]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/kmemleak.c
kmemleak: powerpc: skip scanning holes in the .bss section
[thirdparty/kernel/linux.git] / mm / kmemleak.c
1 /*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/dev-tools/kmemleak.rst.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * Locks and mutexes are acquired/nested in the following order:
57 *
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59 *
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61 * regions.
62 *
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
68 * structure.
69 */
70
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/sched/task_stack.h>
79 #include <linux/jiffies.h>
80 #include <linux/delay.h>
81 #include <linux/export.h>
82 #include <linux/kthread.h>
83 #include <linux/rbtree.h>
84 #include <linux/fs.h>
85 #include <linux/debugfs.h>
86 #include <linux/seq_file.h>
87 #include <linux/cpumask.h>
88 #include <linux/spinlock.h>
89 #include <linux/module.h>
90 #include <linux/mutex.h>
91 #include <linux/rcupdate.h>
92 #include <linux/stacktrace.h>
93 #include <linux/cache.h>
94 #include <linux/percpu.h>
95 #include <linux/memblock.h>
96 #include <linux/pfn.h>
97 #include <linux/mmzone.h>
98 #include <linux/slab.h>
99 #include <linux/thread_info.h>
100 #include <linux/err.h>
101 #include <linux/uaccess.h>
102 #include <linux/string.h>
103 #include <linux/nodemask.h>
104 #include <linux/mm.h>
105 #include <linux/workqueue.h>
106 #include <linux/crc32.h>
107
108 #include <asm/sections.h>
109 #include <asm/processor.h>
110 #include <linux/atomic.h>
111
112 #include <linux/kasan.h>
113 #include <linux/kmemleak.h>
114 #include <linux/memory_hotplug.h>
115
116 /*
117 * Kmemleak configuration and common defines.
118 */
119 #define MAX_TRACE 16 /* stack trace length */
120 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
121 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
122 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
123 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
124
125 #define BYTES_PER_POINTER sizeof(void *)
126
127 /* GFP bitmask for kmemleak internal allocations */
128 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
129 __GFP_NORETRY | __GFP_NOMEMALLOC | \
130 __GFP_NOWARN | __GFP_NOFAIL)
131
132 /* scanning area inside a memory block */
133 struct kmemleak_scan_area {
134 struct hlist_node node;
135 unsigned long start;
136 size_t size;
137 };
138
139 #define KMEMLEAK_GREY 0
140 #define KMEMLEAK_BLACK -1
141
142 /*
143 * Structure holding the metadata for each allocated memory block.
144 * Modifications to such objects should be made while holding the
145 * object->lock. Insertions or deletions from object_list, gray_list or
146 * rb_node are already protected by the corresponding locks or mutex (see
147 * the notes on locking above). These objects are reference-counted
148 * (use_count) and freed using the RCU mechanism.
149 */
150 struct kmemleak_object {
151 spinlock_t lock;
152 unsigned int flags; /* object status flags */
153 struct list_head object_list;
154 struct list_head gray_list;
155 struct rb_node rb_node;
156 struct rcu_head rcu; /* object_list lockless traversal */
157 /* object usage count; object freed when use_count == 0 */
158 atomic_t use_count;
159 unsigned long pointer;
160 size_t size;
161 /* pass surplus references to this pointer */
162 unsigned long excess_ref;
163 /* minimum number of a pointers found before it is considered leak */
164 int min_count;
165 /* the total number of pointers found pointing to this object */
166 int count;
167 /* checksum for detecting modified objects */
168 u32 checksum;
169 /* memory ranges to be scanned inside an object (empty for all) */
170 struct hlist_head area_list;
171 unsigned long trace[MAX_TRACE];
172 unsigned int trace_len;
173 unsigned long jiffies; /* creation timestamp */
174 pid_t pid; /* pid of the current task */
175 char comm[TASK_COMM_LEN]; /* executable name */
176 };
177
178 /* flag representing the memory block allocation status */
