]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/btrfs/disk-io.c
block: allow bio_for_each_segment_all() to iterate over multi-page bvec
[thirdparty/kernel/linux.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <asm/unaligned.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "volumes.h"
26 #include "print-tree.h"
27 #include "locking.h"
28 #include "tree-log.h"
29 #include "free-space-cache.h"
30 #include "free-space-tree.h"
31 #include "inode-map.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41
42 #ifdef CONFIG_X86
43 #include <asm/cpufeature.h>
44 #endif
45
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
72 struct btrfs_end_io_wq {
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
77 blk_status_t status;
78 enum btrfs_wq_endio_type metadata;
79 struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
89 SLAB_MEM_SPREAD,
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 /*
102 * async submit bios are used to offload expensive checksumming
103 * onto the worker threads. They checksum file and metadata bios
104 * just before they are sent down the IO stack.
105 */
106 struct async_submit_bio {
107 void *private_data;
108 struct bio *bio;
109 extent_submit_bio_start_t *submit_bio_start;
110 int mirror_num;
111 /*
112 * bio_offset is optional, can be used if the pages in the bio
113 * can't tell us where in the file the bio should go
114 */
115 u64 bio_offset;
116 struct btrfs_work work;
117 blk_status_t status;
118 };
119
120 /*
121 * Lockdep class keys for extent_buffer->lock's in this root. For a given
122 * eb, the lockdep key is determined by the btrfs_root it belongs to and
123 * the level the eb occupies in the tree.
124 *
125 * Different roots are used for different purposes and may nest inside each
126 * other and they require separate keysets. As lockdep keys should be
127 * static, assign keysets according to the purpose of the root as indicated
128 * by btrfs_root->root_key.objectid. This ensures that all special purpose
129 * roots have separate keysets.
130 *
131 * Lock-nesting across peer nodes is always done with the immediate parent
132 * node locked thus preventing deadlock. As lockdep doesn't know this, use
133 * subclass to avoid triggering lockdep warning in such cases.
134 *
135 * The key is set by the readpage_end_io_hook after the buffer has passed
136 * csum validation but before the pages are unlocked. It is also set by
137 * btrfs_init_new_buffer on freshly allocated blocks.
138 *
139 * We also add a check to make sure the highest level of the tree is the
140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
141 * needs update as well.
142 */
143 #ifdef CONFIG_DEBUG_LOCK_ALLOC
144 # if BTRFS_MAX_LEVEL != 8
145 # error
146 # endif
147
148 static struct btrfs_lockdep_keyset {
149 u64 id; /* root objectid */
150 const char *name_stem; /* lock name stem */
151 char names[BTRFS_MAX_LEVEL + 1][20];
152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
153 } btrfs_lockdep_keysets[] = {
154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
166 { .id = 0, .name_stem = "tree" },
167 };
168
169 void __init btrfs_init_lockdep(void)
170 {
171 int i, j;
172
173 /* initialize lockdep class names */
174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178 snprintf(ks->names[j], sizeof(ks->names[j]),
179 "btrfs-%s-%02d", ks->name_stem, j);
180 }
181 }
182
183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184 int level)
185 {
186 struct btrfs_lockdep_keyset *ks;
187
188 BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190 /* find the matching keyset, id 0 is the default entry */
191 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192 if (ks->id == objectid)
193 break;
194
195 lockdep_set_class_and_name(&eb->lock,
196 &ks->keys[level], ks->names[level]);
197 }
198
199 #endif
200
201 /*
202 * extents on the btree inode are pretty simple, there's one extent
203 * that covers the entire device
204 */
205 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
206 struct page *page, size_t pg_offset, u64 start, u64 len,
207 int create)
208 {
209 struct btrfs_fs_info *fs_info = inode->root->fs_info;
210 struct extent_map_tree *em_tree = &inode->extent_tree;
211 struct extent_map *em;
212 int ret;
213
214 read_lock(&em_tree->lock);
215 em = lookup_extent_mapping(em_tree, start, len);
216 if (em) {
217 em->bdev = fs_info->fs_devices->latest_bdev;
218 read_unlock(&em_tree->lock);
219 goto out;
220 }
221 read_unlock(&em_tree->lock);
222
223 em = alloc_extent_map();
224 if (!em) {
225 em = ERR_PTR(-ENOMEM);
226 goto out;
227 }
228 em->start = 0;
229 em->len = (u64)-1;
230 em->block_len = (u64)-1;
231 em->block_start = 0;
232 em->bdev = fs_info->fs_devices->latest_bdev;
233
234 write_lock(&em_tree->lock);
235 ret = add_extent_mapping(em_tree, em, 0);
236 if (ret == -EEXIST) {
237 free_extent_map(em);
238 em = lookup_extent_mapping(em_tree, start, len);
239 if (!em)
240 em = ERR_PTR(-EIO);
241 } else if (ret) {
242 free_extent_map(em);
243 em = ERR_PTR(ret);
244 }
245 write_unlock(&em_tree->lock);
246
247 out:
248 return em;
249 }
250
251 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
252 {
253 return crc32c(seed, data, len);
254 }
255
256 void btrfs_csum_final(u32 crc, u8 *result)
257 {
258 put_unaligned_le32(~crc, result);
259 }
260
261 /*
262 * compute the csum for a btree block, and either verify it or write it
263 * into the csum field of the block.
264 */
265 static int csum_tree_block(struct btrfs_fs_info *fs_info,
266 struct extent_buffer *buf,
267 int verify)
268 {
269 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
270 char result[BTRFS_CSUM_SIZE];
271 unsigned long len;
272 unsigned long cur_len;
273 unsigned long offset = BTRFS_CSUM_SIZE;
274 char *kaddr;
275 unsigned long map_start;
276 unsigned long map_len;
277 int err;
278 u32 crc = ~(u32)0;
279
280 len = buf->len - offset;
281 while (len > 0) {
282 /*
283 * Note: we don't need to check for the err == 1 case here, as
284 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
285 * and 'min_len = 32' and the currently implemented mapping
286 * algorithm we cannot cross a page boundary.
287 */
288 err = map_private_extent_buffer(buf, offset, 32,
289 &kaddr, &map_start, &map_len);
290 if (err)
291 return err;
292 cur_len = min(len, map_len - (offset - map_start));
293 crc = btrfs_csum_data(kaddr + offset - map_start,
294 crc, cur_len);
295 len -= cur_len;
296 offset += cur_len;
297 }
298 memset(result, 0, BTRFS_CSUM_SIZE);
299
300 btrfs_csum_final(crc, result);
301
302 if (verify) {
303 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
304 u32 val;
305 u32 found = 0;
306 memcpy(&found, result, csum_size);
307
308 read_extent_buffer(buf, &val, 0, csum_size);
309 btrfs_warn_rl(fs_info,
310 "%s checksum verify failed on %llu wanted %X found %X level %d",
311 fs_info->sb->s_id, buf->start,
312 val, found, btrfs_header_level(buf));
313 return -EUCLEAN;
314 }
315 } else {
316 write_extent_buffer(buf, result, 0, csum_size);
317 }
318
319 return 0;
320 }
321
322 /*
323 * we can't consider a given block up to date unless the transid of the
324 * block matches the transid in the parent node's pointer. This is how we
325 * detect blocks that either didn't get written at all or got written
326 * in the wrong place.
327 */
328 static int verify_parent_transid(struct extent_io_tree *io_tree,
329 struct extent_buffer *eb, u64 parent_transid,
330 int atomic)
331 {
332 struct extent_state *cached_state = NULL;
333 int ret;
334 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
335
336 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
337 return 0;
338
339 if (atomic)
340 return -EAGAIN;
341
342 if (need_lock) {
343 btrfs_tree_read_lock(eb);
344 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
345 }
346
347 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
348 &cached_state);
349 if (extent_buffer_uptodate(eb) &&
350 btrfs_header_generation(eb) == parent_transid) {
351 ret = 0;
352 goto out;
353 }
354 btrfs_err_rl(eb->fs_info,
355 "parent transid verify failed on %llu wanted %llu found %llu",
356 eb->start,
357 parent_transid, btrfs_header_generation(eb));
358 ret = 1;
359
360 /*
361 * Things reading via commit roots that don't have normal protection,
362 * like send, can have a really old block in cache that may point at a
363 * block that has been freed and re-allocated. So don't clear uptodate
364 * if we find an eb that is under IO (dirty/writeback) because we could
365 * end up reading in the stale data and then writing it back out and
366 * making everybody very sad.
367 */
368 if (!extent_buffer_under_io(eb))
369 clear_extent_buffer_uptodate(eb);
370 out:
371 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
372 &cached_state);
373 if (need_lock)
374 btrfs_tree_read_unlock_blocking(eb);
375 return ret;
376 }
377
378 /*
379 * Return 0 if the superblock checksum type matches the checksum value of that
380 * algorithm. Pass the raw disk superblock data.
381 */
382 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
383 char *raw_disk_sb)
384 {
385 struct btrfs_super_block *disk_sb =
386 (struct btrfs_super_block *)raw_disk_sb;
387 u16 csum_type = btrfs_super_csum_type(disk_sb);
388 int ret = 0;
389
390 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
391 u32 crc = ~(u32)0;
392 char result[sizeof(crc)];
393
394 /*
395 * The super_block structure does not span the whole
396 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
397 * is filled with zeros and is included in the checksum.
398 */
399 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
400 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
401 btrfs_csum_final(crc, result);
402
403 if (memcmp(raw_disk_sb, result, sizeof(result)))
404 ret = 1;
405 }
406
407 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
408 btrfs_err(fs_info, "unsupported checksum algorithm %u",
409 csum_type);
410 ret = 1;
411 }
412
413 return ret;
414 }
415
416 static int verify_level_key(struct btrfs_fs_info *fs_info,
417 struct extent_buffer *eb, int level,
418 struct btrfs_key *first_key, u64 parent_transid)
419 {
420 int found_level;
421 struct btrfs_key found_key;
422 int ret;
423
424 found_level = btrfs_header_level(eb);
425 if (found_level != level) {
426 #ifdef CONFIG_BTRFS_DEBUG
427 WARN_ON(1);
428 btrfs_err(fs_info,
429 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
430 eb->start, level, found_level);
431 #endif
432 return -EIO;
433 }
434
435 if (!first_key)
436 return 0;
437
438 /*
439 * For live tree block (new tree blocks in current transaction),
440 * we need proper lock context to avoid race, which is impossible here.
441 * So we only checks tree blocks which is read from disk, whose
442 * generation <= fs_info->last_trans_committed.
443 */
444 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
445 return 0;
446 if (found_level)
447 btrfs_node_key_to_cpu(eb, &found_key, 0);
448 else
449 btrfs_item_key_to_cpu(eb, &found_key, 0);
450 ret = btrfs_comp_cpu_keys(first_key, &found_key);
451
452 #ifdef CONFIG_BTRFS_DEBUG
453 if (ret) {
454 WARN_ON(1);
455 btrfs_err(fs_info,
456 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
457 eb->start, parent_transid, first_key->objectid,
458 first_key->type, first_key->offset,
459 found_key.objectid, found_key.type,
460 found_key.offset);
461 }
462 #endif
463 return ret;
464 }
465
466 /*
467 * helper to read a given tree block, doing retries as required when
468 * the checksums don't match and we have alternate mirrors to try.
469 *
470 * @parent_transid: expected transid, skip check if 0
471 * @level: expected level, mandatory check
472 * @first_key: expected key of first slot, skip check if NULL
473 */
474 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
475 struct extent_buffer *eb,
476 u64 parent_transid, int level,
477 struct btrfs_key *first_key)
478 {
479 struct extent_io_tree *io_tree;
480 int failed = 0;
481 int ret;
482 int num_copies = 0;
483 int mirror_num = 0;
484 int failed_mirror = 0;
485
486 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
487 while (1) {
488 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
489 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
490 mirror_num);
491 if (!ret) {
492 if (verify_parent_transid(io_tree, eb,
493 parent_transid, 0))
494 ret = -EIO;
495 else if (verify_level_key(fs_info, eb, level,
496 first_key, parent_transid))
497 ret = -EUCLEAN;
498 else
499 break;
500 }
501
502 num_copies = btrfs_num_copies(fs_info,
503 eb->start, eb->len);
504 if (num_copies == 1)
505 break;
506
507 if (!failed_mirror) {
508 failed = 1;
509 failed_mirror = eb->read_mirror;
510 }
511
512 mirror_num++;
513 if (mirror_num == failed_mirror)
514 mirror_num++;
515
516 if (mirror_num > num_copies)
517 break;
518 }
519
520 if (failed && !ret && failed_mirror)
521 repair_eb_io_failure(fs_info, eb, failed_mirror);
522
523 return ret;
524 }
525
526 /*
527 * checksum a dirty tree block before IO. This has extra checks to make sure
528 * we only fill in the checksum field in the first page of a multi-page block
529 */
530
531 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
532 {
533 u64 start = page_offset(page);
534 u64 found_start;
535 struct extent_buffer *eb;
536
537 eb = (struct extent_buffer *)page->private;
538 if (page != eb->pages[0])
539 return 0;
540
541 found_start = btrfs_header_bytenr(eb);
542 /*
543 * Please do not consolidate these warnings into a single if.
544 * It is useful to know what went wrong.
545 */
546 if (WARN_ON(found_start != start))
547 return -EUCLEAN;
548 if (WARN_ON(!PageUptodate(page)))
549 return -EUCLEAN;
550
551 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
552 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
553
554 return csum_tree_block(fs_info, eb, 0);
555 }
556
557 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
558 struct extent_buffer *eb)
559 {
560 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
561 u8 fsid[BTRFS_FSID_SIZE];
562 int ret = 1;
563
564 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
565 while (fs_devices) {
566 u8 *metadata_uuid;
567
568 /*
569 * Checking the incompat flag is only valid for the current
570 * fs. For seed devices it's forbidden to have their uuid
571 * changed so reading ->fsid in this case is fine
572 */
573 if (fs_devices == fs_info->fs_devices &&
574 btrfs_fs_incompat(fs_info, METADATA_UUID))
575 metadata_uuid = fs_devices->metadata_uuid;
576 else
577 metadata_uuid = fs_devices->fsid;
578
579 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
580 ret = 0;
581 break;
582 }
583 fs_devices = fs_devices->seed;
584 }
585 return ret;
586 }
587
588 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
589 u64 phy_offset, struct page *page,
590 u64 start, u64 end, int mirror)
591 {
592 u64 found_start;
593 int found_level;
594 struct extent_buffer *eb;
595 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
596 struct btrfs_fs_info *fs_info = root->fs_info;
597 int ret = 0;
598 int reads_done;
599
600 if (!page->private)
601 goto out;
602
603 eb = (struct extent_buffer *)page->private;
604
605 /* the pending IO might have been the only thing that kept this buffer
606 * in memory. Make sure we have a ref for all this other checks
607 */
608 extent_buffer_get(eb);
609
610 reads_done = atomic_dec_and_test(&eb->io_pages);
611 if (!reads_done)
612 goto err;
613
614 eb->read_mirror = mirror;
615 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
616 ret = -EIO;
617 goto err;
618 }
619
620 found_start = btrfs_header_bytenr(eb);
621 if (found_start != eb->start) {
622 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
623 eb->start, found_start);
624 ret = -EIO;
625 goto err;
626 }
627 if (check_tree_block_fsid(fs_info, eb)) {
628 btrfs_err_rl(fs_info, "bad fsid on block %llu",
629 eb->start);
630 ret = -EIO;
631 goto err;
632 }
633 found_level = btrfs_header_level(eb);
634 if (found_level >= BTRFS_MAX_LEVEL) {
635 btrfs_err(fs_info, "bad tree block level %d on %llu",
636 (int)btrfs_header_level(eb), eb->start);
637 ret = -EIO;
638 goto err;
639 }
640
641 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
642 eb, found_level);
643
644 ret = csum_tree_block(fs_info, eb, 1);
645 if (ret)
646 goto err;
647
648 /*
649 * If this is a leaf block and it is corrupt, set the corrupt bit so
650 * that we don't try and read the other copies of this block, just
651 * return -EIO.
