]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/iomap.c
23ef63fd166951e1c05f34875f661288fefb6ae7
[thirdparty/kernel/linux.git] / fs / iomap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/uaccess.h>
11 #include <linux/gfp.h>
12 #include <linux/migrate.h>
13 #include <linux/mm.h>
14 #include <linux/mm_inline.h>
15 #include <linux/swap.h>
16 #include <linux/pagemap.h>
17 #include <linux/pagevec.h>
18 #include <linux/file.h>
19 #include <linux/uio.h>
20 #include <linux/backing-dev.h>
21 #include <linux/buffer_head.h>
22 #include <linux/task_io_accounting_ops.h>
23 #include <linux/dax.h>
24 #include <linux/sched/signal.h>
25
26 #include "internal.h"
27
28 /*
29 * Execute a iomap write on a segment of the mapping that spans a
30 * contiguous range of pages that have identical block mapping state.
31 *
32 * This avoids the need to map pages individually, do individual allocations
33 * for each page and most importantly avoid the need for filesystem specific
34 * locking per page. Instead, all the operations are amortised over the entire
35 * range of pages. It is assumed that the filesystems will lock whatever
36 * resources they require in the iomap_begin call, and release them in the
37 * iomap_end call.
38 */
39 loff_t
40 iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
41 const struct iomap_ops *ops, void *data, iomap_actor_t actor)
42 {
43 struct iomap iomap = { 0 };
44 loff_t written = 0, ret;
45
46 /*
47 * Need to map a range from start position for length bytes. This can
48 * span multiple pages - it is only guaranteed to return a range of a
49 * single type of pages (e.g. all into a hole, all mapped or all
50 * unwritten). Failure at this point has nothing to undo.
51 *
52 * If allocation is required for this range, reserve the space now so
53 * that the allocation is guaranteed to succeed later on. Once we copy
54 * the data into the page cache pages, then we cannot fail otherwise we
55 * expose transient stale data. If the reserve fails, we can safely
56 * back out at this point as there is nothing to undo.
57 */
58 ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
59 if (ret)
60 return ret;
61 if (WARN_ON(iomap.offset > pos))
62 return -EIO;
63 if (WARN_ON(iomap.length == 0))
64 return -EIO;
65
66 /*
67 * Cut down the length to the one actually provided by the filesystem,
68 * as it might not be able to give us the whole size that we requested.
69 */
70 if (iomap.offset + iomap.length < pos + length)
71 length = iomap.offset + iomap.length - pos;
72
73 /*
74 * Now that we have guaranteed that the space allocation will succeed.
75 * we can do the copy-in page by page without having to worry about
76 * failures exposing transient data.
77 */
78 written = actor(inode, pos, length, data, &iomap);
79
80 /*
81 * Now the data has been copied, commit the range we've copied. This
82 * should not fail unless the filesystem has had a fatal error.
83 */
84 if (ops->iomap_end) {
85 ret = ops->iomap_end(inode, pos, length,
86 written > 0 ? written : 0,
87 flags, &iomap);
88 }
89
90 return written ? written : ret;
91 }
92
93 static sector_t
94 iomap_sector(struct iomap *iomap, loff_t pos)
95 {
96 return (iomap->addr + pos - iomap->offset) >> SECTOR_SHIFT;
97 }
98
99 static struct iomap_page *
100 iomap_page_create(struct inode *inode, struct page *page)
101 {
102 struct iomap_page *iop = to_iomap_page(page);
103
104 if (iop || i_blocksize(inode) == PAGE_SIZE)
105 return iop;
106
107 iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
108 atomic_set(&iop->read_count, 0);
109 atomic_set(&iop->write_count, 0);
110 bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
111
112 /*
113 * migrate_page_move_mapping() assumes that pages with private data have
114 * their count elevated by 1.
115 */
116 get_page(page);
117 set_page_private(page, (unsigned long)iop);
118 SetPagePrivate(page);
119 return iop;
120 }
121
122 static void
123 iomap_page_release(struct page *page)
124 {
125 struct iomap_page *iop = to_iomap_page(page);
126
127 if (!iop)
128 return;
129 WARN_ON_ONCE(atomic_read(&iop->read_count));
130 WARN_ON_ONCE(atomic_read(&iop->write_count));
131 ClearPagePrivate(page);
132 set_page_private(page, 0);
133 put_page(page);
134 kfree(iop);
135 }
136
137 /*
138 * Calculate the range inside the page that we actually need to read.
139 */
140 static void
141 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
142 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
143 {
144 loff_t orig_pos = *pos;
145 loff_t isize = i_size_read(inode);
146 unsigned block_bits = inode->i_blkbits;
147 unsigned block_size = (1 << block_bits);
148 unsigned poff = offset_in_page(*pos);
149 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
150 unsigned first = poff >> block_bits;
151 unsigned last = (poff + plen - 1) >> block_bits;
152
153 /*
154 * If the block size is smaller than the page size we need to check the
155 * per-block uptodate status and adjust the offset and length if needed
156 * to avoid reading in already uptodate ranges.
157 */
158 if (iop) {
159 unsigned int i;
160
161 /* move forward for each leading block marked uptodate */
162 for (i = first; i <= last; i++) {
163 if (!test_bit(i, iop->uptodate))
164 break;
165 *pos += block_size;
166 poff += block_size;
167 plen -= block_size;
168 first++;
169 }
170
171 /* truncate len if we find any trailing uptodate block(s) */
172 for ( ; i <= last; i++) {
173 if (test_bit(i, iop->uptodate)) {
174 plen -= (last - i + 1) * block_size;
175 last = i - 1;
176 break;
177 }
178 }
179 }
180
181 /*
182 * If the extent spans the block that contains the i_size we need to
183 * handle both halves separately so that we properly zero data in the
184 * page cache for blocks that are entirely outside of i_size.
185 */
186 if (orig_pos <= isize && orig_pos + length > isize) {
187 unsigned end = offset_in_page(isize - 1) >> block_bits;
188
189 if (first <= end && last > end)
190 plen -= (last - end) * block_size;
191 }
192
193 *offp = poff;
194 *lenp = plen;
195 }
196
197 static void
198 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
199 {
200 struct iomap_page *iop = to_iomap_page(page);
201 struct inode *inode = page->mapping->host;
202 unsigned first = off >> inode->i_blkbits;
203 unsigned last = (off + len - 1) >> inode->i_blkbits;
204 unsigned int i;
205 bool uptodate = true;
206
207 if (iop) {
208 for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
209 if (i >= first && i <= last)
210 set_bit(i, iop->uptodate);
211 else if (!test_bit(i, iop->uptodate))
212 uptodate = false;
213 }
214 }
215
216 if (uptodate && !PageError(page))
217 SetPageUptodate(page);
218 }
219
220 static void
221 iomap_read_finish(struct iomap_page *iop, struct page *page)
222 {
223 if (!iop || atomic_dec_and_test(&iop->read_count))
224 unlock_page(page);
225 }
226
227 static void
228 iomap_read_page_end_io(struct bio_vec *bvec, int error)
229 {
230 struct page *page = bvec->bv_page;
231 struct iomap_page *iop = to_iomap_page(page);
232
233 if (unlikely(error)) {
234 ClearPageUptodate(page);
235 SetPageError(page);
236 } else {
237 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
238 }
239
240 iomap_read_finish(iop, page);
241 }
242
243 static void
244 iomap_read_end_io(struct bio *bio)
245 {
246 int error = blk_status_to_errno(bio->bi_status);
247 struct bio_vec *bvec;
248 struct bvec_iter_all iter_all;
249
250 bio_for_each_segment_all(bvec, bio, iter_all)
251 iomap_read_page_end_io(bvec, error);
252 bio_put(bio);
253 }
254
255 struct iomap_readpage_ctx {
256 struct page *cur_page;
257 bool cur_page_in_bio;
258 bool is_readahead;
259 struct bio *bio;
260 struct list_head *pages;
261 };
262
263 static void
264 iomap_read_inline_data(struct inode *inode, struct page *page,
265 struct iomap *iomap)
266 {
267 size_t size = i_size_read(inode);
268 void *addr;
269
270 if (PageUptodate(page))
271 return;
272
273 BUG_ON(page->index);
274 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
275
276 addr = kmap_atomic(page);
277 memcpy(addr, iomap->inline_data, size);
278 memset(addr + size, 0, PAGE_SIZE - size);
279 kunmap_atomic(addr);
280 SetPageUptodate(page);
281 }
282
283 static loff_t
284 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
285 struct iomap *iomap)
286 {
287 struct iomap_readpage_ctx *ctx = data;
288 struct page *page = ctx->cur_page;
289 struct iomap_page *iop = iomap_page_create(inode, page);
290 bool is_contig = false;
291 loff_t orig_pos = pos;
292 unsigned poff, plen;
293 sector_t sector;
294
295 if (iomap->type == IOMAP_INLINE) {
296 WARN_ON_ONCE(pos);
297 iomap_read_inline_data(inode, page, iomap);
298 return PAGE_SIZE;
299 }
300
301 /* zero post-eof blocks as the page may be mapped */
302 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
303 if (plen == 0)
304 goto done;
305
306 if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) {
307 zero_user(page, poff, plen);
308 iomap_set_range_uptodate(page, poff, plen);
309 goto done;
310 }
311
312 ctx->cur_page_in_bio = true;
313
314 /*
315 * Try to merge into a previous segment if we can.