179 #define OBJECT_ALLOCATED (1 << 0)
180 /* flag set after the first reporting of an unreference object */
181 #define OBJECT_REPORTED (1 << 1)
182 /* flag set to not scan the object */
183 #define OBJECT_NO_SCAN (1 << 2)
184
185 #define HEX_PREFIX " "
186 /* number of bytes to print per line; must be 16 or 32 */
187 #define HEX_ROW_SIZE 16
188 /* number of bytes to print at a time (1, 2, 4, 8) */
189 #define HEX_GROUP_SIZE 1
190 /* include ASCII after the hex output */
191 #define HEX_ASCII 1
192 /* max number of lines to be printed */
193 #define HEX_MAX_LINES 2
194
195 /* the list of all allocated objects */
196 static LIST_HEAD(object_list);
197 /* the list of gray-colored objects (see color_gray comment below) */
198 static LIST_HEAD(gray_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* rw_lock protecting the access to object_list and object_tree_root */
202 static DEFINE_RWLOCK(kmemleak_lock);
203
204 /* allocation caches for kmemleak internal data */
205 static struct kmem_cache *object_cache;
206 static struct kmem_cache *scan_area_cache;
207
208 /* set if tracing memory operations is enabled */
209 static int kmemleak_enabled;
210 /* same as above but only for the kmemleak_free() callback */
211 static int kmemleak_free_enabled;
212 /* set in the late_initcall if there were no errors */
213 static int kmemleak_initialized;
214 /* enables or disables early logging of the memory operations */
215 static int kmemleak_early_log = 1;
216 /* set if a kmemleak warning was issued */
217 static int kmemleak_warning;
218 /* set if a fatal kmemleak error has occurred */
219 static int kmemleak_error;
220
221 /* minimum and maximum address that may be valid pointers */
222 static unsigned long min_addr = ULONG_MAX;
223 static unsigned long max_addr;
224
225 static struct task_struct *scan_thread;
226 /* used to avoid reporting of recently allocated objects */
227 static unsigned long jiffies_min_age;
228 static unsigned long jiffies_last_scan;
229 /* delay between automatic memory scannings */
230 static signed long jiffies_scan_wait;
231 /* enables or disables the task stacks scanning */
232 static int kmemleak_stack_scan = 1;
233 /* protects the memory scanning, parameters and debug/kmemleak file access */
234 static DEFINE_MUTEX(scan_mutex);
235 /* setting kmemleak=on, will set this var, skipping the disable */
236 static int kmemleak_skip_disable;
237 /* If there are leaks that can be reported */
238 static bool kmemleak_found_leaks;
239
240 static bool kmemleak_verbose;
241 module_param_named(verbose, kmemleak_verbose, bool, 0600);
242
243 /*
244 * Early object allocation/freeing logging. Kmemleak is initialized after the
245 * kernel allocator. However, both the kernel allocator and kmemleak may
246 * allocate memory blocks which need to be tracked. Kmemleak defines an
247 * arbitrary buffer to hold the allocation/freeing information before it is
248 * fully initialized.
249 */
250
251 /* kmemleak operation type for early logging */
252 enum {
253 KMEMLEAK_ALLOC,
254 KMEMLEAK_ALLOC_PERCPU,
255 KMEMLEAK_FREE,
256 KMEMLEAK_FREE_PART,
257 KMEMLEAK_FREE_PERCPU,
258 KMEMLEAK_NOT_LEAK,
259 KMEMLEAK_IGNORE,
260 KMEMLEAK_SCAN_AREA,
261 KMEMLEAK_NO_SCAN,
262 KMEMLEAK_SET_EXCESS_REF
263 };
264
265 /*
266 * Structure holding the information passed to kmemleak callbacks during the
267 * early logging.
268 */
269 struct early_log {
270 int op_type; /* kmemleak operation type */
271 int min_count; /* minimum reference count */
272 const void *ptr; /* allocated/freed memory block */
273 union {
274 size_t size; /* memory block size */
275 unsigned long excess_ref; /* surplus reference passing */
276 };
277 unsigned long trace[MAX_TRACE]; /* stack trace */
278 unsigned int trace_len; /* stack trace length */
279 };
280
281 /* early logging buffer and current position */
282 static struct early_log
283 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
284 static int crt_early_log __initdata;
285
286 static void kmemleak_disable(void);
287
288 /*
289 * Print a warning and dump the stack trace.