652 */
653 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
654 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
655 ret = -EIO;
656 }
657
658 if (found_level > 0 && btrfs_check_node(fs_info, eb))
659 ret = -EIO;
660
661 if (!ret)
662 set_extent_buffer_uptodate(eb);
663 err:
664 if (reads_done &&
665 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
666 btree_readahead_hook(eb, ret);
667
668 if (ret) {
669 /*
670 * our io error hook is going to dec the io pages
671 * again, we have to make sure it has something
672 * to decrement
673 */
674 atomic_inc(&eb->io_pages);
675 clear_extent_buffer_uptodate(eb);
676 }
677 free_extent_buffer(eb);
678 out:
679 return ret;
680 }
681
682 static void end_workqueue_bio(struct bio *bio)
683 {
684 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
685 struct btrfs_fs_info *fs_info;
686 struct btrfs_workqueue *wq;
687 btrfs_work_func_t func;
688
689 fs_info = end_io_wq->info;
690 end_io_wq->status = bio->bi_status;
691
692 if (bio_op(bio) == REQ_OP_WRITE) {
693 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
694 wq = fs_info->endio_meta_write_workers;
695 func = btrfs_endio_meta_write_helper;
696 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
697 wq = fs_info->endio_freespace_worker;
698 func = btrfs_freespace_write_helper;
699 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
700 wq = fs_info->endio_raid56_workers;
701 func = btrfs_endio_raid56_helper;
702 } else {
703 wq = fs_info->endio_write_workers;
704 func = btrfs_endio_write_helper;
705 }
706 } else {
707 if (unlikely(end_io_wq->metadata ==
708 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
709 wq = fs_info->endio_repair_workers;
710 func = btrfs_endio_repair_helper;
711 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
712 wq = fs_info->endio_raid56_workers;
713 func = btrfs_endio_raid56_helper;
714 } else if (end_io_wq->metadata) {
715 wq = fs_info->endio_meta_workers;
716 func = btrfs_endio_meta_helper;
717 } else {
718 wq = fs_info->endio_workers;
719 func = btrfs_endio_helper;
720 }
721 }
722
723 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
724 btrfs_queue_work(wq, &end_io_wq->work);
725 }
726
727 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
728 enum btrfs_wq_endio_type metadata)
729 {
730 struct btrfs_end_io_wq *end_io_wq;
731
732 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
733 if (!end_io_wq)
734 return BLK_STS_RESOURCE;
735
736 end_io_wq->private = bio->bi_private;
737 end_io_wq->end_io = bio->bi_end_io;
738 end_io_wq->info = info;
739 end_io_wq->status = 0;
740 end_io_wq->bio = bio;
741 end_io_wq->metadata = metadata;
742
743 bio->bi_private = end_io_wq;
744 bio->bi_end_io = end_workqueue_bio;
745 return 0;
746 }
747
748 static void run_one_async_start(struct btrfs_work *work)
749 {
750 struct async_submit_bio *async;
751 blk_status_t ret;
752
753 async = container_of(work, struct async_submit_bio, work);
754 ret = async->submit_bio_start(async->private_data, async->bio,
755 async->bio_offset);
756 if (ret)
757 async->status = ret;
758 }
759
760 /*
761 * In order to insert checksums into the metadata in large chunks, we wait
762 * until bio submission time. All the pages in the bio are checksummed and
763 * sums are attached onto the ordered extent record.
764 *
765 * At IO completion time the csums attached on the ordered extent record are
766 * inserted into the tree.
767 */
768 static void run_one_async_done(struct btrfs_work *work)
769 {
770 struct async_submit_bio *async;
771 struct inode *inode;
772 blk_status_t ret;
773
774 async = container_of(work, struct async_submit_bio, work);
775 inode = async->private_data;
776
777 /* If an error occurred we just want to clean up the bio and move on */
778 if (async->status) {
779 async->bio->bi_status = async->status;
780 bio_endio(async->bio);
781 return;
782 }
783
784 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
785 async->mirror_num, 1);
786 if (ret) {
787 async->bio->bi_status = ret;
788 bio_endio(async->bio);
789 }
790 }
791
792 static void run_one_async_free(struct btrfs_work *work)
793 {
794 struct async_submit_bio *async;
795
796 async = container_of(work, struct async_submit_bio, work);
797 kfree(async);
798 }
799
800 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
801 int mirror_num, unsigned long bio_flags,
802 u64 bio_offset, void *private_data,
803 extent_submit_bio_start_t *submit_bio_start)
804 {
805 struct async_submit_bio *async;
806
807 async = kmalloc(sizeof(*async), GFP_NOFS);
808 if (!async)
809 return BLK_STS_RESOURCE;
810
811 async->private_data = private_data;
812 async->bio = bio;
813 async->mirror_num = mirror_num;
814 async->submit_bio_start = submit_bio_start;
815
816 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
817 run_one_async_done, run_one_async_free);
818
819 async->bio_offset = bio_offset;
820
821 async->status = 0;
822
823 if (op_is_sync(bio->bi_opf))
824 btrfs_set_work_high_priority(&async->work);
825
826 btrfs_queue_work(fs_info->workers, &async->work);
827 return 0;
828 }
829
830 static blk_status_t btree_csum_one_bio(struct bio *bio)
831 {
832 struct bio_vec *bvec;
833 struct btrfs_root *root;
834 int i, ret = 0;
835 struct bvec_iter_all iter_all;
836
837 ASSERT(!bio_flagged(bio, BIO_CLONED));
838 bio_for_each_segment_all(bvec, bio, i, iter_all) {
839 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
840 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
841 if (ret)
842 break;
843 }
844
845 return errno_to_blk_status(ret);
846 }
847
848 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
849 u64 bio_offset)
850 {
851 /*
852 * when we're called for a write, we're already in the async
853 * submission context. Just jump into btrfs_map_bio
854 */
855 return btree_csum_one_bio(bio);
856 }
857
858 static int check_async_write(struct btrfs_inode *bi)
859 {
860 if (atomic_read(&bi->sync_writers))
861 return 0;
862 #ifdef CONFIG_X86
863 if (static_cpu_has(X86_FEATURE_XMM4_2))
864 return 0;
865 #endif
866 return 1;
867 }
868
869 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
870 int mirror_num, unsigned long bio_flags,
871 u64 bio_offset)
872 {
873 struct inode *inode = private_data;
874 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
875 int async = check_async_write(BTRFS_I(inode));
876 blk_status_t ret;
877
878 if (bio_op(bio) != REQ_OP_WRITE) {
879 /*
880 * called for a read, do the setup so that checksum validation
881 * can happen in the async kernel threads
882 */
883 ret = btrfs_bio_wq_end_io(fs_info, bio,
884 BTRFS_WQ_ENDIO_METADATA);
885 if (ret)
886 goto out_w_error;
887 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
888 } else if (!async) {
889 ret = btree_csum_one_bio(bio);
890 if (ret)
891 goto out_w_error;
892 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
893 } else {
894 /*
895 * kthread helpers are used to submit writes so that
896 * checksumming can happen in parallel across all CPUs
897 */
898 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
899 bio_offset, private_data,
900 btree_submit_bio_start);
901 }
902
903 if (ret)
904 goto out_w_error;
905 return 0;
906
907 out_w_error:
908 bio->bi_status = ret;
909 bio_endio(bio);
910 return ret;
911 }
912
913 #ifdef CONFIG_MIGRATION
914 static int btree_migratepage(struct address_space *mapping,
915 struct page *newpage, struct page *page,
916 enum migrate_mode mode)
917 {
918 /*
919 * we can't safely write a btree page from here,
920 * we haven't done the locking hook
921 */
922 if (PageDirty(page))
923 return -EAGAIN;
924 /*
925 * Buffers may be managed in a filesystem specific way.
926 * We must have no buffers or drop them.
927 */
928 if (page_has_private(page) &&
929 !try_to_release_page(page, GFP_KERNEL))
930 return -EAGAIN;
931 return migrate_page(mapping, newpage, page, mode);
932 }
933 #endif
934
935
936 static int btree_writepages(struct address_space *mapping,
937 struct writeback_control *wbc)
938 {
939 struct btrfs_fs_info *fs_info;
940 int ret;
941
942 if (wbc->sync_mode == WB_SYNC_NONE) {
943
944 if (wbc->for_kupdate)
945 return 0;
946
947 fs_info = BTRFS_I(mapping->host)->root->fs_info;
948 /* this is a bit racy, but that's ok */
949 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
950 BTRFS_DIRTY_METADATA_THRESH,
951 fs_info->dirty_metadata_batch);
952 if (ret < 0)
953 return 0;
954 }
955 return btree_write_cache_pages(mapping, wbc);
956 }
957
958 static int btree_readpage(struct file *file, struct page *page)
959 {
960 struct extent_io_tree *tree;
961 tree = &BTRFS_I(page->mapping->host)->io_tree;
962 return extent_read_full_page(tree, page, btree_get_extent, 0);
963 }
964
965 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
966 {
967 if (PageWriteback(page) || PageDirty(page))
968 return 0;
969
970 return try_release_extent_buffer(page);
971 }
972
973 static void btree_invalidatepage(struct page *page, unsigned int offset,
974 unsigned int length)
975 {
976 struct extent_io_tree *tree;
977 tree = &BTRFS_I(page->mapping->host)->io_tree;
978 extent_invalidatepage(tree, page, offset);
979 btree_releasepage(page, GFP_NOFS);
980 if (PagePrivate(page)) {
981 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
982 "page private not zero on page %llu",
983 (unsigned long long)page_offset(page));
984 ClearPagePrivate(page);
985 set_page_private(page, 0);
986 put_page(page);
987 }
988 }
989
990 static int btree_set_page_dirty(struct page *page)
991 {
992 #ifdef DEBUG
993 struct extent_buffer *eb;
994
995 BUG_ON(!PagePrivate(page));
996 eb = (struct extent_buffer *)page->private;
997 BUG_ON(!eb);
998 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
999 BUG_ON(!atomic_read(&eb->refs));
1000 btrfs_assert_tree_locked(eb);
1001 #endif
1002 return __set_page_dirty_nobuffers(page);
1003 }
1004
1005 static const struct address_space_operations btree_aops = {
1006 .readpage = btree_readpage,
1007 .writepages = btree_writepages,
1008 .releasepage = btree_releasepage,
1009 .invalidatepage = btree_invalidatepage,
1010 #ifdef CONFIG_MIGRATION
1011 .migratepage = btree_migratepage,
1012 #endif
1013 .set_page_dirty = btree_set_page_dirty,
1014 };
1015
1016 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1017 {
1018 struct extent_buffer *buf = NULL;
1019 struct inode *btree_inode = fs_info->btree_inode;
1020
1021 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1022 if (IS_ERR(buf))
1023 return;
1024 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1025 buf, WAIT_NONE, 0);
1026 free_extent_buffer(buf);
1027 }
1028
1029 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1030 int mirror_num, struct extent_buffer **eb)
1031 {
1032 struct extent_buffer *buf = NULL;
1033 struct inode *btree_inode = fs_info->btree_inode;
1034 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1035 int ret;
1036
1037 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1038 if (IS_ERR(buf))
1039 return 0;
1040
1041 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1042
1043 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1044 mirror_num);
1045 if (ret) {
1046 free_extent_buffer(buf);
1047 return ret;
1048 }
1049
1050 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1051 free_extent_buffer(buf);
1052 return -EIO;
1053 } else if (extent_buffer_uptodate(buf)) {
1054 *eb = buf;
1055 } else {
1056 free_extent_buffer(buf);
1057 }
1058 return 0;
1059 }
1060
1061 struct extent_buffer *btrfs_find_create_tree_block(
1062 struct btrfs_fs_info *fs_info,
1063 u64 bytenr)
1064 {
1065 if (btrfs_is_testing(fs_info))
1066 return alloc_test_extent_buffer(fs_info, bytenr);
1067 return alloc_extent_buffer(fs_info, bytenr);
1068 }
1069
1070
1071 int btrfs_write_tree_block(struct extent_buffer *buf)
1072 {
1073 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1074 buf->start + buf->len - 1);
1075 }
1076
1077 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1078 {
1079 filemap_fdatawait_range(buf->pages[0]->mapping,
1080 buf->start, buf->start + buf->len - 1);
1081 }
1082
1083 /*
1084 * Read tree block at logical address @bytenr and do variant basic but critical
1085 * verification.
1086 *
1087 * @parent_transid: expected transid of this tree block, skip check if 0
1088 * @level: expected level, mandatory check
1089 * @first_key: expected key in slot 0, skip check if NULL
1090 */
1091 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1092 u64 parent_transid, int level,
1093 struct btrfs_key *first_key)
1094 {
1095 struct extent_buffer *buf = NULL;
1096 int ret;
1097
1098 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1099 if (IS_ERR(buf))
1100 return buf;
1101
1102 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1103 level, first_key);
1104 if (ret) {
1105 free_extent_buffer(buf);
1106 return ERR_PTR(ret);
1107 }
1108 return buf;
1109
1110 }
1111
1112 void clean_tree_block(struct btrfs_fs_info *fs_info,
1113 struct extent_buffer *buf)
1114 {
1115 if (btrfs_header_generation(buf) ==
1116 fs_info->running_transaction->transid) {
1117 btrfs_assert_tree_locked(buf);
1118
1119 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1120 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1121 -buf->len,
1122 fs_info->dirty_metadata_batch);
1123 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1124 btrfs_set_lock_blocking(buf);
1125 clear_extent_buffer_dirty(buf);
1126 }
1127 }
1128 }
1129
1130 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1131 {
1132 struct btrfs_subvolume_writers *writers;
1133 int ret;
1134
1135 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1136 if (!writers)
1137 return ERR_PTR(-ENOMEM);
1138
1139 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1140 if (ret < 0) {
1141 kfree(writers);
1142 return ERR_PTR(ret);
1143 }
1144
1145 init_waitqueue_head(&writers->wait);
1146 return writers;
1147 }
1148
1149 static void
1150 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1151 {
1152 percpu_counter_destroy(&writers->counter);
1153 kfree(writers);
1154 }
1155
1156 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1157 u64 objectid)
1158 {
1159 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1160 root->node = NULL;
1161 root->commit_root = NULL;
1162 root->state = 0;
1163 root->orphan_cleanup_state = 0;
1164
1165 root->last_trans = 0;
1166 root->highest_objectid = 0;
1167 root->nr_delalloc_inodes = 0;
1168 root->nr_ordered_extents = 0;
1169 root->inode_tree = RB_ROOT;
1170 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1171 root->block_rsv = NULL;
1172
1173 INIT_LIST_HEAD(&root->dirty_list);
1174 INIT_LIST_HEAD(&root->root_list);
1175 INIT_LIST_HEAD(&root->delalloc_inodes);
1176 INIT_LIST_HEAD(&root->delalloc_root);
1177 INIT_LIST_HEAD(&root->ordered_extents);
1178 INIT_LIST_HEAD(&root->ordered_root);
1179 INIT_LIST_HEAD(&root->logged_list[0]);
1180 INIT_LIST_HEAD(&root->logged_list[1]);
1181 spin_lock_init(&root->inode_lock);
1182 spin_lock_init(&root->delalloc_lock);
1183 spin_lock_init(&root->ordered_extent_lock);
1184 spin_lock_init(&root->accounting_lock);
1185 spin_lock_init(&root->log_extents_lock[0]);
1186 spin_lock_init(&root->log_extents_lock[1]);
1187 spin_lock_init(&root->qgroup_meta_rsv_lock);
1188 mutex_init(&root->objectid_mutex);
1189 mutex_init(&root->log_mutex);
1190 mutex_init(&root->ordered_extent_mutex);
1191 mutex_init(&root->delalloc_mutex);
1192 init_waitqueue_head(&root->log_writer_wait);
1193 init_waitqueue_head(&root->log_commit_wait[0]);
1194 init_waitqueue_head(&root->log_commit_wait[1]);
1195 INIT_LIST_HEAD(&root->log_ctxs[0]);
1196 INIT_LIST_HEAD(&root->log_ctxs[1]);
1197 atomic_set(&root->log_commit[0], 0);
1198 atomic_set(&root->log_commit[1], 0);
1199 atomic_set(&root->log_writers, 0);
1200 atomic_set(&root->log_batch, 0);
1201 refcount_set(&root->refs, 1);
1202 atomic_set(&root->will_be_snapshotted, 0);
1203 atomic_set(&root->snapshot_force_cow, 0);
1204 atomic_set(&root->nr_swapfiles, 0);
1205 root->log_transid = 0;
1206 root->log_transid_committed = -1;
1207 root->last_log_commit = 0;
1208 if (!dummy)
1209 extent_io_tree_init(&root->dirty_log_pages, NULL);
1210
1211 memset(&root->root_key, 0, sizeof(root->root_key));
1212 memset(&root->root_item, 0, sizeof(root->root_item));
1213 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1214 if (!dummy)
1215 root->defrag_trans_start = fs_info->generation;
1216 else
1217 root->defrag_trans_start = 0;
1218 root->root_key.objectid = objectid;
1219 root->anon_dev = 0;
1220
1221 spin_lock_init(&root->root_item_lock);
1222 }
1223
1224 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1225 gfp_t flags)
1226 {
1227 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1228 if (root)
1229 root->fs_info = fs_info;
1230 return root;
1231 }
1232
1233 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1234 /* Should only be used by the testing infrastructure */
1235 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1236 {
1237 struct btrfs_root *root;
1238
1239 if (!fs_info)
1240 return ERR_PTR(-EINVAL);
1241
1242 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1243 if (!root)
1244 return ERR_PTR(-ENOMEM);
1245
1246 /* We don't use the stripesize in selftest, set it as sectorsize */
1247 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1248 root->alloc_bytenr = 0;
1249
1250 return root;
1251 }
1252 #endif
1253
1254 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1255 struct btrfs_fs_info *fs_info,
1256 u64 objectid)
1257 {
1258 struct extent_buffer *leaf;
1259 struct btrfs_root *tree_root = fs_info->tree_root;
1260 struct btrfs_root *root;
1261 struct btrfs_key key;
1262 int ret = 0;
1263 uuid_le uuid = NULL_UUID_LE;
1264
1265 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1266 if (!root)
1267 return ERR_PTR(-ENOMEM);
1268
1269 __setup_root(root, fs_info, objectid);
1270 root->root_key.objectid = objectid;
1271 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1272 root->root_key.offset = 0;
1273
1274 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1275 if (IS_ERR(leaf)) {
1276 ret = PTR_ERR(leaf);
1277 leaf = NULL;
1278 goto fail;
1279 }
1280
1281 root->node = leaf;
1282 btrfs_mark_buffer_dirty(leaf);
1283
1284 root->commit_root = btrfs_root_node(root);
1285 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1286
1287 root->root_item.flags = 0;
1288 root->root_item.byte_limit = 0;
1289 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1290 btrfs_set_root_generation(&root->root_item, trans->transid);
1291 btrfs_set_root_level(&root->root_item, 0);
1292 btrfs_set_root_refs(&root->root_item, 1);
1293 btrfs_set_root_used(&root->root_item, leaf->len);
1294 btrfs_set_root_last_snapshot(&root->root_item, 0);
1295 btrfs_set_root_dirid(&root->root_item, 0);
1296 if (is_fstree(objectid))
1297 uuid_le_gen(&uuid);
1298 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1299 root->root_item.drop_level = 0;
1300
1301 key.objectid = objectid;
1302 key.type = BTRFS_ROOT_ITEM_KEY;
1303 key.offset = 0;
1304 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1305 if (ret)
1306 goto fail;
1307
1308 btrfs_tree_unlock(leaf);
1309
1310 return root;
1311
1312 fail:
1313 if (leaf) {
1314 btrfs_tree_unlock(leaf);
1315 free_extent_buffer(root->commit_root);
1316 free_extent_buffer(leaf);
1317 }
1318 kfree(root);
1319
1320 return ERR_PTR(ret);
1321 }
1322
1323 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1324 struct btrfs_fs_info *fs_info)
1325 {
1326 struct btrfs_root *root;
1327 struct extent_buffer *leaf;
1328
1329 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1330 if (!root)
1331 return ERR_PTR(-ENOMEM);
1332
1333 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1334
1335 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1336 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1337 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1338
1339 /*
1340 * DON'T set REF_COWS for log trees
1341 *
1342 * log trees do not get reference counted because they go away
1343 * before a real commit is actually done. They do store pointers
1344 * to file data extents, and those reference counts still get
1345 * updated (along with back refs to the log tree).
