]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/btrfs/xattr.c
btrfs: split btrfs_setxattr calls regarding transaction
[thirdparty/kernel/linux.git] / fs / btrfs / xattr.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Red Hat. All rights reserved.
4 */
5
6 #include <linux/init.h>
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include <linux/rwsem.h>
10 #include <linux/xattr.h>
11 #include <linux/security.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/iversion.h>
14 #include <linux/sched/mm.h>
15 #include "ctree.h"
16 #include "btrfs_inode.h"
17 #include "transaction.h"
18 #include "xattr.h"
19 #include "disk-io.h"
20 #include "props.h"
21 #include "locking.h"
22
23 int btrfs_getxattr(struct inode *inode, const char *name,
24 void *buffer, size_t size)
25 {
26 struct btrfs_dir_item *di;
27 struct btrfs_root *root = BTRFS_I(inode)->root;
28 struct btrfs_path *path;
29 struct extent_buffer *leaf;
30 int ret = 0;
31 unsigned long data_ptr;
32
33 path = btrfs_alloc_path();
34 if (!path)
35 return -ENOMEM;
36
37 /* lookup the xattr by name */
38 di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(BTRFS_I(inode)),
39 name, strlen(name), 0);
40 if (!di) {
41 ret = -ENODATA;
42 goto out;
43 } else if (IS_ERR(di)) {
44 ret = PTR_ERR(di);
45 goto out;
46 }
47
48 leaf = path->nodes[0];
49 /* if size is 0, that means we want the size of the attr */
50 if (!size) {
51 ret = btrfs_dir_data_len(leaf, di);
52 goto out;
53 }
54
55 /* now get the data out of our dir_item */
56 if (btrfs_dir_data_len(leaf, di) > size) {
57 ret = -ERANGE;
58 goto out;
59 }
60
61 /*
62 * The way things are packed into the leaf is like this
63 * |struct btrfs_dir_item|name|data|
64 * where name is the xattr name, so security.foo, and data is the
65 * content of the xattr. data_ptr points to the location in memory
66 * where the data starts in the in memory leaf
67 */
68 data_ptr = (unsigned long)((char *)(di + 1) +
69 btrfs_dir_name_len(leaf, di));
70 read_extent_buffer(leaf, buffer, data_ptr,
71 btrfs_dir_data_len(leaf, di));
72 ret = btrfs_dir_data_len(leaf, di);
73
74 out:
75 btrfs_free_path(path);
76 return ret;
77 }
78
79 int btrfs_setxattr(struct btrfs_trans_handle *trans, struct inode *inode,
80 const char *name, const void *value, size_t size, int flags)
81 {
82 struct btrfs_dir_item *di = NULL;
83 struct btrfs_root *root = BTRFS_I(inode)->root;
84 struct btrfs_fs_info *fs_info = root->fs_info;
85 struct btrfs_path *path;
86 size_t name_len = strlen(name);
87 int ret = 0;
88
89 ASSERT(trans);
90
91 if (name_len + size > BTRFS_MAX_XATTR_SIZE(root->fs_info))
92 return -ENOSPC;
93
94 path = btrfs_alloc_path();
95 if (!path)
96 return -ENOMEM;
97 path->skip_release_on_error = 1;
98
99 if (!value) {
100 di = btrfs_lookup_xattr(trans, root, path,
101 btrfs_ino(BTRFS_I(inode)), name, name_len, -1);
102 if (!di && (flags & XATTR_REPLACE))
103 ret = -ENODATA;
104 else if (IS_ERR(di))
105 ret = PTR_ERR(di);
106 else if (di)
107 ret = btrfs_delete_one_dir_name(trans, root, path, di);
108 goto out;
109 }
110
111 /*
112 * For a replace we can't just do the insert blindly.
113 * Do a lookup first (read-only btrfs_search_slot), and return if xattr
114 * doesn't exist. If it exists, fall down below to the insert/replace
115 * path - we can't race with a concurrent xattr delete, because the VFS
116 * locks the inode's i_mutex before calling setxattr or removexattr.