290 */
291 #define kmemleak_warn(x...) do { \
292 pr_warn(x); \
293 dump_stack(); \
294 kmemleak_warning = 1; \
295 } while (0)
296
297 /*
298 * Macro invoked when a serious kmemleak condition occurred and cannot be
299 * recovered from. Kmemleak will be disabled and further allocation/freeing
300 * tracing no longer available.
301 */
302 #define kmemleak_stop(x...) do { \
303 kmemleak_warn(x); \
304 kmemleak_disable(); \
305 } while (0)
306
307 #define warn_or_seq_printf(seq, fmt, ...) do { \
308 if (seq) \
309 seq_printf(seq, fmt, ##__VA_ARGS__); \
310 else \
311 pr_warn(fmt, ##__VA_ARGS__); \
312 } while (0)
313
314 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
315 int rowsize, int groupsize, const void *buf,
316 size_t len, bool ascii)
317 {
318 if (seq)
319 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
320 buf, len, ascii);
321 else
322 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
323 rowsize, groupsize, buf, len, ascii);
324 }
325
326 /*
327 * Printing of the objects hex dump to the seq file. The number of lines to be
328 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
329 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
330 * with the object->lock held.
331 */
332 static void hex_dump_object(struct seq_file *seq,
333 struct kmemleak_object *object)
334 {
335 const u8 *ptr = (const u8 *)object->pointer;
336 size_t len;
337
338 /* limit the number of lines to HEX_MAX_LINES */
339 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
340
341 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
342 kasan_disable_current();
343 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
344 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
345 kasan_enable_current();
346 }
347
348 /*
349 * Object colors, encoded with count and min_count:
350 * - white - orphan object, not enough references to it (count < min_count)
351 * - gray - not orphan, not marked as false positive (min_count == 0) or
352 * sufficient references to it (count >= min_count)
353 * - black - ignore, it doesn't contain references (e.g. text section)
354 * (min_count == -1). No function defined for this color.
355 * Newly created objects don't have any color assigned (object->count == -1)
356 * before the next memory scan when they become white.
357 */
358 static bool color_white(const struct kmemleak_object *object)
359 {
360 return object->count != KMEMLEAK_BLACK &&
361 object->count < object->min_count;
362 }
363
364 static bool color_gray(const struct kmemleak_object *object)
365 {
366 return object->min_count != KMEMLEAK_BLACK &&
367 object->count >= object->min_count;
368 }
369
370 /*
371 * Objects are considered unreferenced only if their color is white, they have
372 * not be deleted and have a minimum age to avoid false positives caused by
373 * pointers temporarily stored in CPU registers.
374 */
375 static bool unreferenced_object(struct kmemleak_object *object)
376 {
377 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
378 time_before_eq(object->jiffies + jiffies_min_age,
379 jiffies_last_scan);
380 }
381
382 /*
383 * Printing of the unreferenced objects information to the seq file. The
384 * print_unreferenced function must be called with the object->lock held.
385 */
386 static void print_unreferenced(struct seq_file *seq,
387 struct kmemleak_object *object)
388 {
389 int i;
390 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
391
392 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
393 object->pointer, object->size);
394 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
395 object->comm, object->pid, object->jiffies,
396 msecs_age / 1000, msecs_age % 1000);
397 hex_dump_object(seq, object);
398 warn_or_seq_printf(seq, " backtrace:\n");
399
400 for (i = 0; i < object->trace_len; i++) {
401 void *ptr = (void *)object->trace[i];
402 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
403 }
404 }
405
406 /*
407 * Print the kmemleak_object information. This function is used mainly for
408 * debugging special cases when kmemleak operations. It must be called with
409 * the object->lock held.
