]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/block_dev.c
block: allow bio_for_each_segment_all() to iterate over multi-page bvec
[thirdparty/kernel/linux.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75 }
76
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
78 void kill_bdev(struct block_device *bdev)
79 {
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87 }
88 EXPORT_SYMBOL(kill_bdev);
89
90 /* Invalidate clean unused buffers and pagecache. */
91 void invalidate_bdev(struct block_device *bdev)
92 {
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
94
95 if (mapping->nrpages) {
96 invalidate_bh_lrus();
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
99 }
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
102 */
103 cleancache_invalidate_inode(mapping);
104 }
105 EXPORT_SYMBOL(invalidate_bdev);
106
107 static void set_init_blocksize(struct block_device *bdev)
108 {
109 unsigned bsize = bdev_logical_block_size(bdev);
110 loff_t size = i_size_read(bdev->bd_inode);
111
112 while (bsize < PAGE_SIZE) {
113 if (size & bsize)
114 break;
115 bsize <<= 1;
116 }
117 bdev->bd_block_size = bsize;
118 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
119 }
120
121 int set_blocksize(struct block_device *bdev, int size)
122 {
123 /* Size must be a power of two, and between 512 and PAGE_SIZE */
124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
125 return -EINVAL;
126
127 /* Size cannot be smaller than the size supported by the device */
128 if (size < bdev_logical_block_size(bdev))
129 return -EINVAL;
130
131 /* Don't change the size if it is same as current */
132 if (bdev->bd_block_size != size) {
133 sync_blockdev(bdev);
134 bdev->bd_block_size = size;
135 bdev->bd_inode->i_blkbits = blksize_bits(size);
136 kill_bdev(bdev);
137 }
138 return 0;
139 }
140
141 EXPORT_SYMBOL(set_blocksize);
142
143 int sb_set_blocksize(struct super_block *sb, int size)
144 {
145 if (set_blocksize(sb->s_bdev, size))
146 return 0;
147 /* If we get here, we know size is power of two
148 * and it's value is between 512 and PAGE_SIZE */
149 sb->s_blocksize = size;
150 sb->s_blocksize_bits = blksize_bits(size);
151 return sb->s_blocksize;
152 }
153
154 EXPORT_SYMBOL(sb_set_blocksize);
155
156 int sb_min_blocksize(struct super_block *sb, int size)
157 {
158 int minsize = bdev_logical_block_size(sb->s_bdev);
159 if (size < minsize)
160 size = minsize;
161 return sb_set_blocksize(sb, size);
162 }
163
164 EXPORT_SYMBOL(sb_min_blocksize);
165
166 static int
167 blkdev_get_block(struct inode *inode, sector_t iblock,
168 struct buffer_head *bh, int create)
169 {
170 bh->b_bdev = I_BDEV(inode);
171 bh->b_blocknr = iblock;
172 set_buffer_mapped(bh);
173 return 0;
174 }
175
176 static struct inode *bdev_file_inode(struct file *file)
177 {
178 return file->f_mapping->host;
179 }
180
181 static unsigned int dio_bio_write_op(struct kiocb *iocb)
182 {
183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
184
185 /* avoid the need for a I/O completion work item */
186 if (iocb->ki_flags & IOCB_DSYNC)
187 op |= REQ_FUA;
188 return op;
189 }
190
191 #define DIO_INLINE_BIO_VECS 4
192
193 static void blkdev_bio_end_io_simple(struct bio *bio)
194 {
195 struct task_struct *waiter = bio->bi_private;
196
197 WRITE_ONCE(bio->bi_private, NULL);
198 blk_wake_io_task(waiter);
199 }
200
201 static ssize_t
202 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
203 int nr_pages)
204 {
205 struct file *file = iocb->ki_filp;
206 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
208 loff_t pos = iocb->ki_pos;
209 bool should_dirty = false;
210 struct bio bio;
211 ssize_t ret;
212 blk_qc_t qc;
213 int i;
214 struct bvec_iter_all iter_all;
215
216 if ((pos | iov_iter_alignment(iter)) &
217 (bdev_logical_block_size(bdev) - 1))
218 return -EINVAL;
219
220 if (nr_pages <= DIO_INLINE_BIO_VECS)
221 vecs = inline_vecs;
222 else {
223 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
224 GFP_KERNEL);
225 if (!vecs)
226 return -ENOMEM;
227 }
228
229 bio_init(&bio, vecs, nr_pages);
230 bio_set_dev(&bio, bdev);
231 bio.bi_iter.bi_sector = pos >> 9;
232 bio.bi_write_hint = iocb->ki_hint;
233 bio.bi_private = current;
234 bio.bi_end_io = blkdev_bio_end_io_simple;
235 bio.bi_ioprio = iocb->ki_ioprio;
236
237 ret = bio_iov_iter_get_pages(&bio, iter);
238 if (unlikely(ret))
239 goto out;
240 ret = bio.bi_iter.bi_size;
241
242 if (iov_iter_rw(iter) == READ) {
243 bio.bi_opf = REQ_OP_READ;
244 if (iter_is_iovec(iter))
245 should_dirty = true;
246 } else {
247 bio.bi_opf = dio_bio_write_op(iocb);
248 task_io_account_write(ret);
249 }
250 if (iocb->ki_flags & IOCB_HIPRI)
251 bio.bi_opf |= REQ_HIPRI;
252
253 qc = submit_bio(&bio);
254 for (;;) {
255 set_current_state(TASK_UNINTERRUPTIBLE);
256 if (!READ_ONCE(bio.bi_private))
257 break;
258 if (!(iocb->ki_flags & IOCB_HIPRI) ||
259 !blk_poll(bdev_get_queue(bdev), qc, true))
260 io_schedule();
261 }
262 __set_current_state(TASK_RUNNING);
263
264 bio_for_each_segment_all(bvec, &bio, i, iter_all) {
265 if (should_dirty && !PageCompound(bvec->bv_page))
266 set_page_dirty_lock(bvec->bv_page);
267 put_page(bvec->bv_page);
268 }
269
270 if (unlikely(bio.bi_status))
271 ret = blk_status_to_errno(bio.bi_status);
272
273 out:
274 if (vecs != inline_vecs)
275 kfree(vecs);
276
277 bio_uninit(&bio);
278
279 return ret;
280 }
281
282 struct blkdev_dio {
283 union {
284 struct kiocb *iocb;
285 struct task_struct *waiter;
286 };
287 size_t size;
288 atomic_t ref;
289 bool multi_bio : 1;
290 bool should_dirty : 1;
291 bool is_sync : 1;
292 struct bio bio;
293 };
294
295 static struct bio_set blkdev_dio_pool;
296
297 static void blkdev_bio_end_io(struct bio *bio)
298 {
299 struct blkdev_dio *dio = bio->bi_private;
300 bool should_dirty = dio->should_dirty;
301
302 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
303 if (bio->bi_status && !dio->bio.bi_status)
304 dio->bio.bi_status = bio->bi_status;
305 } else {
306 if (!dio->is_sync) {
307 struct kiocb *iocb = dio->iocb;
308 ssize_t ret;
309
310 if (likely(!dio->bio.bi_status)) {
311 ret = dio->size;
312 iocb->ki_pos += ret;
313 } else {
314 ret = blk_status_to_errno(dio->bio.bi_status);
315 }
316
317 dio->iocb->ki_complete(iocb, ret, 0);
318 if (dio->multi_bio)
319 bio_put(&dio->bio);
320 } else {
321 struct task_struct *waiter = dio->waiter;
322
323 WRITE_ONCE(dio->waiter, NULL);
324 blk_wake_io_task(waiter);
325 }
326 }
327
328 if (should_dirty) {
329 bio_check_pages_dirty(bio);
330 } else {
331 struct bio_vec *bvec;
332 int i;
333 struct bvec_iter_all iter_all;
334
335 bio_for_each_segment_all(bvec, bio, i, iter_all)
336 put_page(bvec->bv_page);
337 bio_put(bio);
338 }
339 }
340
341 static ssize_t
342 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
343 {
344 struct file *file = iocb->ki_filp;
345 struct inode *inode = bdev_file_inode(file);
346 struct block_device *bdev = I_BDEV(inode);
347 struct blk_plug plug;
348 struct blkdev_dio *dio;
349 struct bio *bio;
350 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
351 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
352 loff_t pos = iocb->ki_pos;
353 blk_qc_t qc = BLK_QC_T_NONE;
354 int ret = 0;
355
356 if ((pos | iov_iter_alignment(iter)) &
357 (bdev_logical_block_size(bdev) - 1))
358 return -EINVAL;
359
360 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
361
362 dio = container_of(bio, struct blkdev_dio, bio);
363 dio->is_sync = is_sync = is_sync_kiocb(iocb);
364 if (dio->is_sync) {
365 dio->waiter = current;
366 bio_get(bio);
367 } else {
368 dio->iocb = iocb;
369 }
370
371 dio->size = 0;
372 dio->multi_bio = false;
373 dio->should_dirty = is_read && iter_is_iovec(iter);
374
375 /*
376 * Don't plug for HIPRI/polled IO, as those should go straight
377 * to issue
378 */
379 if (!is_poll)
380 blk_start_plug(&plug);
381
382 for (;;) {
383 bio_set_dev(bio, bdev);
384 bio->bi_iter.bi_sector = pos >> 9;
385 bio->bi_write_hint = iocb->ki_hint;
386 bio->bi_private = dio;
387 bio->bi_end_io = blkdev_bio_end_io;
388 bio->bi_ioprio = iocb->ki_ioprio;
389
390 ret = bio_iov_iter_get_pages(bio, iter);
391 if (unlikely(ret)) {
392 bio->bi_status = BLK_STS_IOERR;
393 bio_endio(bio);
394 break;
395 }
396
397 if (is_read) {
398 bio->bi_opf = REQ_OP_READ;
399 if (dio->should_dirty)
400 bio_set_pages_dirty(bio);
401 } else {
402 bio->bi_opf = dio_bio_write_op(iocb);
403 task_io_account_write(bio->bi_iter.bi_size);
404 }
405
406 dio->size += bio->bi_iter.bi_size;
407 pos += bio->bi_iter.bi_size;
408
409 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
410 if (!nr_pages) {
411 if (iocb->ki_flags & IOCB_HIPRI)
412 bio->bi_opf |= REQ_HIPRI;
413
414 qc = submit_bio(bio);
415 break;
416 }
417
418 if (!dio->multi_bio) {
419 /*
420 * AIO needs an extra reference to ensure the dio
421 * structure which is embedded into the first bio
422 * stays around.