117 */
118 if (flags & XATTR_REPLACE) {
119 ASSERT(inode_is_locked(inode));
120 di = btrfs_lookup_xattr(NULL, root, path,
121 btrfs_ino(BTRFS_I(inode)), name, name_len, 0);
122 if (!di)
123 ret = -ENODATA;
124 else if (IS_ERR(di))
125 ret = PTR_ERR(di);
126 if (ret)
127 goto out;
128 btrfs_release_path(path);
129 di = NULL;
130 }
131
132 ret = btrfs_insert_xattr_item(trans, root, path, btrfs_ino(BTRFS_I(inode)),
133 name, name_len, value, size);
134 if (ret == -EOVERFLOW) {
135 /*
136 * We have an existing item in a leaf, split_leaf couldn't
137 * expand it. That item might have or not a dir_item that
138 * matches our target xattr, so lets check.
139 */
140 ret = 0;
141 btrfs_assert_tree_locked(path->nodes[0]);
142 di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
143 if (!di && !(flags & XATTR_REPLACE)) {
144 ret = -ENOSPC;
145 goto out;
146 }
147 } else if (ret == -EEXIST) {
148 ret = 0;
149 di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
150 ASSERT(di); /* logic error */
151 } else if (ret) {
152 goto out;
153 }
154
155 if (di && (flags & XATTR_CREATE)) {
156 ret = -EEXIST;
157 goto out;
158 }
159
160 if (di) {
161 /*
162 * We're doing a replace, and it must be atomic, that is, at
163 * any point in time we have either the old or the new xattr
164 * value in the tree. We don't want readers (getxattr and
165 * listxattrs) to miss a value, this is specially important
166 * for ACLs.
167 */
168 const int slot = path->slots[0];
169 struct extent_buffer *leaf = path->nodes[0];
170 const u16 old_data_len = btrfs_dir_data_len(leaf, di);
171 const u32 item_size = btrfs_item_size_nr(leaf, slot);
172 const u32 data_size = sizeof(*di) + name_len + size;
173 struct btrfs_item *item;
174 unsigned long data_ptr;
175 char *ptr;
176
177 if (size > old_data_len) {
178 if (btrfs_leaf_free_space(leaf) <
179 (size - old_data_len)) {
180 ret = -ENOSPC;
181 goto out;
182 }
183 }
184
185 if (old_data_len + name_len + sizeof(*di) == item_size) {
186 /* No other xattrs packed in the same leaf item. */
187 if (size > old_data_len)
188 btrfs_extend_item(fs_info, path,
189 size - old_data_len);
190 else if (size < old_data_len)
191 btrfs_truncate_item(fs_info, path,
192 data_size, 1);
193 } else {
194 /* There are other xattrs packed in the same item. */
195 ret = btrfs_delete_one_dir_name(trans, root, path, di);
196 if (ret)
197 goto out;
198 btrfs_extend_item(fs_info, path, data_size);
199 }
200
201 item = btrfs_item_nr(slot);
202 ptr = btrfs_item_ptr(leaf, slot, char);
203 ptr += btrfs_item_size(leaf, item) - data_size;
204 di = (struct btrfs_dir_item *)ptr;
205 btrfs_set_dir_data_len(leaf, di, size);
206 data_ptr = ((unsigned long)(di + 1)) + name_len;
207 write_extent_buffer(leaf, value, data_ptr, size);
208 btrfs_mark_buffer_dirty(leaf);
209 } else {
210 /*
211 * Insert, and we had space for the xattr, so path->slots[0] is
212 * where our xattr dir_item is and btrfs_insert_xattr_item()
213 * filled it.