410 */
411 static void dump_object_info(struct kmemleak_object *object)
412 {
413 struct stack_trace trace;
414
415 trace.nr_entries = object->trace_len;
416 trace.entries = object->trace;
417
418 pr_notice("Object 0x%08lx (size %zu):\n",
419 object->pointer, object->size);
420 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
421 object->comm, object->pid, object->jiffies);
422 pr_notice(" min_count = %d\n", object->min_count);
423 pr_notice(" count = %d\n", object->count);
424 pr_notice(" flags = 0x%x\n", object->flags);
425 pr_notice(" checksum = %u\n", object->checksum);
426 pr_notice(" backtrace:\n");
427 print_stack_trace(&trace, 4);
428 }
429
430 /*
431 * Look-up a memory block metadata (kmemleak_object) in the object search
432 * tree based on a pointer value. If alias is 0, only values pointing to the
433 * beginning of the memory block are allowed. The kmemleak_lock must be held
434 * when calling this function.
435 */
436 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
437 {
438 struct rb_node *rb = object_tree_root.rb_node;
439
440 while (rb) {
441 struct kmemleak_object *object =
442 rb_entry(rb, struct kmemleak_object, rb_node);
443 if (ptr < object->pointer)
444 rb = object->rb_node.rb_left;
445 else if (object->pointer + object->size <= ptr)
446 rb = object->rb_node.rb_right;
447 else if (object->pointer == ptr || alias)
448 return object;
449 else {
450 kmemleak_warn("Found object by alias at 0x%08lx\n",
451 ptr);
452 dump_object_info(object);
453 break;
454 }
455 }
456 return NULL;
457 }
458
459 /*
460 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
461 * that once an object's use_count reached 0, the RCU freeing was already
462 * registered and the object should no longer be used. This function must be
463 * called under the protection of rcu_read_lock().
464 */
465 static int get_object(struct kmemleak_object *object)
466 {
467 return atomic_inc_not_zero(&object->use_count);
468 }
469
470 /*
471 * RCU callback to free a kmemleak_object.
472 */
473 static void free_object_rcu(struct rcu_head *rcu)
474 {
475 struct hlist_node *tmp;
476 struct kmemleak_scan_area *area;
477 struct kmemleak_object *object =
478 container_of(rcu, struct kmemleak_object, rcu);
479
480 /*
481 * Once use_count is 0 (guaranteed by put_object), there is no other
482 * code accessing this object, hence no need for locking.
483 */
484 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
485 hlist_del(&area->node);
486 kmem_cache_free(scan_area_cache, area);
487 }
488 kmem_cache_free(object_cache, object);
489 }
490
491 /*
492 * Decrement the object use_count. Once the count is 0, free the object using
493 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
494 * delete_object() path, the delayed RCU freeing ensures that there is no
495 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
496 * is also possible.
497 */
498 static void put_object(struct kmemleak_object *object)
499 {
500 if (!atomic_dec_and_test(&object->use_count))
501 return;
502
503 /* should only get here after delete_object was called */
504 WARN_ON(object->flags & OBJECT_ALLOCATED);
505
506 call_rcu(&object->rcu, free_object_rcu);
507 }
508
509 /*
510 * Look up an object in the object search tree and increase its use_count.
511 */
512 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
513 {
514 unsigned long flags;
515 struct kmemleak_object *object;
516
517 rcu_read_lock();
518 read_lock_irqsave(&kmemleak_lock, flags);
519 object = lookup_object(ptr, alias);
520 read_unlock_irqrestore(&kmemleak_lock, flags);
521
522 /* check whether the object is still available */
523 if (object && !get_object(object))
524 object = NULL;
525 rcu_read_unlock();
526
527 return object;
528 }
529
530 /*
531 * Look up an object in the object search tree and remove it from both
532 * object_tree_root and object_list. The returned object's use_count should be
533 * at least 1, as initially set by create_object().
534 */
535 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
536 {
537 unsigned long flags;
538 struct kmemleak_object *object;
539
540 write_lock_irqsave(&kmemleak_lock, flags);
541 object = lookup_object(ptr, alias);
542 if (object) {
543 rb_erase(&object->rb_node, &object_tree_root);
544 list_del_rcu(&object->object_list);
545 }
546 write_unlock_irqrestore(&kmemleak_lock, flags);
547
548 return object;
549 }
550
551 /*
552 * Save stack trace to the given array of MAX_TRACE size.
