]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/btrfs/raid56.c
Merge tag 'docs-5.0-fixes' of git://git.lwn.net/linux
[thirdparty/kernel/linux.git] / fs / btrfs / raid56.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Fusion-io All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 */
6
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "volumes.h"
19 #include "raid56.h"
20 #include "async-thread.h"
21
22 /* set when additional merges to this rbio are not allowed */
23 #define RBIO_RMW_LOCKED_BIT 1
24
25 /*
26 * set when this rbio is sitting in the hash, but it is just a cache
27 * of past RMW
28 */
29 #define RBIO_CACHE_BIT 2
30
31 /*
32 * set when it is safe to trust the stripe_pages for caching
33 */
34 #define RBIO_CACHE_READY_BIT 3
35
36 #define RBIO_CACHE_SIZE 1024
37
38 enum btrfs_rbio_ops {
39 BTRFS_RBIO_WRITE,
40 BTRFS_RBIO_READ_REBUILD,
41 BTRFS_RBIO_PARITY_SCRUB,
42 BTRFS_RBIO_REBUILD_MISSING,
43 };
44
45 struct btrfs_raid_bio {
46 struct btrfs_fs_info *fs_info;
47 struct btrfs_bio *bbio;
48
49 /* while we're doing rmw on a stripe
50 * we put it into a hash table so we can
51 * lock the stripe and merge more rbios
52 * into it.
53 */
54 struct list_head hash_list;
55
56 /*
57 * LRU list for the stripe cache
58 */
59 struct list_head stripe_cache;
60
61 /*
62 * for scheduling work in the helper threads
63 */
64 struct btrfs_work work;
65
66 /*
67 * bio list and bio_list_lock are used
68 * to add more bios into the stripe
69 * in hopes of avoiding the full rmw
70 */
71 struct bio_list bio_list;
72 spinlock_t bio_list_lock;
73
74 /* also protected by the bio_list_lock, the
75 * plug list is used by the plugging code
76 * to collect partial bios while plugged. The
77 * stripe locking code also uses it to hand off
78 * the stripe lock to the next pending IO
79 */
80 struct list_head plug_list;
81
82 /*
83 * flags that tell us if it is safe to
84 * merge with this bio
85 */
86 unsigned long flags;
87
88 /* size of each individual stripe on disk */
89 int stripe_len;
90
91 /* number of data stripes (no p/q) */
92 int nr_data;
93
94 int real_stripes;
95
96 int stripe_npages;
97 /*
98 * set if we're doing a parity rebuild
99 * for a read from higher up, which is handled
100 * differently from a parity rebuild as part of
101 * rmw
102 */
103 enum btrfs_rbio_ops operation;
104
105 /* first bad stripe */
106 int faila;
107
108 /* second bad stripe (for raid6 use) */
109 int failb;
110
111 int scrubp;
112 /*
113 * number of pages needed to represent the full
114 * stripe
115 */
116 int nr_pages;
117
118 /*
119 * size of all the bios in the bio_list. This
120 * helps us decide if the rbio maps to a full
121 * stripe or not
122 */
123 int bio_list_bytes;
124
125 int generic_bio_cnt;
126
127 refcount_t refs;
128
129 atomic_t stripes_pending;
130
131 atomic_t error;
132 /*
133 * these are two arrays of pointers. We allocate the
134 * rbio big enough to hold them both and setup their
135 * locations when the rbio is allocated
136 */
137
138 /* pointers to pages that we allocated for
139 * reading/writing stripes directly from the disk (including P/Q)
140 */
141 struct page **stripe_pages;
142
143 /*
144 * pointers to the pages in the bio_list. Stored
145 * here for faster lookup
146 */
147 struct page **bio_pages;
148
149 /*
150 * bitmap to record which horizontal stripe has data
151 */
152 unsigned long *dbitmap;
153
154 /* allocated with real_stripes-many pointers for finish_*() calls */
155 void **finish_pointers;
156
157 /* allocated with stripe_npages-many bits for finish_*() calls */
158 unsigned long *finish_pbitmap;
159 };
160
161 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
162 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
163 static void rmw_work(struct btrfs_work *work);
164 static void read_rebuild_work(struct btrfs_work *work);
165 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
166 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
167 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
168 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
169 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
170
171 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
172 int need_check);
173 static void scrub_parity_work(struct btrfs_work *work);
174
175 static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
176 {
177 btrfs_init_work(&rbio->work, btrfs_rmw_helper, work_func, NULL, NULL);
178 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
179 }
180
181 /*
182 * the stripe hash table is used for locking, and to collect
183 * bios in hopes of making a full stripe
184 */
185 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
186 {
187 struct btrfs_stripe_hash_table *table;
188 struct btrfs_stripe_hash_table *x;
189 struct btrfs_stripe_hash *cur;
190 struct btrfs_stripe_hash *h;
191 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
192 int i;
193 int table_size;
194
195 if (info->stripe_hash_table)
196 return 0;
197
198 /*
199 * The table is large, starting with order 4 and can go as high as
200 * order 7 in case lock debugging is turned on.
201 *
202 * Try harder to allocate and fallback to vmalloc to lower the chance
203 * of a failing mount.
204 */
205 table_size = sizeof(*table) + sizeof(*h) * num_entries;
206 table = kvzalloc(table_size, GFP_KERNEL);
207 if (!table)
208 return -ENOMEM;
209
210 spin_lock_init(&table->cache_lock);
211 INIT_LIST_HEAD(&table->stripe_cache);
212
213 h = table->table;
214
215 for (i = 0; i < num_entries; i++) {
216 cur = h + i;
217 INIT_LIST_HEAD(&cur->hash_list);
218 spin_lock_init(&cur->lock);
219 }
220
221 x = cmpxchg(&info->stripe_hash_table, NULL, table);
222 if (x)
223 kvfree(x);
224 return 0;
225 }
226
227 /*
228 * caching an rbio means to copy anything from the
229 * bio_pages array into the stripe_pages array. We
230 * use the page uptodate bit in the stripe cache array
231 * to indicate if it has valid data
232 *
233 * once the caching is done, we set the cache ready
234 * bit.
235 */
236 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
237 {
238 int i;
239 char *s;
240 char *d;
241 int ret;
242
243 ret = alloc_rbio_pages(rbio);
244 if (ret)
245 return;
246
247 for (i = 0; i < rbio->nr_pages; i++) {
248 if (!rbio->bio_pages[i])
249 continue;
250
251 s = kmap(rbio->bio_pages[i]);
252 d = kmap(rbio->stripe_pages[i]);
253
254 copy_page(d, s);
255
256 kunmap(rbio->bio_pages[i]);
257 kunmap(rbio->stripe_pages[i]);
258 SetPageUptodate(rbio->stripe_pages[i]);
259 }
260 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
261 }
262
263 /*
264 * we hash on the first logical address of the stripe
265 */
266 static int rbio_bucket(struct btrfs_raid_bio *rbio)
267 {
268 u64 num = rbio->bbio->raid_map[0];
269
270 /*
271 * we shift down quite a bit. We're using byte
272 * addressing, and most of the lower bits are zeros.
273 * This tends to upset hash_64, and it consistently
274 * returns just one or two different values.
275 *
276 * shifting off the lower bits fixes things.
277 */
278 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
279 }
280
281 /*
282 * stealing an rbio means taking all the uptodate pages from the stripe
283 * array in the source rbio and putting them into the destination rbio
284 */
285 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
286 {
287 int i;
288 struct page *s;
289 struct page *d;
290
291 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
292 return;
293
294 for (i = 0; i < dest->nr_pages; i++) {
295 s = src->stripe_pages[i];
296 if (!s || !PageUptodate(s)) {
297 continue;
298 }
299
300 d = dest->stripe_pages[i];
301 if (d)
302 __free_page(d);
303
304 dest->stripe_pages[i] = s;
305 src->stripe_pages[i] = NULL;
306 }
307 }
308
309 /*
310 * merging means we take the bio_list from the victim and
311 * splice it into the destination. The victim should
312 * be discarded afterwards.
313 *
314 * must be called with dest->rbio_list_lock held
315 */
316 static void merge_rbio(struct btrfs_raid_bio *dest,
317 struct btrfs_raid_bio *victim)
318 {
319 bio_list_merge(&dest->bio_list, &victim->bio_list);
320 dest->bio_list_bytes += victim->bio_list_bytes;
321 dest->generic_bio_cnt += victim->generic_bio_cnt;
322 bio_list_init(&victim->bio_list);
323 }
324
325 /*
326 * used to prune items that are in the cache. The caller
327 * must hold the hash table lock.
328 */
329 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
330 {
331 int bucket = rbio_bucket(rbio);
332 struct btrfs_stripe_hash_table *table;
333 struct btrfs_stripe_hash *h;
334 int freeit = 0;
335
336 /*
337 * check the bit again under the hash table lock.
338 */
339 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
340 return;
341
342 table = rbio->fs_info->stripe_hash_table;
343 h = table->table + bucket;
344
345 /* hold the lock for the bucket because we may be
346 * removing it from the hash table
347 */
348 spin_lock(&h->lock);
349
350 /*
351 * hold the lock for the bio list because we need
352 * to make sure the bio list is empty
353 */
354 spin_lock(&rbio->bio_list_lock);
355
356 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
357 list_del_init(&rbio->stripe_cache);
358 table->cache_size -= 1;
359 freeit = 1;
360
361 /* if the bio list isn't empty, this rbio is
362 * still involved in an IO. We take it out
363 * of the cache list, and drop the ref that
364 * was held for the list.