214 */
215 }
216 out:
217 btrfs_free_path(path);
218 return ret;
219 }
220
221 /*
222 * @value: "" makes the attribute to empty, NULL removes it
223 */
224 int btrfs_setxattr_trans(struct btrfs_trans_handle *trans,
225 struct inode *inode, const char *name,
226 const void *value, size_t size, int flags)
227 {
228 struct btrfs_root *root = BTRFS_I(inode)->root;
229 int ret;
230
231 if (trans)
232 return btrfs_setxattr(trans, inode, name, value, size, flags);
233
234 trans = btrfs_start_transaction(root, 2);
235 if (IS_ERR(trans))
236 return PTR_ERR(trans);
237
238 ret = btrfs_setxattr(trans, inode, name, value, size, flags);
239 if (ret)
240 goto out;
241
242 inode_inc_iversion(inode);
243 inode->i_ctime = current_time(inode);
244 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
245 ret = btrfs_update_inode(trans, root, inode);
246 BUG_ON(ret);
247 out:
248 btrfs_end_transaction(trans);
249 return ret;
250 }
251
252 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size)
253 {
254 struct btrfs_key key;
255 struct inode *inode = d_inode(dentry);
256 struct btrfs_root *root = BTRFS_I(inode)->root;
257 struct btrfs_path *path;
258 int ret = 0;
259 size_t total_size = 0, size_left = size;
260
261 /*
262 * ok we want all objects associated with this id.
263 * NOTE: we set key.offset = 0; because we want to start with the
264 * first xattr that we find and walk forward
265 */
266 key.objectid = btrfs_ino(BTRFS_I(inode));
267 key.type = BTRFS_XATTR_ITEM_KEY;
268 key.offset = 0;
269
270 path = btrfs_alloc_path();
271 if (!path)
272 return -ENOMEM;
273 path->reada = READA_FORWARD;
274
275 /* search for our xattrs */
276 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
277 if (ret < 0)
278 goto err;
279
280 while (1) {
281 struct extent_buffer *leaf;
282 int slot;
283 struct btrfs_dir_item *di;
284 struct btrfs_key found_key;
285 u32 item_size;
286 u32 cur;
287
288 leaf = path->nodes[0];
289 slot = path->slots[0];
290
291 /* this is where we start walking through the path */
292 if (slot >= btrfs_header_nritems(leaf)) {
293 /*
294 * if we've reached the last slot in this leaf we need
295 * to go to the next leaf and reset everything
296 */
297 ret = btrfs_next_leaf(root, path);
298 if (ret < 0)
299 goto err;
300 else if (ret > 0)
301 break;
302 continue;
303 }
304
305 btrfs_item_key_to_cpu(leaf, &found_key, slot);
306
307 /* check to make sure this item is what we want */
308 if (found_key.objectid != key.objectid)
309 break;
310 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
311 break;
312 if (found_key.type < BTRFS_XATTR_ITEM_KEY)
313 goto next_item;
314
315 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
316 item_size = btrfs_item_size_nr(leaf, slot);
317 cur = 0;
318 while (cur < item_size) {
319 u16 name_len = btrfs_dir_name_len(leaf, di);
320 u16 data_len = btrfs_dir_data_len(leaf, di);
321 u32 this_len = sizeof(*di) + name_len + data_len;
322 unsigned long name_ptr = (unsigned long)(di + 1);
323
324 total_size += name_len + 1;
325 /*
326 * We are just looking for how big our buffer needs to
327 * be.
