]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/xfs/xfs_aops.c
block: return from __bio_try_merge_page if merging occured in the same page
[thirdparty/kernel/linux.git] / fs / xfs / xfs_aops.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_alloc.h"
17 #include "xfs_error.h"
18 #include "xfs_iomap.h"
19 #include "xfs_trace.h"
20 #include "xfs_bmap.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_bmap_btree.h"
23 #include "xfs_reflink.h"
24 #include <linux/writeback.h>
25
26 /*
27 * structure owned by writepages passed to individual writepage calls
28 */
29 struct xfs_writepage_ctx {
30 struct xfs_bmbt_irec imap;
31 int fork;
32 unsigned int data_seq;
33 unsigned int cow_seq;
34 struct xfs_ioend *ioend;
35 };
36
37 struct block_device *
38 xfs_find_bdev_for_inode(
39 struct inode *inode)
40 {
41 struct xfs_inode *ip = XFS_I(inode);
42 struct xfs_mount *mp = ip->i_mount;
43
44 if (XFS_IS_REALTIME_INODE(ip))
45 return mp->m_rtdev_targp->bt_bdev;
46 else
47 return mp->m_ddev_targp->bt_bdev;
48 }
49
50 struct dax_device *
51 xfs_find_daxdev_for_inode(
52 struct inode *inode)
53 {
54 struct xfs_inode *ip = XFS_I(inode);
55 struct xfs_mount *mp = ip->i_mount;
56
57 if (XFS_IS_REALTIME_INODE(ip))
58 return mp->m_rtdev_targp->bt_daxdev;
59 else
60 return mp->m_ddev_targp->bt_daxdev;
61 }
62
63 static void
64 xfs_finish_page_writeback(
65 struct inode *inode,
66 struct bio_vec *bvec,
67 int error)
68 {
69 struct iomap_page *iop = to_iomap_page(bvec->bv_page);
70
71 if (error) {
72 SetPageError(bvec->bv_page);
73 mapping_set_error(inode->i_mapping, -EIO);
74 }
75
76 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
77 ASSERT(!iop || atomic_read(&iop->write_count) > 0);
78
79 if (!iop || atomic_dec_and_test(&iop->write_count))
80 end_page_writeback(bvec->bv_page);
81 }
82
83 /*
84 * We're now finished for good with this ioend structure. Update the page
85 * state, release holds on bios, and finally free up memory. Do not use the
86 * ioend after this.
87 */
88 STATIC void
89 xfs_destroy_ioend(
90 struct xfs_ioend *ioend,
91 int error)
92 {
93 struct inode *inode = ioend->io_inode;
94 struct bio *bio = &ioend->io_inline_bio;
95 struct bio *last = ioend->io_bio, *next;
96 u64 start = bio->bi_iter.bi_sector;
97 bool quiet = bio_flagged(bio, BIO_QUIET);
98
99 for (bio = &ioend->io_inline_bio; bio; bio = next) {
100 struct bio_vec *bvec;
101 struct bvec_iter_all iter_all;
102
103 /*
104 * For the last bio, bi_private points to the ioend, so we
105 * need to explicitly end the iteration here.
106 */
107 if (bio == last)
108 next = NULL;
109 else
110 next = bio->bi_private;
111
112 /* walk each page on bio, ending page IO on them */
113 bio_for_each_segment_all(bvec, bio, iter_all)
114 xfs_finish_page_writeback(inode, bvec, error);
115 bio_put(bio);
116 }
117
118 if (unlikely(error && !quiet)) {
119 xfs_err_ratelimited(XFS_I(inode)->i_mount,
120 "writeback error on sector %llu", start);
121 }
122 }
123
124 /*
125 * Fast and loose check if this write could update the on-disk inode size.
126 */
127 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
128 {
129 return ioend->io_offset + ioend->io_size >
130 XFS_I(ioend->io_inode)->i_d.di_size;
131 }
132
133 STATIC int
134 xfs_setfilesize_trans_alloc(
135 struct xfs_ioend *ioend)
136 {
137 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
138 struct xfs_trans *tp;
139 int error;
140
141 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
142 XFS_TRANS_NOFS, &tp);
143 if (error)
144 return error;
145
146 ioend->io_append_trans = tp;
147
148 /*
149 * We may pass freeze protection with a transaction. So tell lockdep
150 * we released it.
151 */
152 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
153 /*
154 * We hand off the transaction to the completion thread now, so
155 * clear the flag here.
156 */
157 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
158 return 0;
159 }
160
161 /*
162 * Update on-disk file size now that data has been written to disk.