553 */
554 static int __save_stack_trace(unsigned long *trace)
555 {
556 struct stack_trace stack_trace;
557
558 stack_trace.max_entries = MAX_TRACE;
559 stack_trace.nr_entries = 0;
560 stack_trace.entries = trace;
561 stack_trace.skip = 2;
562 save_stack_trace(&stack_trace);
563
564 return stack_trace.nr_entries;
565 }
566
567 /*
568 * Create the metadata (struct kmemleak_object) corresponding to an allocated
569 * memory block and add it to the object_list and object_tree_root.
570 */
571 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
572 int min_count, gfp_t gfp)
573 {
574 unsigned long flags;
575 struct kmemleak_object *object, *parent;
576 struct rb_node **link, *rb_parent;
577 unsigned long untagged_ptr;
578
579 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
580 if (!object) {
581 pr_warn("Cannot allocate a kmemleak_object structure\n");
582 kmemleak_disable();
583 return NULL;
584 }
585
586 INIT_LIST_HEAD(&object->object_list);
587 INIT_LIST_HEAD(&object->gray_list);
588 INIT_HLIST_HEAD(&object->area_list);
589 spin_lock_init(&object->lock);
590 atomic_set(&object->use_count, 1);
591 object->flags = OBJECT_ALLOCATED;
592 object->pointer = ptr;
593 object->size = size;
594 object->excess_ref = 0;
595 object->min_count = min_count;
596 object->count = 0; /* white color initially */
597 object->jiffies = jiffies;
598 object->checksum = 0;
599
600 /* task information */
601 if (in_irq()) {
602 object->pid = 0;
603 strncpy(object->comm, "hardirq", sizeof(object->comm));
604 } else if (in_softirq()) {
605 object->pid = 0;
606 strncpy(object->comm, "softirq", sizeof(object->comm));
607 } else {
608 object->pid = current->pid;
609 /*
610 * There is a small chance of a race with set_task_comm(),
611 * however using get_task_comm() here may cause locking
612 * dependency issues with current->alloc_lock. In the worst
613 * case, the command line is not correct.
614 */
615 strncpy(object->comm, current->comm, sizeof(object->comm));
616 }
617
618 /* kernel backtrace */
619 object->trace_len = __save_stack_trace(object->trace);
620
621 write_lock_irqsave(&kmemleak_lock, flags);
622
623 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
624 min_addr = min(min_addr, untagged_ptr);
625 max_addr = max(max_addr, untagged_ptr + size);
626 link = &object_tree_root.rb_node;
627 rb_parent = NULL;
628 while (*link) {
629 rb_parent = *link;
630 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
631 if (ptr + size <= parent->pointer)
632 link = &parent->rb_node.rb_left;
633 else if (parent->pointer + parent->size <= ptr)
634 link = &parent->rb_node.rb_right;
635 else {
636 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
637 ptr);
638 /*
639 * No need for parent->lock here since "parent" cannot
640 * be freed while the kmemleak_lock is held.
641 */
642 dump_object_info(parent);
643 kmem_cache_free(object_cache, object);
644 object = NULL;
645 goto out;
646 }
647 }
648 rb_link_node(&object->rb_node, rb_parent, link);
649 rb_insert_color(&object->rb_node, &object_tree_root);
650
651 list_add_tail_rcu(&object->object_list, &object_list);
652 out:
653 write_unlock_irqrestore(&kmemleak_lock, flags);
654 return object;
655 }
656
657 /*
658 * Mark the object as not allocated and schedule RCU freeing via put_object().
659 */
660 static void __delete_object(struct kmemleak_object *object)
661 {
662 unsigned long flags;
663
664 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
665 WARN_ON(atomic_read(&object->use_count) < 1);
666
667 /*
668 * Locking here also ensures that the corresponding memory block
669 * cannot be freed when it is being scanned.
670 */
671 spin_lock_irqsave(&object->lock, flags);
672 object->flags &= ~OBJECT_ALLOCATED;
673 spin_unlock_irqrestore(&object->lock, flags);
674 put_object(object);
675 }
676
677 /*
678 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
679 * delete it.