316 */
317 sector = iomap_sector(iomap, pos);
318 if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
319 if (__bio_try_merge_page(ctx->bio, page, plen, poff, true))
320 goto done;
321 is_contig = true;
322 }
323
324 /*
325 * If we start a new segment we need to increase the read count, and we
326 * need to do so before submitting any previous full bio to make sure
327 * that we don't prematurely unlock the page.
328 */
329 if (iop)
330 atomic_inc(&iop->read_count);
331
332 if (!ctx->bio || !is_contig || bio_full(ctx->bio)) {
333 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
334 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
335
336 if (ctx->bio)
337 submit_bio(ctx->bio);
338
339 if (ctx->is_readahead) /* same as readahead_gfp_mask */
340 gfp |= __GFP_NORETRY | __GFP_NOWARN;
341 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
342 ctx->bio->bi_opf = REQ_OP_READ;
343 if (ctx->is_readahead)
344 ctx->bio->bi_opf |= REQ_RAHEAD;
345 ctx->bio->bi_iter.bi_sector = sector;
346 bio_set_dev(ctx->bio, iomap->bdev);
347 ctx->bio->bi_end_io = iomap_read_end_io;
348 }
349
350 bio_add_page(ctx->bio, page, plen, poff);
351 done:
352 /*
353 * Move the caller beyond our range so that it keeps making progress.
354 * For that we have to include any leading non-uptodate ranges, but
355 * we can skip trailing ones as they will be handled in the next
356 * iteration.
357 */
358 return pos - orig_pos + plen;
359 }
360
361 int
362 iomap_readpage(struct page *page, const struct iomap_ops *ops)
363 {
364 struct iomap_readpage_ctx ctx = { .cur_page = page };
365 struct inode *inode = page->mapping->host;
366 unsigned poff;
367 loff_t ret;
368
369 for (poff = 0; poff < PAGE_SIZE; poff += ret) {
370 ret = iomap_apply(inode, page_offset(page) + poff,
371 PAGE_SIZE - poff, 0, ops, &ctx,
372 iomap_readpage_actor);
373 if (ret <= 0) {
374 WARN_ON_ONCE(ret == 0);
375 SetPageError(page);
376 break;
377 }
378 }
379
380 if (ctx.bio) {
381 submit_bio(ctx.bio);
382 WARN_ON_ONCE(!ctx.cur_page_in_bio);
383 } else {
384 WARN_ON_ONCE(ctx.cur_page_in_bio);
385 unlock_page(page);
386 }
387
388 /*
389 * Just like mpage_readpages and block_read_full_page we always
390 * return 0 and just mark the page as PageError on errors. This
391 * should be cleaned up all through the stack eventually.
392 */
393 return 0;
394 }
395 EXPORT_SYMBOL_GPL(iomap_readpage);
396
397 static struct page *
398 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
399 loff_t length, loff_t *done)
400 {
401 while (!list_empty(pages)) {
402 struct page *page = lru_to_page(pages);
403
404 if (page_offset(page) >= (u64)pos + length)
405 break;
406
407 list_del(&page->lru);
408 if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
409 GFP_NOFS))
410 return page;
411
412 /*
413 * If we already have a page in the page cache at index we are
414 * done. Upper layers don't care if it is uptodate after the
415 * readpages call itself as every page gets checked again once
416 * actually needed.
417 */
418 *done += PAGE_SIZE;
419 put_page(page);
420 }
421
422 return NULL;
423 }
424
425 static loff_t
426 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
427 void *data, struct iomap *iomap)
428 {
429 struct iomap_readpage_ctx *ctx = data;
430 loff_t done, ret;
431
432 for (done = 0; done < length; done += ret) {
433 if (ctx->cur_page && offset_in_page(pos + done) == 0) {
434 if (!ctx->cur_page_in_bio)
435 unlock_page(ctx->cur_page);
436 put_page(ctx->cur_page);
437 ctx->cur_page = NULL;
438 }
439 if (!ctx->cur_page) {
440 ctx->cur_page = iomap_next_page(inode, ctx->pages,
441 pos, length, &done);
442 if (!ctx->cur_page)
443 break;
444 ctx->cur_page_in_bio = false;
445 }
446 ret = iomap_readpage_actor(inode, pos + done, length - done,
447 ctx, iomap);
448 }
449
450 return done;
451 }
452
453 int
454 iomap_readpages(struct address_space *mapping, struct list_head *pages,
455 unsigned nr_pages, const struct iomap_ops *ops)
456 {
457 struct iomap_readpage_ctx ctx = {
458 .pages = pages,
459 .is_readahead = true,
460 };
461 loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
462 loff_t last = page_offset(list_entry(pages->next, struct page, lru));
463 loff_t length = last - pos + PAGE_SIZE, ret = 0;
464
465 while (length > 0) {
466 ret = iomap_apply(mapping->host, pos, length, 0, ops,
467 &ctx, iomap_readpages_actor);
468 if (ret <= 0) {
469 WARN_ON_ONCE(ret == 0);
470 goto done;
471 }
472 pos += ret;
473 length -= ret;
474 }
475 ret = 0;
476 done:
477 if (ctx.bio)
478 submit_bio(ctx.bio);
479 if (ctx.cur_page) {
480 if (!ctx.cur_page_in_bio)
481 unlock_page(ctx.cur_page);
482 put_page(ctx.cur_page);
483 }
484
485 /*
486 * Check that we didn't lose a page due to the arcance calling
487 * conventions..
488 */
489 WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
490 return ret;
491 }
492 EXPORT_SYMBOL_GPL(iomap_readpages);
493
494 /*
495 * iomap_is_partially_uptodate checks whether blocks within a page are
496 * uptodate or not.
497 *
498 * Returns true if all blocks which correspond to a file portion
499 * we want to read within the page are uptodate.
500 */
501 int
502 iomap_is_partially_uptodate(struct page *page, unsigned long from,
503 unsigned long count)
504 {
505 struct iomap_page *iop = to_iomap_page(page);
506 struct inode *inode = page->mapping->host;
507 unsigned len, first, last;
508 unsigned i;
509
510 /* Limit range to one page */
511 len = min_t(unsigned, PAGE_SIZE - from, count);
512
513 /* First and last blocks in range within page */
514 first = from >> inode->i_blkbits;
515 last = (from + len - 1) >> inode->i_blkbits;
516
517 if (iop) {
518 for (i = first; i <= last; i++)
519 if (!test_bit(i, iop->uptodate))
520 return 0;
521 return 1;
522 }
523
524 return 0;
525 }
526 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
527
528 int
529 iomap_releasepage(struct page *page, gfp_t gfp_mask)
530 {
531 /*
532 * mm accommodates an old ext3 case where clean pages might not have had
533 * the dirty bit cleared. Thus, it can send actual dirty pages to
534 * ->releasepage() via shrink_active_list(), skip those here.
535 */
536 if (PageDirty(page) || PageWriteback(page))
537 return 0;
538 iomap_page_release(page);
539 return 1;
540 }
541 EXPORT_SYMBOL_GPL(iomap_releasepage);
542
543 void
544 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
545 {
546 /*
547 * If we are invalidating the entire page, clear the dirty state from it
548 * and release it to avoid unnecessary buildup of the LRU.