365 *
366 * If the bio_list was empty, we also remove
367 * the rbio from the hash_table, and drop
368 * the corresponding ref
369 */
370 if (bio_list_empty(&rbio->bio_list)) {
371 if (!list_empty(&rbio->hash_list)) {
372 list_del_init(&rbio->hash_list);
373 refcount_dec(&rbio->refs);
374 BUG_ON(!list_empty(&rbio->plug_list));
375 }
376 }
377 }
378
379 spin_unlock(&rbio->bio_list_lock);
380 spin_unlock(&h->lock);
381
382 if (freeit)
383 __free_raid_bio(rbio);
384 }
385
386 /*
387 * prune a given rbio from the cache
388 */
389 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
390 {
391 struct btrfs_stripe_hash_table *table;
392 unsigned long flags;
393
394 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
395 return;
396
397 table = rbio->fs_info->stripe_hash_table;
398
399 spin_lock_irqsave(&table->cache_lock, flags);
400 __remove_rbio_from_cache(rbio);
401 spin_unlock_irqrestore(&table->cache_lock, flags);
402 }
403
404 /*
405 * remove everything in the cache
406 */
407 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
408 {
409 struct btrfs_stripe_hash_table *table;
410 unsigned long flags;
411 struct btrfs_raid_bio *rbio;
412
413 table = info->stripe_hash_table;
414
415 spin_lock_irqsave(&table->cache_lock, flags);
416 while (!list_empty(&table->stripe_cache)) {
417 rbio = list_entry(table->stripe_cache.next,
418 struct btrfs_raid_bio,
419 stripe_cache);
420 __remove_rbio_from_cache(rbio);
421 }
422 spin_unlock_irqrestore(&table->cache_lock, flags);
423 }
424
425 /*
426 * remove all cached entries and free the hash table
427 * used by unmount
428 */
429 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
430 {
431 if (!info->stripe_hash_table)
432 return;
433 btrfs_clear_rbio_cache(info);
434 kvfree(info->stripe_hash_table);
435 info->stripe_hash_table = NULL;
436 }
437
438 /*
439 * insert an rbio into the stripe cache. It
440 * must have already been prepared by calling
441 * cache_rbio_pages
442 *
443 * If this rbio was already cached, it gets
444 * moved to the front of the lru.
445 *
446 * If the size of the rbio cache is too big, we
447 * prune an item.
448 */
449 static void cache_rbio(struct btrfs_raid_bio *rbio)
450 {
451 struct btrfs_stripe_hash_table *table;
452 unsigned long flags;
453
454 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
455 return;
456
457 table = rbio->fs_info->stripe_hash_table;
458
459 spin_lock_irqsave(&table->cache_lock, flags);
460 spin_lock(&rbio->bio_list_lock);
461
462 /* bump our ref if we were not in the list before */
463 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
464 refcount_inc(&rbio->refs);
465
466 if (!list_empty(&rbio->stripe_cache)){
467 list_move(&rbio->stripe_cache, &table->stripe_cache);
468 } else {
469 list_add(&rbio->stripe_cache, &table->stripe_cache);
470 table->cache_size += 1;
471 }
472
473 spin_unlock(&rbio->bio_list_lock);
474
475 if (table->cache_size > RBIO_CACHE_SIZE) {
476 struct btrfs_raid_bio *found;
477
478 found = list_entry(table->stripe_cache.prev,
479 struct btrfs_raid_bio,
480 stripe_cache);
481
482 if (found != rbio)
483 __remove_rbio_from_cache(found);
484 }
485
486 spin_unlock_irqrestore(&table->cache_lock, flags);
487 }
488
489 /*
490 * helper function to run the xor_blocks api. It is only
491 * able to do MAX_XOR_BLOCKS at a time, so we need to
492 * loop through.
493 */
494 static void run_xor(void **pages, int src_cnt, ssize_t len)
495 {
496 int src_off = 0;
497 int xor_src_cnt = 0;
498 void *dest = pages[src_cnt];
499
500 while(src_cnt > 0) {
501 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
502 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
503
504 src_cnt -= xor_src_cnt;
505 src_off += xor_src_cnt;
506 }
507 }
508
509 /*
510 * Returns true if the bio list inside this rbio covers an entire stripe (no
511 * rmw required).
512 */
513 static int rbio_is_full(struct btrfs_raid_bio *rbio)
514 {
515 unsigned long flags;
516 unsigned long size = rbio->bio_list_bytes;
517 int ret = 1;
518
519 spin_lock_irqsave(&rbio->bio_list_lock, flags);
520 if (size != rbio->nr_data * rbio->stripe_len)
521 ret = 0;
522 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
523 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
524
525 return ret;
526 }
527
528 /*
529 * returns 1 if it is safe to merge two rbios together.
530 * The merging is safe if the two rbios correspond to
531 * the same stripe and if they are both going in the same
532 * direction (read vs write), and if neither one is
533 * locked for final IO
534 *
535 * The caller is responsible for locking such that
536 * rmw_locked is safe to test
537 */
538 static int rbio_can_merge(struct btrfs_raid_bio *last,
539 struct btrfs_raid_bio *cur)
540 {
541 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
542 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
543 return 0;
544
545 /*
546 * we can't merge with cached rbios, since the
547 * idea is that when we merge the destination
548 * rbio is going to run our IO for us. We can
549 * steal from cached rbios though, other functions
550 * handle that.
551 */
552 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
553 test_bit(RBIO_CACHE_BIT, &cur->flags))
554 return 0;
555
556 if (last->bbio->raid_map[0] !=
557 cur->bbio->raid_map[0])
558 return 0;
559
560 /* we can't merge with different operations */
561 if (last->operation != cur->operation)
562 return 0;
563 /*
564 * We've need read the full stripe from the drive.
565 * check and repair the parity and write the new results.
566 *
567 * We're not allowed to add any new bios to the
568 * bio list here, anyone else that wants to
569 * change this stripe needs to do their own rmw.
570 */
571 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
572 return 0;
573
574 if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
575 return 0;
576
577 if (last->operation == BTRFS_RBIO_READ_REBUILD) {
578 int fa = last->faila;
579 int fb = last->failb;
580 int cur_fa = cur->faila;
581 int cur_fb = cur->failb;
582
583 if (last->faila >= last->failb) {
584 fa = last->failb;
585 fb = last->faila;
586 }
587
588 if (cur->faila >= cur->failb) {
589 cur_fa = cur->failb;
590 cur_fb = cur->faila;
591 }
592
593 if (fa != cur_fa || fb != cur_fb)
594 return 0;
595 }
596 return 1;
597 }
598
599 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
600 int index)
601 {
602 return stripe * rbio->stripe_npages + index;
603 }
604
605 /*
606 * these are just the pages from the rbio array, not from anything
607 * the FS sent down to us
608 */
609 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
610 int index)
611 {
612 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
613 }
614
615 /*
616 * helper to index into the pstripe
617 */
618 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
619 {
620 return rbio_stripe_page(rbio, rbio->nr_data, index);
621 }
622
623 /*
624 * helper to index into the qstripe, returns null
625 * if there is no qstripe
626 */
627 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
628 {
629 if (rbio->nr_data + 1 == rbio->real_stripes)
630 return NULL;
631 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
632 }
633
634 /*
635 * The first stripe in the table for a logical address
636 * has the lock. rbios are added in one of three ways:
637 *
638 * 1) Nobody has the stripe locked yet. The rbio is given
639 * the lock and 0 is returned. The caller must start the IO
640 * themselves.
641 *
642 * 2) Someone has the stripe locked, but we're able to merge
643 * with the lock owner. The rbio is freed and the IO will
644 * start automatically along with the existing rbio. 1 is returned.
645 *
646 * 3) Someone has the stripe locked, but we're not able to merge.
647 * The rbio is added to the lock owner's plug list, or merged into
648 * an rbio already on the plug list. When the lock owner unlocks,
649 * the next rbio on the list is run and the IO is started automatically.
650 * 1 is returned
651 *
652 * If we return 0, the caller still owns the rbio and must continue with
653 * IO submission. If we return 1, the caller must assume the rbio has
654 * already been freed.
655 */
656 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
657 {
658 int bucket = rbio_bucket(rbio);
659 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
660 struct btrfs_raid_bio *cur;
661 struct btrfs_raid_bio *pending;
662 unsigned long flags;
663 struct btrfs_raid_bio *freeit = NULL;
664 struct btrfs_raid_bio *cache_drop = NULL;
665 int ret = 0;
666
667 spin_lock_irqsave(&h->lock, flags);
668 list_for_each_entry(cur, &h->hash_list, hash_list) {
669 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
670 spin_lock(&cur->bio_list_lock);
671
672 /* can we steal this cached rbio's pages? */
673 if (bio_list_empty(&cur->bio_list) &&
674 list_empty(&cur->plug_list) &&
675 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
676 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
677 list_del_init(&cur->hash_list);
678 refcount_dec(&cur->refs);
679
680 steal_rbio(cur, rbio);
681 cache_drop = cur;
682 spin_unlock(&cur->bio_list_lock);
683
684 goto lockit;
685 }
686
687 /* can we merge into the lock owner? */
688 if (rbio_can_merge(cur, rbio)) {
689 merge_rbio(cur, rbio);
690 spin_unlock(&cur->bio_list_lock);
691 freeit = rbio;
692 ret = 1;
693 goto out;
694 }
695
696
697 /*
698 * we couldn't merge with the running
699 * rbio, see if we can merge with the
700 * pending ones. We don't have to
701 * check for rmw_locked because there
702 * is no way they are inside finish_rmw
703 * right now
704 */
705 list_for_each_entry(pending, &cur->plug_list,
706 plug_list) {
707 if (rbio_can_merge(pending, rbio)) {
708 merge_rbio(pending, rbio);
709 spin_unlock(&cur->bio_list_lock);
710 freeit = rbio;
711 ret = 1;
712 goto out;
713 }
714 }
715
716 /* no merging, put us on the tail of the plug list,
717 * our rbio will be started with the currently
718 * running rbio unlocks
719 */
720 list_add_tail(&rbio->plug_list, &cur->plug_list);
721 spin_unlock(&cur->bio_list_lock);
722 ret = 1;
723 goto out;
724 }
725 }
726 lockit:
727 refcount_inc(&rbio->refs);
728 list_add(&rbio->hash_list, &h->hash_list);
729 out:
730 spin_unlock_irqrestore(&h->lock, flags);
731 if (cache_drop)
732 remove_rbio_from_cache(cache_drop);
733 if (freeit)
734 __free_raid_bio(freeit);
735 return ret;
736 }
737
738 /*
739 * called as rmw or parity rebuild is completed. If the plug list has more
740 * rbios waiting for this stripe, the next one on the list will be started
741 */
742 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
743 {
744 int bucket;
745 struct btrfs_stripe_hash *h;
746 unsigned long flags;
747 int keep_cache = 0;
748
749 bucket = rbio_bucket(rbio);
750 h = rbio->fs_info->stripe_hash_table->table + bucket;
751
752 if (list_empty(&rbio->plug_list))
753 cache_rbio(rbio);
754
755 spin_lock_irqsave(&h->lock, flags);
756 spin_lock(&rbio->bio_list_lock);
757
758 if (!list_empty(&rbio->hash_list)) {
759 /*
760 * if we're still cached and there is no other IO
761 * to perform, just leave this rbio here for others
762 * to steal from later
763 */
764 if (list_empty(&rbio->plug_list) &&
765 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
766 keep_cache = 1;
767 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
768 BUG_ON(!bio_list_empty(&rbio->bio_list));
769 goto done;
770 }
771
772 list_del_init(&rbio->hash_list);
773 refcount_dec(&rbio->refs);
774
775 /*
776 * we use the plug list to hold all the rbios
777 * waiting for the chance to lock this stripe.