680 */
681 static void delete_object_full(unsigned long ptr)
682 {
683 struct kmemleak_object *object;
684
685 object = find_and_remove_object(ptr, 0);
686 if (!object) {
687 #ifdef DEBUG
688 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
689 ptr);
690 #endif
691 return;
692 }
693 __delete_object(object);
694 }
695
696 /*
697 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
698 * delete it. If the memory block is partially freed, the function may create
699 * additional metadata for the remaining parts of the block.
700 */
701 static void delete_object_part(unsigned long ptr, size_t size)
702 {
703 struct kmemleak_object *object;
704 unsigned long start, end;
705
706 object = find_and_remove_object(ptr, 1);
707 if (!object) {
708 #ifdef DEBUG
709 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
710 ptr, size);
711 #endif
712 return;
713 }
714
715 /*
716 * Create one or two objects that may result from the memory block
717 * split. Note that partial freeing is only done by free_bootmem() and
718 * this happens before kmemleak_init() is called. The path below is
719 * only executed during early log recording in kmemleak_init(), so
720 * GFP_KERNEL is enough.
721 */
722 start = object->pointer;
723 end = object->pointer + object->size;
724 if (ptr > start)
725 create_object(start, ptr - start, object->min_count,
726 GFP_KERNEL);
727 if (ptr + size < end)
728 create_object(ptr + size, end - ptr - size, object->min_count,
729 GFP_KERNEL);
730
731 __delete_object(object);
732 }
733
734 static void __paint_it(struct kmemleak_object *object, int color)
735 {
736 object->min_count = color;
737 if (color == KMEMLEAK_BLACK)
738 object->flags |= OBJECT_NO_SCAN;
739 }
740
741 static void paint_it(struct kmemleak_object *object, int color)
742 {
743 unsigned long flags;
744
745 spin_lock_irqsave(&object->lock, flags);
746 __paint_it(object, color);
747 spin_unlock_irqrestore(&object->lock, flags);
748 }
749
750 static void paint_ptr(unsigned long ptr, int color)
751 {
752 struct kmemleak_object *object;
753
754 object = find_and_get_object(ptr, 0);
755 if (!object) {
756 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
757 ptr,
758 (color == KMEMLEAK_GREY) ? "Grey" :
759 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
760 return;
761 }
762 paint_it(object, color);
763 put_object(object);
764 }
765
766 /*
767 * Mark an object permanently as gray-colored so that it can no longer be
768 * reported as a leak. This is used in general to mark a false positive.
769 */
770 static void make_gray_object(unsigned long ptr)
771 {
772 paint_ptr(ptr, KMEMLEAK_GREY);
773 }
774
775 /*
776 * Mark the object as black-colored so that it is ignored from scans and
777 * reporting.
778 */
779 static void make_black_object(unsigned long ptr)
780 {
781 paint_ptr(ptr, KMEMLEAK_BLACK);
782 }
783
784 /*
785 * Add a scanning area to the object. If at least one such area is added,
786 * kmemleak will only scan these ranges rather than the whole memory block.
787 */
788 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
789 {
790 unsigned long flags;
791 struct kmemleak_object *object;
792 struct kmemleak_scan_area *area;
793
794 object = find_and_get_object(ptr, 1);
795 if (!object) {
796 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
797 ptr);
798 return;
799 }
800
801 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
802 if (!area) {
803 pr_warn("Cannot allocate a scan area\n");
804 goto out;
805 }
806
807 spin_lock_irqsave(&object->lock, flags);
808 if (size == SIZE_MAX) {
809 size = object->pointer + object->size - ptr;
810 } else if (ptr + size > object->pointer + object->size) {
811 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
812 dump_object_info(object);
813 kmem_cache_free(scan_area_cache, area);
814 goto out_unlock;
815 }
816
817 INIT_HLIST_NODE(&area->node);
818 area->start = ptr;
819 area->size = size;
820
821 hlist_add_head(&area->node, &object->area_list);
822 out_unlock:
823 spin_unlock_irqrestore(&object->lock, flags);
824 out:
825 put_object(object);
826 }
827
828 /*
829 * Any surplus references (object already gray) to 'ptr' are passed to
830 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
831 * vm_struct may be used as an alternative reference to the vmalloc'ed object
832 * (see free_thread_stack()).