163 */
164 STATIC int
165 __xfs_setfilesize(
166 struct xfs_inode *ip,
167 struct xfs_trans *tp,
168 xfs_off_t offset,
169 size_t size)
170 {
171 xfs_fsize_t isize;
172
173 xfs_ilock(ip, XFS_ILOCK_EXCL);
174 isize = xfs_new_eof(ip, offset + size);
175 if (!isize) {
176 xfs_iunlock(ip, XFS_ILOCK_EXCL);
177 xfs_trans_cancel(tp);
178 return 0;
179 }
180
181 trace_xfs_setfilesize(ip, offset, size);
182
183 ip->i_d.di_size = isize;
184 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
185 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
186
187 return xfs_trans_commit(tp);
188 }
189
190 int
191 xfs_setfilesize(
192 struct xfs_inode *ip,
193 xfs_off_t offset,
194 size_t size)
195 {
196 struct xfs_mount *mp = ip->i_mount;
197 struct xfs_trans *tp;
198 int error;
199
200 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
201 if (error)
202 return error;
203
204 return __xfs_setfilesize(ip, tp, offset, size);
205 }
206
207 STATIC int
208 xfs_setfilesize_ioend(
209 struct xfs_ioend *ioend,
210 int error)
211 {
212 struct xfs_inode *ip = XFS_I(ioend->io_inode);
213 struct xfs_trans *tp = ioend->io_append_trans;
214
215 /*
216 * The transaction may have been allocated in the I/O submission thread,
217 * thus we need to mark ourselves as being in a transaction manually.
218 * Similarly for freeze protection.
219 */
220 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
221 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
222
223 /* we abort the update if there was an IO error */
224 if (error) {
225 xfs_trans_cancel(tp);
226 return error;
227 }
228
229 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
230 }
231
232 /*
233 * IO write completion.
234 */
235 STATIC void
236 xfs_end_ioend(
237 struct xfs_ioend *ioend)
238 {
239 struct list_head ioend_list;
240 struct xfs_inode *ip = XFS_I(ioend->io_inode);
241 xfs_off_t offset = ioend->io_offset;
242 size_t size = ioend->io_size;
243 int error;
244
245 /*
246 * Just clean up the in-memory strutures if the fs has been shut down.
247 */
248 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
249 error = -EIO;
250 goto done;
251 }
252
253 /*
254 * Clean up any COW blocks on an I/O error.
255 */
256 error = blk_status_to_errno(ioend->io_bio->bi_status);
257 if (unlikely(error)) {
258 if (ioend->io_fork == XFS_COW_FORK)
259 xfs_reflink_cancel_cow_range(ip, offset, size, true);
260 goto done;
261 }
262
263 /*
264 * Success: commit the COW or unwritten blocks if needed.
265 */
266 if (ioend->io_fork == XFS_COW_FORK)
267 error = xfs_reflink_end_cow(ip, offset, size);
268 else if (ioend->io_state == XFS_EXT_UNWRITTEN)
269 error = xfs_iomap_write_unwritten(ip, offset, size, false);
270 else
271 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
272
273 done:
274 if (ioend->io_append_trans)
275 error = xfs_setfilesize_ioend(ioend, error);
276 list_replace_init(&ioend->io_list, &ioend_list);
277 xfs_destroy_ioend(ioend, error);
278
279 while (!list_empty(&ioend_list)) {
280 ioend = list_first_entry(&ioend_list, struct xfs_ioend,
281 io_list);
282 list_del_init(&ioend->io_list);
283 xfs_destroy_ioend(ioend, error);
284 }
285 }
286
287 /*
288 * We can merge two adjacent ioends if they have the same set of work to do.
289 */
290 static bool
291 xfs_ioend_can_merge(
292 struct xfs_ioend *ioend,
293 int ioend_error,
294 struct xfs_ioend *next)
295 {
296 int next_error;
297
298 next_error = blk_status_to_errno(next->io_bio->bi_status);
299 if (ioend_error != next_error)
300 return false;
301 if ((ioend->io_fork == XFS_COW_FORK) ^ (next->io_fork == XFS_COW_FORK))
302 return false;
303 if ((ioend->io_state == XFS_EXT_UNWRITTEN) ^
304 (next->io_state == XFS_EXT_UNWRITTEN))
305 return false;
306 if (ioend->io_offset + ioend->io_size != next->io_offset)
307 return false;
308 if (xfs_ioend_is_append(ioend) != xfs_ioend_is_append(next))
309 return false;
310 return true;
311 }
312
313 /* Try to merge adjacent completions. */
314 STATIC void
315 xfs_ioend_try_merge(
316 struct xfs_ioend *ioend,
317 struct list_head *more_ioends)
318 {
319 struct xfs_ioend *next_ioend;
320 int ioend_error;
321 int error;
322
323 if (list_empty(more_ioends))
324 return;
325
326 ioend_error = blk_status_to_errno(ioend->io_bio->bi_status);
327
328 while (!list_empty(more_ioends)) {
329 next_ioend = list_first_entry(more_ioends, struct xfs_ioend,
330 io_list);