423 */
424 if (!is_sync)
425 bio_get(bio);
426 dio->multi_bio = true;
427 atomic_set(&dio->ref, 2);
428 } else {
429 atomic_inc(&dio->ref);
430 }
431
432 submit_bio(bio);
433 bio = bio_alloc(GFP_KERNEL, nr_pages);
434 }
435
436 if (!is_poll)
437 blk_finish_plug(&plug);
438
439 if (!is_sync)
440 return -EIOCBQUEUED;
441
442 for (;;) {
443 set_current_state(TASK_UNINTERRUPTIBLE);
444 if (!READ_ONCE(dio->waiter))
445 break;
446
447 if (!(iocb->ki_flags & IOCB_HIPRI) ||
448 !blk_poll(bdev_get_queue(bdev), qc, true))
449 io_schedule();
450 }
451 __set_current_state(TASK_RUNNING);
452
453 if (!ret)
454 ret = blk_status_to_errno(dio->bio.bi_status);
455 if (likely(!ret))
456 ret = dio->size;
457
458 bio_put(&dio->bio);
459 return ret;
460 }
461
462 static ssize_t
463 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
464 {
465 int nr_pages;
466
467 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
468 if (!nr_pages)
469 return 0;
470 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
471 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
472
473 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
474 }
475
476 static __init int blkdev_init(void)
477 {
478 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
479 }
480 module_init(blkdev_init);
481
482 int __sync_blockdev(struct block_device *bdev, int wait)
483 {
484 if (!bdev)
485 return 0;
486 if (!wait)
487 return filemap_flush(bdev->bd_inode->i_mapping);
488 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
489 }
490
491 /*
492 * Write out and wait upon all the dirty data associated with a block
493 * device via its mapping. Does not take the superblock lock.
494 */
495 int sync_blockdev(struct block_device *bdev)
496 {
497 return __sync_blockdev(bdev, 1);
498 }
499 EXPORT_SYMBOL(sync_blockdev);
500
501 /*
502 * Write out and wait upon all dirty data associated with this
503 * device. Filesystem data as well as the underlying block
504 * device. Takes the superblock lock.
505 */
506 int fsync_bdev(struct block_device *bdev)
507 {
508 struct super_block *sb = get_super(bdev);
509 if (sb) {
510 int res = sync_filesystem(sb);
511 drop_super(sb);
512 return res;
513 }
514 return sync_blockdev(bdev);
515 }
516 EXPORT_SYMBOL(fsync_bdev);
517
518 /**
519 * freeze_bdev -- lock a filesystem and force it into a consistent state
520 * @bdev: blockdevice to lock
521 *
522 * If a superblock is found on this device, we take the s_umount semaphore
523 * on it to make sure nobody unmounts until the snapshot creation is done.
524 * The reference counter (bd_fsfreeze_count) guarantees that only the last
525 * unfreeze process can unfreeze the frozen filesystem actually when multiple
526 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
527 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
528 * actually.
529 */
530 struct super_block *freeze_bdev(struct block_device *bdev)
531 {
532 struct super_block *sb;
533 int error = 0;
534
535 mutex_lock(&bdev->bd_fsfreeze_mutex);
536 if (++bdev->bd_fsfreeze_count > 1) {
537 /*
538 * We don't even need to grab a reference - the first call
539 * to freeze_bdev grab an active reference and only the last
540 * thaw_bdev drops it.
541 */
542 sb = get_super(bdev);
543 if (sb)
544 drop_super(sb);
545 mutex_unlock(&bdev->bd_fsfreeze_mutex);
546 return sb;
547 }
548
549 sb = get_active_super(bdev);
550 if (!sb)
551 goto out;
552 if (sb->s_op->freeze_super)
553 error = sb->s_op->freeze_super(sb);
554 else
555 error = freeze_super(sb);
556 if (error) {
557 deactivate_super(sb);
558 bdev->bd_fsfreeze_count--;
559 mutex_unlock(&bdev->bd_fsfreeze_mutex);
560 return ERR_PTR(error);
561 }
562 deactivate_super(sb);
563 out:
564 sync_blockdev(bdev);
565 mutex_unlock(&bdev->bd_fsfreeze_mutex);
566 return sb; /* thaw_bdev releases s->s_umount */
567 }
568 EXPORT_SYMBOL(freeze_bdev);
569
570 /**
571 * thaw_bdev -- unlock filesystem
572 * @bdev: blockdevice to unlock
573 * @sb: associated superblock
574 *
575 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
576 */
577 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
578 {
579 int error = -EINVAL;
580
581 mutex_lock(&bdev->bd_fsfreeze_mutex);
582 if (!bdev->bd_fsfreeze_count)
583 goto out;
584
585 error = 0;
586 if (--bdev->bd_fsfreeze_count > 0)
587 goto out;
588
589 if (!sb)
590 goto out;
591
592 if (sb->s_op->thaw_super)
593 error = sb->s_op->thaw_super(sb);
594 else
595 error = thaw_super(sb);
596 if (error)
597 bdev->bd_fsfreeze_count++;
598 out:
599 mutex_unlock(&bdev->bd_fsfreeze_mutex);
600 return error;
601 }
602 EXPORT_SYMBOL(thaw_bdev);
603
604 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
605 {
606 return block_write_full_page(page, blkdev_get_block, wbc);
607 }
608
609 static int blkdev_readpage(struct file * file, struct page * page)
610 {
611 return block_read_full_page(page, blkdev_get_block);
612 }
613
614 static int blkdev_readpages(struct file *file, struct address_space *mapping,
615 struct list_head *pages, unsigned nr_pages)
616 {
617 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
618 }
619
620 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
621 loff_t pos, unsigned len, unsigned flags,
622 struct page **pagep, void **fsdata)
623 {
624 return block_write_begin(mapping, pos, len, flags, pagep,
625 blkdev_get_block);
626 }
627
628 static int blkdev_write_end(struct file *file, struct address_space *mapping,
629 loff_t pos, unsigned len, unsigned copied,
630 struct page *page, void *fsdata)
631 {
632 int ret;
633 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
634
635 unlock_page(page);
636 put_page(page);
637
638 return ret;
639 }
640
641 /*
642 * private llseek:
643 * for a block special file file_inode(file)->i_size is zero
644 * so we compute the size by hand (just as in block_read/write above)
645 */
646 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
647 {
648 struct inode *bd_inode = bdev_file_inode(file);
649 loff_t retval;
650
651 inode_lock(bd_inode);
652 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
653 inode_unlock(bd_inode);
654 return retval;
655 }
656
657 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
658 {
659 struct inode *bd_inode = bdev_file_inode(filp);
660 struct block_device *bdev = I_BDEV(bd_inode);
661 int error;
662
663 error = file_write_and_wait_range(filp, start, end);
664 if (error)
665 return error;
666
667 /*
668 * There is no need to serialise calls to blkdev_issue_flush with
669 * i_mutex and doing so causes performance issues with concurrent
670 * O_SYNC writers to a block device.