833 */
834 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
835 {
836 unsigned long flags;
837 struct kmemleak_object *object;
838
839 object = find_and_get_object(ptr, 0);
840 if (!object) {
841 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
842 ptr);
843 return;
844 }
845
846 spin_lock_irqsave(&object->lock, flags);
847 object->excess_ref = excess_ref;
848 spin_unlock_irqrestore(&object->lock, flags);
849 put_object(object);
850 }
851
852 /*
853 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
854 * pointer. Such object will not be scanned by kmemleak but references to it
855 * are searched.
856 */
857 static void object_no_scan(unsigned long ptr)
858 {
859 unsigned long flags;
860 struct kmemleak_object *object;
861
862 object = find_and_get_object(ptr, 0);
863 if (!object) {
864 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
865 return;
866 }
867
868 spin_lock_irqsave(&object->lock, flags);
869 object->flags |= OBJECT_NO_SCAN;
870 spin_unlock_irqrestore(&object->lock, flags);
871 put_object(object);
872 }
873
874 /*
875 * Log an early kmemleak_* call to the early_log buffer. These calls will be
876 * processed later once kmemleak is fully initialized.
877 */
878 static void __init log_early(int op_type, const void *ptr, size_t size,
879 int min_count)
880 {
881 unsigned long flags;
882 struct early_log *log;
883
884 if (kmemleak_error) {
885 /* kmemleak stopped recording, just count the requests */
886 crt_early_log++;
887 return;
888 }
889
890 if (crt_early_log >= ARRAY_SIZE(early_log)) {
891 crt_early_log++;
892 kmemleak_disable();
893 return;
894 }
895
896 /*
897 * There is no need for locking since the kernel is still in UP mode
898 * at this stage. Disabling the IRQs is enough.
899 */
900 local_irq_save(flags);
901 log = &early_log[crt_early_log];
902 log->op_type = op_type;
903 log->ptr = ptr;
904 log->size = size;
905 log->min_count = min_count;
906 log->trace_len = __save_stack_trace(log->trace);
907 crt_early_log++;
908 local_irq_restore(flags);
909 }
910
911 /*
912 * Log an early allocated block and populate the stack trace.
913 */
914 static void early_alloc(struct early_log *log)
915 {
916 struct kmemleak_object *object;
917 unsigned long flags;
918 int i;
919
920 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
921 return;
922
923 /*
924 * RCU locking needed to ensure object is not freed via put_object().
925 */
926 rcu_read_lock();
927 object = create_object((unsigned long)log->ptr, log->size,
928 log->min_count, GFP_ATOMIC);
929 if (!object)
930 goto out;
931 spin_lock_irqsave(&object->lock, flags);
932 for (i = 0; i < log->trace_len; i++)
933 object->trace[i] = log->trace[i];
934 object->trace_len = log->trace_len;
935 spin_unlock_irqrestore(&object->lock, flags);
936 out:
937 rcu_read_unlock();
938 }
939
940 /*
941 * Log an early allocated block and populate the stack trace.