331 if (!xfs_ioend_can_merge(ioend, ioend_error, next_ioend))
332 break;
333 list_move_tail(&next_ioend->io_list, &ioend->io_list);
334 ioend->io_size += next_ioend->io_size;
335 if (ioend->io_append_trans) {
336 error = xfs_setfilesize_ioend(next_ioend, 1);
337 ASSERT(error == 1);
338 }
339 }
340 }
341
342 /* list_sort compare function for ioends */
343 static int
344 xfs_ioend_compare(
345 void *priv,
346 struct list_head *a,
347 struct list_head *b)
348 {
349 struct xfs_ioend *ia;
350 struct xfs_ioend *ib;
351
352 ia = container_of(a, struct xfs_ioend, io_list);
353 ib = container_of(b, struct xfs_ioend, io_list);
354 if (ia->io_offset < ib->io_offset)
355 return -1;
356 else if (ia->io_offset > ib->io_offset)
357 return 1;
358 return 0;
359 }
360
361 /* Finish all pending io completions. */
362 void
363 xfs_end_io(
364 struct work_struct *work)
365 {
366 struct xfs_inode *ip;
367 struct xfs_ioend *ioend;
368 struct list_head completion_list;
369 unsigned long flags;
370
371 ip = container_of(work, struct xfs_inode, i_ioend_work);
372
373 spin_lock_irqsave(&ip->i_ioend_lock, flags);
374 list_replace_init(&ip->i_ioend_list, &completion_list);
375 spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
376
377 list_sort(NULL, &completion_list, xfs_ioend_compare);
378
379 while (!list_empty(&completion_list)) {
380 ioend = list_first_entry(&completion_list, struct xfs_ioend,
381 io_list);
382 list_del_init(&ioend->io_list);
383 xfs_ioend_try_merge(ioend, &completion_list);
384 xfs_end_ioend(ioend);
385 }
386 }
387
388 STATIC void
389 xfs_end_bio(
390 struct bio *bio)
391 {
392 struct xfs_ioend *ioend = bio->bi_private;
393 struct xfs_inode *ip = XFS_I(ioend->io_inode);
394 struct xfs_mount *mp = ip->i_mount;
395 unsigned long flags;
396
397 if (ioend->io_fork == XFS_COW_FORK ||
398 ioend->io_state == XFS_EXT_UNWRITTEN ||
399 ioend->io_append_trans != NULL) {
400 spin_lock_irqsave(&ip->i_ioend_lock, flags);
401 if (list_empty(&ip->i_ioend_list))
402 WARN_ON_ONCE(!queue_work(mp->m_unwritten_workqueue,
403 &ip->i_ioend_work));
404 list_add_tail(&ioend->io_list, &ip->i_ioend_list);
405 spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
406 } else
407 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
408 }
409
410 /*
411 * Fast revalidation of the cached writeback mapping. Return true if the current
412 * mapping is valid, false otherwise.
413 */
414 static bool
415 xfs_imap_valid(
416 struct xfs_writepage_ctx *wpc,
417 struct xfs_inode *ip,
418 xfs_fileoff_t offset_fsb)
419 {
420 if (offset_fsb < wpc->imap.br_startoff ||
421 offset_fsb >= wpc->imap.br_startoff + wpc->imap.br_blockcount)
422 return false;
423 /*
424 * If this is a COW mapping, it is sufficient to check that the mapping
425 * covers the offset. Be careful to check this first because the caller
426 * can revalidate a COW mapping without updating the data seqno.
427 */
428 if (wpc->fork == XFS_COW_FORK)
429 return true;
430
431 /*
432 * This is not a COW mapping. Check the sequence number of the data fork
433 * because concurrent changes could have invalidated the extent. Check
434 * the COW fork because concurrent changes since the last time we
435 * checked (and found nothing at this offset) could have added
436 * overlapping blocks.
437 */
438 if (wpc->data_seq != READ_ONCE(ip->i_df.if_seq))
439 return false;
440 if (xfs_inode_has_cow_data(ip) &&
441 wpc->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
442 return false;
443 return true;
444 }
445
446 /*
447 * Pass in a dellalloc extent and convert it to real extents, return the real
448 * extent that maps offset_fsb in wpc->imap.
449 *
450 * The current page is held locked so nothing could have removed the block
451 * backing offset_fsb, although it could have moved from the COW to the data
452 * fork by another thread.
453 */
454 static int
455 xfs_convert_blocks(
456 struct xfs_writepage_ctx *wpc,
457 struct xfs_inode *ip,
458 xfs_fileoff_t offset_fsb)
459 {
460 int error;
461
462 /*
463 * Attempt to allocate whatever delalloc extent currently backs
464 * offset_fsb and put the result into wpc->imap. Allocate in a loop
465 * because it may take several attempts to allocate real blocks for a
466 * contiguous delalloc extent if free space is sufficiently fragmented.
467 */
468 do {
469 error = xfs_bmapi_convert_delalloc(ip, wpc->fork, offset_fsb,
470 &wpc->imap, wpc->fork == XFS_COW_FORK ?