549 */
550 if (offset == 0 && len == PAGE_SIZE) {
551 WARN_ON_ONCE(PageWriteback(page));
552 cancel_dirty_page(page);
553 iomap_page_release(page);
554 }
555 }
556 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
557
558 #ifdef CONFIG_MIGRATION
559 int
560 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
561 struct page *page, enum migrate_mode mode)
562 {
563 int ret;
564
565 ret = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
566 if (ret != MIGRATEPAGE_SUCCESS)
567 return ret;
568
569 if (page_has_private(page)) {
570 ClearPagePrivate(page);
571 get_page(newpage);
572 set_page_private(newpage, page_private(page));
573 set_page_private(page, 0);
574 put_page(page);
575 SetPagePrivate(newpage);
576 }
577
578 if (mode != MIGRATE_SYNC_NO_COPY)
579 migrate_page_copy(newpage, page);
580 else
581 migrate_page_states(newpage, page);
582 return MIGRATEPAGE_SUCCESS;
583 }
584 EXPORT_SYMBOL_GPL(iomap_migrate_page);
585 #endif /* CONFIG_MIGRATION */
586
587 static void
588 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
589 {
590 loff_t i_size = i_size_read(inode);
591
592 /*
593 * Only truncate newly allocated pages beyoned EOF, even if the
594 * write started inside the existing inode size.
595 */
596 if (pos + len > i_size)
597 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
598 }
599
600 static int
601 iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page,
602 unsigned poff, unsigned plen, unsigned from, unsigned to,
603 struct iomap *iomap)
604 {
605 struct bio_vec bvec;
606 struct bio bio;
607
608 if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) {
609 zero_user_segments(page, poff, from, to, poff + plen);
610 iomap_set_range_uptodate(page, poff, plen);
611 return 0;
612 }
613
614 bio_init(&bio, &bvec, 1);
615 bio.bi_opf = REQ_OP_READ;
616 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
617 bio_set_dev(&bio, iomap->bdev);
618 __bio_add_page(&bio, page, plen, poff);
619 return submit_bio_wait(&bio);
620 }
621
622 static int
623 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len,
624 struct page *page, struct iomap *iomap)
625 {
626 struct iomap_page *iop = iomap_page_create(inode, page);
627 loff_t block_size = i_blocksize(inode);
628 loff_t block_start = pos & ~(block_size - 1);
629 loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
630 unsigned from = offset_in_page(pos), to = from + len, poff, plen;
631 int status = 0;
632
633 if (PageUptodate(page))
634 return 0;
635
636 do {
637 iomap_adjust_read_range(inode, iop, &block_start,
638 block_end - block_start, &poff, &plen);
639 if (plen == 0)
640 break;
641
642 if ((from > poff && from < poff + plen) ||
643 (to > poff && to < poff + plen)) {
644 status = iomap_read_page_sync(inode, block_start, page,
645 poff, plen, from, to, iomap);
646 if (status)
647 break;
648 }
649
650 } while ((block_start += plen) < block_end);
651
652 return status;
653 }
654
655 static int
656 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
657 struct page **pagep, struct iomap *iomap)
658 {
659 const struct iomap_page_ops *page_ops = iomap->page_ops;
660 pgoff_t index = pos >> PAGE_SHIFT;
661 struct page *page;
662 int status = 0;
663
664 BUG_ON(pos + len > iomap->offset + iomap->length);
665
666 if (fatal_signal_pending(current))
667 return -EINTR;
668
669 if (page_ops && page_ops->page_prepare) {
670 status = page_ops->page_prepare(inode, pos, len, iomap);
671 if (status)
672 return status;
673 }
674
675 page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
676 if (!page) {
677 status = -ENOMEM;
678 goto out_no_page;
679 }
680
681 if (iomap->type == IOMAP_INLINE)
682 iomap_read_inline_data(inode, page, iomap);
683 else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
684 status = __block_write_begin_int(page, pos, len, NULL, iomap);
685 else
686 status = __iomap_write_begin(inode, pos, len, page, iomap);
687
688 if (unlikely(status))
689 goto out_unlock;
690
691 *pagep = page;
692 return 0;
693
694 out_unlock:
695 unlock_page(page);
696 put_page(page);
697 iomap_write_failed(inode, pos, len);
698
699 out_no_page:
700 if (page_ops && page_ops->page_done)
701 page_ops->page_done(inode, pos, 0, NULL, iomap);
702 return status;
703 }
704
705 int
706 iomap_set_page_dirty(struct page *page)
707 {
708 struct address_space *mapping = page_mapping(page);
709 int newly_dirty;
710
711 if (unlikely(!mapping))
712 return !TestSetPageDirty(page);
713
714 /*
715 * Lock out page->mem_cgroup migration to keep PageDirty
716 * synchronized with per-memcg dirty page counters.
717 */
718 lock_page_memcg(page);
719 newly_dirty = !TestSetPageDirty(page);
720 if (newly_dirty)
721 __set_page_dirty(page, mapping, 0);
722 unlock_page_memcg(page);
723
724 if (newly_dirty)
725 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
726 return newly_dirty;
727 }
728 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
729
730 static int
731 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
732 unsigned copied, struct page *page, struct iomap *iomap)
733 {
734 flush_dcache_page(page);
735
736 /*
737 * The blocks that were entirely written will now be uptodate, so we
738 * don't have to worry about a readpage reading them and overwriting a
739 * partial write. However if we have encountered a short write and only
740 * partially written into a block, it will not be marked uptodate, so a
741 * readpage might come in and destroy our partial write.
742 *
743 * Do the simplest thing, and just treat any short write to a non
744 * uptodate page as a zero-length write, and force the caller to redo
745 * the whole thing.
746 */
747 if (unlikely(copied < len && !PageUptodate(page)))
748 return 0;
749 iomap_set_range_uptodate(page, offset_in_page(pos), len);
750 iomap_set_page_dirty(page);
751 return copied;
752 }
753
754 static int
755 iomap_write_end_inline(struct inode *inode, struct page *page,
756 struct iomap *iomap, loff_t pos, unsigned copied)
757 {
758 void *addr;
759
760 WARN_ON_ONCE(!PageUptodate(page));
761 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
762
763 addr = kmap_atomic(page);
764 memcpy(iomap->inline_data + pos, addr + pos, copied);
765 kunmap_atomic(addr);
766
767 mark_inode_dirty(inode);
768 return copied;
769 }
770
771 static int
772 iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
773 unsigned copied, struct page *page, struct iomap *iomap)
774 {
775 const struct iomap_page_ops *page_ops = iomap->page_ops;
776 int ret;
777
778 if (iomap->type == IOMAP_INLINE) {
779 ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
780 } else if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
781 ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
782 page, NULL);
783 } else {
784 ret = __iomap_write_end(inode, pos, len, copied, page, iomap);
785 }
786
787 __generic_write_end(inode, pos, ret, page);
788 if (page_ops && page_ops->page_done)
789 page_ops->page_done(inode, pos, copied, page, iomap);
790 put_page(page);
791
792 if (ret < len)
793 iomap_write_failed(inode, pos, len);
794 return ret;
795 }
796
797 static loff_t
798 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
799 struct iomap *iomap)
800 {
801 struct iov_iter *i = data;
802 long status = 0;
803 ssize_t written = 0;
804 unsigned int flags = AOP_FLAG_NOFS;
805
806 do {
807 struct page *page;
808 unsigned long offset; /* Offset into pagecache page */
809 unsigned long bytes; /* Bytes to write to page */
810 size_t copied; /* Bytes copied from user */
811
812 offset = offset_in_page(pos);
813 bytes = min_t(unsigned long, PAGE_SIZE - offset,
814 iov_iter_count(i));
815 again:
816 if (bytes > length)
817 bytes = length;
818
819 /*
820 * Bring in the user page that we will copy from _first_.
821 * Otherwise there's a nasty deadlock on copying from the
822 * same page as we're writing to, without it being marked
823 * up-to-date.
824 *
825 * Not only is this an optimisation, but it is also required
826 * to check that the address is actually valid, when atomic
827 * usercopies are used, below.
828 */
829 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
830 status = -EFAULT;
831 break;
832 }
833
834 status = iomap_write_begin(inode, pos, bytes, flags, &page,
835 iomap);
836 if (unlikely(status))
837 break;
838
839 if (mapping_writably_mapped(inode->i_mapping))
840 flush_dcache_page(page);
841
842 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
843
844 flush_dcache_page(page);
845
846 status = iomap_write_end(inode, pos, bytes, copied, page,
847 iomap);
848 if (unlikely(status < 0))
849 break;
850 copied = status;
851
852 cond_resched();
853
854 iov_iter_advance(i, copied);
855 if (unlikely(copied == 0)) {
856 /*
857 * If we were unable to copy any data at all, we must
858 * fall back to a single segment length write.