1346 */
1347
1348 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1349 NULL, 0, 0, 0);
1350 if (IS_ERR(leaf)) {
1351 kfree(root);
1352 return ERR_CAST(leaf);
1353 }
1354
1355 root->node = leaf;
1356
1357 btrfs_mark_buffer_dirty(root->node);
1358 btrfs_tree_unlock(root->node);
1359 return root;
1360 }
1361
1362 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1363 struct btrfs_fs_info *fs_info)
1364 {
1365 struct btrfs_root *log_root;
1366
1367 log_root = alloc_log_tree(trans, fs_info);
1368 if (IS_ERR(log_root))
1369 return PTR_ERR(log_root);
1370 WARN_ON(fs_info->log_root_tree);
1371 fs_info->log_root_tree = log_root;
1372 return 0;
1373 }
1374
1375 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1376 struct btrfs_root *root)
1377 {
1378 struct btrfs_fs_info *fs_info = root->fs_info;
1379 struct btrfs_root *log_root;
1380 struct btrfs_inode_item *inode_item;
1381
1382 log_root = alloc_log_tree(trans, fs_info);
1383 if (IS_ERR(log_root))
1384 return PTR_ERR(log_root);
1385
1386 log_root->last_trans = trans->transid;
1387 log_root->root_key.offset = root->root_key.objectid;
1388
1389 inode_item = &log_root->root_item.inode;
1390 btrfs_set_stack_inode_generation(inode_item, 1);
1391 btrfs_set_stack_inode_size(inode_item, 3);
1392 btrfs_set_stack_inode_nlink(inode_item, 1);
1393 btrfs_set_stack_inode_nbytes(inode_item,
1394 fs_info->nodesize);
1395 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1396
1397 btrfs_set_root_node(&log_root->root_item, log_root->node);
1398
1399 WARN_ON(root->log_root);
1400 root->log_root = log_root;
1401 root->log_transid = 0;
1402 root->log_transid_committed = -1;
1403 root->last_log_commit = 0;
1404 return 0;
1405 }
1406
1407 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1408 struct btrfs_key *key)
1409 {
1410 struct btrfs_root *root;
1411 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1412 struct btrfs_path *path;
1413 u64 generation;
1414 int ret;
1415 int level;
1416
1417 path = btrfs_alloc_path();
1418 if (!path)
1419 return ERR_PTR(-ENOMEM);
1420
1421 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1422 if (!root) {
1423 ret = -ENOMEM;
1424 goto alloc_fail;
1425 }
1426
1427 __setup_root(root, fs_info, key->objectid);
1428
1429 ret = btrfs_find_root(tree_root, key, path,
1430 &root->root_item, &root->root_key);
1431 if (ret) {
1432 if (ret > 0)
1433 ret = -ENOENT;
1434 goto find_fail;
1435 }
1436
1437 generation = btrfs_root_generation(&root->root_item);
1438 level = btrfs_root_level(&root->root_item);
1439 root->node = read_tree_block(fs_info,
1440 btrfs_root_bytenr(&root->root_item),
1441 generation, level, NULL);
1442 if (IS_ERR(root->node)) {
1443 ret = PTR_ERR(root->node);
1444 goto find_fail;
1445 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1446 ret = -EIO;
1447 free_extent_buffer(root->node);
1448 goto find_fail;
1449 }
1450 root->commit_root = btrfs_root_node(root);
1451 out:
1452 btrfs_free_path(path);
1453 return root;
1454
1455 find_fail:
1456 kfree(root);
1457 alloc_fail:
1458 root = ERR_PTR(ret);
1459 goto out;
1460 }
1461
1462 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1463 struct btrfs_key *location)
1464 {
1465 struct btrfs_root *root;
1466
1467 root = btrfs_read_tree_root(tree_root, location);
1468 if (IS_ERR(root))
1469 return root;
1470
1471 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1472 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1473 btrfs_check_and_init_root_item(&root->root_item);
1474 }
1475
1476 return root;
1477 }
1478
1479 int btrfs_init_fs_root(struct btrfs_root *root)
1480 {
1481 int ret;
1482 struct btrfs_subvolume_writers *writers;
1483
1484 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1485 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1486 GFP_NOFS);
1487 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1488 ret = -ENOMEM;
1489 goto fail;
1490 }
1491
1492 writers = btrfs_alloc_subvolume_writers();
1493 if (IS_ERR(writers)) {
1494 ret = PTR_ERR(writers);
1495 goto fail;
1496 }
1497 root->subv_writers = writers;
1498
1499 btrfs_init_free_ino_ctl(root);
1500 spin_lock_init(&root->ino_cache_lock);
1501 init_waitqueue_head(&root->ino_cache_wait);
1502
1503 ret = get_anon_bdev(&root->anon_dev);
1504 if (ret)
1505 goto fail;
1506
1507 mutex_lock(&root->objectid_mutex);
1508 ret = btrfs_find_highest_objectid(root,
1509 &root->highest_objectid);
1510 if (ret) {
1511 mutex_unlock(&root->objectid_mutex);
1512 goto fail;
1513 }
1514
1515 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1516
1517 mutex_unlock(&root->objectid_mutex);
1518
1519 return 0;
1520 fail:
1521 /* The caller is responsible to call btrfs_free_fs_root */
1522 return ret;
1523 }
1524
1525 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1526 u64 root_id)
1527 {
1528 struct btrfs_root *root;
1529
1530 spin_lock(&fs_info->fs_roots_radix_lock);
1531 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1532 (unsigned long)root_id);
1533 spin_unlock(&fs_info->fs_roots_radix_lock);
1534 return root;
1535 }
1536
1537 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1538 struct btrfs_root *root)
1539 {
1540 int ret;
1541
1542 ret = radix_tree_preload(GFP_NOFS);
1543 if (ret)
1544 return ret;
1545
1546 spin_lock(&fs_info->fs_roots_radix_lock);
1547 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1548 (unsigned long)root->root_key.objectid,
1549 root);
1550 if (ret == 0)
1551 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1552 spin_unlock(&fs_info->fs_roots_radix_lock);
1553 radix_tree_preload_end();
1554
1555 return ret;
1556 }
1557
1558 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1559 struct btrfs_key *location,
1560 bool check_ref)
1561 {
1562 struct btrfs_root *root;
1563 struct btrfs_path *path;
1564 struct btrfs_key key;
1565 int ret;
1566
1567 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1568 return fs_info->tree_root;
1569 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1570 return fs_info->extent_root;
1571 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1572 return fs_info->chunk_root;
1573 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1574 return fs_info->dev_root;
1575 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1576 return fs_info->csum_root;
1577 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1578 return fs_info->quota_root ? fs_info->quota_root :
1579 ERR_PTR(-ENOENT);
1580 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1581 return fs_info->uuid_root ? fs_info->uuid_root :
1582 ERR_PTR(-ENOENT);
1583 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1584 return fs_info->free_space_root ? fs_info->free_space_root :
1585 ERR_PTR(-ENOENT);
1586 again:
1587 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1588 if (root) {
1589 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1590 return ERR_PTR(-ENOENT);
1591 return root;
1592 }
1593
1594 root = btrfs_read_fs_root(fs_info->tree_root, location);
1595 if (IS_ERR(root))
1596 return root;
1597
1598 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1599 ret = -ENOENT;
1600 goto fail;
1601 }
1602
1603 ret = btrfs_init_fs_root(root);
1604 if (ret)
1605 goto fail;
1606
1607 path = btrfs_alloc_path();
1608 if (!path) {
1609 ret = -ENOMEM;
1610 goto fail;
1611 }
1612 key.objectid = BTRFS_ORPHAN_OBJECTID;
1613 key.type = BTRFS_ORPHAN_ITEM_KEY;
1614 key.offset = location->objectid;
1615
1616 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1617 btrfs_free_path(path);
1618 if (ret < 0)
1619 goto fail;
1620 if (ret == 0)
1621 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1622
1623 ret = btrfs_insert_fs_root(fs_info, root);
1624 if (ret) {
1625 if (ret == -EEXIST) {
1626 btrfs_free_fs_root(root);
1627 goto again;
1628 }
1629 goto fail;
1630 }
1631 return root;
1632 fail:
1633 btrfs_free_fs_root(root);
1634 return ERR_PTR(ret);
1635 }
1636
1637 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1638 {
1639 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1640 int ret = 0;
1641 struct btrfs_device *device;
1642 struct backing_dev_info *bdi;
1643
1644 rcu_read_lock();
1645 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1646 if (!device->bdev)
1647 continue;
1648 bdi = device->bdev->bd_bdi;
1649 if (bdi_congested(bdi, bdi_bits)) {
1650 ret = 1;
1651 break;
1652 }
1653 }
1654 rcu_read_unlock();
1655 return ret;
1656 }
1657
1658 /*
1659 * called by the kthread helper functions to finally call the bio end_io
1660 * functions. This is where read checksum verification actually happens
1661 */
1662 static void end_workqueue_fn(struct btrfs_work *work)
1663 {
1664 struct bio *bio;
1665 struct btrfs_end_io_wq *end_io_wq;
1666
1667 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1668 bio = end_io_wq->bio;
1669
1670 bio->bi_status = end_io_wq->status;
1671 bio->bi_private = end_io_wq->private;
1672 bio->bi_end_io = end_io_wq->end_io;
1673 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1674 bio_endio(bio);
1675 }
1676
1677 static int cleaner_kthread(void *arg)
1678 {
1679 struct btrfs_root *root = arg;
1680 struct btrfs_fs_info *fs_info = root->fs_info;
1681 int again;
1682
1683 while (1) {
1684 again = 0;
1685
1686 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1687
1688 /* Make the cleaner go to sleep early. */
1689 if (btrfs_need_cleaner_sleep(fs_info))
1690 goto sleep;
1691
1692 /*
1693 * Do not do anything if we might cause open_ctree() to block
1694 * before we have finished mounting the filesystem.
1695 */
1696 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1697 goto sleep;
1698
1699 if (!mutex_trylock(&fs_info->cleaner_mutex))
1700 goto sleep;
1701
1702 /*
1703 * Avoid the problem that we change the status of the fs
1704 * during the above check and trylock.
1705 */
1706 if (btrfs_need_cleaner_sleep(fs_info)) {
1707 mutex_unlock(&fs_info->cleaner_mutex);
1708 goto sleep;
1709 }
1710
1711 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1712 btrfs_run_delayed_iputs(fs_info);
1713 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1714
1715 again = btrfs_clean_one_deleted_snapshot(root);
1716 mutex_unlock(&fs_info->cleaner_mutex);
1717
1718 /*
1719 * The defragger has dealt with the R/O remount and umount,
1720 * needn't do anything special here.
1721 */
1722 btrfs_run_defrag_inodes(fs_info);
1723
1724 /*
1725 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1726 * with relocation (btrfs_relocate_chunk) and relocation
1727 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1728 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1729 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1730 * unused block groups.
1731 */
1732 btrfs_delete_unused_bgs(fs_info);
1733 sleep:
1734 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1735 if (kthread_should_park())
1736 kthread_parkme();
1737 if (kthread_should_stop())
1738 return 0;
1739 if (!again) {
1740 set_current_state(TASK_INTERRUPTIBLE);
1741 schedule();
1742 __set_current_state(TASK_RUNNING);
1743 }
1744 }
1745 }
1746
1747 static int transaction_kthread(void *arg)
1748 {
1749 struct btrfs_root *root = arg;
1750 struct btrfs_fs_info *fs_info = root->fs_info;
1751 struct btrfs_trans_handle *trans;
1752 struct btrfs_transaction *cur;
1753 u64 transid;
1754 time64_t now;
1755 unsigned long delay;
1756 bool cannot_commit;
1757
1758 do {
1759 cannot_commit = false;
1760 delay = HZ * fs_info->commit_interval;
1761 mutex_lock(&fs_info->transaction_kthread_mutex);
1762
1763 spin_lock(&fs_info->trans_lock);
1764 cur = fs_info->running_transaction;
1765 if (!cur) {
1766 spin_unlock(&fs_info->trans_lock);
1767 goto sleep;
1768 }
1769
1770 now = ktime_get_seconds();
1771 if (cur->state < TRANS_STATE_BLOCKED &&
1772 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1773 (now < cur->start_time ||
1774 now - cur->start_time < fs_info->commit_interval)) {
1775 spin_unlock(&fs_info->trans_lock);
1776 delay = HZ * 5;
1777 goto sleep;
1778 }
1779 transid = cur->transid;
1780 spin_unlock(&fs_info->trans_lock);
1781
1782 /* If the file system is aborted, this will always fail. */
1783 trans = btrfs_attach_transaction(root);
1784 if (IS_ERR(trans)) {
1785 if (PTR_ERR(trans) != -ENOENT)
1786 cannot_commit = true;
1787 goto sleep;
1788 }
1789 if (transid == trans->transid) {
1790 btrfs_commit_transaction(trans);
1791 } else {
1792 btrfs_end_transaction(trans);
1793 }
1794 sleep:
1795 wake_up_process(fs_info->cleaner_kthread);
1796 mutex_unlock(&fs_info->transaction_kthread_mutex);
1797
1798 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1799 &fs_info->fs_state)))
1800 btrfs_cleanup_transaction(fs_info);
1801 if (!kthread_should_stop() &&
1802 (!btrfs_transaction_blocked(fs_info) ||
1803 cannot_commit))
1804 schedule_timeout_interruptible(delay);
1805 } while (!kthread_should_stop());
1806 return 0;
1807 }
1808
1809 /*
1810 * this will find the highest generation in the array of
1811 * root backups. The index of the highest array is returned,
1812 * or -1 if we can't find anything.
1813 *
1814 * We check to make sure the array is valid by comparing the
1815 * generation of the latest root in the array with the generation
1816 * in the super block. If they don't match we pitch it.
