocked, &rdev->flags) &&
8634 test_bit(Faulty, &rdev->flags) &&
8635 atomic_read(&rdev->nr_pending)==0) {
8636 /* Faulty non-Blocked devices with nr_pending == 0
8637 * never get nr_pending incremented,
8638 * never get Faulty cleared, and never get Blocked set.
8639 * So we can synchronize_rcu now rather than once per device
8640 */
8641 remove_some = true;
8642 set_bit(RemoveSynchronized, &rdev->flags);
8643 }
8644 }
8645
8646 if (remove_some)
8647 synchronize_rcu();
8648 rdev_for_each(rdev, mddev) {
8649 if ((this == NULL || rdev == this) &&
8650 rdev->raid_disk >= 0 &&
8651 !test_bit(Blocked, &rdev->flags) &&
8652 ((test_bit(RemoveSynchronized, &rdev->flags) ||
8653 (!test_bit(In_sync, &rdev->flags) &&
8654 !test_bit(Journal, &rdev->flags))) &&
8655 atomic_read(&rdev->nr_pending)==0)) {
8656 if (mddev->pers->hot_remove_disk(
8657 mddev, rdev) == 0) {
8658 sysfs_unlink_rdev(mddev, rdev);
8659 rdev->saved_raid_disk = rdev->raid_disk;
8660 rdev->raid_disk = -1;
8661 removed++;
8662 }
8663 }
8664 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
8665 clear_bit(RemoveSynchronized, &rdev->flags);
8666 }
8667
8668 if (removed && mddev->kobj.sd)
8669 sysfs_notify(&mddev->kobj, NULL, "degraded");
8670
8671 if (this && removed)
8672 goto no_add;
8673
8674 rdev_for_each(rdev, mddev) {
8675 if (this && this != rdev)
8676 continue;
8677 if (test_bit(Candidate, &rdev->flags))
8678 continue;
8679 if (rdev->raid_disk >= 0 &&
8680 !test_bit(In_sync, &rdev->flags) &&
8681 !test_bit(Journal, &rdev->flags) &&
8682 !test_bit(Faulty, &rdev->flags))
8683 spares++;
8684 if (rdev->raid_disk >= 0)
8685 continue;
8686 if (test_bit(Faulty, &rdev->flags))
8687 continue;
8688 if (!test_bit(Journal, &rdev->flags)) {
8689 if (mddev->ro &&
8690 ! (rdev->saved_raid_disk >= 0 &&
8691 !test_bit(Bitmap_sync, &rdev->flags)))
8692 continue;
8693
8694 rdev->recovery_offset = 0;
8695 }
8696 if (mddev->pers->
8697 hot_add_disk(mddev, rdev) == 0) {
8698 if (sysfs_link_rdev(mddev, rdev))
8699 /* failure here is OK */;
8700 if (!test_bit(Journal, &rdev->flags))
8701 spares++;
8702 md_new_event(mddev);
8703 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8704 }
8705 }
8706 no_add:
8707 if (removed)
8708 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8709 return spares;
8710 }
8711
8712 static void md_start_sync(struct work_struct *ws)
8713 {
8714 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8715
8716 mddev->sync_thread = md_register_thread(md_do_sync,
8717 mddev,
8718 "resync");
8719 if (!mddev->sync_thread) {
8720 pr_warn("%s: could not start resync thread...\n",
8721 mdname(mddev));
8722 /* leave the spares where they are, it shouldn't hurt */
8723 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8724 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8725 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8726 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8727 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8728 wake_up(&resync_wait);
8729 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8730 &mddev->recovery))
8731 if (mddev->sysfs_action)
8732 sysfs_notify_dirent_safe(mddev->sysfs_action);
8733 } else
8734 md_wakeup_thread(mddev->sync_thread);
8735 sysfs_notify_dirent_safe(mddev->sysfs_action);
8736 md_new_event(mddev);
8737 }
8738
8739 /*
8740 * This routine is regularly called by all per-raid-array threads to
8741 * deal with generic issues like resync and super-block update.
8742 * Raid personalities that don't have a thread (linear/raid0) do not
8743 * need this as they never do any recovery or update the superblock.
8744 *
8745 * It does not do any resync itself, but rather "forks" off other threads
8746 * to do that as needed.
8747 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8748 * "->recovery" and create a thread at ->sync_thread.