859 *
860 * If we didn't fallback here, we could livelock
861 * because not all segments in the iov can be copied at
862 * once without a pagefault.
863 */
864 bytes = min_t(unsigned long, PAGE_SIZE - offset,
865 iov_iter_single_seg_count(i));
866 goto again;
867 }
868 pos += copied;
869 written += copied;
870 length -= copied;
871
872 balance_dirty_pages_ratelimited(inode->i_mapping);
873 } while (iov_iter_count(i) && length);
874
875 return written ? written : status;
876 }
877
878 ssize_t
879 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
880 const struct iomap_ops *ops)
881 {
882 struct inode *inode = iocb->ki_filp->f_mapping->host;
883 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
884
885 while (iov_iter_count(iter)) {
886 ret = iomap_apply(inode, pos, iov_iter_count(iter),
887 IOMAP_WRITE, ops, iter, iomap_write_actor);
888 if (ret <= 0)
889 break;
890 pos += ret;
891 written += ret;
892 }
893
894 return written ? written : ret;
895 }
896 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
897
898 static struct page *
899 __iomap_read_page(struct inode *inode, loff_t offset)
900 {
901 struct address_space *mapping = inode->i_mapping;
902 struct page *page;
903
904 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
905 if (IS_ERR(page))
906 return page;
907 if (!PageUptodate(page)) {
908 put_page(page);
909 return ERR_PTR(-EIO);
910 }
911 return page;
912 }
913
914 static loff_t
915 iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
916 struct iomap *iomap)
917 {
918 long status = 0;
919 ssize_t written = 0;
920
921 do {
922 struct page *page, *rpage;
923 unsigned long offset; /* Offset into pagecache page */
924 unsigned long bytes; /* Bytes to write to page */
925
926 offset = offset_in_page(pos);
927 bytes = min_t(loff_t, PAGE_SIZE - offset, length);
928
929 rpage = __iomap_read_page(inode, pos);
930 if (IS_ERR(rpage))
931 return PTR_ERR(rpage);
932
933 status = iomap_write_begin(inode, pos, bytes,
934 AOP_FLAG_NOFS, &page, iomap);
935 put_page(rpage);
936 if (unlikely(status))
937 return status;
938
939 WARN_ON_ONCE(!PageUptodate(page));
940
941 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap);
942 if (unlikely(status <= 0)) {
943 if (WARN_ON_ONCE(status == 0))
944 return -EIO;
945 return status;
946 }
947
948 cond_resched();
949
950 pos += status;
951 written += status;
952 length -= status;
953
954 balance_dirty_pages_ratelimited(inode->i_mapping);
955 } while (length);
956
957 return written;
958 }
959
960 int
961 iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
962 const struct iomap_ops *ops)
963 {
964 loff_t ret;
965
966 while (len) {
967 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
968 iomap_dirty_actor);
969 if (ret <= 0)
970 return ret;
971 pos += ret;
972 len -= ret;
973 }
974
975 return 0;
976 }
977 EXPORT_SYMBOL_GPL(iomap_file_dirty);
978
979 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
980 unsigned bytes, struct iomap *iomap)
981 {
982 struct page *page;
983 int status;
984
985 status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
986 iomap);
987 if (status)
988 return status;
989
990 zero_user(page, offset, bytes);
991 mark_page_accessed(page);
992
993 return iomap_write_end(inode, pos, bytes, bytes, page, iomap);
994 }
995
996 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
997 struct iomap *iomap)
998 {
999 return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
1000 iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
1001 }
1002
1003 static loff_t
1004 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
1005 void *data, struct iomap *iomap)
1006 {
1007 bool *did_zero = data;
1008 loff_t written = 0;
1009 int status;
1010
1011 /* already zeroed? we're done. */
1012 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1013 return count;
1014
1015 do {
1016 unsigned offset, bytes;
1017
1018 offset = offset_in_page(pos);
1019 bytes = min_t(loff_t, PAGE_SIZE - offset, count);
1020
1021 if (IS_DAX(inode))
1022 status = iomap_dax_zero(pos, offset, bytes, iomap);
1023 else
1024 status = iomap_zero(inode, pos, offset, bytes, iomap);
1025 if (status < 0)
1026 return status;
1027
1028 pos += bytes;
1029 count -= bytes;
1030 written += bytes;
1031 if (did_zero)
1032 *did_zero = true;
1033 } while (count > 0);
1034
1035 return written;
1036 }
1037
1038 int
1039 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1040 const struct iomap_ops *ops)
1041 {
1042 loff_t ret;
1043
1044 while (len > 0) {
1045 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1046 ops, did_zero, iomap_zero_range_actor);
1047 if (ret <= 0)
1048 return ret;
1049
1050 pos += ret;
1051 len -= ret;
1052 }
1053
1054 return 0;
1055 }
1056 EXPORT_SYMBOL_GPL(iomap_zero_range);
1057
1058 int
1059 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1060 const struct iomap_ops *ops)
1061 {
1062 unsigned int blocksize = i_blocksize(inode);
1063 unsigned int off = pos & (blocksize - 1);
1064
1065 /* Block boundary? Nothing to do */
1066 if (!off)
1067 return 0;
1068 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1069 }
1070 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1071
1072 static loff_t
1073 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1074 void *data, struct iomap *iomap)
1075 {
1076 struct page *page = data;
1077 int ret;
1078
1079 if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1080 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1081 if (ret)
1082 return ret;
1083 block_commit_write(page, 0, length);
1084 } else {
1085 WARN_ON_ONCE(!PageUptodate(page));
1086 iomap_page_create(inode, page);
1087 set_page_dirty(page);
1088 }
1089
1090 return length;
1091 }
1092
1093 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1094 {
1095 struct page *page = vmf->page;
1096 struct inode *inode = file_inode(vmf->vma->vm_file);
1097 unsigned long length;
1098 loff_t offset, size;
1099 ssize_t ret;
1100
1101 lock_page(page);
1102 size = i_size_read(inode);
1103 if ((page->mapping != inode->i_mapping) ||
1104 (page_offset(page) > size)) {
1105 /* We overload EFAULT to mean page got truncated */
1106 ret = -EFAULT;
1107 goto out_unlock;
1108 }
1109
1110 /* page is wholly or partially inside EOF */
1111 if (((page->index + 1) << PAGE_SHIFT) > size)
1112 length = offset_in_page(size);
1113 else
1114 length = PAGE_SIZE;
1115
1116 offset = page_offset(page);
1117 while (length > 0) {
1118 ret = iomap_apply(inode, offset, length,
1119 IOMAP_WRITE | IOMAP_FAULT, ops, page,
1120 iomap_page_mkwrite_actor);
1121 if (unlikely(ret <= 0))
1122 goto out_unlock;
1123 offset += ret;
1124 length -= ret;
1125 }
1126
1127 wait_for_stable_page(page);
1128 return VM_FAULT_LOCKED;
1129 out_unlock:
1130 unlock_page(page);
1131 return block_page_mkwrite_return(ret);
1132 }
1133 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1134
1135 struct fiemap_ctx {
1136 struct fiemap_extent_info *fi;
1137 struct iomap prev;
1138 };
1139
1140 static int iomap_to_fiemap(struct fiemap_extent_info *fi,
1141 struct iomap *iomap, u32 flags)
1142 {
1143 switch (iomap->type) {
1144 case IOMAP_HOLE:
1145 /* skip holes */
1146 return 0;
1147 case IOMAP_DELALLOC:
1148 flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
1149 break;
1150 case IOMAP_MAPPED:
1151 break;
1152 case IOMAP_UNWRITTEN:
1153 flags |= FIEMAP_EXTENT_UNWRITTEN;
1154 break;
1155 case IOMAP_INLINE:
1156 flags |= FIEMAP_EXTENT_DATA_INLINE;
1157 break;
1158 }
1159
1160 if (iomap->flags & IOMAP_F_MERGED)
1161 flags |= FIEMAP_EXTENT_MERGED;
1162 if (iomap->flags & IOMAP_F_SHARED)
1163 flags |= FIEMAP_EXTENT_SHARED;
1164
1165 return fiemap_fill_next_extent(fi, iomap->offset,
1166 iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
1167 iomap->length, flags);
1168 }
1169
1170 static loff_t
1171 iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1172 struct iomap *iomap)
1173 {
1174 struct fiemap_ctx *ctx = data;
1175 loff_t ret = length;
1176
1177 if (iomap->type == IOMAP_HOLE)
1178 return length;
1179
1180 ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
1181 ctx->prev = *iomap;
1182 switch (ret) {
1183 case 0: /* success */
1184 return length;
1185 case 1: /* extent array full */
1186 return 0;
1187 default:
1188 return ret;
1189 }
1190 }
1191
1192 int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
1193 loff_t start, loff_t len, const struct iomap_ops *ops)
1194 {
1195 struct fiemap_ctx ctx;
1196 loff_t ret;
1197
1198 memset(&ctx, 0, sizeof(ctx));
1199 ctx.fi = fi;
1200 ctx.prev.type = IOMAP_HOLE;
1201
1202 ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
1203 if (ret)
1204 return ret;
1205
1206 if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
1207 ret = filemap_write_and_wait(inode->i_mapping);
1208 if (ret)
1209 return ret;
1210 }
1211
1212 while (len > 0) {
1213 ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
1214 iomap_fiemap_actor);
1215 /* inode with no (attribute) mapping will give ENOENT */
1216 if (ret == -ENOENT)
1217 break;
1218 if (ret < 0)
1219 return ret;
1220 if (ret == 0)
1221 break;
1222
1223 start += ret;
1224 len -= ret;
1225 }
1226
1227 if (ctx.prev.type != IOMAP_HOLE) {
1228 ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
1229 if (ret < 0)
1230 return ret;
1231 }
1232
1233 return 0;
1234 }
1235 EXPORT_SYMBOL_GPL(iomap_fiemap);
1236
1237 /*
1238 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
1239 * Returns true if found and updates @lastoff to the offset in file.