1817 */
1818 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1819 {
1820 u64 cur;
1821 int newest_index = -1;
1822 struct btrfs_root_backup *root_backup;
1823 int i;
1824
1825 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1826 root_backup = info->super_copy->super_roots + i;
1827 cur = btrfs_backup_tree_root_gen(root_backup);
1828 if (cur == newest_gen)
1829 newest_index = i;
1830 }
1831
1832 /* check to see if we actually wrapped around */
1833 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1834 root_backup = info->super_copy->super_roots;
1835 cur = btrfs_backup_tree_root_gen(root_backup);
1836 if (cur == newest_gen)
1837 newest_index = 0;
1838 }
1839 return newest_index;
1840 }
1841
1842
1843 /*
1844 * find the oldest backup so we know where to store new entries
1845 * in the backup array. This will set the backup_root_index
1846 * field in the fs_info struct
1847 */
1848 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1849 u64 newest_gen)
1850 {
1851 int newest_index = -1;
1852
1853 newest_index = find_newest_super_backup(info, newest_gen);
1854 /* if there was garbage in there, just move along */
1855 if (newest_index == -1) {
1856 info->backup_root_index = 0;
1857 } else {
1858 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1859 }
1860 }
1861
1862 /*
1863 * copy all the root pointers into the super backup array.
1864 * this will bump the backup pointer by one when it is
1865 * done
1866 */
1867 static void backup_super_roots(struct btrfs_fs_info *info)
1868 {
1869 int next_backup;
1870 struct btrfs_root_backup *root_backup;
1871 int last_backup;
1872
1873 next_backup = info->backup_root_index;
1874 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1875 BTRFS_NUM_BACKUP_ROOTS;
1876
1877 /*
1878 * just overwrite the last backup if we're at the same generation
1879 * this happens only at umount
1880 */
1881 root_backup = info->super_for_commit->super_roots + last_backup;
1882 if (btrfs_backup_tree_root_gen(root_backup) ==
1883 btrfs_header_generation(info->tree_root->node))
1884 next_backup = last_backup;
1885
1886 root_backup = info->super_for_commit->super_roots + next_backup;
1887
1888 /*
1889 * make sure all of our padding and empty slots get zero filled
1890 * regardless of which ones we use today
1891 */
1892 memset(root_backup, 0, sizeof(*root_backup));
1893
1894 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1895
1896 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1897 btrfs_set_backup_tree_root_gen(root_backup,
1898 btrfs_header_generation(info->tree_root->node));
1899
1900 btrfs_set_backup_tree_root_level(root_backup,
1901 btrfs_header_level(info->tree_root->node));
1902
1903 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1904 btrfs_set_backup_chunk_root_gen(root_backup,
1905 btrfs_header_generation(info->chunk_root->node));
1906 btrfs_set_backup_chunk_root_level(root_backup,
1907 btrfs_header_level(info->chunk_root->node));
1908
1909 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1910 btrfs_set_backup_extent_root_gen(root_backup,
1911 btrfs_header_generation(info->extent_root->node));
1912 btrfs_set_backup_extent_root_level(root_backup,
1913 btrfs_header_level(info->extent_root->node));
1914
1915 /*
1916 * we might commit during log recovery, which happens before we set
1917 * the fs_root. Make sure it is valid before we fill it in.
1918 */
1919 if (info->fs_root && info->fs_root->node) {
1920 btrfs_set_backup_fs_root(root_backup,
1921 info->fs_root->node->start);
1922 btrfs_set_backup_fs_root_gen(root_backup,
1923 btrfs_header_generation(info->fs_root->node));
1924 btrfs_set_backup_fs_root_level(root_backup,
1925 btrfs_header_level(info->fs_root->node));
1926 }
1927
1928 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1929 btrfs_set_backup_dev_root_gen(root_backup,
1930 btrfs_header_generation(info->dev_root->node));
1931 btrfs_set_backup_dev_root_level(root_backup,
1932 btrfs_header_level(info->dev_root->node));
1933
1934 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1935 btrfs_set_backup_csum_root_gen(root_backup,
1936 btrfs_header_generation(info->csum_root->node));
1937 btrfs_set_backup_csum_root_level(root_backup,
1938 btrfs_header_level(info->csum_root->node));
1939
1940 btrfs_set_backup_total_bytes(root_backup,
1941 btrfs_super_total_bytes(info->super_copy));
1942 btrfs_set_backup_bytes_used(root_backup,
1943 btrfs_super_bytes_used(info->super_copy));
1944 btrfs_set_backup_num_devices(root_backup,
1945 btrfs_super_num_devices(info->super_copy));
1946
1947 /*
1948 * if we don't copy this out to the super_copy, it won't get remembered
1949 * for the next commit
1950 */
1951 memcpy(&info->super_copy->super_roots,
1952 &info->super_for_commit->super_roots,
1953 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1954 }
1955
1956 /*
1957 * this copies info out of the root backup array and back into
1958 * the in-memory super block. It is meant to help iterate through
1959 * the array, so you send it the number of backups you've already
1960 * tried and the last backup index you used.
1961 *
1962 * this returns -1 when it has tried all the backups
1963 */
1964 static noinline int next_root_backup(struct btrfs_fs_info *info,
1965 struct btrfs_super_block *super,
1966 int *num_backups_tried, int *backup_index)
1967 {
1968 struct btrfs_root_backup *root_backup;
1969 int newest = *backup_index;
1970
1971 if (*num_backups_tried == 0) {
1972 u64 gen = btrfs_super_generation(super);
1973
1974 newest = find_newest_super_backup(info, gen);
1975 if (newest == -1)
1976 return -1;
1977
1978 *backup_index = newest;
1979 *num_backups_tried = 1;
1980 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1981 /* we've tried all the backups, all done */
1982 return -1;
1983 } else {
1984 /* jump to the next oldest backup */
1985 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1986 BTRFS_NUM_BACKUP_ROOTS;
1987 *backup_index = newest;
1988 *num_backups_tried += 1;
1989 }
1990 root_backup = super->super_roots + newest;
1991
1992 btrfs_set_super_generation(super,
1993 btrfs_backup_tree_root_gen(root_backup));
1994 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1995 btrfs_set_super_root_level(super,
1996 btrfs_backup_tree_root_level(root_backup));
1997 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1998
1999 /*
2000 * fixme: the total bytes and num_devices need to match or we should
2001 * need a fsck
2002 */
2003 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2004 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2005 return 0;
2006 }
2007
2008 /* helper to cleanup workers */
2009 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2010 {
2011 btrfs_destroy_workqueue(fs_info->fixup_workers);
2012 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2013 btrfs_destroy_workqueue(fs_info->workers);
2014 btrfs_destroy_workqueue(fs_info->endio_workers);
2015 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2016 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2017 btrfs_destroy_workqueue(fs_info->rmw_workers);
2018 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2019 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2020 btrfs_destroy_workqueue(fs_info->submit_workers);
2021 btrfs_destroy_workqueue(fs_info->delayed_workers);
2022 btrfs_destroy_workqueue(fs_info->caching_workers);
2023 btrfs_destroy_workqueue(fs_info->readahead_workers);
2024 btrfs_destroy_workqueue(fs_info->flush_workers);
2025 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2026 btrfs_destroy_workqueue(fs_info->extent_workers);
2027 /*
2028 * Now that all other work queues are destroyed, we can safely destroy
2029 * the queues used for metadata I/O, since tasks from those other work
2030 * queues can do metadata I/O operations.
2031 */
2032 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2033 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2034 }
2035
2036 static void free_root_extent_buffers(struct btrfs_root *root)
2037 {
2038 if (root) {
2039 free_extent_buffer(root->node);
2040 free_extent_buffer(root->commit_root);
2041 root->node = NULL;
2042 root->commit_root = NULL;
2043 }
2044 }
2045
2046 /* helper to cleanup tree roots */
2047 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2048 {
2049 free_root_extent_buffers(info->tree_root);
2050
2051 free_root_extent_buffers(info->dev_root);
2052 free_root_extent_buffers(info->extent_root);
2053 free_root_extent_buffers(info->csum_root);
2054 free_root_extent_buffers(info->quota_root);
2055 free_root_extent_buffers(info->uuid_root);
2056 if (chunk_root)
2057 free_root_extent_buffers(info->chunk_root);
2058 free_root_extent_buffers(info->free_space_root);
2059 }
2060
2061 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2062 {
2063 int ret;
2064 struct btrfs_root *gang[8];
2065 int i;
2066
2067 while (!list_empty(&fs_info->dead_roots)) {
2068 gang[0] = list_entry(fs_info->dead_roots.next,
2069 struct btrfs_root, root_list);
2070 list_del(&gang[0]->root_list);
2071
2072 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2073 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2074 } else {
2075 free_extent_buffer(gang[0]->node);
2076 free_extent_buffer(gang[0]->commit_root);
2077 btrfs_put_fs_root(gang[0]);
2078 }
2079 }
2080
2081 while (1) {
2082 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2083 (void **)gang, 0,
2084 ARRAY_SIZE(gang));
2085 if (!ret)
2086 break;
2087 for (i = 0; i < ret; i++)
2088 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2089 }
2090
2091 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2092 btrfs_free_log_root_tree(NULL, fs_info);
2093 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2094 }
2095 }
2096
2097 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2098 {
2099 mutex_init(&fs_info->scrub_lock);
2100 atomic_set(&fs_info->scrubs_running, 0);
2101 atomic_set(&fs_info->scrub_pause_req, 0);
2102 atomic_set(&fs_info->scrubs_paused, 0);
2103 atomic_set(&fs_info->scrub_cancel_req, 0);
2104 init_waitqueue_head(&fs_info->scrub_pause_wait);
2105 fs_info->scrub_workers_refcnt = 0;
2106 }
2107
2108 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2109 {
2110 spin_lock_init(&fs_info->balance_lock);
2111 mutex_init(&fs_info->balance_mutex);
2112 atomic_set(&fs_info->balance_pause_req, 0);
2113 atomic_set(&fs_info->balance_cancel_req, 0);
2114 fs_info->balance_ctl = NULL;
2115 init_waitqueue_head(&fs_info->balance_wait_q);
2116 }
2117
2118 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2119 {
2120 struct inode *inode = fs_info->btree_inode;
2121
2122 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2123 set_nlink(inode, 1);
2124 /*
2125 * we set the i_size on the btree inode to the max possible int.
2126 * the real end of the address space is determined by all of
2127 * the devices in the system
2128 */
2129 inode->i_size = OFFSET_MAX;
2130 inode->i_mapping->a_ops = &btree_aops;
2131
2132 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2133 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2134 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2135 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2136
2137 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2138
2139 BTRFS_I(inode)->root = fs_info->tree_root;
2140 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2141 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2142 btrfs_insert_inode_hash(inode);
2143 }
2144
2145 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2146 {
2147 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2148 init_rwsem(&fs_info->dev_replace.rwsem);
2149 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2150 }
2151
2152 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2153 {
2154 spin_lock_init(&fs_info->qgroup_lock);
2155 mutex_init(&fs_info->qgroup_ioctl_lock);
2156 fs_info->qgroup_tree = RB_ROOT;
2157 fs_info->qgroup_op_tree = RB_ROOT;
2158 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2159 fs_info->qgroup_seq = 1;
2160 fs_info->qgroup_ulist = NULL;
2161 fs_info->qgroup_rescan_running = false;
2162 mutex_init(&fs_info->qgroup_rescan_lock);
2163 }
2164
2165 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2166 struct btrfs_fs_devices *fs_devices)
2167 {
2168 u32 max_active = fs_info->thread_pool_size;
2169 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2170
2171 fs_info->workers =
2172 btrfs_alloc_workqueue(fs_info, "worker",
2173 flags | WQ_HIGHPRI, max_active, 16);
2174
2175 fs_info->delalloc_workers =
2176 btrfs_alloc_workqueue(fs_info, "delalloc",
2177 flags, max_active, 2);
2178
2179 fs_info->flush_workers =
2180 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2181 flags, max_active, 0);
2182
2183 fs_info->caching_workers =
2184 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2185
2186 /*
2187 * a higher idle thresh on the submit workers makes it much more
2188 * likely that bios will be send down in a sane order to the
2189 * devices
2190 */
2191 fs_info->submit_workers =
2192 btrfs_alloc_workqueue(fs_info, "submit", flags,
2193 min_t(u64, fs_devices->num_devices,
2194 max_active), 64);
2195
2196 fs_info->fixup_workers =
2197 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2198
2199 /*
2200 * endios are largely parallel and should have a very
2201 * low idle thresh
2202 */
2203 fs_info->endio_workers =
2204 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2205 fs_info->endio_meta_workers =
2206 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2207 max_active, 4);
2208 fs_info->endio_meta_write_workers =
2209 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2210 max_active, 2);
2211 fs_info->endio_raid56_workers =
2212 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2213 max_active, 4);
2214 fs_info->endio_repair_workers =
2215 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2216 fs_info->rmw_workers =
2217 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2218 fs_info->endio_write_workers =
2219 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2220 max_active, 2);
2221 fs_info->endio_freespace_worker =
2222 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2223 max_active, 0);
2224 fs_info->delayed_workers =
2225 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2226 max_active, 0);
2227 fs_info->readahead_workers =
2228 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2229 max_active, 2);
2230 fs_info->qgroup_rescan_workers =
2231 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2232 fs_info->extent_workers =
2233 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2234 min_t(u64, fs_devices->num_devices,
2235 max_active), 8);
2236
2237 if (!(fs_info->workers && fs_info->delalloc_workers &&
2238 fs_info->submit_workers && fs_info->flush_workers &&
2239 fs_info->endio_workers && fs_info->endio_meta_workers &&
2240 fs_info->endio_meta_write_workers &&
2241 fs_info->endio_repair_workers &&
2242 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2243 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2244 fs_info->caching_workers && fs_info->readahead_workers &&
2245 fs_info->fixup_workers && fs_info->delayed_workers &&
2246 fs_info->extent_workers &&
2247 fs_info->qgroup_rescan_workers)) {
2248 return -ENOMEM;
2249 }
2250
2251 return 0;
2252 }
2253
2254 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2255 struct btrfs_fs_devices *fs_devices)
2256 {
2257 int ret;
2258 struct btrfs_root *log_tree_root;
2259 struct btrfs_super_block *disk_super = fs_info->super_copy;
2260 u64 bytenr = btrfs_super_log_root(disk_super);
2261 int level = btrfs_super_log_root_level(disk_super);
2262
2263 if (fs_devices->rw_devices == 0) {
2264 btrfs_warn(fs_info, "log replay required on RO media");
2265 return -EIO;
2266 }
2267
2268 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2269 if (!log_tree_root)
2270 return -ENOMEM;
2271
2272 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2273
2274 log_tree_root->node = read_tree_block(fs_info, bytenr,
2275 fs_info->generation + 1,
2276 level, NULL);
2277 if (IS_ERR(log_tree_root->node)) {
2278 btrfs_warn(fs_info, "failed to read log tree");
2279 ret = PTR_ERR(log_tree_root->node);
2280 kfree(log_tree_root);
2281 return ret;
2282 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2283 btrfs_err(fs_info, "failed to read log tree");
2284 free_extent_buffer(log_tree_root->node);
2285 kfree(log_tree_root);
2286 return -EIO;
2287 }
2288 /* returns with log_tree_root freed on success */
2289 ret = btrfs_recover_log_trees(log_tree_root);
2290 if (ret) {
2291 btrfs_handle_fs_error(fs_info, ret,
2292 "Failed to recover log tree");
2293 free_extent_buffer(log_tree_root->node);
2294 kfree(log_tree_root);
2295 return ret;
2296 }
2297
2298 if (sb_rdonly(fs_info->sb)) {
2299 ret = btrfs_commit_super(fs_info);
2300 if (ret)
2301 return ret;
2302 }
2303
2304 return 0;
2305 }
2306
2307 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2308 {
2309 struct btrfs_root *tree_root = fs_info->tree_root;
2310 struct btrfs_root *root;
2311 struct btrfs_key location;
2312 int ret;
2313
2314 BUG_ON(!fs_info->tree_root);
2315
2316 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2317 location.type = BTRFS_ROOT_ITEM_KEY;
2318 location.offset = 0;
2319
2320 root = btrfs_read_tree_root(tree_root, &location);
2321 if (IS_ERR(root)) {
2322 ret = PTR_ERR(root);
2323 goto out;
2324 }
2325 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2326 fs_info->extent_root = root;
2327
2328 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2329 root = btrfs_read_tree_root(tree_root, &location);
2330 if (IS_ERR(root)) {
2331 ret = PTR_ERR(root);
2332 goto out;
2333 }
2334 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2335 fs_info->dev_root = root;
2336 btrfs_init_devices_late(fs_info);
2337
2338 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2339 root = btrfs_read_tree_root(tree_root, &location);
2340 if (IS_ERR(root)) {
2341 ret = PTR_ERR(root);
2342 goto out;
2343 }
2344 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2345 fs_info->csum_root = root;
2346
2347 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2348 root = btrfs_read_tree_root(tree_root, &location);
2349 if (!IS_ERR(root)) {
2350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2351 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2352 fs_info->quota_root = root;
2353 }
2354
2355 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2356 root = btrfs_read_tree_root(tree_root, &location);
2357 if (IS_ERR(root)) {
2358 ret = PTR_ERR(root);
2359 if (ret != -ENOENT)
2360 goto out;
2361 } else {
2362 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363 fs_info->uuid_root = root;
2364 }
2365
2366 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2367 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2368 root = btrfs_read_tree_root(tree_root, &location);
2369 if (IS_ERR(root)) {
2370 ret = PTR_ERR(root);
2371 goto out;
2372 }
2373 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2374 fs_info->free_space_root = root;
2375 }
2376
2377 return 0;
2378 out:
2379 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2380 location.objectid, ret);
2381 return ret;
2382 }
2383
2384 /*
2385 * Real super block validation
2386 * NOTE: super csum type and incompat features will not be checked here.