8749 * When the thread finishes it sets MD_RECOVERY_DONE
8750 * and wakeups up this thread which will reap the thread and finish up.
8751 * This thread also removes any faulty devices (with nr_pending == 0).
8752 *
8753 * The overall approach is:
8754 * 1/ if the superblock needs updating, update it.
8755 * 2/ If a recovery thread is running, don't do anything else.
8756 * 3/ If recovery has finished, clean up, possibly marking spares active.
8757 * 4/ If there are any faulty devices, remove them.
8758 * 5/ If array is degraded, try to add spares devices
8759 * 6/ If array has spares or is not in-sync, start a resync thread.
8760 */
8761 void md_check_recovery(struct mddev *mddev)
8762 {
8763 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
8764 /* Write superblock - thread that called mddev_suspend()
8765 * holds reconfig_mutex for us.
8766 */
8767 set_bit(MD_UPDATING_SB, &mddev->flags);
8768 smp_mb__after_atomic();
8769 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
8770 md_update_sb(mddev, 0);
8771 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
8772 wake_up(&mddev->sb_wait);
8773 }
8774
8775 if (mddev->suspended)
8776 return;
8777
8778 if (mddev->bitmap)
8779 md_bitmap_daemon_work(mddev);
8780
8781 if (signal_pending(current)) {
8782 if (mddev->pers->sync_request && !mddev->external) {
8783 pr_debug("md: %s in immediate safe mode\n",
8784 mdname(mddev));
8785 mddev->safemode = 2;
8786 }
8787 flush_signals(current);
8788 }
8789
8790 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8791 return;
8792 if ( ! (
8793 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
8794 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8795 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8796 (mddev->external == 0 && mddev->safemode == 1) ||
8797 (mddev->safemode == 2
8798 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8799 ))
8800 return;
8801
8802 if (mddev_trylock(mddev)) {
8803 int spares = 0;
8804
8805 if (!mddev->external && mddev->safemode == 1)
8806 mddev->safemode = 0;
8807
8808 if (mddev->ro) {
8809 struct md_rdev *rdev;
8810 if (!mddev->external && mddev->in_sync)
8811 /* 'Blocked' flag not needed as failed devices
8812 * will be recorded if array switched to read/write.
8813 * Leaving it set will prevent the device
8814 * from being removed.
8815 */
8816 rdev_for_each(rdev, mddev)
8817 clear_bit(Blocked, &rdev->flags);
8818 /* On a read-only array we can:
8819 * - remove failed devices
8820 * - add already-in_sync devices if the array itself
8821 * is in-sync.
8822 * As we only add devices that are already in-sync,
8823 * we can activate the spares immediately.
8824 */
8825 remove_and_add_spares(mddev, NULL);
8826 /* There is no thread, but we need to call
8827 * ->spare_active and clear saved_raid_disk
8828 */
8829 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8830 md_reap_sync_thread(mddev);
8831 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8832 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8833 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8834 goto unlock;
8835 }
8836
8837 if (mddev_is_clustered(mddev)) {
8838 struct md_rdev *rdev;
8839 /* kick the device if another node issued a
8840 * remove disk.
8841 */
8842 rdev_for_each(rdev, mddev) {
8843 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8844 rdev->raid_disk < 0)
8845 md_kick_rdev_from_array(rdev);
8846 }
8847 }
8848
8849 if (!mddev->external && !mddev->in_sync) {
8850 spin_lock(&mddev->lock);
8851 set_in_sync(mddev);
8852 spin_unlock(&mddev->lock);
8853 }
8854
8855 if (mddev->sb_flags)
8856 md_update_sb(mddev, 0);
8857
8858 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8859 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8860 /* resync/recovery still happening */
8861 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8862 goto unlock;
8863 }
8864 if (mddev->sync_thread) {
8865 md_reap_sync_thread(mddev);
8866 goto unlock;
8867 }
8868 /* Set RUNNING before clearing NEEDED to avoid
8869 * any transients in the value of "sync_action".
8870 */
8871 mddev->curr_resync_completed = 0;
8872 spin_lock(&mddev->lock);
8873 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8874 spin_unlock(&mddev->lock);
8875 /* Clear some bits that don't mean anything, but
8876 * might be left set
8877 */
8878 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8879 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8880
8881 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8882 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8883 goto not_running;
8884 /* no recovery is running.
8885 * remove any failed drives, then
8886 * add spares if possible.
8887 * Spares are also removed and re-added, to allow
8888 * the personality to fail the re-add.