671 */
672 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
673 if (error == -EOPNOTSUPP)
674 error = 0;
675
676 return error;
677 }
678 EXPORT_SYMBOL(blkdev_fsync);
679
680 /**
681 * bdev_read_page() - Start reading a page from a block device
682 * @bdev: The device to read the page from
683 * @sector: The offset on the device to read the page to (need not be aligned)
684 * @page: The page to read
685 *
686 * On entry, the page should be locked. It will be unlocked when the page
687 * has been read. If the block driver implements rw_page synchronously,
688 * that will be true on exit from this function, but it need not be.
689 *
690 * Errors returned by this function are usually "soft", eg out of memory, or
691 * queue full; callers should try a different route to read this page rather
692 * than propagate an error back up the stack.
693 *
694 * Return: negative errno if an error occurs, 0 if submission was successful.
695 */
696 int bdev_read_page(struct block_device *bdev, sector_t sector,
697 struct page *page)
698 {
699 const struct block_device_operations *ops = bdev->bd_disk->fops;
700 int result = -EOPNOTSUPP;
701
702 if (!ops->rw_page || bdev_get_integrity(bdev))
703 return result;
704
705 result = blk_queue_enter(bdev->bd_queue, 0);
706 if (result)
707 return result;
708 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
709 REQ_OP_READ);
710 blk_queue_exit(bdev->bd_queue);
711 return result;
712 }
713 EXPORT_SYMBOL_GPL(bdev_read_page);
714
715 /**
716 * bdev_write_page() - Start writing a page to a block device
717 * @bdev: The device to write the page to
718 * @sector: The offset on the device to write the page to (need not be aligned)
719 * @page: The page to write
720 * @wbc: The writeback_control for the write
721 *
722 * On entry, the page should be locked and not currently under writeback.
723 * On exit, if the write started successfully, the page will be unlocked and
724 * under writeback. If the write failed already (eg the driver failed to
725 * queue the page to the device), the page will still be locked. If the
726 * caller is a ->writepage implementation, it will need to unlock the page.
727 *
728 * Errors returned by this function are usually "soft", eg out of memory, or
729 * queue full; callers should try a different route to write this page rather
730 * than propagate an error back up the stack.
731 *
732 * Return: negative errno if an error occurs, 0 if submission was successful.
733 */
734 int bdev_write_page(struct block_device *bdev, sector_t sector,
735 struct page *page, struct writeback_control *wbc)
736 {
737 int result;
738 const struct block_device_operations *ops = bdev->bd_disk->fops;
739
740 if (!ops->rw_page || bdev_get_integrity(bdev))
741 return -EOPNOTSUPP;
742 result = blk_queue_enter(bdev->bd_queue, 0);
743 if (result)
744 return result;
745
746 set_page_writeback(page);
747 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
748 REQ_OP_WRITE);
749 if (result) {
750 end_page_writeback(page);
751 } else {
752 clean_page_buffers(page);
753 unlock_page(page);
754 }
755 blk_queue_exit(bdev->bd_queue);
756 return result;
757 }
758 EXPORT_SYMBOL_GPL(bdev_write_page);
759
760 /*
761 * pseudo-fs
762 */
763
764 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
765 static struct kmem_cache * bdev_cachep __read_mostly;
766
767 static struct inode *bdev_alloc_inode(struct super_block *sb)
768 {
769 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
770 if (!ei)
771 return NULL;
772 return &ei->vfs_inode;
773 }
774
775 static void bdev_i_callback(struct rcu_head *head)
776 {
777 struct inode *inode = container_of(head, struct inode, i_rcu);
778 struct bdev_inode *bdi = BDEV_I(inode);
779
780 kmem_cache_free(bdev_cachep, bdi);
781 }
782
783 static void bdev_destroy_inode(struct inode *inode)
784 {
785 call_rcu(&inode->i_rcu, bdev_i_callback);
786 }
787
788 static void init_once(void *foo)
789 {
790 struct bdev_inode *ei = (struct bdev_inode *) foo;
791 struct block_device *bdev = &ei->bdev;
792
793 memset(bdev, 0, sizeof(*bdev));
794 mutex_init(&bdev->bd_mutex);
795 INIT_LIST_HEAD(&bdev->bd_list);
796 #ifdef CONFIG_SYSFS
797 INIT_LIST_HEAD(&bdev->bd_holder_disks);
798 #endif
799 bdev->bd_bdi = &noop_backing_dev_info;
800 inode_init_once(&ei->vfs_inode);
801 /* Initialize mutex for freeze. */
802 mutex_init(&bdev->bd_fsfreeze_mutex);
803 }
804
805 static void bdev_evict_inode(struct inode *inode)
806 {
807 struct block_device *bdev = &BDEV_I(inode)->bdev;
808 truncate_inode_pages_final(&inode->i_data);
809 invalidate_inode_buffers(inode); /* is it needed here? */
810 clear_inode(inode);
811 spin_lock(&bdev_lock);
812 list_del_init(&bdev->bd_list);
813 spin_unlock(&bdev_lock);
814 /* Detach inode from wb early as bdi_put() may free bdi->wb */
815 inode_detach_wb(inode);
816 if (bdev->bd_bdi != &noop_backing_dev_info) {
817 bdi_put(bdev->bd_bdi);
818 bdev->bd_bdi = &noop_backing_dev_info;
819 }
820 }
821
822 static const struct super_operations bdev_sops = {
823 .statfs = simple_statfs,
824 .alloc_inode = bdev_alloc_inode,
825 .destroy_inode = bdev_destroy_inode,
826 .drop_inode = generic_delete_inode,
827 .evict_inode = bdev_evict_inode,
828 };
829
830 static struct dentry *bd_mount(struct file_system_type *fs_type,
831 int flags, const char *dev_name, void *data)
832 {
833 struct dentry *dent;
834 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
835 if (!IS_ERR(dent))
836 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
837 return dent;
838 }
839
840 static struct file_system_type bd_type = {
841 .name = "bdev",
842 .mount = bd_mount,
843 .kill_sb = kill_anon_super,
844 };
845
846 struct super_block *blockdev_superblock __read_mostly;
847 EXPORT_SYMBOL_GPL(blockdev_superblock);
848
849 void __init bdev_cache_init(void)
850 {
851 int err;
852 static struct vfsmount *bd_mnt;
853
854 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
855 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
856 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
857 init_once);
858 err = register_filesystem(&bd_type);
859 if (err)
860 panic("Cannot register bdev pseudo-fs");
861 bd_mnt = kern_mount(&bd_type);
862 if (IS_ERR(bd_mnt))
863 panic("Cannot create bdev pseudo-fs");
864 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
865 }
866
867 /*
868 * Most likely _very_ bad one - but then it's hardly critical for small
869 * /dev and can be fixed when somebody will need really large one.
870 * Keep in mind that it will be fed through icache hash function too.
871 */
872 static inline unsigned long hash(dev_t dev)
873 {
874 return MAJOR(dev)+MINOR(dev);
875 }
876
877 static int bdev_test(struct inode *inode, void *data)
878 {
879 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
880 }
881
882 static int bdev_set(struct inode *inode, void *data)
883 {
884 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
885 return 0;
886 }
887
888 static LIST_HEAD(all_bdevs);
889
890 /*
891 * If there is a bdev inode for this device, unhash it so that it gets evicted
892 * as soon as last inode reference is dropped.