2387 *
2388 * @sb: super block to check
2389 * @mirror_num: the super block number to check its bytenr:
2390 * 0 the primary (1st) sb
2391 * 1, 2 2nd and 3rd backup copy
2392 * -1 skip bytenr check
2393 */
2394 static int validate_super(struct btrfs_fs_info *fs_info,
2395 struct btrfs_super_block *sb, int mirror_num)
2396 {
2397 u64 nodesize = btrfs_super_nodesize(sb);
2398 u64 sectorsize = btrfs_super_sectorsize(sb);
2399 int ret = 0;
2400
2401 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2402 btrfs_err(fs_info, "no valid FS found");
2403 ret = -EINVAL;
2404 }
2405 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2406 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2407 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2408 ret = -EINVAL;
2409 }
2410 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2411 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2412 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2413 ret = -EINVAL;
2414 }
2415 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2416 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2417 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2418 ret = -EINVAL;
2419 }
2420 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2421 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2422 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2423 ret = -EINVAL;
2424 }
2425
2426 /*
2427 * Check sectorsize and nodesize first, other check will need it.
2428 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2429 */
2430 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2431 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2432 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2433 ret = -EINVAL;
2434 }
2435 /* Only PAGE SIZE is supported yet */
2436 if (sectorsize != PAGE_SIZE) {
2437 btrfs_err(fs_info,
2438 "sectorsize %llu not supported yet, only support %lu",
2439 sectorsize, PAGE_SIZE);
2440 ret = -EINVAL;
2441 }
2442 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2443 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2444 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2445 ret = -EINVAL;
2446 }
2447 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2448 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2449 le32_to_cpu(sb->__unused_leafsize), nodesize);
2450 ret = -EINVAL;
2451 }
2452
2453 /* Root alignment check */
2454 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2455 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2456 btrfs_super_root(sb));
2457 ret = -EINVAL;
2458 }
2459 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2460 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2461 btrfs_super_chunk_root(sb));
2462 ret = -EINVAL;
2463 }
2464 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2465 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2466 btrfs_super_log_root(sb));
2467 ret = -EINVAL;
2468 }
2469
2470 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2471 BTRFS_FSID_SIZE) != 0) {
2472 btrfs_err(fs_info,
2473 "dev_item UUID does not match metadata fsid: %pU != %pU",
2474 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2475 ret = -EINVAL;
2476 }
2477
2478 /*
2479 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2480 * done later
2481 */
2482 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2483 btrfs_err(fs_info, "bytes_used is too small %llu",
2484 btrfs_super_bytes_used(sb));
2485 ret = -EINVAL;
2486 }
2487 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2488 btrfs_err(fs_info, "invalid stripesize %u",
2489 btrfs_super_stripesize(sb));
2490 ret = -EINVAL;
2491 }
2492 if (btrfs_super_num_devices(sb) > (1UL << 31))
2493 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2494 btrfs_super_num_devices(sb));
2495 if (btrfs_super_num_devices(sb) == 0) {
2496 btrfs_err(fs_info, "number of devices is 0");
2497 ret = -EINVAL;
2498 }
2499
2500 if (mirror_num >= 0 &&
2501 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2502 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2503 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2504 ret = -EINVAL;
2505 }
2506
2507 /*
2508 * Obvious sys_chunk_array corruptions, it must hold at least one key
2509 * and one chunk
2510 */
2511 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2512 btrfs_err(fs_info, "system chunk array too big %u > %u",
2513 btrfs_super_sys_array_size(sb),
2514 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2515 ret = -EINVAL;
2516 }
2517 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2518 + sizeof(struct btrfs_chunk)) {
2519 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2520 btrfs_super_sys_array_size(sb),
2521 sizeof(struct btrfs_disk_key)
2522 + sizeof(struct btrfs_chunk));
2523 ret = -EINVAL;
2524 }
2525
2526 /*
2527 * The generation is a global counter, we'll trust it more than the others
2528 * but it's still possible that it's the one that's wrong.
2529 */
2530 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2531 btrfs_warn(fs_info,
2532 "suspicious: generation < chunk_root_generation: %llu < %llu",
2533 btrfs_super_generation(sb),
2534 btrfs_super_chunk_root_generation(sb));
2535 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2536 && btrfs_super_cache_generation(sb) != (u64)-1)
2537 btrfs_warn(fs_info,
2538 "suspicious: generation < cache_generation: %llu < %llu",
2539 btrfs_super_generation(sb),
2540 btrfs_super_cache_generation(sb));
2541
2542 return ret;
2543 }
2544
2545 /*
2546 * Validation of super block at mount time.
2547 * Some checks already done early at mount time, like csum type and incompat
2548 * flags will be skipped.
2549 */
2550 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2551 {
2552 return validate_super(fs_info, fs_info->super_copy, 0);
2553 }
2554
2555 /*
2556 * Validation of super block at write time.
2557 * Some checks like bytenr check will be skipped as their values will be
2558 * overwritten soon.
2559 * Extra checks like csum type and incompat flags will be done here.
2560 */
2561 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2562 struct btrfs_super_block *sb)
2563 {
2564 int ret;
2565
2566 ret = validate_super(fs_info, sb, -1);
2567 if (ret < 0)
2568 goto out;
2569 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2570 ret = -EUCLEAN;
2571 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2572 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2573 goto out;
2574 }
2575 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2576 ret = -EUCLEAN;
2577 btrfs_err(fs_info,
2578 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2579 btrfs_super_incompat_flags(sb),
2580 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2581 goto out;
2582 }
2583 out:
2584 if (ret < 0)
2585 btrfs_err(fs_info,
2586 "super block corruption detected before writing it to disk");
2587 return ret;
2588 }
2589
2590 int open_ctree(struct super_block *sb,
2591 struct btrfs_fs_devices *fs_devices,
2592 char *options)
2593 {
2594 u32 sectorsize;
2595 u32 nodesize;
2596 u32 stripesize;
2597 u64 generation;
2598 u64 features;
2599 struct btrfs_key location;
2600 struct buffer_head *bh;
2601 struct btrfs_super_block *disk_super;
2602 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2603 struct btrfs_root *tree_root;
2604 struct btrfs_root *chunk_root;
2605 int ret;
2606 int err = -EINVAL;
2607 int num_backups_tried = 0;
2608 int backup_index = 0;
2609 int clear_free_space_tree = 0;
2610 int level;
2611
2612 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2613 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2614 if (!tree_root || !chunk_root) {
2615 err = -ENOMEM;
2616 goto fail;
2617 }
2618
2619 ret = init_srcu_struct(&fs_info->subvol_srcu);
2620 if (ret) {
2621 err = ret;
2622 goto fail;
2623 }
2624
2625 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2626 if (ret) {
2627 err = ret;
2628 goto fail_srcu;
2629 }
2630 fs_info->dirty_metadata_batch = PAGE_SIZE *
2631 (1 + ilog2(nr_cpu_ids));
2632
2633 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2634 if (ret) {
2635 err = ret;
2636 goto fail_dirty_metadata_bytes;
2637 }
2638
2639 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2640 GFP_KERNEL);
2641 if (ret) {
2642 err = ret;
2643 goto fail_delalloc_bytes;
2644 }
2645
2646 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2647 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2648 INIT_LIST_HEAD(&fs_info->trans_list);
2649 INIT_LIST_HEAD(&fs_info->dead_roots);
2650 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2651 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2652 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2653 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2654 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2655 spin_lock_init(&fs_info->delalloc_root_lock);
2656 spin_lock_init(&fs_info->trans_lock);
2657 spin_lock_init(&fs_info->fs_roots_radix_lock);
2658 spin_lock_init(&fs_info->delayed_iput_lock);
2659 spin_lock_init(&fs_info->defrag_inodes_lock);
2660 spin_lock_init(&fs_info->tree_mod_seq_lock);
2661 spin_lock_init(&fs_info->super_lock);
2662 spin_lock_init(&fs_info->qgroup_op_lock);
2663 spin_lock_init(&fs_info->buffer_lock);
2664 spin_lock_init(&fs_info->unused_bgs_lock);
2665 rwlock_init(&fs_info->tree_mod_log_lock);
2666 mutex_init(&fs_info->unused_bg_unpin_mutex);
2667 mutex_init(&fs_info->delete_unused_bgs_mutex);
2668 mutex_init(&fs_info->reloc_mutex);
2669 mutex_init(&fs_info->delalloc_root_mutex);
2670 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2671 seqlock_init(&fs_info->profiles_lock);
2672
2673 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2674 INIT_LIST_HEAD(&fs_info->space_info);
2675 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2676 INIT_LIST_HEAD(&fs_info->unused_bgs);
2677 btrfs_mapping_init(&fs_info->mapping_tree);
2678 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2679 BTRFS_BLOCK_RSV_GLOBAL);
2680 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2681 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2682 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2683 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2684 BTRFS_BLOCK_RSV_DELOPS);
2685 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2686 BTRFS_BLOCK_RSV_DELREFS);
2687
2688 atomic_set(&fs_info->async_delalloc_pages, 0);
2689 atomic_set(&fs_info->defrag_running, 0);
2690 atomic_set(&fs_info->qgroup_op_seq, 0);
2691 atomic_set(&fs_info->reada_works_cnt, 0);
2692 atomic64_set(&fs_info->tree_mod_seq, 0);
2693 fs_info->sb = sb;
2694 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2695 fs_info->metadata_ratio = 0;
2696 fs_info->defrag_inodes = RB_ROOT;
2697 atomic64_set(&fs_info->free_chunk_space, 0);
2698 fs_info->tree_mod_log = RB_ROOT;
2699 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2700 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2701 /* readahead state */
2702 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2703 spin_lock_init(&fs_info->reada_lock);
2704 btrfs_init_ref_verify(fs_info);
2705
2706 fs_info->thread_pool_size = min_t(unsigned long,
2707 num_online_cpus() + 2, 8);
2708
2709 INIT_LIST_HEAD(&fs_info->ordered_roots);
2710 spin_lock_init(&fs_info->ordered_root_lock);
2711
2712 fs_info->btree_inode = new_inode(sb);
2713 if (!fs_info->btree_inode) {
2714 err = -ENOMEM;
2715 goto fail_bio_counter;
2716 }
2717 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2718
2719 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2720 GFP_KERNEL);
2721 if (!fs_info->delayed_root) {
2722 err = -ENOMEM;
2723 goto fail_iput;
2724 }
2725 btrfs_init_delayed_root(fs_info->delayed_root);
2726
2727 btrfs_init_scrub(fs_info);
2728 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2729 fs_info->check_integrity_print_mask = 0;
2730 #endif
2731 btrfs_init_balance(fs_info);
2732 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2733
2734 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2735 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2736
2737 btrfs_init_btree_inode(fs_info);
2738
2739 spin_lock_init(&fs_info->block_group_cache_lock);
2740 fs_info->block_group_cache_tree = RB_ROOT;
2741 fs_info->first_logical_byte = (u64)-1;
2742
2743 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2744 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2745 fs_info->pinned_extents = &fs_info->freed_extents[0];
2746 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2747
2748 mutex_init(&fs_info->ordered_operations_mutex);
2749 mutex_init(&fs_info->tree_log_mutex);
2750 mutex_init(&fs_info->chunk_mutex);
2751 mutex_init(&fs_info->transaction_kthread_mutex);
2752 mutex_init(&fs_info->cleaner_mutex);
2753 mutex_init(&fs_info->ro_block_group_mutex);
2754 init_rwsem(&fs_info->commit_root_sem);
2755 init_rwsem(&fs_info->cleanup_work_sem);
2756 init_rwsem(&fs_info->subvol_sem);
2757 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2758
2759 btrfs_init_dev_replace_locks(fs_info);
2760 btrfs_init_qgroup(fs_info);
2761
2762 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2763 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2764
2765 init_waitqueue_head(&fs_info->transaction_throttle);
2766 init_waitqueue_head(&fs_info->transaction_wait);
2767 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2768 init_waitqueue_head(&fs_info->async_submit_wait);
2769
2770 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2771
2772 /* Usable values until the real ones are cached from the superblock */
2773 fs_info->nodesize = 4096;
2774 fs_info->sectorsize = 4096;
2775 fs_info->stripesize = 4096;
2776
2777 spin_lock_init(&fs_info->swapfile_pins_lock);
2778 fs_info->swapfile_pins = RB_ROOT;
2779
2780 ret = btrfs_alloc_stripe_hash_table(fs_info);
2781 if (ret) {
2782 err = ret;
2783 goto fail_alloc;
2784 }
2785
2786 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2787
2788 invalidate_bdev(fs_devices->latest_bdev);
2789
2790 /*
2791 * Read super block and check the signature bytes only
2792 */
2793 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2794 if (IS_ERR(bh)) {
2795 err = PTR_ERR(bh);
2796 goto fail_alloc;
2797 }
2798
2799 /*
2800 * We want to check superblock checksum, the type is stored inside.
2801 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2802 */
2803 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2804 btrfs_err(fs_info, "superblock checksum mismatch");
2805 err = -EINVAL;
2806 brelse(bh);
2807 goto fail_alloc;
2808 }
2809
2810 /*
2811 * super_copy is zeroed at allocation time and we never touch the
2812 * following bytes up to INFO_SIZE, the checksum is calculated from
2813 * the whole block of INFO_SIZE
2814 */
2815 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2816 brelse(bh);
2817
2818 disk_super = fs_info->super_copy;
2819
2820 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2821 BTRFS_FSID_SIZE));
2822
2823 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2824 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2825 fs_info->super_copy->metadata_uuid,
2826 BTRFS_FSID_SIZE));
2827 }
2828
2829 features = btrfs_super_flags(disk_super);
2830 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2831 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2832 btrfs_set_super_flags(disk_super, features);
2833 btrfs_info(fs_info,
2834 "found metadata UUID change in progress flag, clearing");
2835 }
2836
2837 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2838 sizeof(*fs_info->super_for_commit));
2839
2840 ret = btrfs_validate_mount_super(fs_info);
2841 if (ret) {
2842 btrfs_err(fs_info, "superblock contains fatal errors");
2843 err = -EINVAL;
2844 goto fail_alloc;
2845 }
2846
2847 if (!btrfs_super_root(disk_super))
2848 goto fail_alloc;
2849
2850 /* check FS state, whether FS is broken. */
2851 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2852 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2853
2854 /*
2855 * run through our array of backup supers and setup
2856 * our ring pointer to the oldest one
2857 */
2858 generation = btrfs_super_generation(disk_super);
2859 find_oldest_super_backup(fs_info, generation);
2860
2861 /*
2862 * In the long term, we'll store the compression type in the super
2863 * block, and it'll be used for per file compression control.
2864 */
2865 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2866
2867 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2868 if (ret) {
2869 err = ret;
2870 goto fail_alloc;
2871 }
2872
2873 features = btrfs_super_incompat_flags(disk_super) &
2874 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2875 if (features) {
2876 btrfs_err(fs_info,
2877 "cannot mount because of unsupported optional features (%llx)",
2878 features);
2879 err = -EINVAL;
2880 goto fail_alloc;
2881 }
2882
2883 features = btrfs_super_incompat_flags(disk_super);
2884 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2885 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2886 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2887 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2888 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2889
2890 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2891 btrfs_info(fs_info, "has skinny extents");
2892
2893 /*
2894 * flag our filesystem as having big metadata blocks if
2895 * they are bigger than the page size
2896 */
2897 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2898 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2899 btrfs_info(fs_info,
2900 "flagging fs with big metadata feature");
2901 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2902 }
2903
2904 nodesize = btrfs_super_nodesize(disk_super);
2905 sectorsize = btrfs_super_sectorsize(disk_super);
2906 stripesize = sectorsize;
2907 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2908 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2909
2910 /* Cache block sizes */
2911 fs_info->nodesize = nodesize;
2912 fs_info->sectorsize = sectorsize;
2913 fs_info->stripesize = stripesize;
2914
2915 /*
2916 * mixed block groups end up with duplicate but slightly offset
2917 * extent buffers for the same range. It leads to corruptions
2918 */
2919 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2920 (sectorsize != nodesize)) {
2921 btrfs_err(fs_info,
2922 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2923 nodesize, sectorsize);
2924 goto fail_alloc;
2925 }
2926
2927 /*
2928 * Needn't use the lock because there is no other task which will
2929 * update the flag.