778 * hand the lock over to one of them.
779 */
780 if (!list_empty(&rbio->plug_list)) {
781 struct btrfs_raid_bio *next;
782 struct list_head *head = rbio->plug_list.next;
783
784 next = list_entry(head, struct btrfs_raid_bio,
785 plug_list);
786
787 list_del_init(&rbio->plug_list);
788
789 list_add(&next->hash_list, &h->hash_list);
790 refcount_inc(&next->refs);
791 spin_unlock(&rbio->bio_list_lock);
792 spin_unlock_irqrestore(&h->lock, flags);
793
794 if (next->operation == BTRFS_RBIO_READ_REBUILD)
795 start_async_work(next, read_rebuild_work);
796 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
797 steal_rbio(rbio, next);
798 start_async_work(next, read_rebuild_work);
799 } else if (next->operation == BTRFS_RBIO_WRITE) {
800 steal_rbio(rbio, next);
801 start_async_work(next, rmw_work);
802 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
803 steal_rbio(rbio, next);
804 start_async_work(next, scrub_parity_work);
805 }
806
807 goto done_nolock;
808 }
809 }
810 done:
811 spin_unlock(&rbio->bio_list_lock);
812 spin_unlock_irqrestore(&h->lock, flags);
813
814 done_nolock:
815 if (!keep_cache)
816 remove_rbio_from_cache(rbio);
817 }
818
819 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
820 {
821 int i;
822
823 if (!refcount_dec_and_test(&rbio->refs))
824 return;
825
826 WARN_ON(!list_empty(&rbio->stripe_cache));
827 WARN_ON(!list_empty(&rbio->hash_list));
828 WARN_ON(!bio_list_empty(&rbio->bio_list));
829
830 for (i = 0; i < rbio->nr_pages; i++) {
831 if (rbio->stripe_pages[i]) {
832 __free_page(rbio->stripe_pages[i]);
833 rbio->stripe_pages[i] = NULL;
834 }
835 }
836
837 btrfs_put_bbio(rbio->bbio);
838 kfree(rbio);
839 }
840
841 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
842 {
843 struct bio *next;
844
845 while (cur) {
846 next = cur->bi_next;
847 cur->bi_next = NULL;
848 cur->bi_status = err;
849 bio_endio(cur);
850 cur = next;
851 }
852 }
853
854 /*
855 * this frees the rbio and runs through all the bios in the
856 * bio_list and calls end_io on them
857 */
858 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
859 {
860 struct bio *cur = bio_list_get(&rbio->bio_list);
861 struct bio *extra;
862
863 if (rbio->generic_bio_cnt)
864 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
865
866 /*
867 * At this moment, rbio->bio_list is empty, however since rbio does not
868 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
869 * hash list, rbio may be merged with others so that rbio->bio_list
870 * becomes non-empty.
871 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
872 * more and we can call bio_endio() on all queued bios.
873 */
874 unlock_stripe(rbio);
875 extra = bio_list_get(&rbio->bio_list);
876 __free_raid_bio(rbio);
877
878 rbio_endio_bio_list(cur, err);
879 if (extra)
880 rbio_endio_bio_list(extra, err);
881 }
882
883 /*
884 * end io function used by finish_rmw. When we finally
885 * get here, we've written a full stripe
886 */
887 static void raid_write_end_io(struct bio *bio)
888 {
889 struct btrfs_raid_bio *rbio = bio->bi_private;
890 blk_status_t err = bio->bi_status;
891 int max_errors;
892
893 if (err)
894 fail_bio_stripe(rbio, bio);
895
896 bio_put(bio);
897
898 if (!atomic_dec_and_test(&rbio->stripes_pending))
899 return;
900
901 err = BLK_STS_OK;
902
903 /* OK, we have read all the stripes we need to. */
904 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
905 0 : rbio->bbio->max_errors;
906 if (atomic_read(&rbio->error) > max_errors)
907 err = BLK_STS_IOERR;
908
909 rbio_orig_end_io(rbio, err);
910 }
911
912 /*
913 * the read/modify/write code wants to use the original bio for
914 * any pages it included, and then use the rbio for everything
915 * else. This function decides if a given index (stripe number)
916 * and page number in that stripe fall inside the original bio
917 * or the rbio.
918 *
919 * if you set bio_list_only, you'll get a NULL back for any ranges
920 * that are outside the bio_list
921 *
922 * This doesn't take any refs on anything, you get a bare page pointer
923 * and the caller must bump refs as required.
924 *
925 * You must call index_rbio_pages once before you can trust
926 * the answers from this function.
927 */
928 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
929 int index, int pagenr, int bio_list_only)
930 {
931 int chunk_page;
932 struct page *p = NULL;
933
934 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
935
936 spin_lock_irq(&rbio->bio_list_lock);
937 p = rbio->bio_pages[chunk_page];
938 spin_unlock_irq(&rbio->bio_list_lock);
939
940 if (p || bio_list_only)
941 return p;
942
943 return rbio->stripe_pages[chunk_page];
944 }
945
946 /*
947 * number of pages we need for the entire stripe across all the
948 * drives
949 */
950 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
951 {
952 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
953 }
954
955 /*
956 * allocation and initial setup for the btrfs_raid_bio. Not
957 * this does not allocate any pages for rbio->pages.
958 */
959 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
960 struct btrfs_bio *bbio,
961 u64 stripe_len)
962 {
963 struct btrfs_raid_bio *rbio;
964 int nr_data = 0;
965 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
966 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
967 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
968 void *p;
969
970 rbio = kzalloc(sizeof(*rbio) +
971 sizeof(*rbio->stripe_pages) * num_pages +
972 sizeof(*rbio->bio_pages) * num_pages +
973 sizeof(*rbio->finish_pointers) * real_stripes +
974 sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
975 sizeof(*rbio->finish_pbitmap) *
976 BITS_TO_LONGS(stripe_npages),
977 GFP_NOFS);
978 if (!rbio)
979 return ERR_PTR(-ENOMEM);
980
981 bio_list_init(&rbio->bio_list);
982 INIT_LIST_HEAD(&rbio->plug_list);
983 spin_lock_init(&rbio->bio_list_lock);
984 INIT_LIST_HEAD(&rbio->stripe_cache);
985 INIT_LIST_HEAD(&rbio->hash_list);
986 rbio->bbio = bbio;
987 rbio->fs_info = fs_info;
988 rbio->stripe_len = stripe_len;
989 rbio->nr_pages = num_pages;
990 rbio->real_stripes = real_stripes;
991 rbio->stripe_npages = stripe_npages;
992 rbio->faila = -1;
993 rbio->failb = -1;
994 refcount_set(&rbio->refs, 1);
995 atomic_set(&rbio->error, 0);
996 atomic_set(&rbio->stripes_pending, 0);
997
998 /*
999 * the stripe_pages, bio_pages, etc arrays point to the extra
1000 * memory we allocated past the end of the rbio
1001 */
1002 p = rbio + 1;
1003 #define CONSUME_ALLOC(ptr, count) do { \
1004 ptr = p; \
1005 p = (unsigned char *)p + sizeof(*(ptr)) * (count); \
1006 } while (0)
1007 CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1008 CONSUME_ALLOC(rbio->bio_pages, num_pages);
1009 CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1010 CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1011 CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1012 #undef CONSUME_ALLOC
1013
1014 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1015 nr_data = real_stripes - 1;
1016 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1017 nr_data = real_stripes - 2;
1018 else
1019 BUG();
1020
1021 rbio->nr_data = nr_data;
1022 return rbio;
1023 }
1024
1025 /* allocate pages for all the stripes in the bio, including parity */
1026 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1027 {
1028 int i;
1029 struct page *page;
1030
1031 for (i = 0; i < rbio->nr_pages; i++) {
1032 if (rbio->stripe_pages[i])
1033 continue;
1034 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1035 if (!page)
1036 return -ENOMEM;
1037 rbio->stripe_pages[i] = page;
1038 }
1039 return 0;
1040 }
1041
1042 /* only allocate pages for p/q stripes */
1043 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1044 {
1045 int i;
1046 struct page *page;
1047
1048 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1049
1050 for (; i < rbio->nr_pages; i++) {
1051 if (rbio->stripe_pages[i])
1052 continue;
1053 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1054 if (!page)
1055 return -ENOMEM;
1056 rbio->stripe_pages[i] = page;
1057 }
1058 return 0;
1059 }
1060
1061 /*
1062 * add a single page from a specific stripe into our list of bios for IO
1063 * this will try to merge into existing bios if possible, and returns
1064 * zero if all went well.