893 */
894 void bdev_unhash_inode(dev_t dev)
895 {
896 struct inode *inode;
897
898 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
899 if (inode) {
900 remove_inode_hash(inode);
901 iput(inode);
902 }
903 }
904
905 struct block_device *bdget(dev_t dev)
906 {
907 struct block_device *bdev;
908 struct inode *inode;
909
910 inode = iget5_locked(blockdev_superblock, hash(dev),
911 bdev_test, bdev_set, &dev);
912
913 if (!inode)
914 return NULL;
915
916 bdev = &BDEV_I(inode)->bdev;
917
918 if (inode->i_state & I_NEW) {
919 bdev->bd_contains = NULL;
920 bdev->bd_super = NULL;
921 bdev->bd_inode = inode;
922 bdev->bd_block_size = i_blocksize(inode);
923 bdev->bd_part_count = 0;
924 bdev->bd_invalidated = 0;
925 inode->i_mode = S_IFBLK;
926 inode->i_rdev = dev;
927 inode->i_bdev = bdev;
928 inode->i_data.a_ops = &def_blk_aops;
929 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
930 spin_lock(&bdev_lock);
931 list_add(&bdev->bd_list, &all_bdevs);
932 spin_unlock(&bdev_lock);
933 unlock_new_inode(inode);
934 }
935 return bdev;
936 }
937
938 EXPORT_SYMBOL(bdget);
939
940 /**
941 * bdgrab -- Grab a reference to an already referenced block device
942 * @bdev: Block device to grab a reference to.
943 */
944 struct block_device *bdgrab(struct block_device *bdev)
945 {
946 ihold(bdev->bd_inode);
947 return bdev;
948 }
949 EXPORT_SYMBOL(bdgrab);
950
951 long nr_blockdev_pages(void)
952 {
953 struct block_device *bdev;
954 long ret = 0;
955 spin_lock(&bdev_lock);
956 list_for_each_entry(bdev, &all_bdevs, bd_list) {
957 ret += bdev->bd_inode->i_mapping->nrpages;
958 }
959 spin_unlock(&bdev_lock);
960 return ret;
961 }
962
963 void bdput(struct block_device *bdev)
964 {
965 iput(bdev->bd_inode);
966 }
967
968 EXPORT_SYMBOL(bdput);
969
970 static struct block_device *bd_acquire(struct inode *inode)
971 {
972 struct block_device *bdev;
973
974 spin_lock(&bdev_lock);
975 bdev = inode->i_bdev;
976 if (bdev && !inode_unhashed(bdev->bd_inode)) {
977 bdgrab(bdev);
978 spin_unlock(&bdev_lock);
979 return bdev;
980 }
981 spin_unlock(&bdev_lock);
982
983 /*
984 * i_bdev references block device inode that was already shut down
985 * (corresponding device got removed). Remove the reference and look
986 * up block device inode again just in case new device got
987 * reestablished under the same device number.
988 */
989 if (bdev)
990 bd_forget(inode);
991
992 bdev = bdget(inode->i_rdev);
993 if (bdev) {
994 spin_lock(&bdev_lock);
995 if (!inode->i_bdev) {
996 /*
997 * We take an additional reference to bd_inode,
998 * and it's released in clear_inode() of inode.
999 * So, we can access it via ->i_mapping always
1000 * without igrab().
1001 */
1002 bdgrab(bdev);
1003 inode->i_bdev = bdev;
1004 inode->i_mapping = bdev->bd_inode->i_mapping;
1005 }
1006 spin_unlock(&bdev_lock);
1007 }
1008 return bdev;
1009 }
1010
1011 /* Call when you free inode */
1012
1013 void bd_forget(struct inode *inode)
1014 {
1015 struct block_device *bdev = NULL;
1016
1017 spin_lock(&bdev_lock);
1018 if (!sb_is_blkdev_sb(inode->i_sb))
1019 bdev = inode->i_bdev;
1020 inode->i_bdev = NULL;
1021 inode->i_mapping = &inode->i_data;
1022 spin_unlock(&bdev_lock);
1023
1024 if (bdev)
1025 bdput(bdev);
1026 }
1027
1028 /**
1029 * bd_may_claim - test whether a block device can be claimed
1030 * @bdev: block device of interest
1031 * @whole: whole block device containing @bdev, may equal @bdev
1032 * @holder: holder trying to claim @bdev
1033 *
1034 * Test whether @bdev can be claimed by @holder.
1035 *
1036 * CONTEXT:
1037 * spin_lock(&bdev_lock).
1038 *
1039 * RETURNS:
1040 * %true if @bdev can be claimed, %false otherwise.
1041 */
1042 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1043 void *holder)
1044 {
1045 if (bdev->bd_holder == holder)
1046 return true; /* already a holder */
1047 else if (bdev->bd_holder != NULL)
1048 return false; /* held by someone else */
1049 else if (whole == bdev)
1050 return true; /* is a whole device which isn't held */
1051
1052 else if (whole->bd_holder == bd_may_claim)
1053 return true; /* is a partition of a device that is being partitioned */
1054 else if (whole->bd_holder != NULL)
1055 return false; /* is a partition of a held device */
1056 else
1057 return true; /* is a partition of an un-held device */
1058 }
1059
1060 /**
1061 * bd_prepare_to_claim - prepare to claim a block device
1062 * @bdev: block device of interest
1063 * @whole: the whole device containing @bdev, may equal @bdev
1064 * @holder: holder trying to claim @bdev
1065 *
1066 * Prepare to claim @bdev. This function fails if @bdev is already
1067 * claimed by another holder and waits if another claiming is in
1068 * progress. This function doesn't actually claim. On successful
1069 * return, the caller has ownership of bd_claiming and bd_holder[s].
1070 *
1071 * CONTEXT:
1072 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1073 * it multiple times.
1074 *
1075 * RETURNS:
1076 * 0 if @bdev can be claimed, -EBUSY otherwise.
1077 */
1078 static int bd_prepare_to_claim(struct block_device *bdev,
1079 struct block_device *whole, void *holder)
1080 {
1081 retry:
1082 /* if someone else claimed, fail */
1083 if (!bd_may_claim(bdev, whole, holder))
1084 return -EBUSY;
1085
1086 /* if claiming is already in progress, wait for it to finish */
1087 if (whole->bd_claiming) {
1088 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1089 DEFINE_WAIT(wait);
1090
1091 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1092 spin_unlock(&bdev_lock);
1093 schedule();
1094 finish_wait(wq, &wait);
1095 spin_lock(&bdev_lock);
1096 goto retry;
1097 }
1098
1099 /* yay, all mine */
1100 return 0;
1101 }
1102
1103 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1104 {
1105 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1106
1107 if (!disk)
1108 return NULL;
1109 /*
1110 * Now that we hold gendisk reference we make sure bdev we looked up is
1111 * not stale. If it is, it means device got removed and created before
1112 * we looked up gendisk and we fail open in such case. Associating
1113 * unhashed bdev with newly created gendisk could lead to two bdevs
1114 * (and thus two independent caches) being associated with one device
1115 * which is bad.
1116 */
1117 if (inode_unhashed(bdev->bd_inode)) {
1118 put_disk_and_module(disk);
1119 return NULL;
1120 }
1121 return disk;
1122 }
1123
1124 /**
1125 * bd_start_claiming - start claiming a block device
1126 * @bdev: block device of interest
1127 * @holder: holder trying to claim @bdev
1128 *
1129 * @bdev is about to be opened exclusively. Check @bdev can be opened
1130 * exclusively and mark that an exclusive open is in progress. Each
1131 * successful call to this function must be matched with a call to
1132 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1133 * fail).
1134 *
1135 * This function is used to gain exclusive access to the block device
1136 * without actually causing other exclusive open attempts to fail. It
1137 * should be used when the open sequence itself requires exclusive
1138 * access but may subsequently fail.
1139 *
1140 * CONTEXT:
1141 * Might sleep.
1142 *
1143 * RETURNS:
1144 * Pointer to the block device containing @bdev on success, ERR_PTR()
1145 * value on failure.