2930 */
2931 btrfs_set_super_incompat_flags(disk_super, features);
2932
2933 features = btrfs_super_compat_ro_flags(disk_super) &
2934 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2935 if (!sb_rdonly(sb) && features) {
2936 btrfs_err(fs_info,
2937 "cannot mount read-write because of unsupported optional features (%llx)",
2938 features);
2939 err = -EINVAL;
2940 goto fail_alloc;
2941 }
2942
2943 ret = btrfs_init_workqueues(fs_info, fs_devices);
2944 if (ret) {
2945 err = ret;
2946 goto fail_sb_buffer;
2947 }
2948
2949 sb->s_bdi->congested_fn = btrfs_congested_fn;
2950 sb->s_bdi->congested_data = fs_info;
2951 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2952 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2953 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2954 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2955
2956 sb->s_blocksize = sectorsize;
2957 sb->s_blocksize_bits = blksize_bits(sectorsize);
2958 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2959
2960 mutex_lock(&fs_info->chunk_mutex);
2961 ret = btrfs_read_sys_array(fs_info);
2962 mutex_unlock(&fs_info->chunk_mutex);
2963 if (ret) {
2964 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2965 goto fail_sb_buffer;
2966 }
2967
2968 generation = btrfs_super_chunk_root_generation(disk_super);
2969 level = btrfs_super_chunk_root_level(disk_super);
2970
2971 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2972
2973 chunk_root->node = read_tree_block(fs_info,
2974 btrfs_super_chunk_root(disk_super),
2975 generation, level, NULL);
2976 if (IS_ERR(chunk_root->node) ||
2977 !extent_buffer_uptodate(chunk_root->node)) {
2978 btrfs_err(fs_info, "failed to read chunk root");
2979 if (!IS_ERR(chunk_root->node))
2980 free_extent_buffer(chunk_root->node);
2981 chunk_root->node = NULL;
2982 goto fail_tree_roots;
2983 }
2984 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2985 chunk_root->commit_root = btrfs_root_node(chunk_root);
2986
2987 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2988 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2989
2990 ret = btrfs_read_chunk_tree(fs_info);
2991 if (ret) {
2992 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2993 goto fail_tree_roots;
2994 }
2995
2996 /*
2997 * Keep the devid that is marked to be the target device for the
2998 * device replace procedure
2999 */
3000 btrfs_free_extra_devids(fs_devices, 0);
3001
3002 if (!fs_devices->latest_bdev) {
3003 btrfs_err(fs_info, "failed to read devices");
3004 goto fail_tree_roots;
3005 }
3006
3007 retry_root_backup:
3008 generation = btrfs_super_generation(disk_super);
3009 level = btrfs_super_root_level(disk_super);
3010
3011 tree_root->node = read_tree_block(fs_info,
3012 btrfs_super_root(disk_super),
3013 generation, level, NULL);
3014 if (IS_ERR(tree_root->node) ||
3015 !extent_buffer_uptodate(tree_root->node)) {
3016 btrfs_warn(fs_info, "failed to read tree root");
3017 if (!IS_ERR(tree_root->node))
3018 free_extent_buffer(tree_root->node);
3019 tree_root->node = NULL;
3020 goto recovery_tree_root;
3021 }
3022
3023 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3024 tree_root->commit_root = btrfs_root_node(tree_root);
3025 btrfs_set_root_refs(&tree_root->root_item, 1);
3026
3027 mutex_lock(&tree_root->objectid_mutex);
3028 ret = btrfs_find_highest_objectid(tree_root,
3029 &tree_root->highest_objectid);
3030 if (ret) {
3031 mutex_unlock(&tree_root->objectid_mutex);
3032 goto recovery_tree_root;
3033 }
3034
3035 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3036
3037 mutex_unlock(&tree_root->objectid_mutex);
3038
3039 ret = btrfs_read_roots(fs_info);
3040 if (ret)
3041 goto recovery_tree_root;
3042
3043 fs_info->generation = generation;
3044 fs_info->last_trans_committed = generation;
3045
3046 ret = btrfs_verify_dev_extents(fs_info);
3047 if (ret) {
3048 btrfs_err(fs_info,
3049 "failed to verify dev extents against chunks: %d",
3050 ret);
3051 goto fail_block_groups;
3052 }
3053 ret = btrfs_recover_balance(fs_info);
3054 if (ret) {
3055 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3056 goto fail_block_groups;
3057 }
3058
3059 ret = btrfs_init_dev_stats(fs_info);
3060 if (ret) {
3061 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3062 goto fail_block_groups;
3063 }
3064
3065 ret = btrfs_init_dev_replace(fs_info);
3066 if (ret) {
3067 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3068 goto fail_block_groups;
3069 }
3070
3071 btrfs_free_extra_devids(fs_devices, 1);
3072
3073 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3074 if (ret) {
3075 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3076 ret);
3077 goto fail_block_groups;
3078 }
3079
3080 ret = btrfs_sysfs_add_device(fs_devices);
3081 if (ret) {
3082 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3083 ret);
3084 goto fail_fsdev_sysfs;
3085 }
3086
3087 ret = btrfs_sysfs_add_mounted(fs_info);
3088 if (ret) {
3089 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3090 goto fail_fsdev_sysfs;
3091 }
3092
3093 ret = btrfs_init_space_info(fs_info);
3094 if (ret) {
3095 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3096 goto fail_sysfs;
3097 }
3098
3099 ret = btrfs_read_block_groups(fs_info);
3100 if (ret) {
3101 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3102 goto fail_sysfs;
3103 }
3104
3105 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3106 btrfs_warn(fs_info,
3107 "writable mount is not allowed due to too many missing devices");
3108 goto fail_sysfs;
3109 }
3110
3111 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3112 "btrfs-cleaner");
3113 if (IS_ERR(fs_info->cleaner_kthread))
3114 goto fail_sysfs;
3115
3116 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3117 tree_root,
3118 "btrfs-transaction");
3119 if (IS_ERR(fs_info->transaction_kthread))
3120 goto fail_cleaner;
3121
3122 if (!btrfs_test_opt(fs_info, NOSSD) &&
3123 !fs_info->fs_devices->rotating) {
3124 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3125 }
3126
3127 /*
3128 * Mount does not set all options immediately, we can do it now and do
3129 * not have to wait for transaction commit
3130 */
3131 btrfs_apply_pending_changes(fs_info);
3132
3133 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3134 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3135 ret = btrfsic_mount(fs_info, fs_devices,
3136 btrfs_test_opt(fs_info,
3137 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3138 1 : 0,
3139 fs_info->check_integrity_print_mask);
3140 if (ret)
3141 btrfs_warn(fs_info,
3142 "failed to initialize integrity check module: %d",
3143 ret);
3144 }
3145 #endif
3146 ret = btrfs_read_qgroup_config(fs_info);
3147 if (ret)
3148 goto fail_trans_kthread;
3149
3150 if (btrfs_build_ref_tree(fs_info))
3151 btrfs_err(fs_info, "couldn't build ref tree");
3152
3153 /* do not make disk changes in broken FS or nologreplay is given */
3154 if (btrfs_super_log_root(disk_super) != 0 &&
3155 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3156 ret = btrfs_replay_log(fs_info, fs_devices);
3157 if (ret) {
3158 err = ret;
3159 goto fail_qgroup;
3160 }
3161 }
3162
3163 ret = btrfs_find_orphan_roots(fs_info);
3164 if (ret)
3165 goto fail_qgroup;
3166
3167 if (!sb_rdonly(sb)) {
3168 ret = btrfs_cleanup_fs_roots(fs_info);
3169 if (ret)
3170 goto fail_qgroup;
3171
3172 mutex_lock(&fs_info->cleaner_mutex);
3173 ret = btrfs_recover_relocation(tree_root);
3174 mutex_unlock(&fs_info->cleaner_mutex);
3175 if (ret < 0) {
3176 btrfs_warn(fs_info, "failed to recover relocation: %d",
3177 ret);
3178 err = -EINVAL;
3179 goto fail_qgroup;
3180 }
3181 }
3182
3183 location.objectid = BTRFS_FS_TREE_OBJECTID;
3184 location.type = BTRFS_ROOT_ITEM_KEY;
3185 location.offset = 0;
3186
3187 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3188 if (IS_ERR(fs_info->fs_root)) {
3189 err = PTR_ERR(fs_info->fs_root);
3190 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3191 goto fail_qgroup;
3192 }
3193
3194 if (sb_rdonly(sb))
3195 return 0;
3196
3197 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3198 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3199 clear_free_space_tree = 1;
3200 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3201 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3202 btrfs_warn(fs_info, "free space tree is invalid");
3203 clear_free_space_tree = 1;
3204 }
3205
3206 if (clear_free_space_tree) {
3207 btrfs_info(fs_info, "clearing free space tree");
3208 ret = btrfs_clear_free_space_tree(fs_info);
3209 if (ret) {
3210 btrfs_warn(fs_info,
3211 "failed to clear free space tree: %d", ret);
3212 close_ctree(fs_info);
3213 return ret;
3214 }
3215 }
3216
3217 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3218 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3219 btrfs_info(fs_info, "creating free space tree");
3220 ret = btrfs_create_free_space_tree(fs_info);
3221 if (ret) {
3222 btrfs_warn(fs_info,
3223 "failed to create free space tree: %d", ret);
3224 close_ctree(fs_info);
3225 return ret;
3226 }
3227 }
3228
3229 down_read(&fs_info->cleanup_work_sem);
3230 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3231 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3232 up_read(&fs_info->cleanup_work_sem);
3233 close_ctree(fs_info);
3234 return ret;
3235 }
3236 up_read(&fs_info->cleanup_work_sem);
3237
3238 ret = btrfs_resume_balance_async(fs_info);
3239 if (ret) {
3240 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3241 close_ctree(fs_info);
3242 return ret;
3243 }
3244
3245 ret = btrfs_resume_dev_replace_async(fs_info);
3246 if (ret) {
3247 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3248 close_ctree(fs_info);
3249 return ret;
3250 }
3251
3252 btrfs_qgroup_rescan_resume(fs_info);
3253
3254 if (!fs_info->uuid_root) {
3255 btrfs_info(fs_info, "creating UUID tree");
3256 ret = btrfs_create_uuid_tree(fs_info);
3257 if (ret) {
3258 btrfs_warn(fs_info,
3259 "failed to create the UUID tree: %d", ret);
3260 close_ctree(fs_info);
3261 return ret;
3262 }
3263 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3264 fs_info->generation !=
3265 btrfs_super_uuid_tree_generation(disk_super)) {
3266 btrfs_info(fs_info, "checking UUID tree");
3267 ret = btrfs_check_uuid_tree(fs_info);
3268 if (ret) {
3269 btrfs_warn(fs_info,
3270 "failed to check the UUID tree: %d", ret);
3271 close_ctree(fs_info);
3272 return ret;
3273 }
3274 } else {
3275 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3276 }
3277 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3278
3279 /*
3280 * backuproot only affect mount behavior, and if open_ctree succeeded,
3281 * no need to keep the flag
3282 */
3283 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3284
3285 return 0;
3286
3287 fail_qgroup:
3288 btrfs_free_qgroup_config(fs_info);
3289 fail_trans_kthread:
3290 kthread_stop(fs_info->transaction_kthread);
3291 btrfs_cleanup_transaction(fs_info);
3292 btrfs_free_fs_roots(fs_info);
3293 fail_cleaner:
3294 kthread_stop(fs_info->cleaner_kthread);
3295
3296 /*
3297 * make sure we're done with the btree inode before we stop our
3298 * kthreads
3299 */
3300 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3301
3302 fail_sysfs:
3303 btrfs_sysfs_remove_mounted(fs_info);
3304
3305 fail_fsdev_sysfs:
3306 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3307
3308 fail_block_groups:
3309 btrfs_put_block_group_cache(fs_info);
3310
3311 fail_tree_roots:
3312 free_root_pointers(fs_info, 1);
3313 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3314
3315 fail_sb_buffer:
3316 btrfs_stop_all_workers(fs_info);
3317 btrfs_free_block_groups(fs_info);
3318 fail_alloc:
3319 fail_iput:
3320 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3321
3322 iput(fs_info->btree_inode);
3323 fail_bio_counter:
3324 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3325 fail_delalloc_bytes:
3326 percpu_counter_destroy(&fs_info->delalloc_bytes);
3327 fail_dirty_metadata_bytes:
3328 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3329 fail_srcu:
3330 cleanup_srcu_struct(&fs_info->subvol_srcu);
3331 fail:
3332 btrfs_free_stripe_hash_table(fs_info);
3333 btrfs_close_devices(fs_info->fs_devices);
3334 return err;
3335
3336 recovery_tree_root:
3337 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3338 goto fail_tree_roots;
3339
3340 free_root_pointers(fs_info, 0);
3341
3342 /* don't use the log in recovery mode, it won't be valid */
3343 btrfs_set_super_log_root(disk_super, 0);
3344
3345 /* we can't trust the free space cache either */
3346 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3347
3348 ret = next_root_backup(fs_info, fs_info->super_copy,
3349 &num_backups_tried, &backup_index);
3350 if (ret == -1)
3351 goto fail_block_groups;
3352 goto retry_root_backup;
3353 }
3354 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3355
3356 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3357 {
3358 if (uptodate) {
3359 set_buffer_uptodate(bh);
3360 } else {
3361 struct btrfs_device *device = (struct btrfs_device *)
3362 bh->b_private;
3363
3364 btrfs_warn_rl_in_rcu(device->fs_info,
3365 "lost page write due to IO error on %s",
3366 rcu_str_deref(device->name));
3367 /* note, we don't set_buffer_write_io_error because we have
3368 * our own ways of dealing with the IO errors
3369 */
3370 clear_buffer_uptodate(bh);
3371 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3372 }
3373 unlock_buffer(bh);
3374 put_bh(bh);
3375 }
3376
3377 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3378 struct buffer_head **bh_ret)
3379 {
3380 struct buffer_head *bh;
3381 struct btrfs_super_block *super;
3382 u64 bytenr;
3383
3384 bytenr = btrfs_sb_offset(copy_num);
3385 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3386 return -EINVAL;
3387
3388 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3389 /*
3390 * If we fail to read from the underlying devices, as of now
3391 * the best option we have is to mark it EIO.
3392 */
3393 if (!bh)
3394 return -EIO;
3395
3396 super = (struct btrfs_super_block *)bh->b_data;
3397 if (btrfs_super_bytenr(super) != bytenr ||
3398 btrfs_super_magic(super) != BTRFS_MAGIC) {
3399 brelse(bh);
3400 return -EINVAL;
3401 }
3402
3403 *bh_ret = bh;
3404 return 0;
3405 }
3406
3407
3408 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3409 {
3410 struct buffer_head *bh;
3411 struct buffer_head *latest = NULL;
3412 struct btrfs_super_block *super;
3413 int i;
3414 u64 transid = 0;
3415 int ret = -EINVAL;
3416
3417 /* we would like to check all the supers, but that would make
3418 * a btrfs mount succeed after a mkfs from a different FS.
3419 * So, we need to add a special mount option to scan for
3420 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3421 */
3422 for (i = 0; i < 1; i++) {
3423 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3424 if (ret)
3425 continue;
3426
3427 super = (struct btrfs_super_block *)bh->b_data;
3428
3429 if (!latest || btrfs_super_generation(super) > transid) {
3430 brelse(latest);
3431 latest = bh;
3432 transid = btrfs_super_generation(super);
3433 } else {
3434 brelse(bh);
3435 }
3436 }
3437
3438 if (!latest)
3439 return ERR_PTR(ret);
3440
3441 return latest;
3442 }
3443
3444 /*
3445 * Write superblock @sb to the @device. Do not wait for completion, all the
3446 * buffer heads we write are pinned.
3447 *
3448 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3449 * the expected device size at commit time. Note that max_mirrors must be
3450 * same for write and wait phases.
3451 *
3452 * Return number of errors when buffer head is not found or submission fails.