1240 */
1241 static bool
1242 page_seek_hole_data(struct inode *inode, struct page *page, loff_t *lastoff,
1243 int whence)
1244 {
1245 const struct address_space_operations *ops = inode->i_mapping->a_ops;
1246 unsigned int bsize = i_blocksize(inode), off;
1247 bool seek_data = whence == SEEK_DATA;
1248 loff_t poff = page_offset(page);
1249
1250 if (WARN_ON_ONCE(*lastoff >= poff + PAGE_SIZE))
1251 return false;
1252
1253 if (*lastoff < poff) {
1254 /*
1255 * Last offset smaller than the start of the page means we found
1256 * a hole:
1257 */
1258 if (whence == SEEK_HOLE)
1259 return true;
1260 *lastoff = poff;
1261 }
1262
1263 /*
1264 * Just check the page unless we can and should check block ranges:
1265 */
1266 if (bsize == PAGE_SIZE || !ops->is_partially_uptodate)
1267 return PageUptodate(page) == seek_data;
1268
1269 lock_page(page);
1270 if (unlikely(page->mapping != inode->i_mapping))
1271 goto out_unlock_not_found;
1272
1273 for (off = 0; off < PAGE_SIZE; off += bsize) {
1274 if (offset_in_page(*lastoff) >= off + bsize)
1275 continue;
1276 if (ops->is_partially_uptodate(page, off, bsize) == seek_data) {
1277 unlock_page(page);
1278 return true;
1279 }
1280 *lastoff = poff + off + bsize;
1281 }
1282
1283 out_unlock_not_found:
1284 unlock_page(page);
1285 return false;
1286 }
1287
1288 /*
1289 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1290 *
1291 * Within unwritten extents, the page cache determines which parts are holes
1292 * and which are data: uptodate buffer heads count as data; everything else
1293 * counts as a hole.
1294 *
1295 * Returns the resulting offset on successs, and -ENOENT otherwise.
1296 */
1297 static loff_t
1298 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
1299 int whence)
1300 {
1301 pgoff_t index = offset >> PAGE_SHIFT;
1302 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1303 loff_t lastoff = offset;
1304 struct pagevec pvec;
1305
1306 if (length <= 0)
1307 return -ENOENT;
1308
1309 pagevec_init(&pvec);
1310
1311 do {
1312 unsigned nr_pages, i;
1313
1314 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
1315 end - 1);
1316 if (nr_pages == 0)
1317 break;
1318
1319 for (i = 0; i < nr_pages; i++) {
1320 struct page *page = pvec.pages[i];
1321
1322 if (page_seek_hole_data(inode, page, &lastoff, whence))
1323 goto check_range;
1324 lastoff = page_offset(page) + PAGE_SIZE;
1325 }
1326 pagevec_release(&pvec);
1327 } while (index < end);
1328
1329 /* When no page at lastoff and we are not done, we found a hole. */
1330 if (whence != SEEK_HOLE)
1331 goto not_found;
1332
1333 check_range:
1334 if (lastoff < offset + length)
1335 goto out;
1336 not_found:
1337 lastoff = -ENOENT;
1338 out:
1339 pagevec_release(&pvec);
1340 return lastoff;
1341 }
1342
1343
1344 static loff_t
1345 iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
1346 void *data, struct iomap *iomap)
1347 {
1348 switch (iomap->type) {
1349 case IOMAP_UNWRITTEN:
1350 offset = page_cache_seek_hole_data(inode, offset, length,
1351 SEEK_HOLE);
1352 if (offset < 0)
1353 return length;
1354 /* fall through */
1355 case IOMAP_HOLE:
1356 *(loff_t *)data = offset;
1357 return 0;
1358 default:
1359 return length;
1360 }
1361 }
1362
1363 loff_t
1364 iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1365 {
1366 loff_t size = i_size_read(inode);
1367 loff_t length = size - offset;
1368 loff_t ret;
1369
1370 /* Nothing to be found before or beyond the end of the file. */
1371 if (offset < 0 || offset >= size)
1372 return -ENXIO;
1373
1374 while (length > 0) {
1375 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1376 &offset, iomap_seek_hole_actor);
1377 if (ret < 0)
1378 return ret;
1379 if (ret == 0)
1380 break;
1381
1382 offset += ret;
1383 length -= ret;
1384 }
1385
1386 return offset;
1387 }
1388 EXPORT_SYMBOL_GPL(iomap_seek_hole);
1389
1390 static loff_t
1391 iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
1392 void *data, struct iomap *iomap)
1393 {
1394 switch (iomap->type) {
1395 case IOMAP_HOLE:
1396 return length;
1397 case IOMAP_UNWRITTEN:
1398 offset = page_cache_seek_hole_data(inode, offset, length,
1399 SEEK_DATA);
1400 if (offset < 0)
1401 return length;
1402 /*FALLTHRU*/
1403 default:
1404 *(loff_t *)data = offset;
1405 return 0;
1406 }
1407 }
1408
1409 loff_t
1410 iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1411 {
1412 loff_t size = i_size_read(inode);
1413 loff_t length = size - offset;
1414 loff_t ret;
1415
1416 /* Nothing to be found before or beyond the end of the file. */
1417 if (offset < 0 || offset >= size)
1418 return -ENXIO;
1419
1420 while (length > 0) {
1421 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1422 &offset, iomap_seek_data_actor);
1423 if (ret < 0)
1424 return ret;
1425 if (ret == 0)
1426 break;
1427
1428 offset += ret;
1429 length -= ret;
1430 }
1431
1432 if (length <= 0)
1433 return -ENXIO;
1434 return offset;
1435 }
1436 EXPORT_SYMBOL_GPL(iomap_seek_data);
1437
1438 /*
1439 * Private flags for iomap_dio, must not overlap with the public ones in
1440 * iomap.h:
1441 */
1442 #define IOMAP_DIO_WRITE_FUA (1 << 28)
1443 #define IOMAP_DIO_NEED_SYNC (1 << 29)
1444 #define IOMAP_DIO_WRITE (1 << 30)
1445 #define IOMAP_DIO_DIRTY (1 << 31)
1446
1447 struct iomap_dio {
1448 struct kiocb *iocb;
1449 iomap_dio_end_io_t *end_io;
1450 loff_t i_size;
1451 loff_t size;
1452 atomic_t ref;
1453 unsigned flags;
1454 int error;
1455 bool wait_for_completion;
1456
1457 union {
1458 /* used during submission and for synchronous completion: */
1459 struct {
1460 struct iov_iter *iter;
1461 struct task_struct *waiter;
1462 struct request_queue *last_queue;
1463 blk_qc_t cookie;
1464 } submit;
1465
1466 /* used for aio completion: */
1467 struct {
1468 struct work_struct work;
1469 } aio;
1470 };
1471 };
1472
1473 int iomap_dio_iopoll(struct kiocb *kiocb, bool spin)
1474 {
1475 struct request_queue *q = READ_ONCE(kiocb->private);
1476
1477 if (!q)
1478 return 0;
1479 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), spin);
1480 }
1481 EXPORT_SYMBOL_GPL(iomap_dio_iopoll);
1482
1483 static void iomap_dio_submit_bio(struct iomap_dio *dio, struct iomap *iomap,
1484 struct bio *bio)
1485 {
1486 atomic_inc(&dio->ref);
1487
1488 if (dio->iocb->ki_flags & IOCB_HIPRI)
1489 bio_set_polled(bio, dio->iocb);
1490
1491 dio->submit.last_queue = bdev_get_queue(iomap->bdev);
1492 dio->submit.cookie = submit_bio(bio);
1493 }
1494
1495 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
1496 {
1497 struct kiocb *iocb = dio->iocb;
1498 struct inode *inode = file_inode(iocb->ki_filp);
1499 loff_t offset = iocb->ki_pos;
1500 ssize_t ret;
1501
1502 if (dio->end_io) {
1503 ret = dio->end_io(iocb,
1504 dio->error ? dio->error : dio->size,
1505 dio->flags);
1506 } else {
1507 ret = dio->error;
1508 }
1509
1510 if (likely(!ret)) {
1511 ret = dio->size;
1512 /* check for short read */
1513 if (offset + ret > dio->i_size &&
1514 !(dio->flags & IOMAP_DIO_WRITE))
1515 ret = dio->i_size - offset;
1516 iocb->ki_pos += ret;
1517 }
1518
1519 /*
1520 * Try again to invalidate clean pages which might have been cached by
1521 * non-direct readahead, or faulted in by get_user_pages() if the source
1522 * of the write was an mmap'ed region of the file we're writing. Either
1523 * one is a pretty crazy thing to do, so we don't support it 100%. If
1524 * this invalidation fails, tough, the write still worked...