1065 */
1066 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1067 struct bio_list *bio_list,
1068 struct page *page,
1069 int stripe_nr,
1070 unsigned long page_index,
1071 unsigned long bio_max_len)
1072 {
1073 struct bio *last = bio_list->tail;
1074 u64 last_end = 0;
1075 int ret;
1076 struct bio *bio;
1077 struct btrfs_bio_stripe *stripe;
1078 u64 disk_start;
1079
1080 stripe = &rbio->bbio->stripes[stripe_nr];
1081 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1082
1083 /* if the device is missing, just fail this stripe */
1084 if (!stripe->dev->bdev)
1085 return fail_rbio_index(rbio, stripe_nr);
1086
1087 /* see if we can add this page onto our existing bio */
1088 if (last) {
1089 last_end = (u64)last->bi_iter.bi_sector << 9;
1090 last_end += last->bi_iter.bi_size;
1091
1092 /*
1093 * we can't merge these if they are from different
1094 * devices or if they are not contiguous
1095 */
1096 if (last_end == disk_start && stripe->dev->bdev &&
1097 !last->bi_status &&
1098 last->bi_disk == stripe->dev->bdev->bd_disk &&
1099 last->bi_partno == stripe->dev->bdev->bd_partno) {
1100 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1101 if (ret == PAGE_SIZE)
1102 return 0;
1103 }
1104 }
1105
1106 /* put a new bio on the list */
1107 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1108 bio->bi_iter.bi_size = 0;
1109 bio_set_dev(bio, stripe->dev->bdev);
1110 bio->bi_iter.bi_sector = disk_start >> 9;
1111
1112 bio_add_page(bio, page, PAGE_SIZE, 0);
1113 bio_list_add(bio_list, bio);
1114 return 0;
1115 }
1116
1117 /*
1118 * while we're doing the read/modify/write cycle, we could
1119 * have errors in reading pages off the disk. This checks
1120 * for errors and if we're not able to read the page it'll
1121 * trigger parity reconstruction. The rmw will be finished
1122 * after we've reconstructed the failed stripes
1123 */
1124 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1125 {
1126 if (rbio->faila >= 0 || rbio->failb >= 0) {
1127 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1128 __raid56_parity_recover(rbio);
1129 } else {
1130 finish_rmw(rbio);
1131 }
1132 }
1133
1134 /*
1135 * helper function to walk our bio list and populate the bio_pages array with
1136 * the result. This seems expensive, but it is faster than constantly
1137 * searching through the bio list as we setup the IO in finish_rmw or stripe
1138 * reconstruction.
1139 *
1140 * This must be called before you trust the answers from page_in_rbio
1141 */
1142 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1143 {
1144 struct bio *bio;
1145 u64 start;
1146 unsigned long stripe_offset;
1147 unsigned long page_index;
1148
1149 spin_lock_irq(&rbio->bio_list_lock);
1150 bio_list_for_each(bio, &rbio->bio_list) {
1151 struct bio_vec bvec;
1152 struct bvec_iter iter;
1153 int i = 0;
1154
1155 start = (u64)bio->bi_iter.bi_sector << 9;
1156 stripe_offset = start - rbio->bbio->raid_map[0];
1157 page_index = stripe_offset >> PAGE_SHIFT;
1158
1159 if (bio_flagged(bio, BIO_CLONED))
1160 bio->bi_iter = btrfs_io_bio(bio)->iter;
1161
1162 bio_for_each_segment(bvec, bio, iter) {
1163 rbio->bio_pages[page_index + i] = bvec.bv_page;
1164 i++;
1165 }
1166 }
1167 spin_unlock_irq(&rbio->bio_list_lock);
1168 }
1169
1170 /*
1171 * this is called from one of two situations. We either
1172 * have a full stripe from the higher layers, or we've read all
1173 * the missing bits off disk.
1174 *
1175 * This will calculate the parity and then send down any
1176 * changed blocks.
1177 */
1178 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1179 {
1180 struct btrfs_bio *bbio = rbio->bbio;
1181 void **pointers = rbio->finish_pointers;
1182 int nr_data = rbio->nr_data;
1183 int stripe;
1184 int pagenr;
1185 int p_stripe = -1;
1186 int q_stripe = -1;
1187 struct bio_list bio_list;
1188 struct bio *bio;
1189 int ret;
1190
1191 bio_list_init(&bio_list);
1192
1193 if (rbio->real_stripes - rbio->nr_data == 1) {
1194 p_stripe = rbio->real_stripes - 1;
1195 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1196 p_stripe = rbio->real_stripes - 2;
1197 q_stripe = rbio->real_stripes - 1;
1198 } else {
1199 BUG();
1200 }
1201
1202 /* at this point we either have a full stripe,
1203 * or we've read the full stripe from the drive.
1204 * recalculate the parity and write the new results.
1205 *
1206 * We're not allowed to add any new bios to the
1207 * bio list here, anyone else that wants to
1208 * change this stripe needs to do their own rmw.
1209 */
1210 spin_lock_irq(&rbio->bio_list_lock);
1211 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1212 spin_unlock_irq(&rbio->bio_list_lock);
1213
1214 atomic_set(&rbio->error, 0);
1215
1216 /*
1217 * now that we've set rmw_locked, run through the
1218 * bio list one last time and map the page pointers
1219 *
1220 * We don't cache full rbios because we're assuming
1221 * the higher layers are unlikely to use this area of
1222 * the disk again soon. If they do use it again,
1223 * hopefully they will send another full bio.
1224 */
1225 index_rbio_pages(rbio);
1226 if (!rbio_is_full(rbio))
1227 cache_rbio_pages(rbio);
1228 else
1229 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1230
1231 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1232 struct page *p;
1233 /* first collect one page from each data stripe */
1234 for (stripe = 0; stripe < nr_data; stripe++) {
1235 p = page_in_rbio(rbio, stripe, pagenr, 0);
1236 pointers[stripe] = kmap(p);
1237 }
1238
1239 /* then add the parity stripe */
1240 p = rbio_pstripe_page(rbio, pagenr);
1241 SetPageUptodate(p);
1242 pointers[stripe++] = kmap(p);
1243
1244 if (q_stripe != -1) {
1245
1246 /*
1247 * raid6, add the qstripe and call the
1248 * library function to fill in our p/q
1249 */
1250 p = rbio_qstripe_page(rbio, pagenr);
1251 SetPageUptodate(p);
1252 pointers[stripe++] = kmap(p);
1253
1254 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1255 pointers);
1256 } else {
1257 /* raid5 */
1258 copy_page(pointers[nr_data], pointers[0]);
1259 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1260 }
1261
1262
1263 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1264 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1265 }
1266
1267 /*
1268 * time to start writing. Make bios for everything from the
1269 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1270 * everything else.
1271 */
1272 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1273 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1274 struct page *page;
1275 if (stripe < rbio->nr_data) {
1276 page = page_in_rbio(rbio, stripe, pagenr, 1);
1277 if (!page)
1278 continue;
1279 } else {
1280 page = rbio_stripe_page(rbio, stripe, pagenr);
1281 }
1282
1283 ret = rbio_add_io_page(rbio, &bio_list,
1284 page, stripe, pagenr, rbio->stripe_len);
1285 if (ret)
1286 goto cleanup;
1287 }
1288 }
1289
1290 if (likely(!bbio->num_tgtdevs))
1291 goto write_data;
1292
1293 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1294 if (!bbio->tgtdev_map[stripe])
1295 continue;
1296
1297 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1298 struct page *page;
1299 if (stripe < rbio->nr_data) {
1300 page = page_in_rbio(rbio, stripe, pagenr, 1);
1301 if (!page)
1302 continue;
1303 } else {
1304 page = rbio_stripe_page(rbio, stripe, pagenr);
1305 }
1306
1307 ret = rbio_add_io_page(rbio, &bio_list, page,
1308 rbio->bbio->tgtdev_map[stripe],
1309 pagenr, rbio->stripe_len);
1310 if (ret)
1311 goto cleanup;
1312 }
1313 }
1314
1315 write_data:
1316 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1317 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1318
1319 while (1) {
1320 bio = bio_list_pop(&bio_list);
1321 if (!bio)
1322 break;
1323
1324 bio->bi_private = rbio;
1325 bio->bi_end_io = raid_write_end_io;
1326 bio->bi_opf = REQ_OP_WRITE;
1327
1328 submit_bio(bio);
1329 }
1330 return;
1331
1332 cleanup:
1333 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1334
1335 while ((bio = bio_list_pop(&bio_list)))
1336 bio_put(bio);
1337 }
1338
1339 /*
1340 * helper to find the stripe number for a given bio. Used to figure out which
1341 * stripe has failed. This expects the bio to correspond to a physical disk,
1342 * so it looks up based on physical sector numbers.
1343 */
1344 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1345 struct bio *bio)
1346 {
1347 u64 physical = bio->bi_iter.bi_sector;
1348 u64 stripe_start;
1349 int i;
1350 struct btrfs_bio_stripe *stripe;
1351
1352 physical <<= 9;
1353
1354 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1355 stripe = &rbio->bbio->stripes[i];
1356 stripe_start = stripe->physical;
1357 if (physical >= stripe_start &&
1358 physical < stripe_start + rbio->stripe_len &&
1359 stripe->dev->bdev &&
1360 bio->bi_disk == stripe->dev->bdev->bd_disk &&
1361 bio->bi_partno == stripe->dev->bdev->bd_partno) {
1362 return i;
1363 }
1364 }
1365 return -1;
1366 }
1367
1368 /*
1369 * helper to find the stripe number for a given
1370 * bio (before mapping). Used to figure out which stripe has
1371 * failed. This looks up based on logical block numbers.