3453 */
3454 static int write_dev_supers(struct btrfs_device *device,
3455 struct btrfs_super_block *sb, int max_mirrors)
3456 {
3457 struct buffer_head *bh;
3458 int i;
3459 int ret;
3460 int errors = 0;
3461 u32 crc;
3462 u64 bytenr;
3463 int op_flags;
3464
3465 if (max_mirrors == 0)
3466 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3467
3468 for (i = 0; i < max_mirrors; i++) {
3469 bytenr = btrfs_sb_offset(i);
3470 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3471 device->commit_total_bytes)
3472 break;
3473
3474 btrfs_set_super_bytenr(sb, bytenr);
3475
3476 crc = ~(u32)0;
3477 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3478 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3479 btrfs_csum_final(crc, sb->csum);
3480
3481 /* One reference for us, and we leave it for the caller */
3482 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3483 BTRFS_SUPER_INFO_SIZE);
3484 if (!bh) {
3485 btrfs_err(device->fs_info,
3486 "couldn't get super buffer head for bytenr %llu",
3487 bytenr);
3488 errors++;
3489 continue;
3490 }
3491
3492 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3493
3494 /* one reference for submit_bh */
3495 get_bh(bh);
3496
3497 set_buffer_uptodate(bh);
3498 lock_buffer(bh);
3499 bh->b_end_io = btrfs_end_buffer_write_sync;
3500 bh->b_private = device;
3501
3502 /*
3503 * we fua the first super. The others we allow
3504 * to go down lazy.
3505 */
3506 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3507 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3508 op_flags |= REQ_FUA;
3509 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3510 if (ret)
3511 errors++;
3512 }
3513 return errors < i ? 0 : -1;
3514 }
3515
3516 /*
3517 * Wait for write completion of superblocks done by write_dev_supers,
3518 * @max_mirrors same for write and wait phases.
3519 *
3520 * Return number of errors when buffer head is not found or not marked up to
3521 * date.
3522 */
3523 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3524 {
3525 struct buffer_head *bh;
3526 int i;
3527 int errors = 0;
3528 bool primary_failed = false;
3529 u64 bytenr;
3530
3531 if (max_mirrors == 0)
3532 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3533
3534 for (i = 0; i < max_mirrors; i++) {
3535 bytenr = btrfs_sb_offset(i);
3536 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3537 device->commit_total_bytes)
3538 break;
3539
3540 bh = __find_get_block(device->bdev,
3541 bytenr / BTRFS_BDEV_BLOCKSIZE,
3542 BTRFS_SUPER_INFO_SIZE);
3543 if (!bh) {
3544 errors++;
3545 if (i == 0)
3546 primary_failed = true;
3547 continue;
3548 }
3549 wait_on_buffer(bh);
3550 if (!buffer_uptodate(bh)) {
3551 errors++;
3552 if (i == 0)
3553 primary_failed = true;
3554 }
3555
3556 /* drop our reference */
3557 brelse(bh);
3558
3559 /* drop the reference from the writing run */
3560 brelse(bh);
3561 }
3562
3563 /* log error, force error return */
3564 if (primary_failed) {
3565 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3566 device->devid);
3567 return -1;
3568 }
3569
3570 return errors < i ? 0 : -1;
3571 }
3572
3573 /*
3574 * endio for the write_dev_flush, this will wake anyone waiting
3575 * for the barrier when it is done
3576 */
3577 static void btrfs_end_empty_barrier(struct bio *bio)
3578 {
3579 complete(bio->bi_private);
3580 }
3581
3582 /*
3583 * Submit a flush request to the device if it supports it. Error handling is
3584 * done in the waiting counterpart.
3585 */
3586 static void write_dev_flush(struct btrfs_device *device)
3587 {
3588 struct request_queue *q = bdev_get_queue(device->bdev);
3589 struct bio *bio = device->flush_bio;
3590
3591 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3592 return;
3593
3594 bio_reset(bio);
3595 bio->bi_end_io = btrfs_end_empty_barrier;
3596 bio_set_dev(bio, device->bdev);
3597 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3598 init_completion(&device->flush_wait);
3599 bio->bi_private = &device->flush_wait;
3600
3601 btrfsic_submit_bio(bio);
3602 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3603 }
3604
3605 /*
3606 * If the flush bio has been submitted by write_dev_flush, wait for it.
3607 */
3608 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3609 {
3610 struct bio *bio = device->flush_bio;
3611
3612 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3613 return BLK_STS_OK;
3614
3615 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3616 wait_for_completion_io(&device->flush_wait);
3617
3618 return bio->bi_status;
3619 }
3620
3621 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3622 {
3623 if (!btrfs_check_rw_degradable(fs_info, NULL))
3624 return -EIO;
3625 return 0;
3626 }
3627
3628 /*
3629 * send an empty flush down to each device in parallel,
3630 * then wait for them
3631 */
3632 static int barrier_all_devices(struct btrfs_fs_info *info)
3633 {
3634 struct list_head *head;
3635 struct btrfs_device *dev;
3636 int errors_wait = 0;
3637 blk_status_t ret;
3638
3639 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3640 /* send down all the barriers */
3641 head = &info->fs_devices->devices;
3642 list_for_each_entry(dev, head, dev_list) {
3643 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3644 continue;
3645 if (!dev->bdev)
3646 continue;
3647 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3648 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3649 continue;
3650
3651 write_dev_flush(dev);
3652 dev->last_flush_error = BLK_STS_OK;
3653 }
3654
3655 /* wait for all the barriers */
3656 list_for_each_entry(dev, head, dev_list) {
3657 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3658 continue;
3659 if (!dev->bdev) {
3660 errors_wait++;
3661 continue;
3662 }
3663 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3664 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3665 continue;
3666
3667 ret = wait_dev_flush(dev);
3668 if (ret) {
3669 dev->last_flush_error = ret;
3670 btrfs_dev_stat_inc_and_print(dev,
3671 BTRFS_DEV_STAT_FLUSH_ERRS);
3672 errors_wait++;
3673 }
3674 }
3675
3676 if (errors_wait) {
3677 /*
3678 * At some point we need the status of all disks
3679 * to arrive at the volume status. So error checking
3680 * is being pushed to a separate loop.
3681 */
3682 return check_barrier_error(info);
3683 }
3684 return 0;
3685 }
3686
3687 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3688 {
3689 int raid_type;
3690 int min_tolerated = INT_MAX;
3691
3692 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3693 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3694 min_tolerated = min(min_tolerated,
3695 btrfs_raid_array[BTRFS_RAID_SINGLE].
3696 tolerated_failures);
3697
3698 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3699 if (raid_type == BTRFS_RAID_SINGLE)
3700 continue;
3701 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3702 continue;
3703 min_tolerated = min(min_tolerated,
3704 btrfs_raid_array[raid_type].
3705 tolerated_failures);
3706 }
3707
3708 if (min_tolerated == INT_MAX) {
3709 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3710 min_tolerated = 0;
3711 }
3712
3713 return min_tolerated;
3714 }
3715
3716 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3717 {
3718 struct list_head *head;
3719 struct btrfs_device *dev;
3720 struct btrfs_super_block *sb;
3721 struct btrfs_dev_item *dev_item;
3722 int ret;
3723 int do_barriers;
3724 int max_errors;
3725 int total_errors = 0;
3726 u64 flags;
3727
3728 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3729
3730 /*
3731 * max_mirrors == 0 indicates we're from commit_transaction,
3732 * not from fsync where the tree roots in fs_info have not
3733 * been consistent on disk.
3734 */
3735 if (max_mirrors == 0)
3736 backup_super_roots(fs_info);
3737
3738 sb = fs_info->super_for_commit;
3739 dev_item = &sb->dev_item;
3740
3741 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3742 head = &fs_info->fs_devices->devices;
3743 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3744
3745 if (do_barriers) {
3746 ret = barrier_all_devices(fs_info);
3747 if (ret) {
3748 mutex_unlock(
3749 &fs_info->fs_devices->device_list_mutex);
3750 btrfs_handle_fs_error(fs_info, ret,
3751 "errors while submitting device barriers.");
3752 return ret;
3753 }
3754 }
3755
3756 list_for_each_entry(dev, head, dev_list) {
3757 if (!dev->bdev) {
3758 total_errors++;
3759 continue;
3760 }
3761 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3762 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3763 continue;
3764
3765 btrfs_set_stack_device_generation(dev_item, 0);
3766 btrfs_set_stack_device_type(dev_item, dev->type);
3767 btrfs_set_stack_device_id(dev_item, dev->devid);
3768 btrfs_set_stack_device_total_bytes(dev_item,
3769 dev->commit_total_bytes);
3770 btrfs_set_stack_device_bytes_used(dev_item,
3771 dev->commit_bytes_used);
3772 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3773 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3774 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3775 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3776 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3777 BTRFS_FSID_SIZE);
3778
3779 flags = btrfs_super_flags(sb);
3780 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3781
3782 ret = btrfs_validate_write_super(fs_info, sb);
3783 if (ret < 0) {
3784 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3785 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3786 "unexpected superblock corruption detected");
3787 return -EUCLEAN;
3788 }
3789
3790 ret = write_dev_supers(dev, sb, max_mirrors);
3791 if (ret)
3792 total_errors++;
3793 }
3794 if (total_errors > max_errors) {
3795 btrfs_err(fs_info, "%d errors while writing supers",
3796 total_errors);
3797 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3798
3799 /* FUA is masked off if unsupported and can't be the reason */
3800 btrfs_handle_fs_error(fs_info, -EIO,
3801 "%d errors while writing supers",
3802 total_errors);
3803 return -EIO;
3804 }
3805
3806 total_errors = 0;
3807 list_for_each_entry(dev, head, dev_list) {
3808 if (!dev->bdev)
3809 continue;
3810 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3811 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3812 continue;
3813
3814 ret = wait_dev_supers(dev, max_mirrors);
3815 if (ret)
3816 total_errors++;
3817 }
3818 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3819 if (total_errors > max_errors) {
3820 btrfs_handle_fs_error(fs_info, -EIO,
3821 "%d errors while writing supers",
3822 total_errors);
3823 return -EIO;
3824 }
3825 return 0;
3826 }
3827
3828 /* Drop a fs root from the radix tree and free it. */
3829 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3830 struct btrfs_root *root)
3831 {
3832 spin_lock(&fs_info->fs_roots_radix_lock);
3833 radix_tree_delete(&fs_info->fs_roots_radix,
3834 (unsigned long)root->root_key.objectid);
3835 spin_unlock(&fs_info->fs_roots_radix_lock);
3836
3837 if (btrfs_root_refs(&root->root_item) == 0)
3838 synchronize_srcu(&fs_info->subvol_srcu);
3839
3840 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3841 btrfs_free_log(NULL, root);
3842 if (root->reloc_root) {
3843 free_extent_buffer(root->reloc_root->node);
3844 free_extent_buffer(root->reloc_root->commit_root);
3845 btrfs_put_fs_root(root->reloc_root);
3846 root->reloc_root = NULL;
3847 }
3848 }
3849
3850 if (root->free_ino_pinned)
3851 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3852 if (root->free_ino_ctl)
3853 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3854 btrfs_free_fs_root(root);
3855 }
3856
3857 void btrfs_free_fs_root(struct btrfs_root *root)
3858 {
3859 iput(root->ino_cache_inode);
3860 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3861 if (root->anon_dev)
3862 free_anon_bdev(root->anon_dev);
3863 if (root->subv_writers)
3864 btrfs_free_subvolume_writers(root->subv_writers);
3865 free_extent_buffer(root->node);
3866 free_extent_buffer(root->commit_root);
3867 kfree(root->free_ino_ctl);
3868 kfree(root->free_ino_pinned);
3869 btrfs_put_fs_root(root);
3870 }
3871
3872 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3873 {
3874 u64 root_objectid = 0;
3875 struct btrfs_root *gang[8];
3876 int i = 0;
3877 int err = 0;
3878 unsigned int ret = 0;
3879 int index;
3880
3881 while (1) {
3882 index = srcu_read_lock(&fs_info->subvol_srcu);
3883 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3884 (void **)gang, root_objectid,
3885 ARRAY_SIZE(gang));
3886 if (!ret) {
3887 srcu_read_unlock(&fs_info->subvol_srcu, index);
3888 break;
3889 }
3890 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3891
3892 for (i = 0; i < ret; i++) {
3893 /* Avoid to grab roots in dead_roots */
3894 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3895 gang[i] = NULL;
3896 continue;
3897 }
3898 /* grab all the search result for later use */
3899 gang[i] = btrfs_grab_fs_root(gang[i]);
3900 }
3901 srcu_read_unlock(&fs_info->subvol_srcu, index);
3902
3903 for (i = 0; i < ret; i++) {
3904 if (!gang[i])
3905 continue;
3906 root_objectid = gang[i]->root_key.objectid;
3907 err = btrfs_orphan_cleanup(gang[i]);
3908 if (err)
3909 break;
3910 btrfs_put_fs_root(gang[i]);
3911 }
3912 root_objectid++;
3913 }
3914
3915 /* release the uncleaned roots due to error */
3916 for (; i < ret; i++) {
3917 if (gang[i])
3918 btrfs_put_fs_root(gang[i]);
3919 }
3920 return err;
3921 }
3922
3923 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3924 {
3925 struct btrfs_root *root = fs_info->tree_root;
3926 struct btrfs_trans_handle *trans;
3927
3928 mutex_lock(&fs_info->cleaner_mutex);
3929 btrfs_run_delayed_iputs(fs_info);
3930 mutex_unlock(&fs_info->cleaner_mutex);
3931 wake_up_process(fs_info->cleaner_kthread);
3932
3933 /* wait until ongoing cleanup work done */
3934 down_write(&fs_info->cleanup_work_sem);
3935 up_write(&fs_info->cleanup_work_sem);
3936
3937 trans = btrfs_join_transaction(root);
3938 if (IS_ERR(trans))
3939 return PTR_ERR(trans);
3940 return btrfs_commit_transaction(trans);
3941 }
3942
3943 void close_ctree(struct btrfs_fs_info *fs_info)
3944 {
3945 int ret;
3946
3947 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3948 /*
3949 * We don't want the cleaner to start new transactions, add more delayed
3950 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3951 * because that frees the task_struct, and the transaction kthread might
3952 * still try to wake up the cleaner.
3953 */
3954 kthread_park(fs_info->cleaner_kthread);
3955
3956 /* wait for the qgroup rescan worker to stop */
3957 btrfs_qgroup_wait_for_completion(fs_info, false);
3958
3959 /* wait for the uuid_scan task to finish */
3960 down(&fs_info->uuid_tree_rescan_sem);
3961 /* avoid complains from lockdep et al., set sem back to initial state */
3962 up(&fs_info->uuid_tree_rescan_sem);
3963
3964 /* pause restriper - we want to resume on mount */
3965 btrfs_pause_balance(fs_info);
3966
3967 btrfs_dev_replace_suspend_for_unmount(fs_info);
3968
3969 btrfs_scrub_cancel(fs_info);
3970
3971 /* wait for any defraggers to finish */
3972 wait_event(fs_info->transaction_wait,
3973 (atomic_read(&fs_info->defrag_running) == 0));
3974
3975 /* clear out the rbtree of defraggable inodes */
3976 btrfs_cleanup_defrag_inodes(fs_info);
3977
3978 cancel_work_sync(&fs_info->async_reclaim_work);
3979
3980 if (!sb_rdonly(fs_info->sb)) {
3981 /*
3982 * The cleaner kthread is stopped, so do one final pass over
3983 * unused block groups.
3984 */
3985 btrfs_delete_unused_bgs(fs_info);
3986
3987 ret = btrfs_commit_super(fs_info);
3988 if (ret)
3989 btrfs_err(fs_info, "commit super ret %d", ret);
3990 }
3991
3992 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3993 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3994 btrfs_error_commit_super(fs_info);
3995
3996 kthread_stop(fs_info->transaction_kthread);
3997 kthread_stop(fs_info->cleaner_kthread);
3998
3999 ASSERT(list_empty(&fs_info->delayed_iputs));
4000 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4001
4002 btrfs_free_qgroup_config(fs_info);
4003 ASSERT(list_empty(&fs_info->delalloc_roots));
4004
4005 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4006 btrfs_info(fs_info, "at unmount delalloc count %lld",
4007 percpu_counter_sum(&fs_info->delalloc_bytes));
4008 }
4009
4010 btrfs_sysfs_remove_mounted(fs_info);
4011 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4012
4013 btrfs_free_fs_roots(fs_info);
4014
4015 btrfs_put_block_group_cache(fs_info);
4016
4017 /*
4018 * we must make sure there is not any read request to
4019 * submit after we stopping all workers.
4020 */
4021 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4022 btrfs_stop_all_workers(fs_info);
4023
4024 btrfs_free_block_groups(fs_info);
4025
4026 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4027 free_root_pointers(fs_info, 1);
4028
4029 iput(fs_info->btree_inode);
4030
4031 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4032 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4033 btrfsic_unmount(fs_info->fs_devices);
4034 #endif
4035
4036 btrfs_close_devices(fs_info->fs_devices);
4037 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4038
4039 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4040 percpu_counter_destroy(&fs_info->delalloc_bytes);
4041 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4042 cleanup_srcu_struct(&fs_info->subvol_srcu);
4043
4044 btrfs_free_stripe_hash_table(fs_info);
4045 btrfs_free_ref_cache(fs_info);
4046
4047 while (!list_empty(&fs_info->pinned_chunks)) {
4048 struct extent_map *em;
4049
4050 em = list_first_entry(&fs_info->pinned_chunks,
4051 struct extent_map, list);
4052 list_del_init(&em->list);
4053 free_extent_map(em);
4054 }
4055 }
4056
4057 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4058 int atomic)
4059 {
4060 int ret;
4061 struct inode *btree_inode = buf->pages[0]->mapping->host;
4062
4063 ret = extent_buffer_uptodate(buf);
4064 if (!ret)
4065 return ret;
4066
4067 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4068 parent_transid, atomic);
4069 if (ret == -EAGAIN)
4070 return ret;
4071 return !ret;
4072 }
4073
4074 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4075 {
4076 struct btrfs_fs_info *fs_info;
4077 struct btrfs_root *root;
4078 u64 transid = btrfs_header_generation(buf);
4079 int was_dirty;
4080
4081 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4082 /*
4083 * This is a fast path so only do this check if we have sanity tests
4084 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4085 * outside of the sanity tests.