1525 *
1526 * And this page cache invalidation has to be after dio->end_io(), as
1527 * some filesystems convert unwritten extents to real allocations in
1528 * end_io() when necessary, otherwise a racing buffer read would cache
1529 * zeros from unwritten extents.
1530 */
1531 if (!dio->error &&
1532 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
1533 int err;
1534 err = invalidate_inode_pages2_range(inode->i_mapping,
1535 offset >> PAGE_SHIFT,
1536 (offset + dio->size - 1) >> PAGE_SHIFT);
1537 if (err)
1538 dio_warn_stale_pagecache(iocb->ki_filp);
1539 }
1540
1541 /*
1542 * If this is a DSYNC write, make sure we push it to stable storage now
1543 * that we've written data.
1544 */
1545 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
1546 ret = generic_write_sync(iocb, ret);
1547
1548 inode_dio_end(file_inode(iocb->ki_filp));
1549 kfree(dio);
1550
1551 return ret;
1552 }
1553
1554 static void iomap_dio_complete_work(struct work_struct *work)
1555 {
1556 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
1557 struct kiocb *iocb = dio->iocb;
1558
1559 iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
1560 }
1561
1562 /*
1563 * Set an error in the dio if none is set yet. We have to use cmpxchg
1564 * as the submission context and the completion context(s) can race to
1565 * update the error.
1566 */
1567 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
1568 {
1569 cmpxchg(&dio->error, 0, ret);
1570 }
1571
1572 static void iomap_dio_bio_end_io(struct bio *bio)
1573 {
1574 struct iomap_dio *dio = bio->bi_private;
1575 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
1576
1577 if (bio->bi_status)
1578 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
1579
1580 if (atomic_dec_and_test(&dio->ref)) {
1581 if (dio->wait_for_completion) {
1582 struct task_struct *waiter = dio->submit.waiter;
1583 WRITE_ONCE(dio->submit.waiter, NULL);
1584 blk_wake_io_task(waiter);
1585 } else if (dio->flags & IOMAP_DIO_WRITE) {
1586 struct inode *inode = file_inode(dio->iocb->ki_filp);
1587
1588 INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
1589 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
1590 } else {
1591 iomap_dio_complete_work(&dio->aio.work);
1592 }
1593 }
1594
1595 if (should_dirty) {
1596 bio_check_pages_dirty(bio);
1597 } else {
1598 if (!bio_flagged(bio, BIO_NO_PAGE_REF)) {
1599 struct bvec_iter_all iter_all;
1600 struct bio_vec *bvec;
1601
1602 bio_for_each_segment_all(bvec, bio, iter_all)
1603 put_page(bvec->bv_page);
1604 }
1605 bio_put(bio);
1606 }
1607 }
1608
1609 static void
1610 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
1611 unsigned len)
1612 {
1613 struct page *page = ZERO_PAGE(0);
1614 int flags = REQ_SYNC | REQ_IDLE;
1615 struct bio *bio;
1616
1617 bio = bio_alloc(GFP_KERNEL, 1);
1618 bio_set_dev(bio, iomap->bdev);
1619 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1620 bio->bi_private = dio;
1621 bio->bi_end_io = iomap_dio_bio_end_io;
1622
1623 get_page(page);
1624 __bio_add_page(bio, page, len, 0);
1625 bio_set_op_attrs(bio, REQ_OP_WRITE, flags);
1626 iomap_dio_submit_bio(dio, iomap, bio);
1627 }
1628
1629 static loff_t
1630 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
1631 struct iomap_dio *dio, struct iomap *iomap)
1632 {
1633 unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
1634 unsigned int fs_block_size = i_blocksize(inode), pad;
1635 unsigned int align = iov_iter_alignment(dio->submit.iter);
1636 struct iov_iter iter;
1637 struct bio *bio;
1638 bool need_zeroout = false;
1639 bool use_fua = false;
1640 int nr_pages, ret = 0;
1641 size_t copied = 0;
1642
1643 if ((pos | length | align) & ((1 << blkbits) - 1))
1644 return -EINVAL;
1645
1646 if (iomap->type == IOMAP_UNWRITTEN) {
1647 dio->flags |= IOMAP_DIO_UNWRITTEN;
1648 need_zeroout = true;
1649 }
1650
1651 if (iomap->flags & IOMAP_F_SHARED)
1652 dio->flags |= IOMAP_DIO_COW;
1653
1654 if (iomap->flags & IOMAP_F_NEW) {
1655 need_zeroout = true;
1656 } else if (iomap->type == IOMAP_MAPPED) {
1657 /*
1658 * Use a FUA write if we need datasync semantics, this is a pure
1659 * data IO that doesn't require any metadata updates (including
1660 * after IO completion such as unwritten extent conversion) and
1661 * the underlying device supports FUA. This allows us to avoid
1662 * cache flushes on IO completion.
1663 */
1664 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
1665 (dio->flags & IOMAP_DIO_WRITE_FUA) &&
1666 blk_queue_fua(bdev_get_queue(iomap->bdev)))
1667 use_fua = true;
1668 }
1669
1670 /*
1671 * Operate on a partial iter trimmed to the extent we were called for.
1672 * We'll update the iter in the dio once we're done with this extent.
1673 */
1674 iter = *dio->submit.iter;
1675 iov_iter_truncate(&iter, length);
1676
1677 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1678 if (nr_pages <= 0)
1679 return nr_pages;
1680
1681 if (need_zeroout) {
1682 /* zero out from the start of the block to the write offset */
1683 pad = pos & (fs_block_size - 1);
1684 if (pad)
1685 iomap_dio_zero(dio, iomap, pos - pad, pad);
1686 }
1687
1688 do {
1689 size_t n;
1690 if (dio->error) {
1691 iov_iter_revert(dio->submit.iter, copied);
1692 return 0;
1693 }
1694
1695 bio = bio_alloc(GFP_KERNEL, nr_pages);
1696 bio_set_dev(bio, iomap->bdev);
1697 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1698 bio->bi_write_hint = dio->iocb->ki_hint;
1699 bio->bi_ioprio = dio->iocb->ki_ioprio;
1700 bio->bi_private = dio;
1701 bio->bi_end_io = iomap_dio_bio_end_io;
1702
1703 ret = bio_iov_iter_get_pages(bio, &iter);
1704 if (unlikely(ret)) {
1705 /*
1706 * We have to stop part way through an IO. We must fall
1707 * through to the sub-block tail zeroing here, otherwise
1708 * this short IO may expose stale data in the tail of
1709 * the block we haven't written data to.