1146 */
1147 static struct block_device *bd_start_claiming(struct block_device *bdev,
1148 void *holder)
1149 {
1150 struct gendisk *disk;
1151 struct block_device *whole;
1152 int partno, err;
1153
1154 might_sleep();
1155
1156 /*
1157 * @bdev might not have been initialized properly yet, look up
1158 * and grab the outer block device the hard way.
1159 */
1160 disk = bdev_get_gendisk(bdev, &partno);
1161 if (!disk)
1162 return ERR_PTR(-ENXIO);
1163
1164 /*
1165 * Normally, @bdev should equal what's returned from bdget_disk()
1166 * if partno is 0; however, some drivers (floppy) use multiple
1167 * bdev's for the same physical device and @bdev may be one of the
1168 * aliases. Keep @bdev if partno is 0. This means claimer
1169 * tracking is broken for those devices but it has always been that
1170 * way.
1171 */
1172 if (partno)
1173 whole = bdget_disk(disk, 0);
1174 else
1175 whole = bdgrab(bdev);
1176
1177 put_disk_and_module(disk);
1178 if (!whole)
1179 return ERR_PTR(-ENOMEM);
1180
1181 /* prepare to claim, if successful, mark claiming in progress */
1182 spin_lock(&bdev_lock);
1183
1184 err = bd_prepare_to_claim(bdev, whole, holder);
1185 if (err == 0) {
1186 whole->bd_claiming = holder;
1187 spin_unlock(&bdev_lock);
1188 return whole;
1189 } else {
1190 spin_unlock(&bdev_lock);
1191 bdput(whole);
1192 return ERR_PTR(err);
1193 }
1194 }
1195
1196 #ifdef CONFIG_SYSFS
1197 struct bd_holder_disk {
1198 struct list_head list;
1199 struct gendisk *disk;
1200 int refcnt;
1201 };
1202
1203 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1204 struct gendisk *disk)
1205 {
1206 struct bd_holder_disk *holder;
1207
1208 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1209 if (holder->disk == disk)
1210 return holder;
1211 return NULL;
1212 }
1213
1214 static int add_symlink(struct kobject *from, struct kobject *to)
1215 {
1216 return sysfs_create_link(from, to, kobject_name(to));
1217 }
1218
1219 static void del_symlink(struct kobject *from, struct kobject *to)
1220 {
1221 sysfs_remove_link(from, kobject_name(to));
1222 }
1223
1224 /**
1225 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1226 * @bdev: the claimed slave bdev
1227 * @disk: the holding disk
1228 *
1229 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1230 *
1231 * This functions creates the following sysfs symlinks.
1232 *
1233 * - from "slaves" directory of the holder @disk to the claimed @bdev
1234 * - from "holders" directory of the @bdev to the holder @disk
1235 *
1236 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1237 * passed to bd_link_disk_holder(), then:
1238 *
1239 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1240 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1241 *
1242 * The caller must have claimed @bdev before calling this function and
1243 * ensure that both @bdev and @disk are valid during the creation and
1244 * lifetime of these symlinks.
1245 *
1246 * CONTEXT:
1247 * Might sleep.
1248 *
1249 * RETURNS:
1250 * 0 on success, -errno on failure.
1251 */
1252 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1253 {
1254 struct bd_holder_disk *holder;
1255 int ret = 0;
1256
1257 mutex_lock(&bdev->bd_mutex);
1258
1259 WARN_ON_ONCE(!bdev->bd_holder);
1260
1261 /* FIXME: remove the following once add_disk() handles errors */
1262 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1263 goto out_unlock;
1264
1265 holder = bd_find_holder_disk(bdev, disk);
1266 if (holder) {
1267 holder->refcnt++;
1268 goto out_unlock;
1269 }
1270
1271 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1272 if (!holder) {
1273 ret = -ENOMEM;
1274 goto out_unlock;
1275 }
1276
1277 INIT_LIST_HEAD(&holder->list);
1278 holder->disk = disk;
1279 holder->refcnt = 1;
1280
1281 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1282 if (ret)
1283 goto out_free;
1284
1285 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1286 if (ret)
1287 goto out_del;
1288 /*
1289 * bdev could be deleted beneath us which would implicitly destroy
1290 * the holder directory. Hold on to it.
1291 */
1292 kobject_get(bdev->bd_part->holder_dir);
1293
1294 list_add(&holder->list, &bdev->bd_holder_disks);
1295 goto out_unlock;
1296
1297 out_del:
1298 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1299 out_free:
1300 kfree(holder);
1301 out_unlock:
1302 mutex_unlock(&bdev->bd_mutex);
1303 return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1306
1307 /**
1308 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1309 * @bdev: the calimed slave bdev
1310 * @disk: the holding disk
1311 *
1312 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1313 *
1314 * CONTEXT:
1315 * Might sleep.
1316 */
1317 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1318 {
1319 struct bd_holder_disk *holder;
1320
1321 mutex_lock(&bdev->bd_mutex);
1322
1323 holder = bd_find_holder_disk(bdev, disk);
1324
1325 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1326 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1327 del_symlink(bdev->bd_part->holder_dir,
1328 &disk_to_dev(disk)->kobj);
1329 kobject_put(bdev->bd_part->holder_dir);
1330 list_del_init(&holder->list);
1331 kfree(holder);
1332 }
1333
1334 mutex_unlock(&bdev->bd_mutex);
1335 }
1336 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1337 #endif
1338
1339 /**
1340 * flush_disk - invalidates all buffer-cache entries on a disk
1341 *
1342 * @bdev: struct block device to be flushed
1343 * @kill_dirty: flag to guide handling of dirty inodes
1344 *
1345 * Invalidates all buffer-cache entries on a disk. It should be called
1346 * when a disk has been changed -- either by a media change or online
1347 * resize.
1348 */
1349 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1350 {
1351 if (__invalidate_device(bdev, kill_dirty)) {
1352 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1353 "resized disk %s\n",
1354 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1355 }
1356
1357 if (!bdev->bd_disk)
1358 return;
1359 if (disk_part_scan_enabled(bdev->bd_disk))
1360 bdev->bd_invalidated = 1;
1361 }
1362
1363 /**
1364 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1365 * @disk: struct gendisk to check
1366 * @bdev: struct bdev to adjust.
1367 * @verbose: if %true log a message about a size change if there is any
1368 *
1369 * This routine checks to see if the bdev size does not match the disk size
1370 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1371 * are freed.
1372 */
1373 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev,
1374 bool verbose)
1375 {
1376 loff_t disk_size, bdev_size;
1377
1378 disk_size = (loff_t)get_capacity(disk) << 9;
1379 bdev_size = i_size_read(bdev->bd_inode);
1380 if (disk_size != bdev_size) {
1381 if (verbose) {
1382 printk(KERN_INFO
1383 "%s: detected capacity change from %lld to %lld\n",
1384 disk->disk_name, bdev_size, disk_size);
1385 }
1386 i_size_write(bdev->bd_inode, disk_size);
1387 if (bdev_size > disk_size)
1388 flush_disk(bdev, false);
1389 }
1390 }
1391
1392 /**
1393 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1394 * @disk: struct gendisk to be revalidated
1395 *
1396 * This routine is a wrapper for lower-level driver's revalidate_disk
1397 * call-backs. It is used to do common pre and post operations needed
1398 * for all revalidate_disk operations.
1399 */
1400 int revalidate_disk(struct gendisk *disk)
1401 {
1402 struct block_device *bdev;
1403 int ret = 0;
1404
1405 if (disk->fops->revalidate_disk)
1406 ret = disk->fops->revalidate_disk(disk);
1407 bdev = bdget_disk(disk, 0);
1408 if (!bdev)
1409 return ret;
1410
1411 mutex_lock(&bdev->bd_mutex);
1412 check_disk_size_change(disk, bdev, ret == 0);
1413 bdev->bd_invalidated = 0;
1414 mutex_unlock(&bdev->bd_mutex);
1415 bdput(bdev);
1416 return ret;
1417 }
1418 EXPORT_SYMBOL(revalidate_disk);
1419
1420 /*
1421 * This routine checks whether a removable media has been changed,
1422 * and invalidates all buffer-cache-entries in that case. This
1423 * is a relatively slow routine, so we have to try to minimize using
1424 * it. Thus it is called only upon a 'mount' or 'open'. This
1425 * is the best way of combining speed and utility, I think.