471 &wpc->cow_seq : &wpc->data_seq);
472 if (error)
473 return error;
474 } while (wpc->imap.br_startoff + wpc->imap.br_blockcount <= offset_fsb);
475
476 return 0;
477 }
478
479 STATIC int
480 xfs_map_blocks(
481 struct xfs_writepage_ctx *wpc,
482 struct inode *inode,
483 loff_t offset)
484 {
485 struct xfs_inode *ip = XFS_I(inode);
486 struct xfs_mount *mp = ip->i_mount;
487 ssize_t count = i_blocksize(inode);
488 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
489 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
490 xfs_fileoff_t cow_fsb = NULLFILEOFF;
491 struct xfs_bmbt_irec imap;
492 struct xfs_iext_cursor icur;
493 int retries = 0;
494 int error = 0;
495
496 if (XFS_FORCED_SHUTDOWN(mp))
497 return -EIO;
498
499 /*
500 * COW fork blocks can overlap data fork blocks even if the blocks
501 * aren't shared. COW I/O always takes precedent, so we must always
502 * check for overlap on reflink inodes unless the mapping is already a
503 * COW one, or the COW fork hasn't changed from the last time we looked
504 * at it.
505 *
506 * It's safe to check the COW fork if_seq here without the ILOCK because
507 * we've indirectly protected against concurrent updates: writeback has
508 * the page locked, which prevents concurrent invalidations by reflink
509 * and directio and prevents concurrent buffered writes to the same
510 * page. Changes to if_seq always happen under i_lock, which protects
511 * against concurrent updates and provides a memory barrier on the way
512 * out that ensures that we always see the current value.
513 */
514 if (xfs_imap_valid(wpc, ip, offset_fsb))
515 return 0;
516
517 /*
518 * If we don't have a valid map, now it's time to get a new one for this
519 * offset. This will convert delayed allocations (including COW ones)
520 * into real extents. If we return without a valid map, it means we
521 * landed in a hole and we skip the block.
522 */
523 retry:
524 xfs_ilock(ip, XFS_ILOCK_SHARED);
525 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
526 (ip->i_df.if_flags & XFS_IFEXTENTS));
527
528 /*
529 * Check if this is offset is covered by a COW extents, and if yes use
530 * it directly instead of looking up anything in the data fork.
531 */
532 if (xfs_inode_has_cow_data(ip) &&
533 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
534 cow_fsb = imap.br_startoff;
535 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
536 wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
537 xfs_iunlock(ip, XFS_ILOCK_SHARED);
538
539 wpc->fork = XFS_COW_FORK;
540 goto allocate_blocks;
541 }
542
543 /*
544 * No COW extent overlap. Revalidate now that we may have updated
545 * ->cow_seq. If the data mapping is still valid, we're done.
546 */
547 if (xfs_imap_valid(wpc, ip, offset_fsb)) {
548 xfs_iunlock(ip, XFS_ILOCK_SHARED);
549 return 0;
550 }
551
552 /*
553 * If we don't have a valid map, now it's time to get a new one for this
554 * offset. This will convert delayed allocations (including COW ones)
555 * into real extents.
556 */
557 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
558 imap.br_startoff = end_fsb; /* fake a hole past EOF */
559 wpc->data_seq = READ_ONCE(ip->i_df.if_seq);
560 xfs_iunlock(ip, XFS_ILOCK_SHARED);
561
562 wpc->fork = XFS_DATA_FORK;
563
564 /* landed in a hole or beyond EOF? */
565 if (imap.br_startoff > offset_fsb) {
566 imap.br_blockcount = imap.br_startoff - offset_fsb;
567 imap.br_startoff = offset_fsb;
568 imap.br_startblock = HOLESTARTBLOCK;
569 imap.br_state = XFS_EXT_NORM;
570 }
571
572 /*
573 * Truncate to the next COW extent if there is one. This is the only
574 * opportunity to do this because we can skip COW fork lookups for the
575 * subsequent blocks in the mapping; however, the requirement to treat
576 * the COW range separately remains.
577 */
578 if (cow_fsb != NULLFILEOFF &&
579 cow_fsb < imap.br_startoff + imap.br_blockcount)
580 imap.br_blockcount = cow_fsb - imap.br_startoff;
581
582 /* got a delalloc extent? */
583 if (imap.br_startblock != HOLESTARTBLOCK &&
584 isnullstartblock(imap.br_startblock))
585 goto allocate_blocks;
586
587 wpc->imap = imap;
588 trace_xfs_map_blocks_found(ip, offset, count, wpc->fork, &imap);
589 return 0;
590 allocate_blocks:
591 error = xfs_convert_blocks(wpc, ip, offset_fsb);
592 if (error) {
593 /*
594 * If we failed to find the extent in the COW fork we might have
595 * raced with a COW to data fork conversion or truncate.
596 * Restart the lookup to catch the extent in the data fork for
597 * the former case, but prevent additional retries to avoid
598 * looping forever for the latter case.
599 */
600 if (error == -EAGAIN && wpc->fork == XFS_COW_FORK && !retries++)
601 goto retry;
602 ASSERT(error != -EAGAIN);
603 return error;
604 }
605
606 /*
607 * Due to merging the return real extent might be larger than the
608 * original delalloc one. Trim the return extent to the next COW
609 * boundary again to force a re-lookup.