1710 */
1711 bio_put(bio);
1712 goto zero_tail;
1713 }
1714
1715 n = bio->bi_iter.bi_size;
1716 if (dio->flags & IOMAP_DIO_WRITE) {
1717 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1718 if (use_fua)
1719 bio->bi_opf |= REQ_FUA;
1720 else
1721 dio->flags &= ~IOMAP_DIO_WRITE_FUA;
1722 task_io_account_write(n);
1723 } else {
1724 bio->bi_opf = REQ_OP_READ;
1725 if (dio->flags & IOMAP_DIO_DIRTY)
1726 bio_set_pages_dirty(bio);
1727 }
1728
1729 iov_iter_advance(dio->submit.iter, n);
1730
1731 dio->size += n;
1732 pos += n;
1733 copied += n;
1734
1735 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1736 iomap_dio_submit_bio(dio, iomap, bio);
1737 } while (nr_pages);
1738
1739 /*
1740 * We need to zeroout the tail of a sub-block write if the extent type
1741 * requires zeroing or the write extends beyond EOF. If we don't zero
1742 * the block tail in the latter case, we can expose stale data via mmap
1743 * reads of the EOF block.
1744 */
1745 zero_tail:
1746 if (need_zeroout ||
1747 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
1748 /* zero out from the end of the write to the end of the block */
1749 pad = pos & (fs_block_size - 1);
1750 if (pad)
1751 iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
1752 }
1753 return copied ? copied : ret;
1754 }
1755
1756 static loff_t
1757 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
1758 {
1759 length = iov_iter_zero(length, dio->submit.iter);
1760 dio->size += length;
1761 return length;
1762 }
1763
1764 static loff_t
1765 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
1766 struct iomap_dio *dio, struct iomap *iomap)
1767 {
1768 struct iov_iter *iter = dio->submit.iter;
1769 size_t copied;
1770
1771 BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
1772
1773 if (dio->flags & IOMAP_DIO_WRITE) {
1774 loff_t size = inode->i_size;
1775
1776 if (pos > size)
1777 memset(iomap->inline_data + size, 0, pos - size);
1778 copied = copy_from_iter(iomap->inline_data + pos, length, iter);
1779 if (copied) {
1780 if (pos + copied > size)
1781 i_size_write(inode, pos + copied);
1782 mark_inode_dirty(inode);
1783 }
1784 } else {
1785 copied = copy_to_iter(iomap->inline_data + pos, length, iter);
1786 }
1787 dio->size += copied;
1788 return copied;
1789 }
1790
1791 static loff_t
1792 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
1793 void *data, struct iomap *iomap)
1794 {
1795 struct iomap_dio *dio = data;
1796
1797 switch (iomap->type) {
1798 case IOMAP_HOLE:
1799 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
1800 return -EIO;
1801 return iomap_dio_hole_actor(length, dio);
1802 case IOMAP_UNWRITTEN:
1803 if (!(dio->flags & IOMAP_DIO_WRITE))
1804 return iomap_dio_hole_actor(length, dio);
1805 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1806 case IOMAP_MAPPED:
1807 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1808 case IOMAP_INLINE:
1809 return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
1810 default:
1811 WARN_ON_ONCE(1);
1812 return -EIO;
1813 }
1814 }
1815
1816 /*
1817 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
1818 * is being issued as AIO or not. This allows us to optimise pure data writes
1819 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1820 * REQ_FLUSH post write. This is slightly tricky because a single request here
1821 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1822 * may be pure data writes. In that case, we still need to do a full data sync
1823 * completion.
1824 */
1825 ssize_t
1826 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
1827 const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
1828 {
1829 struct address_space *mapping = iocb->ki_filp->f_mapping;
1830 struct inode *inode = file_inode(iocb->ki_filp);
1831 size_t count = iov_iter_count(iter);
1832 loff_t pos = iocb->ki_pos, start = pos;
1833 loff_t end = iocb->ki_pos + count - 1, ret = 0;
1834 unsigned int flags = IOMAP_DIRECT;
1835 bool wait_for_completion = is_sync_kiocb(iocb);
1836 struct blk_plug plug;
1837 struct iomap_dio *dio;
1838
1839 lockdep_assert_held(&inode->i_rwsem);
1840
1841 if (!count)
1842 return 0;
1843
1844 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1845 if (!dio)
1846 return -ENOMEM;
1847
1848 dio->iocb = iocb;
1849 atomic_set(&dio->ref, 1);
1850 dio->size = 0;
1851 dio->i_size = i_size_read(inode);
1852 dio->end_io = end_io;
1853 dio->error = 0;
1854 dio->flags = 0;
1855
1856 dio->submit.iter = iter;
1857 dio->submit.waiter = current;
1858 dio->submit.cookie = BLK_QC_T_NONE;
1859 dio->submit.last_queue = NULL;
1860
1861 if (iov_iter_rw(iter) == READ) {
1862 if (pos >= dio->i_size)
1863 goto out_free_dio;
1864
1865 if (iter_is_iovec(iter) && iov_iter_rw(iter) == READ)
1866 dio->flags |= IOMAP_DIO_DIRTY;
1867 } else {
1868 flags |= IOMAP_WRITE;
1869 dio->flags |= IOMAP_DIO_WRITE;
1870
1871 /* for data sync or sync, we need sync completion processing */
1872 if (iocb->ki_flags & IOCB_DSYNC)
1873 dio->flags |= IOMAP_DIO_NEED_SYNC;
1874
1875 /*
1876 * For datasync only writes, we optimistically try using FUA for
1877 * this IO. Any non-FUA write that occurs will clear this flag,
1878 * hence we know before completion whether a cache flush is
1879 * necessary.
1880 */
1881 if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
1882 dio->flags |= IOMAP_DIO_WRITE_FUA;
1883 }
1884
1885 if (iocb->ki_flags & IOCB_NOWAIT) {
1886 if (filemap_range_has_page(mapping, start, end)) {
1887 ret = -EAGAIN;
1888 goto out_free_dio;
1889 }
1890 flags |= IOMAP_NOWAIT;
1891 }
1892
1893 ret = filemap_write_and_wait_range(mapping, start, end);
1894 if (ret)
1895 goto out_free_dio;
1896
1897 /*
1898 * Try to invalidate cache pages for the range we're direct
1899 * writing. If this invalidation fails, tough, the write will
1900 * still work, but racing two incompatible write paths is a
1901 * pretty crazy thing to do, so we don't support it 100%.
1902 */
1903 ret = invalidate_inode_pages2_range(mapping,
1904 start >> PAGE_SHIFT, end >> PAGE_SHIFT);
1905 if (ret)
1906 dio_warn_stale_pagecache(iocb->ki_filp);
1907 ret = 0;
1908
1909 if (iov_iter_rw(iter) == WRITE && !wait_for_completion &&
1910 !inode->i_sb->s_dio_done_wq) {
1911 ret = sb_init_dio_done_wq(inode->i_sb);
1912 if (ret < 0)
1913 goto out_free_dio;
1914 }
1915
1916 inode_dio_begin(inode);
1917
1918 blk_start_plug(&plug);
1919 do {
1920 ret = iomap_apply(inode, pos, count, flags, ops, dio,
1921 iomap_dio_actor);
1922 if (ret <= 0) {
1923 /* magic error code to fall back to buffered I/O */
1924 if (ret == -ENOTBLK) {
1925 wait_for_completion = true;
1926 ret = 0;
1927 }
1928 break;
1929 }
1930 pos += ret;
1931
1932 if (iov_iter_rw(iter) == READ && pos >= dio->i_size)
1933 break;
1934 } while ((count = iov_iter_count(iter)) > 0);
1935 blk_finish_plug(&plug);
1936
1937 if (ret < 0)
1938 iomap_dio_set_error(dio, ret);
1939
1940 /*
1941 * If all the writes we issued were FUA, we don't need to flush the
1942 * cache on IO completion. Clear the sync flag for this case.
1943 */
1944 if (dio->flags & IOMAP_DIO_WRITE_FUA)
1945 dio->flags &= ~IOMAP_DIO_NEED_SYNC;
1946
1947 WRITE_ONCE(iocb->ki_cookie, dio->submit.cookie);
1948 WRITE_ONCE(iocb->private, dio->submit.last_queue);
1949
1950 /*
1951 * We are about to drop our additional submission reference, which
1952 * might be the last reference to the dio. There are three three
1953 * different ways we can progress here:
1954 *
1955 * (a) If this is the last reference we will always complete and free
1956 * the dio ourselves.
1957 * (b) If this is not the last reference, and we serve an asynchronous
1958 * iocb, we must never touch the dio after the decrement, the
1959 * I/O completion handler will complete and free it.