1426 * People changing diskettes in the middle of an operation deserve
1427 * to lose :-)
1428 */
1429 int check_disk_change(struct block_device *bdev)
1430 {
1431 struct gendisk *disk = bdev->bd_disk;
1432 const struct block_device_operations *bdops = disk->fops;
1433 unsigned int events;
1434
1435 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1436 DISK_EVENT_EJECT_REQUEST);
1437 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1438 return 0;
1439
1440 flush_disk(bdev, true);
1441 if (bdops->revalidate_disk)
1442 bdops->revalidate_disk(bdev->bd_disk);
1443 return 1;
1444 }
1445
1446 EXPORT_SYMBOL(check_disk_change);
1447
1448 void bd_set_size(struct block_device *bdev, loff_t size)
1449 {
1450 inode_lock(bdev->bd_inode);
1451 i_size_write(bdev->bd_inode, size);
1452 inode_unlock(bdev->bd_inode);
1453 }
1454 EXPORT_SYMBOL(bd_set_size);
1455
1456 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1457
1458 /*
1459 * bd_mutex locking:
1460 *
1461 * mutex_lock(part->bd_mutex)
1462 * mutex_lock_nested(whole->bd_mutex, 1)
1463 */
1464
1465 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1466 {
1467 struct gendisk *disk;
1468 int ret;
1469 int partno;
1470 int perm = 0;
1471 bool first_open = false;
1472
1473 if (mode & FMODE_READ)
1474 perm |= MAY_READ;
1475 if (mode & FMODE_WRITE)
1476 perm |= MAY_WRITE;
1477 /*
1478 * hooks: /n/, see "layering violations".
1479 */
1480 if (!for_part) {
1481 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1482 if (ret != 0) {
1483 bdput(bdev);
1484 return ret;
1485 }
1486 }
1487
1488 restart:
1489
1490 ret = -ENXIO;
1491 disk = bdev_get_gendisk(bdev, &partno);
1492 if (!disk)
1493 goto out;
1494
1495 disk_block_events(disk);
1496 mutex_lock_nested(&bdev->bd_mutex, for_part);
1497 if (!bdev->bd_openers) {
1498 first_open = true;
1499 bdev->bd_disk = disk;
1500 bdev->bd_queue = disk->queue;
1501 bdev->bd_contains = bdev;
1502 bdev->bd_partno = partno;
1503
1504 if (!partno) {
1505 ret = -ENXIO;
1506 bdev->bd_part = disk_get_part(disk, partno);
1507 if (!bdev->bd_part)
1508 goto out_clear;
1509
1510 ret = 0;
1511 if (disk->fops->open) {
1512 ret = disk->fops->open(bdev, mode);
1513 if (ret == -ERESTARTSYS) {
1514 /* Lost a race with 'disk' being
1515 * deleted, try again.
1516 * See md.c
1517 */
1518 disk_put_part(bdev->bd_part);
1519 bdev->bd_part = NULL;
1520 bdev->bd_disk = NULL;
1521 bdev->bd_queue = NULL;
1522 mutex_unlock(&bdev->bd_mutex);
1523 disk_unblock_events(disk);
1524 put_disk_and_module(disk);
1525 goto restart;
1526 }
1527 }
1528
1529 if (!ret) {
1530 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1531 set_init_blocksize(bdev);
1532 }
1533
1534 /*
1535 * If the device is invalidated, rescan partition
1536 * if open succeeded or failed with -ENOMEDIUM.
1537 * The latter is necessary to prevent ghost
1538 * partitions on a removed medium.
1539 */
1540 if (bdev->bd_invalidated) {
1541 if (!ret)
1542 rescan_partitions(disk, bdev);
1543 else if (ret == -ENOMEDIUM)
1544 invalidate_partitions(disk, bdev);
1545 }
1546
1547 if (ret)
1548 goto out_clear;
1549 } else {
1550 struct block_device *whole;
1551 whole = bdget_disk(disk, 0);
1552 ret = -ENOMEM;
1553 if (!whole)
1554 goto out_clear;
1555 BUG_ON(for_part);
1556 ret = __blkdev_get(whole, mode, 1);
1557 if (ret)
1558 goto out_clear;
1559 bdev->bd_contains = whole;
1560 bdev->bd_part = disk_get_part(disk, partno);
1561 if (!(disk->flags & GENHD_FL_UP) ||
1562 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1563 ret = -ENXIO;
1564 goto out_clear;
1565 }
1566 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1567 set_init_blocksize(bdev);
1568 }
1569
1570 if (bdev->bd_bdi == &noop_backing_dev_info)
1571 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1572 } else {
1573 if (bdev->bd_contains == bdev) {
1574 ret = 0;
1575 if (bdev->bd_disk->fops->open)
1576 ret = bdev->bd_disk->fops->open(bdev, mode);
1577 /* the same as first opener case, read comment there */
1578 if (bdev->bd_invalidated) {
1579 if (!ret)
1580 rescan_partitions(bdev->bd_disk, bdev);
1581 else if (ret == -ENOMEDIUM)
1582 invalidate_partitions(bdev->bd_disk, bdev);
1583 }
1584 if (ret)
1585 goto out_unlock_bdev;
1586 }
1587 }
1588 bdev->bd_openers++;
1589 if (for_part)
1590 bdev->bd_part_count++;
1591 mutex_unlock(&bdev->bd_mutex);
1592 disk_unblock_events(disk);
1593 /* only one opener holds refs to the module and disk */
1594 if (!first_open)
1595 put_disk_and_module(disk);
1596 return 0;
1597
1598 out_clear:
1599 disk_put_part(bdev->bd_part);
1600 bdev->bd_disk = NULL;
1601 bdev->bd_part = NULL;
1602 bdev->bd_queue = NULL;
1603 if (bdev != bdev->bd_contains)
1604 __blkdev_put(bdev->bd_contains, mode, 1);
1605 bdev->bd_contains = NULL;
1606 out_unlock_bdev:
1607 mutex_unlock(&bdev->bd_mutex);
1608 disk_unblock_events(disk);
1609 put_disk_and_module(disk);
1610 out:
1611 bdput(bdev);
1612
1613 return ret;
1614 }
1615
1616 /**
1617 * blkdev_get - open a block device
1618 * @bdev: block_device to open
1619 * @mode: FMODE_* mask
1620 * @holder: exclusive holder identifier
1621 *
1622 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1623 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1624 * @holder is invalid. Exclusive opens may nest for the same @holder.
1625 *
1626 * On success, the reference count of @bdev is unchanged. On failure,
1627 * @bdev is put.
1628 *
1629 * CONTEXT:
1630 * Might sleep.
1631 *
1632 * RETURNS:
1633 * 0 on success, -errno on failure.
1634 */
1635 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1636 {
1637 struct block_device *whole = NULL;
1638 int res;
1639
1640 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1641
1642 if ((mode & FMODE_EXCL) && holder) {
1643 whole = bd_start_claiming(bdev, holder);
1644 if (IS_ERR(whole)) {
1645 bdput(bdev);
1646 return PTR_ERR(whole);
1647 }
1648 }
1649
1650 res = __blkdev_get(bdev, mode, 0);
1651
1652 if (whole) {
1653 struct gendisk *disk = whole->bd_disk;
1654
1655 /* finish claiming */
1656 mutex_lock(&bdev->bd_mutex);
1657 spin_lock(&bdev_lock);
1658
1659 if (!res) {
1660 BUG_ON(!bd_may_claim(bdev, whole, holder));
1661 /*
1662 * Note that for a whole device bd_holders
1663 * will be incremented twice, and bd_holder
1664 * will be set to bd_may_claim before being
1665 * set to holder
1666 */
1667 whole->bd_holders++;
1668 whole->bd_holder = bd_may_claim;
1669 bdev->bd_holders++;
1670 bdev->bd_holder = holder;
1671 }
1672
1673 /* tell others that we're done */
1674 BUG_ON(whole->bd_claiming != holder);
1675 whole->bd_claiming = NULL;
1676 wake_up_bit(&whole->bd_claiming, 0);
1677
1678 spin_unlock(&bdev_lock);
1679
1680 /*
1681 * Block event polling for write claims if requested. Any
1682 * write holder makes the write_holder state stick until
1683 * all are released. This is good enough and tracking
1684 * individual writeable reference is too fragile given the
1685 * way @mode is used in blkdev_get/put().