8889 */
8890
8891 if (mddev->reshape_position != MaxSector) {
8892 if (mddev->pers->check_reshape == NULL ||
8893 mddev->pers->check_reshape(mddev) != 0)
8894 /* Cannot proceed */
8895 goto not_running;
8896 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8897 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8898 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8899 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8900 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8901 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8902 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8903 } else if (mddev->recovery_cp < MaxSector) {
8904 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8905 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8906 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8907 /* nothing to be done ... */
8908 goto not_running;
8909
8910 if (mddev->pers->sync_request) {
8911 if (spares) {
8912 /* We are adding a device or devices to an array
8913 * which has the bitmap stored on all devices.
8914 * So make sure all bitmap pages get written
8915 */
8916 md_bitmap_write_all(mddev->bitmap);
8917 }
8918 INIT_WORK(&mddev->del_work, md_start_sync);
8919 queue_work(md_misc_wq, &mddev->del_work);
8920 goto unlock;
8921 }
8922 not_running:
8923 if (!mddev->sync_thread) {
8924 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8925 wake_up(&resync_wait);
8926 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8927 &mddev->recovery))
8928 if (mddev->sysfs_action)
8929 sysfs_notify_dirent_safe(mddev->sysfs_action);
8930 }
8931 unlock:
8932 wake_up(&mddev->sb_wait);
8933 mddev_unlock(mddev);
8934 }
8935 }
8936 EXPORT_SYMBOL(md_check_recovery);
8937
8938 void md_reap_sync_thread(struct mddev *mddev)
8939 {
8940 struct md_rdev *rdev;
8941 sector_t old_dev_sectors = mddev->dev_sectors;
8942 bool is_reshaped = false;
8943
8944 /* resync has finished, collect result */
8945 md_unregister_thread(&mddev->sync_thread);
8946 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8947 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8948 /* success...*/
8949 /* activate any spares */
8950 if (mddev->pers->spare_active(mddev)) {
8951 sysfs_notify(&mddev->kobj, NULL,
8952 "degraded");
8953 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8954 }
8955 }
8956 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8957 mddev->pers->finish_reshape) {
8958 mddev->pers->finish_reshape(mddev);
8959 if (mddev_is_clustered(mddev))
8960 is_reshaped = true;
8961 }
8962
8963 /* If array is no-longer degraded, then any saved_raid_disk
8964 * information must be scrapped.
8965 */
8966 if (!mddev->degraded)
8967 rdev_for_each(rdev, mddev)
8968 rdev->saved_raid_disk = -1;
8969
8970 md_update_sb(mddev, 1);
8971 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
8972 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
8973 * clustered raid */
8974 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
8975 md_cluster_ops->resync_finish(mddev);
8976 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8977 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8978 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8979 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8980 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8981 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8982 /*
8983 * We call md_cluster_ops->update_size here because sync_size could
8984 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
8985 * so it is time to update size across cluster.
8986 */
8987 if (mddev_is_clustered(mddev) && is_reshaped
8988 && !test_bit(MD_CLOSING, &mddev->flags))
8989 md_cluster_ops->update_size(mddev, old_dev_sectors);
8990 wake_up(&resync_wait);
8991 /* flag recovery needed just to double check */
8992 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8993 sysfs_notify_dirent_safe(mddev->sysfs_action);
8994 md_new_event(mddev);
8995 if (mddev->event_work.func)
8996 queue_work(md_misc_wq, &mddev->event_work);
8997 }
8998 EXPORT_SYMBOL(md_reap_sync_thread);
8999
9000 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9001 {
9002 sysfs_notify_dirent_safe(rdev->sysfs_state);
9003 wait_event_timeout(rdev->blocked_wait,
9004 !test_bit(Blocked, &rdev->flags) &&
9005 !test_bit(BlockedBadBlocks, &rdev->flags),
9006 msecs_to_jiffies(5000));
9007 rdev_dec_pending(rdev, mddev);
9008 }
9009 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9010
9011 void md_finish_reshape(struct mddev *mddev)
9012 {
9013 /* called be personality module when reshape completes. */
9014 struct md_rdev *rdev;
9015
9016 rdev_for_each(rdev, mddev) {
9017 if (rdev->data_offset > rdev->new_data_offset)