1960 * (c) If this is not the last reference, but we serve a synchronous
1961 * iocb, the I/O completion handler will wake us up on the drop
1962 * of the final reference, and we will complete and free it here
1963 * after we got woken by the I/O completion handler.
1964 */
1965 dio->wait_for_completion = wait_for_completion;
1966 if (!atomic_dec_and_test(&dio->ref)) {
1967 if (!wait_for_completion)
1968 return -EIOCBQUEUED;
1969
1970 for (;;) {
1971 set_current_state(TASK_UNINTERRUPTIBLE);
1972 if (!READ_ONCE(dio->submit.waiter))
1973 break;
1974
1975 if (!(iocb->ki_flags & IOCB_HIPRI) ||
1976 !dio->submit.last_queue ||
1977 !blk_poll(dio->submit.last_queue,
1978 dio->submit.cookie, true))
1979 io_schedule();
1980 }
1981 __set_current_state(TASK_RUNNING);
1982 }
1983
1984 return iomap_dio_complete(dio);
1985
1986 out_free_dio:
1987 kfree(dio);
1988 return ret;
1989 }
1990 EXPORT_SYMBOL_GPL(iomap_dio_rw);
1991
1992 /* Swapfile activation */
1993
1994 #ifdef CONFIG_SWAP
1995 struct iomap_swapfile_info {
1996 struct iomap iomap; /* accumulated iomap */
1997 struct swap_info_struct *sis;
1998 uint64_t lowest_ppage; /* lowest physical addr seen (pages) */
1999 uint64_t highest_ppage; /* highest physical addr seen (pages) */
2000 unsigned long nr_pages; /* number of pages collected */
2001 int nr_extents; /* extent count */
2002 };
2003
2004 /*
2005 * Collect physical extents for this swap file. Physical extents reported to
2006 * the swap code must be trimmed to align to a page boundary. The logical
2007 * offset within the file is irrelevant since the swapfile code maps logical
2008 * page numbers of the swap device to the physical page-aligned extents.
2009 */
2010 static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi)
2011 {
2012 struct iomap *iomap = &isi->iomap;
2013 unsigned long nr_pages;
2014 uint64_t first_ppage;
2015 uint64_t first_ppage_reported;
2016 uint64_t next_ppage;
2017 int error;
2018
2019 /*
2020 * Round the start up and the end down so that the physical
2021 * extent aligns to a page boundary.
2022 */
2023 first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT;
2024 next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >>
2025 PAGE_SHIFT;
2026
2027 /* Skip too-short physical extents. */
2028 if (first_ppage >= next_ppage)
2029 return 0;
2030 nr_pages = next_ppage - first_ppage;
2031
2032 /*
2033 * Calculate how much swap space we're adding; the first page contains
2034 * the swap header and doesn't count. The mm still wants that first
2035 * page fed to add_swap_extent, however.
2036 */
2037 first_ppage_reported = first_ppage;
2038 if (iomap->offset == 0)
2039 first_ppage_reported++;
2040 if (isi->lowest_ppage > first_ppage_reported)
2041 isi->lowest_ppage = first_ppage_reported;
2042 if (isi->highest_ppage < (next_ppage - 1))
2043 isi->highest_ppage = next_ppage - 1;
2044
2045 /* Add extent, set up for the next call. */
2046 error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage);
2047 if (error < 0)
2048 return error;
2049 isi->nr_extents += error;
2050 isi->nr_pages += nr_pages;
2051 return 0;
2052 }
2053
2054 /*
2055 * Accumulate iomaps for this swap file. We have to accumulate iomaps because
2056 * swap only cares about contiguous page-aligned physical extents and makes no
2057 * distinction between written and unwritten extents.
2058 */
2059 static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos,
2060 loff_t count, void *data, struct iomap *iomap)
2061 {
2062 struct iomap_swapfile_info *isi = data;
2063 int error;
2064
2065 switch (iomap->type) {
2066 case IOMAP_MAPPED:
2067 case IOMAP_UNWRITTEN:
2068 /* Only real or unwritten extents. */
2069 break;
2070 case IOMAP_INLINE:
2071 /* No inline data. */
2072 pr_err("swapon: file is inline\n");
2073 return -EINVAL;
2074 default:
2075 pr_err("swapon: file has unallocated extents\n");
2076 return -EINVAL;
2077 }
2078
2079 /* No uncommitted metadata or shared blocks. */
2080 if (iomap->flags & IOMAP_F_DIRTY) {
2081 pr_err("swapon: file is not committed\n");
2082 return -EINVAL;
2083 }
2084 if (iomap->flags & IOMAP_F_SHARED) {
2085 pr_err("swapon: file has shared extents\n");
2086 return -EINVAL;
2087 }
2088
2089 /* Only one bdev per swap file. */
2090 if (iomap->bdev != isi->sis->bdev) {
2091 pr_err("swapon: file is on multiple devices\n");
2092 return -EINVAL;
2093 }
2094
2095 if (isi->iomap.length == 0) {
2096 /* No accumulated extent, so just store it. */
2097 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2098 } else if (isi->iomap.addr + isi->iomap.length == iomap->addr) {
2099 /* Append this to the accumulated extent. */
2100 isi->iomap.length += iomap->length;
2101 } else {
2102 /* Otherwise, add the retained iomap and store this one. */
2103 error = iomap_swapfile_add_extent(isi);
2104 if (error)
2105 return error;
2106 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2107 }
2108 return count;
2109 }
2110
2111 /*
2112 * Iterate a swap file's iomaps to construct physical extents that can be
2113 * passed to the swapfile subsystem.
2114 */
2115 int iomap_swapfile_activate(struct swap_info_struct *sis,
2116 struct file *swap_file, sector_t *pagespan,
2117 const struct iomap_ops *ops)
2118 {
2119 struct iomap_swapfile_info isi = {
2120 .sis = sis,
2121 .lowest_ppage = (sector_t)-1ULL,
2122 };
2123 struct address_space *mapping = swap_file->f_mapping;
2124 struct inode *inode = mapping->host;
2125 loff_t pos = 0;
2126 loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE);
2127 loff_t ret;
2128
2129 /*
2130 * Persist all file mapping metadata so that we won't have any
2131 * IOMAP_F_DIRTY iomaps.
2132 */
2133 ret = vfs_fsync(swap_file, 1);
2134 if (ret)
2135 return ret;
2136
2137 while (len > 0) {
2138 ret = iomap_apply(inode, pos, len, IOMAP_REPORT,
2139 ops, &isi, iomap_swapfile_activate_actor);
2140 if (ret <= 0)
2141 return ret;
2142
2143 pos += ret;
2144 len -= ret;
2145 }
2146
2147 if (isi.iomap.length) {
2148 ret = iomap_swapfile_add_extent(&isi);
2149 if (ret)
2150 return ret;
2151 }
2152
2153 *pagespan = 1 + isi.highest_ppage - isi.lowest_ppage;
2154 sis->max = isi.nr_pages;
2155 sis->pages = isi.nr_pages - 1;
2156 sis->highest_bit = isi.nr_pages - 1;
2157 return isi.nr_extents;
2158 }
2159 EXPORT_SYMBOL_GPL(iomap_swapfile_activate);
2160 #endif /* CONFIG_SWAP */
2161
2162 static loff_t
2163 iomap_bmap_actor(struct inode *inode, loff_t pos, loff_t length,
2164 void *data, struct iomap *iomap)
2165 {
2166 sector_t *bno = data, addr;
2167
2168 if (iomap->type == IOMAP_MAPPED) {
2169 addr = (pos - iomap->offset + iomap->addr) >> inode->i_blkbits;
2170 if (addr > INT_MAX)
2171 WARN(1, "would truncate bmap result\n");
2172 else
2173 *bno = addr;
2174 }
2175 return 0;
2176 }
2177
2178 /* legacy ->bmap interface. 0 is the error return (!) */
2179 sector_t
2180 iomap_bmap(struct address_space *mapping, sector_t bno,
2181 const struct iomap_ops *ops)
2182 {
2183 struct inode *inode = mapping->host;
2184 loff_t pos = bno << inode->i_blkbits;
2185 unsigned blocksize = i_blocksize(inode);
2186
2187 if (filemap_write_and_wait(mapping))
2188 return 0;
2189
2190 bno = 0;
2191 iomap_apply(inode, pos, blocksize, 0, ops, &bno, iomap_bmap_actor);
2192 return bno;
2193 }
2194 EXPORT_SYMBOL_GPL(iomap_bmap);