1686 */
1687 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1688 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1689 bdev->bd_write_holder = true;
1690 disk_block_events(disk);
1691 }
1692
1693 mutex_unlock(&bdev->bd_mutex);
1694 bdput(whole);
1695 }
1696
1697 return res;
1698 }
1699 EXPORT_SYMBOL(blkdev_get);
1700
1701 /**
1702 * blkdev_get_by_path - open a block device by name
1703 * @path: path to the block device to open
1704 * @mode: FMODE_* mask
1705 * @holder: exclusive holder identifier
1706 *
1707 * Open the blockdevice described by the device file at @path. @mode
1708 * and @holder are identical to blkdev_get().
1709 *
1710 * On success, the returned block_device has reference count of one.
1711 *
1712 * CONTEXT:
1713 * Might sleep.
1714 *
1715 * RETURNS:
1716 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1717 */
1718 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1719 void *holder)
1720 {
1721 struct block_device *bdev;
1722 int err;
1723
1724 bdev = lookup_bdev(path);
1725 if (IS_ERR(bdev))
1726 return bdev;
1727
1728 err = blkdev_get(bdev, mode, holder);
1729 if (err)
1730 return ERR_PTR(err);
1731
1732 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1733 blkdev_put(bdev, mode);
1734 return ERR_PTR(-EACCES);
1735 }
1736
1737 return bdev;
1738 }
1739 EXPORT_SYMBOL(blkdev_get_by_path);
1740
1741 /**
1742 * blkdev_get_by_dev - open a block device by device number
1743 * @dev: device number of block device to open
1744 * @mode: FMODE_* mask
1745 * @holder: exclusive holder identifier
1746 *
1747 * Open the blockdevice described by device number @dev. @mode and
1748 * @holder are identical to blkdev_get().
1749 *
1750 * Use it ONLY if you really do not have anything better - i.e. when
1751 * you are behind a truly sucky interface and all you are given is a
1752 * device number. _Never_ to be used for internal purposes. If you
1753 * ever need it - reconsider your API.
1754 *
1755 * On success, the returned block_device has reference count of one.
1756 *
1757 * CONTEXT:
1758 * Might sleep.
1759 *
1760 * RETURNS:
1761 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1762 */
1763 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1764 {
1765 struct block_device *bdev;
1766 int err;
1767
1768 bdev = bdget(dev);
1769 if (!bdev)
1770 return ERR_PTR(-ENOMEM);
1771
1772 err = blkdev_get(bdev, mode, holder);
1773 if (err)
1774 return ERR_PTR(err);
1775
1776 return bdev;
1777 }
1778 EXPORT_SYMBOL(blkdev_get_by_dev);
1779
1780 static int blkdev_open(struct inode * inode, struct file * filp)
1781 {
1782 struct block_device *bdev;
1783
1784 /*
1785 * Preserve backwards compatibility and allow large file access
1786 * even if userspace doesn't ask for it explicitly. Some mkfs
1787 * binary needs it. We might want to drop this workaround
1788 * during an unstable branch.
1789 */
1790 filp->f_flags |= O_LARGEFILE;
1791
1792 filp->f_mode |= FMODE_NOWAIT;
1793
1794 if (filp->f_flags & O_NDELAY)
1795 filp->f_mode |= FMODE_NDELAY;
1796 if (filp->f_flags & O_EXCL)
1797 filp->f_mode |= FMODE_EXCL;
1798 if ((filp->f_flags & O_ACCMODE) == 3)
1799 filp->f_mode |= FMODE_WRITE_IOCTL;
1800
1801 bdev = bd_acquire(inode);
1802 if (bdev == NULL)
1803 return -ENOMEM;
1804
1805 filp->f_mapping = bdev->bd_inode->i_mapping;
1806 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1807
1808 return blkdev_get(bdev, filp->f_mode, filp);
1809 }
1810
1811 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1812 {
1813 struct gendisk *disk = bdev->bd_disk;
1814 struct block_device *victim = NULL;
1815
1816 mutex_lock_nested(&bdev->bd_mutex, for_part);
1817 if (for_part)
1818 bdev->bd_part_count--;
1819
1820 if (!--bdev->bd_openers) {
1821 WARN_ON_ONCE(bdev->bd_holders);
1822 sync_blockdev(bdev);
1823 kill_bdev(bdev);
1824
1825 bdev_write_inode(bdev);
1826 }
1827 if (bdev->bd_contains == bdev) {
1828 if (disk->fops->release)
1829 disk->fops->release(disk, mode);
1830 }
1831 if (!bdev->bd_openers) {
1832 disk_put_part(bdev->bd_part);
1833 bdev->bd_part = NULL;
1834 bdev->bd_disk = NULL;
1835 if (bdev != bdev->bd_contains)
1836 victim = bdev->bd_contains;
1837 bdev->bd_contains = NULL;
1838
1839 put_disk_and_module(disk);
1840 }
1841 mutex_unlock(&bdev->bd_mutex);
1842 bdput(bdev);
1843 if (victim)
1844 __blkdev_put(victim, mode, 1);
1845 }
1846
1847 void blkdev_put(struct block_device *bdev, fmode_t mode)
1848 {
1849 mutex_lock(&bdev->bd_mutex);
1850
1851 if (mode & FMODE_EXCL) {
1852 bool bdev_free;
1853
1854 /*
1855 * Release a claim on the device. The holder fields
1856 * are protected with bdev_lock. bd_mutex is to
1857 * synchronize disk_holder unlinking.
1858 */
1859 spin_lock(&bdev_lock);
1860
1861 WARN_ON_ONCE(--bdev->bd_holders < 0);
1862 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1863
1864 /* bd_contains might point to self, check in a separate step */
1865 if ((bdev_free = !bdev->bd_holders))
1866 bdev->bd_holder = NULL;
1867 if (!bdev->bd_contains->bd_holders)
1868 bdev->bd_contains->bd_holder = NULL;
1869
1870 spin_unlock(&bdev_lock);
1871
1872 /*
1873 * If this was the last claim, remove holder link and
1874 * unblock evpoll if it was a write holder.
1875 */
1876 if (bdev_free && bdev->bd_write_holder) {
1877 disk_unblock_events(bdev->bd_disk);
1878 bdev->bd_write_holder = false;
1879 }
1880 }
1881
1882 /*
1883 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1884 * event. This is to ensure detection of media removal commanded
1885 * from userland - e.g. eject(1).
1886 */
1887 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1888
1889 mutex_unlock(&bdev->bd_mutex);
1890
1891 __blkdev_put(bdev, mode, 0);
1892 }
1893 EXPORT_SYMBOL(blkdev_put);
1894
1895 static int blkdev_close(struct inode * inode, struct file * filp)
1896 {
1897 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1898 blkdev_put(bdev, filp->f_mode);
1899 return 0;
1900 }
1901
1902 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1903 {
1904 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1905 fmode_t mode = file->f_mode;
1906
1907 /*
1908 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1909 * to updated it before every ioctl.
1910 */
1911 if (file->f_flags & O_NDELAY)
1912 mode |= FMODE_NDELAY;
1913 else
1914 mode &= ~FMODE_NDELAY;
1915
1916 return blkdev_ioctl(bdev, mode, cmd, arg);
1917 }
1918
1919 /*
1920 * Write data to the block device. Only intended for the block device itself
1921 * and the raw driver which basically is a fake block device.
1922 *
1923 * Does not take i_mutex for the write and thus is not for general purpose
1924 * use.