610 */
611 if (wpc->fork != XFS_COW_FORK && cow_fsb != NULLFILEOFF &&
612 cow_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount)
613 wpc->imap.br_blockcount = cow_fsb - wpc->imap.br_startoff;
614
615 ASSERT(wpc->imap.br_startoff <= offset_fsb);
616 ASSERT(wpc->imap.br_startoff + wpc->imap.br_blockcount > offset_fsb);
617 trace_xfs_map_blocks_alloc(ip, offset, count, wpc->fork, &imap);
618 return 0;
619 }
620
621 /*
622 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
623 * it, and we submit that bio. The ioend may be used for multiple bio
624 * submissions, so we only want to allocate an append transaction for the ioend
625 * once. In the case of multiple bio submission, each bio will take an IO
626 * reference to the ioend to ensure that the ioend completion is only done once
627 * all bios have been submitted and the ioend is really done.
628 *
629 * If @fail is non-zero, it means that we have a situation where some part of
630 * the submission process has failed after we have marked paged for writeback
631 * and unlocked them. In this situation, we need to fail the bio and ioend
632 * rather than submit it to IO. This typically only happens on a filesystem
633 * shutdown.
634 */
635 STATIC int
636 xfs_submit_ioend(
637 struct writeback_control *wbc,
638 struct xfs_ioend *ioend,
639 int status)
640 {
641 /* Convert CoW extents to regular */
642 if (!status && ioend->io_fork == XFS_COW_FORK) {
643 /*
644 * Yuk. This can do memory allocation, but is not a
645 * transactional operation so everything is done in GFP_KERNEL
646 * context. That can deadlock, because we hold pages in
647 * writeback state and GFP_KERNEL allocations can block on them.
648 * Hence we must operate in nofs conditions here.
649 */
650 unsigned nofs_flag;
651
652 nofs_flag = memalloc_nofs_save();
653 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
654 ioend->io_offset, ioend->io_size);
655 memalloc_nofs_restore(nofs_flag);
656 }
657
658 /* Reserve log space if we might write beyond the on-disk inode size. */
659 if (!status &&
660 (ioend->io_fork == XFS_COW_FORK ||
661 ioend->io_state != XFS_EXT_UNWRITTEN) &&
662 xfs_ioend_is_append(ioend) &&
663 !ioend->io_append_trans)
664 status = xfs_setfilesize_trans_alloc(ioend);
665
666 ioend->io_bio->bi_private = ioend;
667 ioend->io_bio->bi_end_io = xfs_end_bio;
668 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
669
670 /*
671 * If we are failing the IO now, just mark the ioend with an
672 * error and finish it. This will run IO completion immediately
673 * as there is only one reference to the ioend at this point in
674 * time.
675 */
676 if (status) {
677 ioend->io_bio->bi_status = errno_to_blk_status(status);
678 bio_endio(ioend->io_bio);
679 return status;
680 }
681
682 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
683 submit_bio(ioend->io_bio);
684 return 0;
685 }
686
687 static struct xfs_ioend *
688 xfs_alloc_ioend(
689 struct inode *inode,
690 int fork,
691 xfs_exntst_t state,
692 xfs_off_t offset,
693 struct block_device *bdev,
694 sector_t sector)
695 {
696 struct xfs_ioend *ioend;
697 struct bio *bio;
698
699 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
700 bio_set_dev(bio, bdev);
701 bio->bi_iter.bi_sector = sector;
702
703 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
704 INIT_LIST_HEAD(&ioend->io_list);
705 ioend->io_fork = fork;
706 ioend->io_state = state;
707 ioend->io_inode = inode;
708 ioend->io_size = 0;
709 ioend->io_offset = offset;
710 ioend->io_append_trans = NULL;
711 ioend->io_bio = bio;
712 return ioend;
713 }
714
715 /*
716 * Allocate a new bio, and chain the old bio to the new one.
717 *
718 * Note that we have to do perform the chaining in this unintuitive order
719 * so that the bi_private linkage is set up in the right direction for the
720 * traversal in xfs_destroy_ioend().
721 */
722 static void
723 xfs_chain_bio(
724 struct xfs_ioend *ioend,
725 struct writeback_control *wbc,
726 struct block_device *bdev,
727 sector_t sector)
728 {
729 struct bio *new;
730
731 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
732 bio_set_dev(new, bdev);
733 new->bi_iter.bi_sector = sector;
734 bio_chain(ioend->io_bio, new);
735 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
736 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
737 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
738 submit_bio(ioend->io_bio);
739 ioend->io_bio = new;
740 }
741
742 /*
743 * Test to see if we have an existing ioend structure that we could append to
744 * first, otherwise finish off the current ioend and start another.