1372 */
1373 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1374 struct bio *bio)
1375 {
1376 u64 logical = bio->bi_iter.bi_sector;
1377 u64 stripe_start;
1378 int i;
1379
1380 logical <<= 9;
1381
1382 for (i = 0; i < rbio->nr_data; i++) {
1383 stripe_start = rbio->bbio->raid_map[i];
1384 if (logical >= stripe_start &&
1385 logical < stripe_start + rbio->stripe_len) {
1386 return i;
1387 }
1388 }
1389 return -1;
1390 }
1391
1392 /*
1393 * returns -EIO if we had too many failures
1394 */
1395 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1396 {
1397 unsigned long flags;
1398 int ret = 0;
1399
1400 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1401
1402 /* we already know this stripe is bad, move on */
1403 if (rbio->faila == failed || rbio->failb == failed)
1404 goto out;
1405
1406 if (rbio->faila == -1) {
1407 /* first failure on this rbio */
1408 rbio->faila = failed;
1409 atomic_inc(&rbio->error);
1410 } else if (rbio->failb == -1) {
1411 /* second failure on this rbio */
1412 rbio->failb = failed;
1413 atomic_inc(&rbio->error);
1414 } else {
1415 ret = -EIO;
1416 }
1417 out:
1418 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1419
1420 return ret;
1421 }
1422
1423 /*
1424 * helper to fail a stripe based on a physical disk
1425 * bio.
1426 */
1427 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1428 struct bio *bio)
1429 {
1430 int failed = find_bio_stripe(rbio, bio);
1431
1432 if (failed < 0)
1433 return -EIO;
1434
1435 return fail_rbio_index(rbio, failed);
1436 }
1437
1438 /*
1439 * this sets each page in the bio uptodate. It should only be used on private
1440 * rbio pages, nothing that comes in from the higher layers
1441 */
1442 static void set_bio_pages_uptodate(struct bio *bio)
1443 {
1444 struct bio_vec *bvec;
1445 int i;
1446
1447 ASSERT(!bio_flagged(bio, BIO_CLONED));
1448
1449 bio_for_each_segment_all(bvec, bio, i)
1450 SetPageUptodate(bvec->bv_page);
1451 }
1452
1453 /*
1454 * end io for the read phase of the rmw cycle. All the bios here are physical
1455 * stripe bios we've read from the disk so we can recalculate the parity of the
1456 * stripe.
1457 *
1458 * This will usually kick off finish_rmw once all the bios are read in, but it
1459 * may trigger parity reconstruction if we had any errors along the way
1460 */
1461 static void raid_rmw_end_io(struct bio *bio)
1462 {
1463 struct btrfs_raid_bio *rbio = bio->bi_private;
1464
1465 if (bio->bi_status)
1466 fail_bio_stripe(rbio, bio);
1467 else
1468 set_bio_pages_uptodate(bio);
1469
1470 bio_put(bio);
1471
1472 if (!atomic_dec_and_test(&rbio->stripes_pending))
1473 return;
1474
1475 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1476 goto cleanup;
1477
1478 /*
1479 * this will normally call finish_rmw to start our write
1480 * but if there are any failed stripes we'll reconstruct
1481 * from parity first
1482 */
1483 validate_rbio_for_rmw(rbio);
1484 return;
1485
1486 cleanup:
1487
1488 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1489 }
1490
1491 /*
1492 * the stripe must be locked by the caller. It will
1493 * unlock after all the writes are done
1494 */
1495 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1496 {
1497 int bios_to_read = 0;
1498 struct bio_list bio_list;
1499 int ret;
1500 int pagenr;
1501 int stripe;
1502 struct bio *bio;
1503
1504 bio_list_init(&bio_list);
1505
1506 ret = alloc_rbio_pages(rbio);
1507 if (ret)
1508 goto cleanup;
1509
1510 index_rbio_pages(rbio);
1511
1512 atomic_set(&rbio->error, 0);
1513 /*
1514 * build a list of bios to read all the missing parts of this
1515 * stripe
1516 */
1517 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1518 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1519 struct page *page;
1520 /*
1521 * we want to find all the pages missing from
1522 * the rbio and read them from the disk. If
1523 * page_in_rbio finds a page in the bio list
1524 * we don't need to read it off the stripe.
1525 */
1526 page = page_in_rbio(rbio, stripe, pagenr, 1);
1527 if (page)
1528 continue;
1529
1530 page = rbio_stripe_page(rbio, stripe, pagenr);
1531 /*
1532 * the bio cache may have handed us an uptodate
1533 * page. If so, be happy and use it
1534 */
1535 if (PageUptodate(page))
1536 continue;
1537
1538 ret = rbio_add_io_page(rbio, &bio_list, page,
1539 stripe, pagenr, rbio->stripe_len);
1540 if (ret)
1541 goto cleanup;
1542 }
1543 }
1544
1545 bios_to_read = bio_list_size(&bio_list);
1546 if (!bios_to_read) {
1547 /*
1548 * this can happen if others have merged with
1549 * us, it means there is nothing left to read.
1550 * But if there are missing devices it may not be
1551 * safe to do the full stripe write yet.
1552 */
1553 goto finish;
1554 }
1555
1556 /*
1557 * the bbio may be freed once we submit the last bio. Make sure
1558 * not to touch it after that
1559 */
1560 atomic_set(&rbio->stripes_pending, bios_to_read);
1561 while (1) {
1562 bio = bio_list_pop(&bio_list);
1563 if (!bio)
1564 break;
1565
1566 bio->bi_private = rbio;
1567 bio->bi_end_io = raid_rmw_end_io;
1568 bio->bi_opf = REQ_OP_READ;
1569
1570 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1571
1572 submit_bio(bio);
1573 }
1574 /* the actual write will happen once the reads are done */
1575 return 0;
1576
1577 cleanup:
1578 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1579
1580 while ((bio = bio_list_pop(&bio_list)))
1581 bio_put(bio);
1582
1583 return -EIO;
1584
1585 finish:
1586 validate_rbio_for_rmw(rbio);
1587 return 0;
1588 }
1589
1590 /*
1591 * if the upper layers pass in a full stripe, we thank them by only allocating
1592 * enough pages to hold the parity, and sending it all down quickly.
1593 */
1594 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1595 {
1596 int ret;
1597
1598 ret = alloc_rbio_parity_pages(rbio);
1599 if (ret) {
1600 __free_raid_bio(rbio);
1601 return ret;
1602 }
1603
1604 ret = lock_stripe_add(rbio);
1605 if (ret == 0)
1606 finish_rmw(rbio);
1607 return 0;
1608 }
1609
1610 /*
1611 * partial stripe writes get handed over to async helpers.
1612 * We're really hoping to merge a few more writes into this
1613 * rbio before calculating new parity
1614 */
1615 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1616 {
1617 int ret;
1618
1619 ret = lock_stripe_add(rbio);
1620 if (ret == 0)
1621 start_async_work(rbio, rmw_work);
1622 return 0;
1623 }
1624
1625 /*
1626 * sometimes while we were reading from the drive to
1627 * recalculate parity, enough new bios come into create
1628 * a full stripe. So we do a check here to see if we can
1629 * go directly to finish_rmw
1630 */
1631 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1632 {
1633 /* head off into rmw land if we don't have a full stripe */
1634 if (!rbio_is_full(rbio))
1635 return partial_stripe_write(rbio);
1636 return full_stripe_write(rbio);
1637 }
1638
1639 /*
1640 * We use plugging call backs to collect full stripes.
1641 * Any time we get a partial stripe write while plugged
1642 * we collect it into a list. When the unplug comes down,
1643 * we sort the list by logical block number and merge
1644 * everything we can into the same rbios
1645 */
1646 struct btrfs_plug_cb {
1647 struct blk_plug_cb cb;
1648 struct btrfs_fs_info *info;
1649 struct list_head rbio_list;
1650 struct btrfs_work work;
1651 };
1652
1653 /*
1654 * rbios on the plug list are sorted for easier merging.
1655 */
1656 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1657 {
1658 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1659 plug_list);
1660 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1661 plug_list);
1662 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1663 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1664
1665 if (a_sector < b_sector)
1666 return -1;
1667 if (a_sector > b_sector)
1668 return 1;
1669 return 0;
1670 }
1671
1672 static void run_plug(struct btrfs_plug_cb *plug)
1673 {
1674 struct btrfs_raid_bio *cur;
1675 struct btrfs_raid_bio *last = NULL;
1676
1677 /*
1678 * sort our plug list then try to merge
1679 * everything we can in hopes of creating full
1680 * stripes.
1681 */
1682 list_sort(NULL, &plug->rbio_list, plug_cmp);
1683 while (!list_empty(&plug->rbio_list)) {
1684 cur = list_entry(plug->rbio_list.next,
1685 struct btrfs_raid_bio, plug_list);
1686 list_del_init(&cur->plug_list);
1687
1688 if (rbio_is_full(cur)) {
1689 int ret;
1690
1691 /* we have a full stripe, send it down */
1692 ret = full_stripe_write(cur);
1693 BUG_ON(ret);
1694 continue;
1695 }
1696 if (last) {
1697 if (rbio_can_merge(last, cur)) {
1698 merge_rbio(last, cur);
1699 __free_raid_bio(cur);
1700 continue;
1701
1702 }
1703 __raid56_parity_write(last);
1704 }
1705 last = cur;
1706 }
1707 if (last) {
1708 __raid56_parity_write(last);
1709 }
1710 kfree(plug);
1711 }
1712
1713 /*
1714 * if the unplug comes from schedule, we have to push the
1715 * work off to a helper thread
1716 */
1717 static void unplug_work(struct btrfs_work *work)
1718 {
1719 struct btrfs_plug_cb *plug;
1720 plug = container_of(work, struct btrfs_plug_cb, work);
1721 run_plug(plug);
1722 }
1723
1724 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1725 {
1726 struct btrfs_plug_cb *plug;
1727 plug = container_of(cb, struct btrfs_plug_cb, cb);
1728
1729 if (from_schedule) {
1730 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1731 unplug_work, NULL, NULL);
1732 btrfs_queue_work(plug->info->rmw_workers,
1733 &plug->work);
1734 return;
1735 }
1736 run_plug(plug);
1737 }
1738
1739 /*
1740 * our main entry point for writes from the rest of the FS.