1925 */
1926 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1927 {
1928 struct file *file = iocb->ki_filp;
1929 struct inode *bd_inode = bdev_file_inode(file);
1930 loff_t size = i_size_read(bd_inode);
1931 struct blk_plug plug;
1932 ssize_t ret;
1933
1934 if (bdev_read_only(I_BDEV(bd_inode)))
1935 return -EPERM;
1936
1937 if (!iov_iter_count(from))
1938 return 0;
1939
1940 if (iocb->ki_pos >= size)
1941 return -ENOSPC;
1942
1943 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1944 return -EOPNOTSUPP;
1945
1946 iov_iter_truncate(from, size - iocb->ki_pos);
1947
1948 blk_start_plug(&plug);
1949 ret = __generic_file_write_iter(iocb, from);
1950 if (ret > 0)
1951 ret = generic_write_sync(iocb, ret);
1952 blk_finish_plug(&plug);
1953 return ret;
1954 }
1955 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1956
1957 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1958 {
1959 struct file *file = iocb->ki_filp;
1960 struct inode *bd_inode = bdev_file_inode(file);
1961 loff_t size = i_size_read(bd_inode);
1962 loff_t pos = iocb->ki_pos;
1963
1964 if (pos >= size)
1965 return 0;
1966
1967 size -= pos;
1968 iov_iter_truncate(to, size);
1969 return generic_file_read_iter(iocb, to);
1970 }
1971 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1972
1973 /*
1974 * Try to release a page associated with block device when the system
1975 * is under memory pressure.
1976 */
1977 static int blkdev_releasepage(struct page *page, gfp_t wait)
1978 {
1979 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1980
1981 if (super && super->s_op->bdev_try_to_free_page)
1982 return super->s_op->bdev_try_to_free_page(super, page, wait);
1983
1984 return try_to_free_buffers(page);
1985 }
1986
1987 static int blkdev_writepages(struct address_space *mapping,
1988 struct writeback_control *wbc)
1989 {
1990 return generic_writepages(mapping, wbc);
1991 }
1992
1993 static const struct address_space_operations def_blk_aops = {
1994 .readpage = blkdev_readpage,
1995 .readpages = blkdev_readpages,
1996 .writepage = blkdev_writepage,
1997 .write_begin = blkdev_write_begin,
1998 .write_end = blkdev_write_end,
1999 .writepages = blkdev_writepages,
2000 .releasepage = blkdev_releasepage,
2001 .direct_IO = blkdev_direct_IO,
2002 .migratepage = buffer_migrate_page_norefs,
2003 .is_dirty_writeback = buffer_check_dirty_writeback,
2004 };
2005
2006 #define BLKDEV_FALLOC_FL_SUPPORTED \
2007 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2008 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2009
2010 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2011 loff_t len)
2012 {
2013 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2014 struct address_space *mapping;
2015 loff_t end = start + len - 1;
2016 loff_t isize;
2017 int error;
2018
2019 /* Fail if we don't recognize the flags. */
2020 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2021 return -EOPNOTSUPP;
2022
2023 /* Don't go off the end of the device. */
2024 isize = i_size_read(bdev->bd_inode);
2025 if (start >= isize)
2026 return -EINVAL;
2027 if (end >= isize) {
2028 if (mode & FALLOC_FL_KEEP_SIZE) {
2029 len = isize - start;
2030 end = start + len - 1;
2031 } else
2032 return -EINVAL;
2033 }
2034
2035 /*
2036 * Don't allow IO that isn't aligned to logical block size.
2037 */
2038 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2039 return -EINVAL;
2040
2041 /* Invalidate the page cache, including dirty pages. */
2042 mapping = bdev->bd_inode->i_mapping;
2043 truncate_inode_pages_range(mapping, start, end);
2044
2045 switch (mode) {
2046 case FALLOC_FL_ZERO_RANGE:
2047 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2048 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2049 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2050 break;
2051 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2052 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2053 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2054 break;
2055 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2056 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2057 GFP_KERNEL, 0);
2058 break;
2059 default:
2060 return -EOPNOTSUPP;
2061 }
2062 if (error)
2063 return error;
2064
2065 /*
2066 * Invalidate again; if someone wandered in and dirtied a page,
2067 * the caller will be given -EBUSY. The third argument is
2068 * inclusive, so the rounding here is safe.
2069 */
2070 return invalidate_inode_pages2_range(mapping,
2071 start >> PAGE_SHIFT,
2072 end >> PAGE_SHIFT);
2073 }
2074
2075 const struct file_operations def_blk_fops = {
2076 .open = blkdev_open,
2077 .release = blkdev_close,
2078 .llseek = block_llseek,
2079 .read_iter = blkdev_read_iter,
2080 .write_iter = blkdev_write_iter,
2081 .mmap = generic_file_mmap,
2082 .fsync = blkdev_fsync,
2083 .unlocked_ioctl = block_ioctl,
2084 #ifdef CONFIG_COMPAT
2085 .compat_ioctl = compat_blkdev_ioctl,
2086 #endif
2087 .splice_read = generic_file_splice_read,
2088 .splice_write = iter_file_splice_write,
2089 .fallocate = blkdev_fallocate,
2090 };
2091
2092 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2093 {
2094 int res;
2095 mm_segment_t old_fs = get_fs();
2096 set_fs(KERNEL_DS);
2097 res = blkdev_ioctl(bdev, 0, cmd, arg);
2098 set_fs(old_fs);
2099 return res;
2100 }
2101
2102 EXPORT_SYMBOL(ioctl_by_bdev);
2103
2104 /**
2105 * lookup_bdev - lookup a struct block_device by name
2106 * @pathname: special file representing the block device
2107 *
2108 * Get a reference to the blockdevice at @pathname in the current
2109 * namespace if possible and return it. Return ERR_PTR(error)
2110 * otherwise.
2111 */
2112 struct block_device *lookup_bdev(const char *pathname)
2113 {
2114 struct block_device *bdev;
2115 struct inode *inode;
2116 struct path path;
2117 int error;
2118
2119 if (!pathname || !*pathname)
2120 return ERR_PTR(-EINVAL);
2121
2122 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2123 if (error)
2124 return ERR_PTR(error);
2125
2126 inode = d_backing_inode(path.dentry);
2127 error = -ENOTBLK;
2128 if (!S_ISBLK(inode->i_mode))
2129 goto fail;
2130 error = -EACCES;
2131 if (!may_open_dev(&path))
2132 goto fail;
2133 error = -ENOMEM;
2134 bdev = bd_acquire(inode);
2135 if (!bdev)
2136 goto fail;
2137 out:
2138 path_put(&path);
2139 return bdev;
2140 fail:
2141 bdev = ERR_PTR(error);
2142 goto out;
2143 }
2144 EXPORT_SYMBOL(lookup_bdev);
2145
2146 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2147 {
2148 struct super_block *sb = get_super(bdev);
2149 int res = 0;
2150
2151 if (sb) {
2152 /*
2153 * no need to lock the super, get_super holds the
2154 * read mutex so the filesystem cannot go away
2155 * under us (->put_super runs with the write lock
2156 * hold).
2157 */
2158 shrink_dcache_sb(sb);
2159 res = invalidate_inodes(sb, kill_dirty);
2160 drop_super(sb);
2161 }
2162 invalidate_bdev(bdev);
2163 return res;
2164 }
2165 EXPORT_SYMBOL(__invalidate_device);
2166
2167 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2168 {
2169 struct inode *inode, *old_inode = NULL;
2170
2171 spin_lock(&blockdev_superblock->s_inode_list_lock);
2172 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2173 struct address_space *mapping = inode->i_mapping;
2174 struct block_device *bdev;
2175
2176 spin_lock(&inode->i_lock);
2177 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2178 mapping->nrpages == 0) {
2179 spin_unlock(&inode->i_lock);
2180 continue;
2181 }
2182 __iget(inode);
2183 spin_unlock(&inode->i_lock);
2184 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2185 /*
2186 * We hold a reference to 'inode' so it couldn't have been
2187 * removed from s_inodes list while we dropped the
2188 * s_inode_list_lock We cannot iput the inode now as we can
2189 * be holding the last reference and we cannot iput it under
2190 * s_inode_list_lock. So we keep the reference and iput it
2191 * later.
2192 */
2193 iput(old_inode);
2194 old_inode = inode;
2195 bdev = I_BDEV(inode);
2196
2197 mutex_lock(&bdev->bd_mutex);
2198 if (bdev->bd_openers)
2199 func(bdev, arg);
2200 mutex_unlock(&bdev->bd_mutex);
2201
2202 spin_lock(&blockdev_superblock->s_inode_list_lock);
2203 }
2204 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2205 iput(old_inode);
2206 }