745 */
746 STATIC void
747 xfs_add_to_ioend(
748 struct inode *inode,
749 xfs_off_t offset,
750 struct page *page,
751 struct iomap_page *iop,
752 struct xfs_writepage_ctx *wpc,
753 struct writeback_control *wbc,
754 struct list_head *iolist)
755 {
756 struct xfs_inode *ip = XFS_I(inode);
757 struct xfs_mount *mp = ip->i_mount;
758 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
759 unsigned len = i_blocksize(inode);
760 unsigned poff = offset & (PAGE_SIZE - 1);
761 bool merged, same_page = false;
762 sector_t sector;
763
764 sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
765 ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);
766
767 if (!wpc->ioend ||
768 wpc->fork != wpc->ioend->io_fork ||
769 wpc->imap.br_state != wpc->ioend->io_state ||
770 sector != bio_end_sector(wpc->ioend->io_bio) ||
771 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
772 if (wpc->ioend)
773 list_add(&wpc->ioend->io_list, iolist);
774 wpc->ioend = xfs_alloc_ioend(inode, wpc->fork,
775 wpc->imap.br_state, offset, bdev, sector);
776 }
777
778 merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
779 &same_page);
780
781 if (iop && !same_page)
782 atomic_inc(&iop->write_count);
783
784 if (!merged) {
785 if (bio_full(wpc->ioend->io_bio))
786 xfs_chain_bio(wpc->ioend, wbc, bdev, sector);
787 bio_add_page(wpc->ioend->io_bio, page, len, poff);
788 }
789
790 wpc->ioend->io_size += len;
791 }
792
793 STATIC void
794 xfs_vm_invalidatepage(
795 struct page *page,
796 unsigned int offset,
797 unsigned int length)
798 {
799 trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
800 iomap_invalidatepage(page, offset, length);
801 }
802
803 /*
804 * If the page has delalloc blocks on it, we need to punch them out before we
805 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
806 * inode that can trip up a later direct I/O read operation on the same region.
807 *
808 * We prevent this by truncating away the delalloc regions on the page. Because
809 * they are delalloc, we can do this without needing a transaction. Indeed - if
810 * we get ENOSPC errors, we have to be able to do this truncation without a
811 * transaction as there is no space left for block reservation (typically why we
812 * see a ENOSPC in writeback).
813 */
814 STATIC void
815 xfs_aops_discard_page(
816 struct page *page)
817 {
818 struct inode *inode = page->mapping->host;
819 struct xfs_inode *ip = XFS_I(inode);
820 struct xfs_mount *mp = ip->i_mount;
821 loff_t offset = page_offset(page);
822 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset);
823 int error;
824
825 if (XFS_FORCED_SHUTDOWN(mp))
826 goto out_invalidate;
827
828 xfs_alert(mp,
829 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
830 page, ip->i_ino, offset);
831
832 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
833 PAGE_SIZE / i_blocksize(inode));
834 if (error && !XFS_FORCED_SHUTDOWN(mp))
835 xfs_alert(mp, "page discard unable to remove delalloc mapping.");
836 out_invalidate:
837 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
838 }
839
840 /*
841 * We implement an immediate ioend submission policy here to avoid needing to
842 * chain multiple ioends and hence nest mempool allocations which can violate
843 * forward progress guarantees we need to provide. The current ioend we are
844 * adding blocks to is cached on the writepage context, and if the new block
845 * does not append to the cached ioend it will create a new ioend and cache that
846 * instead.
847 *
848 * If a new ioend is created and cached, the old ioend is returned and queued
849 * locally for submission once the entire page is processed or an error has been
850 * detected. While ioends are submitted immediately after they are completed,
851 * batching optimisations are provided by higher level block plugging.
852 *
853 * At the end of a writeback pass, there will be a cached ioend remaining on the
854 * writepage context that the caller will need to submit.
855 */
856 static int
857 xfs_writepage_map(
858 struct xfs_writepage_ctx *wpc,
859 struct writeback_control *wbc,
860 struct inode *inode,
861 struct page *page,
862 uint64_t end_offset)
863 {
864 LIST_HEAD(submit_list);
865 struct iomap_page *iop = to_iomap_page(page);
866 unsigned len = i_blocksize(inode);
867 struct xfs_ioend *ioend, *next;
868 uint64_t file_offset; /* file offset of page */
869 int error = 0, count = 0, i;
870
871 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
872 ASSERT(!iop || atomic_read(&iop->write_count) == 0);
873
874 /*
875 * Walk through the page to find areas to write back. If we run off the
876 * end of the current map or find the current map invalid, grab a new
877 * one.