1741 */
1742 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1743 struct btrfs_bio *bbio, u64 stripe_len)
1744 {
1745 struct btrfs_raid_bio *rbio;
1746 struct btrfs_plug_cb *plug = NULL;
1747 struct blk_plug_cb *cb;
1748 int ret;
1749
1750 rbio = alloc_rbio(fs_info, bbio, stripe_len);
1751 if (IS_ERR(rbio)) {
1752 btrfs_put_bbio(bbio);
1753 return PTR_ERR(rbio);
1754 }
1755 bio_list_add(&rbio->bio_list, bio);
1756 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1757 rbio->operation = BTRFS_RBIO_WRITE;
1758
1759 btrfs_bio_counter_inc_noblocked(fs_info);
1760 rbio->generic_bio_cnt = 1;
1761
1762 /*
1763 * don't plug on full rbios, just get them out the door
1764 * as quickly as we can
1765 */
1766 if (rbio_is_full(rbio)) {
1767 ret = full_stripe_write(rbio);
1768 if (ret)
1769 btrfs_bio_counter_dec(fs_info);
1770 return ret;
1771 }
1772
1773 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1774 if (cb) {
1775 plug = container_of(cb, struct btrfs_plug_cb, cb);
1776 if (!plug->info) {
1777 plug->info = fs_info;
1778 INIT_LIST_HEAD(&plug->rbio_list);
1779 }
1780 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1781 ret = 0;
1782 } else {
1783 ret = __raid56_parity_write(rbio);
1784 if (ret)
1785 btrfs_bio_counter_dec(fs_info);
1786 }
1787 return ret;
1788 }
1789
1790 /*
1791 * all parity reconstruction happens here. We've read in everything
1792 * we can find from the drives and this does the heavy lifting of
1793 * sorting the good from the bad.
1794 */
1795 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1796 {
1797 int pagenr, stripe;
1798 void **pointers;
1799 int faila = -1, failb = -1;
1800 struct page *page;
1801 blk_status_t err;
1802 int i;
1803
1804 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1805 if (!pointers) {
1806 err = BLK_STS_RESOURCE;
1807 goto cleanup_io;
1808 }
1809
1810 faila = rbio->faila;
1811 failb = rbio->failb;
1812
1813 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1814 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1815 spin_lock_irq(&rbio->bio_list_lock);
1816 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1817 spin_unlock_irq(&rbio->bio_list_lock);
1818 }
1819
1820 index_rbio_pages(rbio);
1821
1822 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1823 /*
1824 * Now we just use bitmap to mark the horizontal stripes in
1825 * which we have data when doing parity scrub.
1826 */
1827 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1828 !test_bit(pagenr, rbio->dbitmap))
1829 continue;
1830
1831 /* setup our array of pointers with pages
1832 * from each stripe
1833 */
1834 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1835 /*
1836 * if we're rebuilding a read, we have to use
1837 * pages from the bio list
1838 */
1839 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1840 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1841 (stripe == faila || stripe == failb)) {
1842 page = page_in_rbio(rbio, stripe, pagenr, 0);
1843 } else {
1844 page = rbio_stripe_page(rbio, stripe, pagenr);
1845 }
1846 pointers[stripe] = kmap(page);
1847 }
1848
1849 /* all raid6 handling here */
1850 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1851 /*
1852 * single failure, rebuild from parity raid5
1853 * style
1854 */
1855 if (failb < 0) {
1856 if (faila == rbio->nr_data) {
1857 /*
1858 * Just the P stripe has failed, without
1859 * a bad data or Q stripe.
1860 * TODO, we should redo the xor here.
1861 */
1862 err = BLK_STS_IOERR;
1863 goto cleanup;
1864 }
1865 /*
1866 * a single failure in raid6 is rebuilt
1867 * in the pstripe code below
1868 */
1869 goto pstripe;
1870 }
1871
1872 /* make sure our ps and qs are in order */
1873 if (faila > failb) {
1874 int tmp = failb;
1875 failb = faila;
1876 faila = tmp;
1877 }
1878
1879 /* if the q stripe is failed, do a pstripe reconstruction
1880 * from the xors.
1881 * If both the q stripe and the P stripe are failed, we're
1882 * here due to a crc mismatch and we can't give them the
1883 * data they want
1884 */
1885 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1886 if (rbio->bbio->raid_map[faila] ==
1887 RAID5_P_STRIPE) {
1888 err = BLK_STS_IOERR;
1889 goto cleanup;
1890 }
1891 /*
1892 * otherwise we have one bad data stripe and
1893 * a good P stripe. raid5!
1894 */
1895 goto pstripe;
1896 }
1897
1898 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1899 raid6_datap_recov(rbio->real_stripes,
1900 PAGE_SIZE, faila, pointers);
1901 } else {
1902 raid6_2data_recov(rbio->real_stripes,
1903 PAGE_SIZE, faila, failb,
1904 pointers);
1905 }
1906 } else {
1907 void *p;
1908
1909 /* rebuild from P stripe here (raid5 or raid6) */
1910 BUG_ON(failb != -1);
1911 pstripe:
1912 /* Copy parity block into failed block to start with */
1913 copy_page(pointers[faila], pointers[rbio->nr_data]);
1914
1915 /* rearrange the pointer array */
1916 p = pointers[faila];
1917 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1918 pointers[stripe] = pointers[stripe + 1];
1919 pointers[rbio->nr_data - 1] = p;
1920
1921 /* xor in the rest */
1922 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1923 }
1924 /* if we're doing this rebuild as part of an rmw, go through
1925 * and set all of our private rbio pages in the
1926 * failed stripes as uptodate. This way finish_rmw will
1927 * know they can be trusted. If this was a read reconstruction,
1928 * other endio functions will fiddle the uptodate bits
1929 */
1930 if (rbio->operation == BTRFS_RBIO_WRITE) {
1931 for (i = 0; i < rbio->stripe_npages; i++) {
1932 if (faila != -1) {
1933 page = rbio_stripe_page(rbio, faila, i);
1934 SetPageUptodate(page);
1935 }
1936 if (failb != -1) {
1937 page = rbio_stripe_page(rbio, failb, i);
1938 SetPageUptodate(page);
1939 }
1940 }
1941 }
1942 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1943 /*
1944 * if we're rebuilding a read, we have to use
1945 * pages from the bio list
1946 */
1947 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1948 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1949 (stripe == faila || stripe == failb)) {
1950 page = page_in_rbio(rbio, stripe, pagenr, 0);
1951 } else {
1952 page = rbio_stripe_page(rbio, stripe, pagenr);
1953 }
1954 kunmap(page);
1955 }
1956 }
1957
1958 err = BLK_STS_OK;
1959 cleanup:
1960 kfree(pointers);
1961
1962 cleanup_io:
1963 /*
1964 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1965 * valid rbio which is consistent with ondisk content, thus such a
1966 * valid rbio can be cached to avoid further disk reads.
1967 */
1968 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1969 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1970 /*
1971 * - In case of two failures, where rbio->failb != -1:
1972 *
1973 * Do not cache this rbio since the above read reconstruction
1974 * (raid6_datap_recov() or raid6_2data_recov()) may have
1975 * changed some content of stripes which are not identical to
1976 * on-disk content any more, otherwise, a later write/recover
1977 * may steal stripe_pages from this rbio and end up with
1978 * corruptions or rebuild failures.
1979 *
1980 * - In case of single failure, where rbio->failb == -1:
1981 *
1982 * Cache this rbio iff the above read reconstruction is
1983 * executed without problems.
1984 */
1985 if (err == BLK_STS_OK && rbio->failb < 0)
1986 cache_rbio_pages(rbio);
1987 else
1988 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1989
1990 rbio_orig_end_io(rbio, err);
1991 } else if (err == BLK_STS_OK) {
1992 rbio->faila = -1;
1993 rbio->failb = -1;
1994
1995 if (rbio->operation == BTRFS_RBIO_WRITE)
1996 finish_rmw(rbio);
1997 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1998 finish_parity_scrub(rbio, 0);
1999 else
2000 BUG();
2001 } else {
2002 rbio_orig_end_io(rbio, err);
2003 }
2004 }
2005
2006 /*
2007 * This is called only for stripes we've read from disk to
2008 * reconstruct the parity.
2009 */
2010 static void raid_recover_end_io(struct bio *bio)
2011 {
2012 struct btrfs_raid_bio *rbio = bio->bi_private;
2013
2014 /*
2015 * we only read stripe pages off the disk, set them
2016 * up to date if there were no errors
2017 */
2018 if (bio->bi_status)
2019 fail_bio_stripe(rbio, bio);
2020 else
2021 set_bio_pages_uptodate(bio);
2022 bio_put(bio);
2023
2024 if (!atomic_dec_and_test(&rbio->stripes_pending))
2025 return;
2026
2027 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2028 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2029 else
2030 __raid_recover_end_io(rbio);
2031 }
2032
2033 /*
2034 * reads everything we need off the disk to reconstruct
2035 * the parity. endio handlers trigger final reconstruction
2036 * when the IO is done.
2037 *
2038 * This is used both for reads from the higher layers and for
2039 * parity construction required to finish a rmw cycle.
2040 */
2041 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2042 {
2043 int bios_to_read = 0;
2044 struct bio_list bio_list;
2045 int ret;
2046 int pagenr;
2047 int stripe;
2048 struct bio *bio;
2049
2050 bio_list_init(&bio_list);
2051
2052 ret = alloc_rbio_pages(rbio);
2053 if (ret)
2054 goto cleanup;
2055
2056 atomic_set(&rbio->error, 0);
2057
2058 /*
2059 * read everything that hasn't failed. Thanks to the
2060 * stripe cache, it is possible that some or all of these
2061 * pages are going to be uptodate.