4086 */
4087 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4088 return;
4089 #endif
4090 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4091 fs_info = root->fs_info;
4092 btrfs_assert_tree_locked(buf);
4093 if (transid != fs_info->generation)
4094 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4095 buf->start, transid, fs_info->generation);
4096 was_dirty = set_extent_buffer_dirty(buf);
4097 if (!was_dirty)
4098 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4099 buf->len,
4100 fs_info->dirty_metadata_batch);
4101 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4102 /*
4103 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4104 * but item data not updated.
4105 * So here we should only check item pointers, not item data.
4106 */
4107 if (btrfs_header_level(buf) == 0 &&
4108 btrfs_check_leaf_relaxed(fs_info, buf)) {
4109 btrfs_print_leaf(buf);
4110 ASSERT(0);
4111 }
4112 #endif
4113 }
4114
4115 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4116 int flush_delayed)
4117 {
4118 /*
4119 * looks as though older kernels can get into trouble with
4120 * this code, they end up stuck in balance_dirty_pages forever
4121 */
4122 int ret;
4123
4124 if (current->flags & PF_MEMALLOC)
4125 return;
4126
4127 if (flush_delayed)
4128 btrfs_balance_delayed_items(fs_info);
4129
4130 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4131 BTRFS_DIRTY_METADATA_THRESH,
4132 fs_info->dirty_metadata_batch);
4133 if (ret > 0) {
4134 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4135 }
4136 }
4137
4138 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4139 {
4140 __btrfs_btree_balance_dirty(fs_info, 1);
4141 }
4142
4143 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4144 {
4145 __btrfs_btree_balance_dirty(fs_info, 0);
4146 }
4147
4148 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4149 struct btrfs_key *first_key)
4150 {
4151 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4152 struct btrfs_fs_info *fs_info = root->fs_info;
4153
4154 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4155 level, first_key);
4156 }
4157
4158 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4159 {
4160 /* cleanup FS via transaction */
4161 btrfs_cleanup_transaction(fs_info);
4162
4163 mutex_lock(&fs_info->cleaner_mutex);
4164 btrfs_run_delayed_iputs(fs_info);
4165 mutex_unlock(&fs_info->cleaner_mutex);
4166
4167 down_write(&fs_info->cleanup_work_sem);
4168 up_write(&fs_info->cleanup_work_sem);
4169 }
4170
4171 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4172 {
4173 struct btrfs_ordered_extent *ordered;
4174
4175 spin_lock(&root->ordered_extent_lock);
4176 /*
4177 * This will just short circuit the ordered completion stuff which will
4178 * make sure the ordered extent gets properly cleaned up.
4179 */
4180 list_for_each_entry(ordered, &root->ordered_extents,
4181 root_extent_list)
4182 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4183 spin_unlock(&root->ordered_extent_lock);
4184 }
4185
4186 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4187 {
4188 struct btrfs_root *root;
4189 struct list_head splice;
4190
4191 INIT_LIST_HEAD(&splice);
4192
4193 spin_lock(&fs_info->ordered_root_lock);
4194 list_splice_init(&fs_info->ordered_roots, &splice);
4195 while (!list_empty(&splice)) {
4196 root = list_first_entry(&splice, struct btrfs_root,
4197 ordered_root);
4198 list_move_tail(&root->ordered_root,
4199 &fs_info->ordered_roots);
4200
4201 spin_unlock(&fs_info->ordered_root_lock);
4202 btrfs_destroy_ordered_extents(root);
4203
4204 cond_resched();
4205 spin_lock(&fs_info->ordered_root_lock);
4206 }
4207 spin_unlock(&fs_info->ordered_root_lock);
4208
4209 /*
4210 * We need this here because if we've been flipped read-only we won't
4211 * get sync() from the umount, so we need to make sure any ordered
4212 * extents that haven't had their dirty pages IO start writeout yet
4213 * actually get run and error out properly.
4214 */
4215 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4216 }
4217
4218 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4219 struct btrfs_fs_info *fs_info)
4220 {
4221 struct rb_node *node;
4222 struct btrfs_delayed_ref_root *delayed_refs;
4223 struct btrfs_delayed_ref_node *ref;
4224 int ret = 0;
4225
4226 delayed_refs = &trans->delayed_refs;
4227
4228 spin_lock(&delayed_refs->lock);
4229 if (atomic_read(&delayed_refs->num_entries) == 0) {
4230 spin_unlock(&delayed_refs->lock);
4231 btrfs_info(fs_info, "delayed_refs has NO entry");
4232 return ret;
4233 }
4234
4235 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4236 struct btrfs_delayed_ref_head *head;
4237 struct rb_node *n;
4238 bool pin_bytes = false;
4239
4240 head = rb_entry(node, struct btrfs_delayed_ref_head,
4241 href_node);
4242 if (!mutex_trylock(&head->mutex)) {
4243 refcount_inc(&head->refs);
4244 spin_unlock(&delayed_refs->lock);
4245
4246 mutex_lock(&head->mutex);
4247 mutex_unlock(&head->mutex);
4248 btrfs_put_delayed_ref_head(head);
4249 spin_lock(&delayed_refs->lock);
4250 continue;
4251 }
4252 spin_lock(&head->lock);
4253 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4254 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4255 ref_node);
4256 ref->in_tree = 0;
4257 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4258 RB_CLEAR_NODE(&ref->ref_node);
4259 if (!list_empty(&ref->add_list))
4260 list_del(&ref->add_list);
4261 atomic_dec(&delayed_refs->num_entries);
4262 btrfs_put_delayed_ref(ref);
4263 }
4264 if (head->must_insert_reserved)
4265 pin_bytes = true;
4266 btrfs_free_delayed_extent_op(head->extent_op);
4267 delayed_refs->num_heads--;
4268 if (head->processing == 0)
4269 delayed_refs->num_heads_ready--;
4270 atomic_dec(&delayed_refs->num_entries);
4271 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
4272 RB_CLEAR_NODE(&head->href_node);
4273 spin_unlock(&head->lock);
4274 spin_unlock(&delayed_refs->lock);
4275 mutex_unlock(&head->mutex);
4276
4277 if (pin_bytes)
4278 btrfs_pin_extent(fs_info, head->bytenr,
4279 head->num_bytes, 1);
4280 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4281 btrfs_put_delayed_ref_head(head);
4282 cond_resched();
4283 spin_lock(&delayed_refs->lock);
4284 }
4285
4286 spin_unlock(&delayed_refs->lock);
4287
4288 return ret;
4289 }
4290
4291 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4292 {
4293 struct btrfs_inode *btrfs_inode;
4294 struct list_head splice;
4295
4296 INIT_LIST_HEAD(&splice);
4297
4298 spin_lock(&root->delalloc_lock);
4299 list_splice_init(&root->delalloc_inodes, &splice);
4300
4301 while (!list_empty(&splice)) {
4302 struct inode *inode = NULL;
4303 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4304 delalloc_inodes);
4305 __btrfs_del_delalloc_inode(root, btrfs_inode);
4306 spin_unlock(&root->delalloc_lock);
4307
4308 /*
4309 * Make sure we get a live inode and that it'll not disappear
4310 * meanwhile.
4311 */
4312 inode = igrab(&btrfs_inode->vfs_inode);
4313 if (inode) {
4314 invalidate_inode_pages2(inode->i_mapping);
4315 iput(inode);
4316 }
4317 spin_lock(&root->delalloc_lock);
4318 }
4319 spin_unlock(&root->delalloc_lock);
4320 }
4321
4322 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4323 {
4324 struct btrfs_root *root;
4325 struct list_head splice;
4326
4327 INIT_LIST_HEAD(&splice);
4328
4329 spin_lock(&fs_info->delalloc_root_lock);
4330 list_splice_init(&fs_info->delalloc_roots, &splice);
4331 while (!list_empty(&splice)) {
4332 root = list_first_entry(&splice, struct btrfs_root,
4333 delalloc_root);
4334 root = btrfs_grab_fs_root(root);
4335 BUG_ON(!root);
4336 spin_unlock(&fs_info->delalloc_root_lock);
4337
4338 btrfs_destroy_delalloc_inodes(root);
4339 btrfs_put_fs_root(root);
4340
4341 spin_lock(&fs_info->delalloc_root_lock);
4342 }
4343 spin_unlock(&fs_info->delalloc_root_lock);
4344 }
4345
4346 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4347 struct extent_io_tree *dirty_pages,
4348 int mark)
4349 {
4350 int ret;
4351 struct extent_buffer *eb;
4352 u64 start = 0;
4353 u64 end;
4354
4355 while (1) {
4356 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4357 mark, NULL);
4358 if (ret)
4359 break;
4360
4361 clear_extent_bits(dirty_pages, start, end, mark);
4362 while (start <= end) {
4363 eb = find_extent_buffer(fs_info, start);
4364 start += fs_info->nodesize;
4365 if (!eb)
4366 continue;
4367 wait_on_extent_buffer_writeback(eb);
4368
4369 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4370 &eb->bflags))
4371 clear_extent_buffer_dirty(eb);
4372 free_extent_buffer_stale(eb);
4373 }
4374 }
4375
4376 return ret;
4377 }
4378
4379 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4380 struct extent_io_tree *pinned_extents)
4381 {
4382 struct extent_io_tree *unpin;
4383 u64 start;
4384 u64 end;
4385 int ret;
4386 bool loop = true;
4387
4388 unpin = pinned_extents;
4389 again:
4390 while (1) {
4391 struct extent_state *cached_state = NULL;
4392
4393 /*
4394 * The btrfs_finish_extent_commit() may get the same range as
4395 * ours between find_first_extent_bit and clear_extent_dirty.
4396 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4397 * the same extent range.
4398 */
4399 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4400 ret = find_first_extent_bit(unpin, 0, &start, &end,
4401 EXTENT_DIRTY, &cached_state);
4402 if (ret) {
4403 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4404 break;
4405 }
4406
4407 clear_extent_dirty(unpin, start, end, &cached_state);
4408 free_extent_state(cached_state);
4409 btrfs_error_unpin_extent_range(fs_info, start, end);
4410 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4411 cond_resched();
4412 }
4413
4414 if (loop) {
4415 if (unpin == &fs_info->freed_extents[0])
4416 unpin = &fs_info->freed_extents[1];
4417 else
4418 unpin = &fs_info->freed_extents[0];
4419 loop = false;
4420 goto again;
4421 }
4422
4423 return 0;
4424 }
4425
4426 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4427 {
4428 struct inode *inode;
4429
4430 inode = cache->io_ctl.inode;
4431 if (inode) {
4432 invalidate_inode_pages2(inode->i_mapping);
4433 BTRFS_I(inode)->generation = 0;
4434 cache->io_ctl.inode = NULL;
4435 iput(inode);
4436 }
4437 btrfs_put_block_group(cache);
4438 }
4439
4440 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4441 struct btrfs_fs_info *fs_info)
4442 {
4443 struct btrfs_block_group_cache *cache;
4444
4445 spin_lock(&cur_trans->dirty_bgs_lock);
4446 while (!list_empty(&cur_trans->dirty_bgs)) {
4447 cache = list_first_entry(&cur_trans->dirty_bgs,
4448 struct btrfs_block_group_cache,
4449 dirty_list);
4450
4451 if (!list_empty(&cache->io_list)) {
4452 spin_unlock(&cur_trans->dirty_bgs_lock);
4453 list_del_init(&cache->io_list);
4454 btrfs_cleanup_bg_io(cache);
4455 spin_lock(&cur_trans->dirty_bgs_lock);
4456 }
4457
4458 list_del_init(&cache->dirty_list);
4459 spin_lock(&cache->lock);
4460 cache->disk_cache_state = BTRFS_DC_ERROR;
4461 spin_unlock(&cache->lock);
4462
4463 spin_unlock(&cur_trans->dirty_bgs_lock);
4464 btrfs_put_block_group(cache);
4465 btrfs_delayed_refs_rsv_release(fs_info, 1);
4466 spin_lock(&cur_trans->dirty_bgs_lock);
4467 }
4468 spin_unlock(&cur_trans->dirty_bgs_lock);
4469
4470 /*
4471 * Refer to the definition of io_bgs member for details why it's safe
4472 * to use it without any locking
4473 */
4474 while (!list_empty(&cur_trans->io_bgs)) {
4475 cache = list_first_entry(&cur_trans->io_bgs,
4476 struct btrfs_block_group_cache,
4477 io_list);
4478
4479 list_del_init(&cache->io_list);
4480 spin_lock(&cache->lock);
4481 cache->disk_cache_state = BTRFS_DC_ERROR;
4482 spin_unlock(&cache->lock);
4483 btrfs_cleanup_bg_io(cache);
4484 }
4485 }
4486
4487 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4488 struct btrfs_fs_info *fs_info)
4489 {
4490 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4491 ASSERT(list_empty(&cur_trans->dirty_bgs));
4492 ASSERT(list_empty(&cur_trans->io_bgs));
4493
4494 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4495
4496 cur_trans->state = TRANS_STATE_COMMIT_START;
4497 wake_up(&fs_info->transaction_blocked_wait);
4498
4499 cur_trans->state = TRANS_STATE_UNBLOCKED;
4500 wake_up(&fs_info->transaction_wait);
4501
4502 btrfs_destroy_delayed_inodes(fs_info);
4503 btrfs_assert_delayed_root_empty(fs_info);
4504
4505 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4506 EXTENT_DIRTY);
4507 btrfs_destroy_pinned_extent(fs_info,
4508 fs_info->pinned_extents);
4509
4510 cur_trans->state =TRANS_STATE_COMPLETED;
4511 wake_up(&cur_trans->commit_wait);
4512 }
4513
4514 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4515 {
4516 struct btrfs_transaction *t;
4517
4518 mutex_lock(&fs_info->transaction_kthread_mutex);
4519
4520 spin_lock(&fs_info->trans_lock);
4521 while (!list_empty(&fs_info->trans_list)) {
4522 t = list_first_entry(&fs_info->trans_list,
4523 struct btrfs_transaction, list);
4524 if (t->state >= TRANS_STATE_COMMIT_START) {
4525 refcount_inc(&t->use_count);
4526 spin_unlock(&fs_info->trans_lock);
4527 btrfs_wait_for_commit(fs_info, t->transid);
4528 btrfs_put_transaction(t);
4529 spin_lock(&fs_info->trans_lock);
4530 continue;
4531 }
4532 if (t == fs_info->running_transaction) {
4533 t->state = TRANS_STATE_COMMIT_DOING;
4534 spin_unlock(&fs_info->trans_lock);
4535 /*
4536 * We wait for 0 num_writers since we don't hold a trans
4537 * handle open currently for this transaction.
4538 */
4539 wait_event(t->writer_wait,
4540 atomic_read(&t->num_writers) == 0);
4541 } else {
4542 spin_unlock(&fs_info->trans_lock);
4543 }
4544 btrfs_cleanup_one_transaction(t, fs_info);
4545
4546 spin_lock(&fs_info->trans_lock);
4547 if (t == fs_info->running_transaction)
4548 fs_info->running_transaction = NULL;
4549 list_del_init(&t->list);
4550 spin_unlock(&fs_info->trans_lock);
4551
4552 btrfs_put_transaction(t);
4553 trace_btrfs_transaction_commit(fs_info->tree_root);
4554 spin_lock(&fs_info->trans_lock);
4555 }
4556 spin_unlock(&fs_info->trans_lock);
4557 btrfs_destroy_all_ordered_extents(fs_info);
4558 btrfs_destroy_delayed_inodes(fs_info);
4559 btrfs_assert_delayed_root_empty(fs_info);
4560 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4561 btrfs_destroy_all_delalloc_inodes(fs_info);
4562 mutex_unlock(&fs_info->transaction_kthread_mutex);
4563
4564 return 0;
4565 }
4566
4567 static const struct extent_io_ops btree_extent_io_ops = {
4568 /* mandatory callbacks */
4569 .submit_bio_hook = btree_submit_bio_hook,
4570 .readpage_end_io_hook = btree_readpage_end_io_hook,
4571 };