878 */
879 for (i = 0, file_offset = page_offset(page);
880 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
881 i++, file_offset += len) {
882 if (iop && !test_bit(i, iop->uptodate))
883 continue;
884
885 error = xfs_map_blocks(wpc, inode, file_offset);
886 if (error)
887 break;
888 if (wpc->imap.br_startblock == HOLESTARTBLOCK)
889 continue;
890 xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
891 &submit_list);
892 count++;
893 }
894
895 ASSERT(wpc->ioend || list_empty(&submit_list));
896 ASSERT(PageLocked(page));
897 ASSERT(!PageWriteback(page));
898
899 /*
900 * On error, we have to fail the ioend here because we may have set
901 * pages under writeback, we have to make sure we run IO completion to
902 * mark the error state of the IO appropriately, so we can't cancel the
903 * ioend directly here. That means we have to mark this page as under
904 * writeback if we included any blocks from it in the ioend chain so
905 * that completion treats it correctly.
906 *
907 * If we didn't include the page in the ioend, the on error we can
908 * simply discard and unlock it as there are no other users of the page
909 * now. The caller will still need to trigger submission of outstanding
910 * ioends on the writepage context so they are treated correctly on
911 * error.
912 */
913 if (unlikely(error)) {
914 if (!count) {
915 xfs_aops_discard_page(page);
916 ClearPageUptodate(page);
917 unlock_page(page);
918 goto done;
919 }
920
921 /*
922 * If the page was not fully cleaned, we need to ensure that the
923 * higher layers come back to it correctly. That means we need
924 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
925 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
926 * so another attempt to write this page in this writeback sweep
927 * will be made.
928 */
929 set_page_writeback_keepwrite(page);
930 } else {
931 clear_page_dirty_for_io(page);
932 set_page_writeback(page);
933 }
934
935 unlock_page(page);
936
937 /*
938 * Preserve the original error if there was one, otherwise catch
939 * submission errors here and propagate into subsequent ioend
940 * submissions.
941 */
942 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
943 int error2;
944
945 list_del_init(&ioend->io_list);
946 error2 = xfs_submit_ioend(wbc, ioend, error);
947 if (error2 && !error)
948 error = error2;
949 }
950
951 /*
952 * We can end up here with no error and nothing to write only if we race
953 * with a partial page truncate on a sub-page block sized filesystem.
954 */
955 if (!count)
956 end_page_writeback(page);
957 done:
958 mapping_set_error(page->mapping, error);
959 return error;
960 }
961
962 /*
963 * Write out a dirty page.
964 *
965 * For delalloc space on the page we need to allocate space and flush it.
966 * For unwritten space on the page we need to start the conversion to
967 * regular allocated space.
968 */
969 STATIC int
970 xfs_do_writepage(
971 struct page *page,
972 struct writeback_control *wbc,
973 void *data)
974 {
975 struct xfs_writepage_ctx *wpc = data;
976 struct inode *inode = page->mapping->host;
977 loff_t offset;
978 uint64_t end_offset;
979 pgoff_t end_index;
980
981 trace_xfs_writepage(inode, page, 0, 0);
982
983 /*
984 * Refuse to write the page out if we are called from reclaim context.
985 *
986 * This avoids stack overflows when called from deeply used stacks in
987 * random callers for direct reclaim or memcg reclaim. We explicitly
988 * allow reclaim from kswapd as the stack usage there is relatively low.
989 *
990 * This should never happen except in the case of a VM regression so
991 * warn about it.
992 */
993 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
994 PF_MEMALLOC))
995 goto redirty;
996
997 /*
998 * Given that we do not allow direct reclaim to call us, we should
999 * never be called while in a filesystem transaction.
1000 */
1001 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1002 goto redirty;
1003
1004 /*
1005 * Is this page beyond the end of the file?
1006 *
1007 * The page index is less than the end_index, adjust the end_offset
1008 * to the highest offset that this page should represent.
1009 * -----------------------------------------------------
1010 * | file mapping | <EOF> |
1011 * -----------------------------------------------------
1012 * | Page ... | Page N-2 | Page N-1 | Page N | |
1013 * ^--------------------------------^----------|--------
1014 * | desired writeback range | see else |
1015 * ---------------------------------^------------------|
1016 */
1017 offset = i_size_read(inode);
1018 end_index = offset >> PAGE_SHIFT;
1019 if (page->index < end_index)
1020 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1021 else {
1022 /*
1023 * Check whether the page to write out is beyond or straddles
1024 * i_size or not.
1025 * -------------------------------------------------------
1026 * | file mapping | <EOF> |
1027 * -------------------------------------------------------
1028 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1029 * ^--------------------------------^-----------|---------
1030 * | | Straddles |
1031 * ---------------------------------^-----------|--------|
1032 */
1033 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1034
1035 /*
1036 * Skip the page if it is fully outside i_size, e.g. due to a
1037 * truncate operation that is in progress. We must redirty the
1038 * page so that reclaim stops reclaiming it. Otherwise
1039 * xfs_vm_releasepage() is called on it and gets confused.
1040 *
1041 * Note that the end_index is unsigned long, it would overflow
1042 * if the given offset is greater than 16TB on 32-bit system
1043 * and if we do check the page is fully outside i_size or not
1044 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1045 * will be evaluated to 0. Hence this page will be redirtied
1046 * and be written out repeatedly which would result in an
1047 * infinite loop, the user program that perform this operation
1048 * will hang. Instead, we can verify this situation by checking
1049 * if the page to write is totally beyond the i_size or if it's
1050 * offset is just equal to the EOF.