9018 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9019 else
9020 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9021 rdev->data_offset = rdev->new_data_offset;
9022 }
9023 }
9024 EXPORT_SYMBOL(md_finish_reshape);
9025
9026 /* Bad block management */
9027
9028 /* Returns 1 on success, 0 on failure */
9029 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9030 int is_new)
9031 {
9032 struct mddev *mddev = rdev->mddev;
9033 int rv;
9034 if (is_new)
9035 s += rdev->new_data_offset;
9036 else
9037 s += rdev->data_offset;
9038 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9039 if (rv == 0) {
9040 /* Make sure they get written out promptly */
9041 if (test_bit(ExternalBbl, &rdev->flags))
9042 sysfs_notify(&rdev->kobj, NULL,
9043 "unacknowledged_bad_blocks");
9044 sysfs_notify_dirent_safe(rdev->sysfs_state);
9045 set_mask_bits(&mddev->sb_flags, 0,
9046 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9047 md_wakeup_thread(rdev->mddev->thread);
9048 return 1;
9049 } else
9050 return 0;
9051 }
9052 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9053
9054 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9055 int is_new)
9056 {
9057 int rv;
9058 if (is_new)
9059 s += rdev->new_data_offset;
9060 else
9061 s += rdev->data_offset;
9062 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9063 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9064 sysfs_notify(&rdev->kobj, NULL, "bad_blocks");
9065 return rv;
9066 }
9067 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9068
9069 static int md_notify_reboot(struct notifier_block *this,
9070 unsigned long code, void *x)
9071 {
9072 struct list_head *tmp;
9073 struct mddev *mddev;
9074 int need_delay = 0;
9075
9076 for_each_mddev(mddev, tmp) {
9077 if (mddev_trylock(mddev)) {
9078 if (mddev->pers)
9079 __md_stop_writes(mddev);
9080 if (mddev->persistent)
9081 mddev->safemode = 2;
9082 mddev_unlock(mddev);
9083 }
9084 need_delay = 1;
9085 }
9086 /*
9087 * certain more exotic SCSI devices are known to be
9088 * volatile wrt too early system reboots. While the
9089 * right place to handle this issue is the given
9090 * driver, we do want to have a safe RAID driver ...
9091 */
9092 if (need_delay)
9093 mdelay(1000*1);
9094
9095 return NOTIFY_DONE;
9096 }
9097
9098 static struct notifier_block md_notifier = {
9099 .notifier_call = md_notify_reboot,
9100 .next = NULL,
9101 .priority = INT_MAX, /* before any real devices */
9102 };
9103
9104 static void md_geninit(void)
9105 {
9106 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9107
9108 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9109 }
9110
9111 static int __init md_init(void)
9112 {
9113 int ret = -ENOMEM;
9114
9115 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9116 if (!md_wq)
9117 goto err_wq;
9118
9119 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9120 if (!md_misc_wq)
9121 goto err_misc_wq;
9122
9123 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9124 goto err_md;
9125
9126 if ((ret = register_blkdev(0, "mdp")) < 0)
9127 goto err_mdp;
9128 mdp_major = ret;
9129
9130 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9131 md_probe, NULL, NULL);
9132 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9133 md_probe, NULL, NULL);
9134
9135 register_reboot_notifier(&md_notifier);
9136 raid_table_header = register_sysctl_table(raid_root_table);
9137
9138 md_geninit();
9139 return 0;
9140
9141 err_mdp:
9142 unregister_blkdev(MD_MAJOR, "md");
9143 err_md:
9144 destroy_workqueue(md_misc_wq);
9145 err_misc_wq:
9146 destroy_workqueue(md_wq);
9147 err_wq:
9148 return ret;
9149 }
9150
9151 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9152 {
9153 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9154 struct md_rdev *rdev2;
9155 int role, ret;
9156 char b[BDEVNAME_SIZE];
9157
9158 /*
9159 * If size is changed in another node then we need to
9160 * do resize as well.
9161 */
9162 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9163 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9164 if (ret)
9165 pr_info("md-cluster: resize failed\n");
9166 else
9167 md_bitmap_update_sb(mddev->bitmap);
9168 }
9169
9170 /* Check for change of roles in the active devices */
9171 rdev_for_each(rdev2, mddev) {
9172 if (test_bit(Faulty, &rdev2->flags))
9173 continue;
9174
9175 /* Check if the roles changed */
9176 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9177
9178 if (test_bit(Candidate, &rdev2->flags)) {
9179 if (role == 0xfffe) {
9180 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9181 md_kick_rdev_from_array(rdev2);
9182 continue;
9183 }
9184 else
9185 clear_bit(Candidate, &rdev2->flags);
9186 }
9187
9188 if (role != rdev2->raid_disk) {
9189 /*
9190 * got activated except reshape is happening.