328 */
329 if (!size)
330 goto next;
331
332 if (!buffer || (name_len + 1) > size_left) {
333 ret = -ERANGE;
334 goto err;
335 }
336
337 read_extent_buffer(leaf, buffer, name_ptr, name_len);
338 buffer[name_len] = '\0';
339
340 size_left -= name_len + 1;
341 buffer += name_len + 1;
342 next:
343 cur += this_len;
344 di = (struct btrfs_dir_item *)((char *)di + this_len);
345 }
346 next_item:
347 path->slots[0]++;
348 }
349 ret = total_size;
350
351 err:
352 btrfs_free_path(path);
353
354 return ret;
355 }
356
357 static int btrfs_xattr_handler_get(const struct xattr_handler *handler,
358 struct dentry *unused, struct inode *inode,
359 const char *name, void *buffer, size_t size)
360 {
361 name = xattr_full_name(handler, name);
362 return btrfs_getxattr(inode, name, buffer, size);
363 }
364
365 static int btrfs_xattr_handler_set(const struct xattr_handler *handler,
366 struct dentry *unused, struct inode *inode,
367 const char *name, const void *buffer,
368 size_t size, int flags)
369 {
370 name = xattr_full_name(handler, name);
371 return btrfs_setxattr_trans(NULL, inode, name, buffer, size, flags);
372 }
373
374 static int btrfs_xattr_handler_set_prop(const struct xattr_handler *handler,
375 struct dentry *unused, struct inode *inode,
376 const char *name, const void *value,
377 size_t size, int flags)
378 {
379 name = xattr_full_name(handler, name);
380 return btrfs_set_prop_trans(inode, name, value, size, flags);
381 }
382
383 static const struct xattr_handler btrfs_security_xattr_handler = {
384 .prefix = XATTR_SECURITY_PREFIX,
385 .get = btrfs_xattr_handler_get,
386 .set = btrfs_xattr_handler_set,
387 };
388
389 static const struct xattr_handler btrfs_trusted_xattr_handler = {
390 .prefix = XATTR_TRUSTED_PREFIX,
391 .get = btrfs_xattr_handler_get,
392 .set = btrfs_xattr_handler_set,
393 };
394
395 static const struct xattr_handler btrfs_user_xattr_handler = {
396 .prefix = XATTR_USER_PREFIX,
397 .get = btrfs_xattr_handler_get,
398 .set = btrfs_xattr_handler_set,
399 };
400
401 static const struct xattr_handler btrfs_btrfs_xattr_handler = {
402 .prefix = XATTR_BTRFS_PREFIX,
403 .get = btrfs_xattr_handler_get,
404 .set = btrfs_xattr_handler_set_prop,
405 };
406
407 const struct xattr_handler *btrfs_xattr_handlers[] = {
408 &btrfs_security_xattr_handler,
409 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
410 &posix_acl_access_xattr_handler,
411 &posix_acl_default_xattr_handler,
412 #endif
413 &btrfs_trusted_xattr_handler,
414 &btrfs_user_xattr_handler,
415 &btrfs_btrfs_xattr_handler,
416 NULL,
417 };
418
419 static int btrfs_initxattrs(struct inode *inode,
420 const struct xattr *xattr_array, void *fs_private)
421 {
422 struct btrfs_trans_handle *trans = fs_private;
423 const struct xattr *xattr;
424 unsigned int nofs_flag;
425 char *name;
426 int err = 0;
427
428 /*
429 * We're holding a transaction handle, so use a NOFS memory allocation
430 * context to avoid deadlock if reclaim happens.
431 */
432 nofs_flag = memalloc_nofs_save();
433 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
434 name = kmalloc(XATTR_SECURITY_PREFIX_LEN +
435 strlen(xattr->name) + 1, GFP_KERNEL);
436 if (!name) {
437 err = -ENOMEM;
438 break;
439 }
440 strcpy(name, XATTR_SECURITY_PREFIX);
441 strcpy(name + XATTR_SECURITY_PREFIX_LEN, xattr->name);
442 err = btrfs_setxattr(trans, inode, name, xattr->value,
443 xattr->value_len, 0);
444 kfree(name);
445 if (err < 0)
446 break;
447 }
448 memalloc_nofs_restore(nofs_flag);
449 return err;
450 }
451
452 int btrfs_xattr_security_init(struct btrfs_trans_handle *trans,
453 struct inode *inode, struct inode *dir,
454 const struct qstr *qstr)
455 {
456 return security_inode_init_security(inode, dir, qstr,
457 &btrfs_initxattrs, trans);
458 }