1051 */
1052 if (page->index > end_index ||
1053 (page->index == end_index && offset_into_page == 0))
1054 goto redirty;
1055
1056 /*
1057 * The page straddles i_size. It must be zeroed out on each
1058 * and every writepage invocation because it may be mmapped.
1059 * "A file is mapped in multiples of the page size. For a file
1060 * that is not a multiple of the page size, the remaining
1061 * memory is zeroed when mapped, and writes to that region are
1062 * not written out to the file."
1063 */
1064 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1065
1066 /* Adjust the end_offset to the end of file */
1067 end_offset = offset;
1068 }
1069
1070 return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
1071
1072 redirty:
1073 redirty_page_for_writepage(wbc, page);
1074 unlock_page(page);
1075 return 0;
1076 }
1077
1078 STATIC int
1079 xfs_vm_writepage(
1080 struct page *page,
1081 struct writeback_control *wbc)
1082 {
1083 struct xfs_writepage_ctx wpc = { };
1084 int ret;
1085
1086 ret = xfs_do_writepage(page, wbc, &wpc);
1087 if (wpc.ioend)
1088 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1089 return ret;
1090 }
1091
1092 STATIC int
1093 xfs_vm_writepages(
1094 struct address_space *mapping,
1095 struct writeback_control *wbc)
1096 {
1097 struct xfs_writepage_ctx wpc = { };
1098 int ret;
1099
1100 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1101 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1102 if (wpc.ioend)
1103 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1104 return ret;
1105 }
1106
1107 STATIC int
1108 xfs_dax_writepages(
1109 struct address_space *mapping,
1110 struct writeback_control *wbc)
1111 {
1112 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1113 return dax_writeback_mapping_range(mapping,
1114 xfs_find_bdev_for_inode(mapping->host), wbc);
1115 }
1116
1117 STATIC int
1118 xfs_vm_releasepage(
1119 struct page *page,
1120 gfp_t gfp_mask)
1121 {
1122 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1123 return iomap_releasepage(page, gfp_mask);
1124 }
1125
1126 STATIC sector_t
1127 xfs_vm_bmap(
1128 struct address_space *mapping,
1129 sector_t block)
1130 {
1131 struct xfs_inode *ip = XFS_I(mapping->host);
1132
1133 trace_xfs_vm_bmap(ip);
1134
1135 /*
1136 * The swap code (ab-)uses ->bmap to get a block mapping and then
1137 * bypasses the file system for actual I/O. We really can't allow
1138 * that on reflinks inodes, so we have to skip out here. And yes,
1139 * 0 is the magic code for a bmap error.
1140 *
1141 * Since we don't pass back blockdev info, we can't return bmap
1142 * information for rt files either.
1143 */
1144 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1145 return 0;
1146 return iomap_bmap(mapping, block, &xfs_iomap_ops);
1147 }
1148
1149 STATIC int
1150 xfs_vm_readpage(
1151 struct file *unused,
1152 struct page *page)
1153 {
1154 trace_xfs_vm_readpage(page->mapping->host, 1);
1155 return iomap_readpage(page, &xfs_iomap_ops);
1156 }
1157
1158 STATIC int
1159 xfs_vm_readpages(
1160 struct file *unused,
1161 struct address_space *mapping,
1162 struct list_head *pages,
1163 unsigned nr_pages)
1164 {
1165 trace_xfs_vm_readpages(mapping->host, nr_pages);
1166 return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
1167 }
1168
1169 static int
1170 xfs_iomap_swapfile_activate(
1171 struct swap_info_struct *sis,
1172 struct file *swap_file,
1173 sector_t *span)
1174 {
1175 sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
1176 return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
1177 }
1178
1179 const struct address_space_operations xfs_address_space_operations = {
1180 .readpage = xfs_vm_readpage,
1181 .readpages = xfs_vm_readpages,
1182 .writepage = xfs_vm_writepage,
1183 .writepages = xfs_vm_writepages,
1184 .set_page_dirty = iomap_set_page_dirty,
1185 .releasepage = xfs_vm_releasepage,
1186 .invalidatepage = xfs_vm_invalidatepage,
1187 .bmap = xfs_vm_bmap,
1188 .direct_IO = noop_direct_IO,
1189 .migratepage = iomap_migrate_page,
1190 .is_partially_uptodate = iomap_is_partially_uptodate,
1191 .error_remove_page = generic_error_remove_page,
1192 .swap_activate = xfs_iomap_swapfile_activate,
1193 };
1194
1195 const struct address_space_operations xfs_dax_aops = {
1196 .writepages = xfs_dax_writepages,
1197 .direct_IO = noop_direct_IO,
1198 .set_page_dirty = noop_set_page_dirty,
1199 .invalidatepage = noop_invalidatepage,
1200 .swap_activate = xfs_iomap_swapfile_activate,
1201 };