2062 */
2063 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2064 if (rbio->faila == stripe || rbio->failb == stripe) {
2065 atomic_inc(&rbio->error);
2066 continue;
2067 }
2068
2069 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2070 struct page *p;
2071
2072 /*
2073 * the rmw code may have already read this
2074 * page in
2075 */
2076 p = rbio_stripe_page(rbio, stripe, pagenr);
2077 if (PageUptodate(p))
2078 continue;
2079
2080 ret = rbio_add_io_page(rbio, &bio_list,
2081 rbio_stripe_page(rbio, stripe, pagenr),
2082 stripe, pagenr, rbio->stripe_len);
2083 if (ret < 0)
2084 goto cleanup;
2085 }
2086 }
2087
2088 bios_to_read = bio_list_size(&bio_list);
2089 if (!bios_to_read) {
2090 /*
2091 * we might have no bios to read just because the pages
2092 * were up to date, or we might have no bios to read because
2093 * the devices were gone.
2094 */
2095 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2096 __raid_recover_end_io(rbio);
2097 goto out;
2098 } else {
2099 goto cleanup;
2100 }
2101 }
2102
2103 /*
2104 * the bbio may be freed once we submit the last bio. Make sure
2105 * not to touch it after that
2106 */
2107 atomic_set(&rbio->stripes_pending, bios_to_read);
2108 while (1) {
2109 bio = bio_list_pop(&bio_list);
2110 if (!bio)
2111 break;
2112
2113 bio->bi_private = rbio;
2114 bio->bi_end_io = raid_recover_end_io;
2115 bio->bi_opf = REQ_OP_READ;
2116
2117 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2118
2119 submit_bio(bio);
2120 }
2121 out:
2122 return 0;
2123
2124 cleanup:
2125 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2126 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2127 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2128
2129 while ((bio = bio_list_pop(&bio_list)))
2130 bio_put(bio);
2131
2132 return -EIO;
2133 }
2134
2135 /*
2136 * the main entry point for reads from the higher layers. This
2137 * is really only called when the normal read path had a failure,
2138 * so we assume the bio they send down corresponds to a failed part
2139 * of the drive.
2140 */
2141 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2142 struct btrfs_bio *bbio, u64 stripe_len,
2143 int mirror_num, int generic_io)
2144 {
2145 struct btrfs_raid_bio *rbio;
2146 int ret;
2147
2148 if (generic_io) {
2149 ASSERT(bbio->mirror_num == mirror_num);
2150 btrfs_io_bio(bio)->mirror_num = mirror_num;
2151 }
2152
2153 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2154 if (IS_ERR(rbio)) {
2155 if (generic_io)
2156 btrfs_put_bbio(bbio);
2157 return PTR_ERR(rbio);
2158 }
2159
2160 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2161 bio_list_add(&rbio->bio_list, bio);
2162 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2163
2164 rbio->faila = find_logical_bio_stripe(rbio, bio);
2165 if (rbio->faila == -1) {
2166 btrfs_warn(fs_info,
2167 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2168 __func__, (u64)bio->bi_iter.bi_sector << 9,
2169 (u64)bio->bi_iter.bi_size, bbio->map_type);
2170 if (generic_io)
2171 btrfs_put_bbio(bbio);
2172 kfree(rbio);
2173 return -EIO;
2174 }
2175
2176 if (generic_io) {
2177 btrfs_bio_counter_inc_noblocked(fs_info);
2178 rbio->generic_bio_cnt = 1;
2179 } else {
2180 btrfs_get_bbio(bbio);
2181 }
2182
2183 /*
2184 * Loop retry:
2185 * for 'mirror == 2', reconstruct from all other stripes.
2186 * for 'mirror_num > 2', select a stripe to fail on every retry.
2187 */
2188 if (mirror_num > 2) {
2189 /*
2190 * 'mirror == 3' is to fail the p stripe and
2191 * reconstruct from the q stripe. 'mirror > 3' is to
2192 * fail a data stripe and reconstruct from p+q stripe.
2193 */
2194 rbio->failb = rbio->real_stripes - (mirror_num - 1);
2195 ASSERT(rbio->failb > 0);
2196 if (rbio->failb <= rbio->faila)
2197 rbio->failb--;
2198 }
2199
2200 ret = lock_stripe_add(rbio);
2201
2202 /*
2203 * __raid56_parity_recover will end the bio with
2204 * any errors it hits. We don't want to return
2205 * its error value up the stack because our caller
2206 * will end up calling bio_endio with any nonzero
2207 * return
2208 */
2209 if (ret == 0)
2210 __raid56_parity_recover(rbio);
2211 /*
2212 * our rbio has been added to the list of
2213 * rbios that will be handled after the
2214 * currently lock owner is done
2215 */
2216 return 0;
2217
2218 }
2219
2220 static void rmw_work(struct btrfs_work *work)
2221 {
2222 struct btrfs_raid_bio *rbio;
2223
2224 rbio = container_of(work, struct btrfs_raid_bio, work);
2225 raid56_rmw_stripe(rbio);
2226 }
2227
2228 static void read_rebuild_work(struct btrfs_work *work)
2229 {
2230 struct btrfs_raid_bio *rbio;
2231
2232 rbio = container_of(work, struct btrfs_raid_bio, work);
2233 __raid56_parity_recover(rbio);
2234 }
2235
2236 /*
2237 * The following code is used to scrub/replace the parity stripe
2238 *
2239 * Caller must have already increased bio_counter for getting @bbio.
2240 *
2241 * Note: We need make sure all the pages that add into the scrub/replace
2242 * raid bio are correct and not be changed during the scrub/replace. That
2243 * is those pages just hold metadata or file data with checksum.
2244 */
2245
2246 struct btrfs_raid_bio *
2247 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2248 struct btrfs_bio *bbio, u64 stripe_len,
2249 struct btrfs_device *scrub_dev,
2250 unsigned long *dbitmap, int stripe_nsectors)
2251 {
2252 struct btrfs_raid_bio *rbio;
2253 int i;
2254
2255 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2256 if (IS_ERR(rbio))
2257 return NULL;
2258 bio_list_add(&rbio->bio_list, bio);
2259 /*
2260 * This is a special bio which is used to hold the completion handler
2261 * and make the scrub rbio is similar to the other types
2262 */
2263 ASSERT(!bio->bi_iter.bi_size);
2264 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2265
2266 /*
2267 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2268 * to the end position, so this search can start from the first parity
2269 * stripe.
2270 */
2271 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2272 if (bbio->stripes[i].dev == scrub_dev) {
2273 rbio->scrubp = i;
2274 break;
2275 }
2276 }
2277 ASSERT(i < rbio->real_stripes);
2278
2279 /* Now we just support the sectorsize equals to page size */
2280 ASSERT(fs_info->sectorsize == PAGE_SIZE);
2281 ASSERT(rbio->stripe_npages == stripe_nsectors);
2282 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2283
2284 /*
2285 * We have already increased bio_counter when getting bbio, record it
2286 * so we can free it at rbio_orig_end_io().
2287 */
2288 rbio->generic_bio_cnt = 1;
2289
2290 return rbio;
2291 }
2292
2293 /* Used for both parity scrub and missing. */
2294 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2295 u64 logical)
2296 {
2297 int stripe_offset;
2298 int index;
2299
2300 ASSERT(logical >= rbio->bbio->raid_map[0]);
2301 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2302 rbio->stripe_len * rbio->nr_data);
2303 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2304 index = stripe_offset >> PAGE_SHIFT;
2305 rbio->bio_pages[index] = page;
2306 }
2307
2308 /*
2309 * We just scrub the parity that we have correct data on the same horizontal,
2310 * so we needn't allocate all pages for all the stripes.
2311 */
2312 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2313 {
2314 int i;
2315 int bit;
2316 int index;
2317 struct page *page;
2318
2319 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2320 for (i = 0; i < rbio->real_stripes; i++) {
2321 index = i * rbio->stripe_npages + bit;
2322 if (rbio->stripe_pages[index])
2323 continue;
2324
2325 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2326 if (!page)
2327 return -ENOMEM;
2328 rbio->stripe_pages[index] = page;
2329 }
2330 }
2331 return 0;
2332 }
2333
2334 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2335 int need_check)
2336 {
2337 struct btrfs_bio *bbio = rbio->bbio;
2338 void **pointers = rbio->finish_pointers;
2339 unsigned long *pbitmap = rbio->finish_pbitmap;
2340 int nr_data = rbio->nr_data;
2341 int stripe;
2342 int pagenr;
2343 int p_stripe = -1;
2344 int q_stripe = -1;
2345 struct page *p_page = NULL;
2346 struct page *q_page = NULL;
2347 struct bio_list bio_list;
2348 struct bio *bio;
2349 int is_replace = 0;
2350 int ret;
2351
2352 bio_list_init(&bio_list);
2353
2354 if (rbio->real_stripes - rbio->nr_data == 1) {
2355 p_stripe = rbio->real_stripes - 1;
2356 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2357 p_stripe = rbio->real_stripes - 2;
2358 q_stripe = rbio->real_stripes - 1;
2359 } else {
2360 BUG();
2361 }
2362
2363 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2364 is_replace = 1;
2365 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2366 }
2367
2368 /*
2369 * Because the higher layers(scrubber) are unlikely to
2370 * use this area of the disk again soon, so don't cache
2371 * it.