9191 */
9192 if (rdev2->raid_disk == -1 && role != 0xffff &&
9193 !(le32_to_cpu(sb->feature_map) &
9194 MD_FEATURE_RESHAPE_ACTIVE)) {
9195 rdev2->saved_raid_disk = role;
9196 ret = remove_and_add_spares(mddev, rdev2);
9197 pr_info("Activated spare: %s\n",
9198 bdevname(rdev2->bdev,b));
9199 /* wakeup mddev->thread here, so array could
9200 * perform resync with the new activated disk */
9201 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9202 md_wakeup_thread(mddev->thread);
9203
9204 }
9205 /* device faulty
9206 * We just want to do the minimum to mark the disk
9207 * as faulty. The recovery is performed by the
9208 * one who initiated the error.
9209 */
9210 if ((role == 0xfffe) || (role == 0xfffd)) {
9211 md_error(mddev, rdev2);
9212 clear_bit(Blocked, &rdev2->flags);
9213 }
9214 }
9215 }
9216
9217 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9218 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9219
9220 /*
9221 * Since mddev->delta_disks has already updated in update_raid_disks,
9222 * so it is time to check reshape.
9223 */
9224 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9225 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9226 /*
9227 * reshape is happening in the remote node, we need to
9228 * update reshape_position and call start_reshape.
9229 */
9230 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9231 if (mddev->pers->update_reshape_pos)
9232 mddev->pers->update_reshape_pos(mddev);
9233 if (mddev->pers->start_reshape)
9234 mddev->pers->start_reshape(mddev);
9235 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9236 mddev->reshape_position != MaxSector &&
9237 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9238 /* reshape is just done in another node. */
9239 mddev->reshape_position = MaxSector;
9240 if (mddev->pers->update_reshape_pos)
9241 mddev->pers->update_reshape_pos(mddev);
9242 }
9243
9244 /* Finally set the event to be up to date */
9245 mddev->events = le64_to_cpu(sb->events);
9246 }
9247
9248 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9249 {
9250 int err;
9251 struct page *swapout = rdev->sb_page;
9252 struct mdp_superblock_1 *sb;
9253
9254 /* Store the sb page of the rdev in the swapout temporary
9255 * variable in case we err in the future
9256 */
9257 rdev->sb_page = NULL;
9258 err = alloc_disk_sb(rdev);
9259 if (err == 0) {
9260 ClearPageUptodate(rdev->sb_page);
9261 rdev->sb_loaded = 0;
9262 err = super_types[mddev->major_version].
9263 load_super(rdev, NULL, mddev->minor_version);
9264 }
9265 if (err < 0) {
9266 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9267 __func__, __LINE__, rdev->desc_nr, err);
9268 if (rdev->sb_page)
9269 put_page(rdev->sb_page);
9270 rdev->sb_page = swapout;
9271 rdev->sb_loaded = 1;
9272 return err;
9273 }
9274
9275 sb = page_address(rdev->sb_page);
9276 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9277 * is not set
9278 */
9279
9280 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9281 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9282
9283 /* The other node finished recovery, call spare_active to set
9284 * device In_sync and mddev->degraded
9285 */
9286 if (rdev->recovery_offset == MaxSector &&
9287 !test_bit(In_sync, &rdev->flags) &&
9288 mddev->pers->spare_active(mddev))
9289 sysfs_notify(&mddev->kobj, NULL, "degraded");
9290
9291 put_page(swapout);
9292 return 0;
9293 }
9294
9295 void md_reload_sb(struct mddev *mddev, int nr)
9296 {
9297 struct md_rdev *rdev;
9298 int err;
9299
9300 /* Find the rdev */
9301 rdev_for_each_rcu(rdev, mddev) {
9302 if (rdev->desc_nr == nr)
9303 break;
9304 }
9305
9306 if (!rdev || rdev->desc_nr != nr) {
9307 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9308 return;
9309 }
9310
9311 err = read_rdev(mddev, rdev);
9312 if (err < 0)
9313 return;
9314
9315 check_sb_changes(mddev, rdev);
9316
9317 /* Read all rdev's to update recovery_offset */
9318 rdev_for_each_rcu(rdev, mddev) {
9319 if (!test_bit(Faulty, &rdev->flags))
9320 read_rdev(mddev, rdev);
9321 }
9322 }
9323 EXPORT_SYMBOL(md_reload_sb);
9324
9325 #ifndef MODULE
9326
9327 /*
9328 * Searches all registered partitions for autorun RAID arrays
9329 * at boot time.