2372 */
2373 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2374
2375 if (!need_check)
2376 goto writeback;
2377
2378 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2379 if (!p_page)
2380 goto cleanup;
2381 SetPageUptodate(p_page);
2382
2383 if (q_stripe != -1) {
2384 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2385 if (!q_page) {
2386 __free_page(p_page);
2387 goto cleanup;
2388 }
2389 SetPageUptodate(q_page);
2390 }
2391
2392 atomic_set(&rbio->error, 0);
2393
2394 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2395 struct page *p;
2396 void *parity;
2397 /* first collect one page from each data stripe */
2398 for (stripe = 0; stripe < nr_data; stripe++) {
2399 p = page_in_rbio(rbio, stripe, pagenr, 0);
2400 pointers[stripe] = kmap(p);
2401 }
2402
2403 /* then add the parity stripe */
2404 pointers[stripe++] = kmap(p_page);
2405
2406 if (q_stripe != -1) {
2407
2408 /*
2409 * raid6, add the qstripe and call the
2410 * library function to fill in our p/q
2411 */
2412 pointers[stripe++] = kmap(q_page);
2413
2414 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2415 pointers);
2416 } else {
2417 /* raid5 */
2418 copy_page(pointers[nr_data], pointers[0]);
2419 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2420 }
2421
2422 /* Check scrubbing parity and repair it */
2423 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2424 parity = kmap(p);
2425 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2426 copy_page(parity, pointers[rbio->scrubp]);
2427 else
2428 /* Parity is right, needn't writeback */
2429 bitmap_clear(rbio->dbitmap, pagenr, 1);
2430 kunmap(p);
2431
2432 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2433 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2434 }
2435
2436 __free_page(p_page);
2437 if (q_page)
2438 __free_page(q_page);
2439
2440 writeback:
2441 /*
2442 * time to start writing. Make bios for everything from the
2443 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2444 * everything else.
2445 */
2446 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2447 struct page *page;
2448
2449 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2450 ret = rbio_add_io_page(rbio, &bio_list,
2451 page, rbio->scrubp, pagenr, rbio->stripe_len);
2452 if (ret)
2453 goto cleanup;
2454 }
2455
2456 if (!is_replace)
2457 goto submit_write;
2458
2459 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2460 struct page *page;
2461
2462 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2463 ret = rbio_add_io_page(rbio, &bio_list, page,
2464 bbio->tgtdev_map[rbio->scrubp],
2465 pagenr, rbio->stripe_len);
2466 if (ret)
2467 goto cleanup;
2468 }
2469
2470 submit_write:
2471 nr_data = bio_list_size(&bio_list);
2472 if (!nr_data) {
2473 /* Every parity is right */
2474 rbio_orig_end_io(rbio, BLK_STS_OK);
2475 return;
2476 }
2477
2478 atomic_set(&rbio->stripes_pending, nr_data);
2479
2480 while (1) {
2481 bio = bio_list_pop(&bio_list);
2482 if (!bio)
2483 break;
2484
2485 bio->bi_private = rbio;
2486 bio->bi_end_io = raid_write_end_io;
2487 bio->bi_opf = REQ_OP_WRITE;
2488
2489 submit_bio(bio);
2490 }
2491 return;
2492
2493 cleanup:
2494 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2495
2496 while ((bio = bio_list_pop(&bio_list)))
2497 bio_put(bio);
2498 }
2499
2500 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2501 {
2502 if (stripe >= 0 && stripe < rbio->nr_data)
2503 return 1;
2504 return 0;
2505 }
2506
2507 /*
2508 * While we're doing the parity check and repair, we could have errors
2509 * in reading pages off the disk. This checks for errors and if we're
2510 * not able to read the page it'll trigger parity reconstruction. The
2511 * parity scrub will be finished after we've reconstructed the failed
2512 * stripes
2513 */
2514 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2515 {
2516 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2517 goto cleanup;
2518
2519 if (rbio->faila >= 0 || rbio->failb >= 0) {
2520 int dfail = 0, failp = -1;
2521
2522 if (is_data_stripe(rbio, rbio->faila))
2523 dfail++;
2524 else if (is_parity_stripe(rbio->faila))
2525 failp = rbio->faila;
2526
2527 if (is_data_stripe(rbio, rbio->failb))
2528 dfail++;
2529 else if (is_parity_stripe(rbio->failb))
2530 failp = rbio->failb;
2531
2532 /*
2533 * Because we can not use a scrubbing parity to repair
2534 * the data, so the capability of the repair is declined.
2535 * (In the case of RAID5, we can not repair anything)
2536 */
2537 if (dfail > rbio->bbio->max_errors - 1)
2538 goto cleanup;
2539
2540 /*
2541 * If all data is good, only parity is correctly, just
2542 * repair the parity.
2543 */
2544 if (dfail == 0) {
2545 finish_parity_scrub(rbio, 0);
2546 return;
2547 }
2548
2549 /*
2550 * Here means we got one corrupted data stripe and one
2551 * corrupted parity on RAID6, if the corrupted parity
2552 * is scrubbing parity, luckily, use the other one to repair
2553 * the data, or we can not repair the data stripe.
2554 */
2555 if (failp != rbio->scrubp)
2556 goto cleanup;
2557
2558 __raid_recover_end_io(rbio);
2559 } else {
2560 finish_parity_scrub(rbio, 1);
2561 }
2562 return;
2563
2564 cleanup:
2565 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2566 }
2567
2568 /*
2569 * end io for the read phase of the rmw cycle. All the bios here are physical
2570 * stripe bios we've read from the disk so we can recalculate the parity of the
2571 * stripe.
2572 *
2573 * This will usually kick off finish_rmw once all the bios are read in, but it
2574 * may trigger parity reconstruction if we had any errors along the way
2575 */
2576 static void raid56_parity_scrub_end_io(struct bio *bio)
2577 {
2578 struct btrfs_raid_bio *rbio = bio->bi_private;
2579
2580 if (bio->bi_status)
2581 fail_bio_stripe(rbio, bio);
2582 else
2583 set_bio_pages_uptodate(bio);
2584
2585 bio_put(bio);
2586
2587 if (!atomic_dec_and_test(&rbio->stripes_pending))
2588 return;
2589
2590 /*
2591 * this will normally call finish_rmw to start our write
2592 * but if there are any failed stripes we'll reconstruct
2593 * from parity first
2594 */
2595 validate_rbio_for_parity_scrub(rbio);
2596 }
2597
2598 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2599 {
2600 int bios_to_read = 0;
2601 struct bio_list bio_list;
2602 int ret;
2603 int pagenr;
2604 int stripe;
2605 struct bio *bio;
2606
2607 bio_list_init(&bio_list);
2608
2609 ret = alloc_rbio_essential_pages(rbio);
2610 if (ret)
2611 goto cleanup;
2612
2613 atomic_set(&rbio->error, 0);
2614 /*
2615 * build a list of bios to read all the missing parts of this
2616 * stripe
2617 */
2618 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2619 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2620 struct page *page;
2621 /*
2622 * we want to find all the pages missing from
2623 * the rbio and read them from the disk. If
2624 * page_in_rbio finds a page in the bio list
2625 * we don't need to read it off the stripe.
2626 */
2627 page = page_in_rbio(rbio, stripe, pagenr, 1);
2628 if (page)
2629 continue;
2630
2631 page = rbio_stripe_page(rbio, stripe, pagenr);
2632 /*
2633 * the bio cache may have handed us an uptodate
2634 * page. If so, be happy and use it
2635 */
2636 if (PageUptodate(page))
2637 continue;
2638
2639 ret = rbio_add_io_page(rbio, &bio_list, page,
2640 stripe, pagenr, rbio->stripe_len);
2641 if (ret)
2642 goto cleanup;
2643 }
2644 }
2645
2646 bios_to_read = bio_list_size(&bio_list);
2647 if (!bios_to_read) {
2648 /*
2649 * this can happen if others have merged with
2650 * us, it means there is nothing left to read.
2651 * But if there are missing devices it may not be
2652 * safe to do the full stripe write yet.
2653 */
2654 goto finish;
2655 }
2656
2657 /*
2658 * the bbio may be freed once we submit the last bio. Make sure
2659 * not to touch it after that
2660 */
2661 atomic_set(&rbio->stripes_pending, bios_to_read);
2662 while (1) {
2663 bio = bio_list_pop(&bio_list);
2664 if (!bio)
2665 break;
2666
2667 bio->bi_private = rbio;
2668 bio->bi_end_io = raid56_parity_scrub_end_io;
2669 bio->bi_opf = REQ_OP_READ;
2670
2671 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2672
2673 submit_bio(bio);
2674 }
2675 /* the actual write will happen once the reads are done */
2676 return;
2677
2678 cleanup:
2679 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2680
2681 while ((bio = bio_list_pop(&bio_list)))
2682 bio_put(bio);
2683
2684 return;
2685
2686 finish:
2687 validate_rbio_for_parity_scrub(rbio);
2688 }
2689
2690 static void scrub_parity_work(struct btrfs_work *work)
2691 {
2692 struct btrfs_raid_bio *rbio;
2693
2694 rbio = container_of(work, struct btrfs_raid_bio, work);
2695 raid56_parity_scrub_stripe(rbio);
2696 }
2697
2698 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2699 {
2700 if (!lock_stripe_add(rbio))
2701 start_async_work(rbio, scrub_parity_work);
2702 }
2703
2704 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2705
2706 struct btrfs_raid_bio *
2707 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2708 struct btrfs_bio *bbio, u64 length)
2709 {
2710 struct btrfs_raid_bio *rbio;
2711
2712 rbio = alloc_rbio(fs_info, bbio, length);
2713 if (IS_ERR(rbio))
2714 return NULL;
2715
2716 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2717 bio_list_add(&rbio->bio_list, bio);
2718 /*
2719 * This is a special bio which is used to hold the completion handler
2720 * and make the scrub rbio is similar to the other types
2721 */
2722 ASSERT(!bio->bi_iter.bi_size);
2723
2724 rbio->faila = find_logical_bio_stripe(rbio, bio);
2725 if (rbio->faila == -1) {
2726 BUG();
2727 kfree(rbio);
2728 return NULL;
2729 }
2730
2731 /*
2732 * When we get bbio, we have already increased bio_counter, record it
2733 * so we can free it at rbio_orig_end_io()
2734 */
2735 rbio->generic_bio_cnt = 1;
2736
2737 return rbio;
2738 }
2739
2740 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2741 {
2742 if (!lock_stripe_add(rbio))
2743 start_async_work(rbio, read_rebuild_work);
2744 }