9330 */
9331
9332 static DEFINE_MUTEX(detected_devices_mutex);
9333 static LIST_HEAD(all_detected_devices);
9334 struct detected_devices_node {
9335 struct list_head list;
9336 dev_t dev;
9337 };
9338
9339 void md_autodetect_dev(dev_t dev)
9340 {
9341 struct detected_devices_node *node_detected_dev;
9342
9343 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9344 if (node_detected_dev) {
9345 node_detected_dev->dev = dev;
9346 mutex_lock(&detected_devices_mutex);
9347 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9348 mutex_unlock(&detected_devices_mutex);
9349 }
9350 }
9351
9352 static void autostart_arrays(int part)
9353 {
9354 struct md_rdev *rdev;
9355 struct detected_devices_node *node_detected_dev;
9356 dev_t dev;
9357 int i_scanned, i_passed;
9358
9359 i_scanned = 0;
9360 i_passed = 0;
9361
9362 pr_info("md: Autodetecting RAID arrays.\n");
9363
9364 mutex_lock(&detected_devices_mutex);
9365 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9366 i_scanned++;
9367 node_detected_dev = list_entry(all_detected_devices.next,
9368 struct detected_devices_node, list);
9369 list_del(&node_detected_dev->list);
9370 dev = node_detected_dev->dev;
9371 kfree(node_detected_dev);
9372 mutex_unlock(&detected_devices_mutex);
9373 rdev = md_import_device(dev,0, 90);
9374 mutex_lock(&detected_devices_mutex);
9375 if (IS_ERR(rdev))
9376 continue;
9377
9378 if (test_bit(Faulty, &rdev->flags))
9379 continue;
9380
9381 set_bit(AutoDetected, &rdev->flags);
9382 list_add(&rdev->same_set, &pending_raid_disks);
9383 i_passed++;
9384 }
9385 mutex_unlock(&detected_devices_mutex);
9386
9387 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9388
9389 autorun_devices(part);
9390 }
9391
9392 #endif /* !MODULE */
9393
9394 static __exit void md_exit(void)
9395 {
9396 struct mddev *mddev;
9397 struct list_head *tmp;
9398 int delay = 1;
9399
9400 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9401 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9402
9403 unregister_blkdev(MD_MAJOR,"md");
9404 unregister_blkdev(mdp_major, "mdp");
9405 unregister_reboot_notifier(&md_notifier);
9406 unregister_sysctl_table(raid_table_header);
9407
9408 /* We cannot unload the modules while some process is
9409 * waiting for us in select() or poll() - wake them up
9410 */
9411 md_unloading = 1;
9412 while (waitqueue_active(&md_event_waiters)) {
9413 /* not safe to leave yet */
9414 wake_up(&md_event_waiters);
9415 msleep(delay);
9416 delay += delay;
9417 }
9418 remove_proc_entry("mdstat", NULL);
9419
9420 for_each_mddev(mddev, tmp) {
9421 export_array(mddev);
9422 mddev->ctime = 0;
9423 mddev->hold_active = 0;
9424 /*
9425 * for_each_mddev() will call mddev_put() at the end of each
9426 * iteration. As the mddev is now fully clear, this will
9427 * schedule the mddev for destruction by a workqueue, and the
9428 * destroy_workqueue() below will wait for that to complete.
9429 */
9430 }
9431 destroy_workqueue(md_misc_wq);
9432 destroy_workqueue(md_wq);
9433 }
9434
9435 subsys_initcall(md_init);
9436 module_exit(md_exit)
9437
9438 static int get_ro(char *buffer, const struct kernel_param *kp)
9439 {
9440 return sprintf(buffer, "%d", start_readonly);
9441 }
9442 static int set_ro(const char *val, const struct kernel_param *kp)
9443 {
9444 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9445 }
9446
9447 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9448 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9449 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9450 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9451
9452 MODULE_LICENSE("GPL");
9453 MODULE_DESCRIPTION("MD RAID framework");
9454 MODULE_ALIAS("md");
9455 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);