942 */
943 static void early_alloc_percpu(struct early_log *log)
944 {
945 unsigned int cpu;
946 const void __percpu *ptr = log->ptr;
947
948 for_each_possible_cpu(cpu) {
949 log->ptr = per_cpu_ptr(ptr, cpu);
950 early_alloc(log);
951 }
952 }
953
954 /**
955 * kmemleak_alloc - register a newly allocated object
956 * @ptr: pointer to beginning of the object
957 * @size: size of the object
958 * @min_count: minimum number of references to this object. If during memory
959 * scanning a number of references less than @min_count is found,
960 * the object is reported as a memory leak. If @min_count is 0,
961 * the object is never reported as a leak. If @min_count is -1,
962 * the object is ignored (not scanned and not reported as a leak)
963 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
964 *
965 * This function is called from the kernel allocators when a new object
966 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
967 */
968 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
969 gfp_t gfp)
970 {
971 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
972
973 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
974 create_object((unsigned long)ptr, size, min_count, gfp);
975 else if (kmemleak_early_log)
976 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
977 }
978 EXPORT_SYMBOL_GPL(kmemleak_alloc);
979
980 /**
981 * kmemleak_alloc_percpu - register a newly allocated __percpu object
982 * @ptr: __percpu pointer to beginning of the object
983 * @size: size of the object
984 * @gfp: flags used for kmemleak internal memory allocations
985 *
986 * This function is called from the kernel percpu allocator when a new object
987 * (memory block) is allocated (alloc_percpu).
988 */
989 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
990 gfp_t gfp)
991 {
992 unsigned int cpu;
993
994 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
995
996 /*
997 * Percpu allocations are only scanned and not reported as leaks
998 * (min_count is set to 0).
999 */
1000 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1001 for_each_possible_cpu(cpu)
1002 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
1003 size, 0, gfp);
1004 else if (kmemleak_early_log)
1005 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
1006 }
1007 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1008
1009 /**
1010 * kmemleak_vmalloc - register a newly vmalloc'ed object
1011 * @area: pointer to vm_struct
1012 * @size: size of the object
1013 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1014 *
1015 * This function is called from the vmalloc() kernel allocator when a new
1016 * object (memory block) is allocated.
1017 */
1018 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1019 {
1020 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1021
1022 /*
1023 * A min_count = 2 is needed because vm_struct contains a reference to
1024 * the virtual address of the vmalloc'ed block.
1025 */
1026 if (kmemleak_enabled) {
1027 create_object((unsigned long)area->addr, size, 2, gfp);
1028 object_set_excess_ref((unsigned long)area,
1029 (unsigned long)area->addr);
1030 } else if (kmemleak_early_log) {
1031 log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1032 /* reusing early_log.size for storing area->addr */
1033 log_early(KMEMLEAK_SET_EXCESS_REF,
1034 area, (unsigned long)area->addr, 0);
1035 }
1036 }
1037 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1038
1039 /**
1040 * kmemleak_free - unregister a previously registered object
1041 * @ptr: pointer to beginning of the object
1042 *
1043 * This function is called from the kernel allocators when an object (memory
1044 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1045 */
1046 void __ref kmemleak_free(const void *ptr)
1047 {
1048 pr_debug("%s(0x%p)\n", __func__, ptr);
1049
1050 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1051 delete_object_full((unsigned long)ptr);
1052 else if (kmemleak_early_log)
1053 log_early(KMEMLEAK_FREE, ptr, 0, 0);
1054 }
1055 EXPORT_SYMBOL_GPL(kmemleak_free);
1056
1057 /**
1058 * kmemleak_free_part - partially unregister a previously registered object
1059 * @ptr: pointer to the beginning or inside the object. This also
1060 * represents the start of the range to be freed
1061 * @size: size to be unregistered
1062 *
1063 * This function is called when only a part of a memory block is freed
1064 * (usually from the bootmem allocator).
1065 */
1066 void __ref kmemleak_free_part(const void *ptr, size_t size)
1067 {
1068 pr_debug("%s(0x%p)\n", __func__, ptr);
1069
1070 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1071 delete_object_part((unsigned long)ptr, size);
1072 else if (kmemleak_early_log)
1073 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1074 }
1075 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1076
1077 /**
1078 * kmemleak_free_percpu - unregister a previously registered __percpu object
1079 * @ptr: __percpu pointer to beginning of the object
1080 *
1081 * This function is called from the kernel percpu allocator when an object
1082 * (memory block) is freed (free_percpu).
1083 */
1084 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1085 {
1086 unsigned int cpu;
1087
1088 pr_debug("%s(0x%p)\n", __func__, ptr);
1089
1090 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1091 for_each_possible_cpu(cpu)
1092 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1093 cpu));
1094 else if (kmemleak_early_log)
1095 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1096 }
1097 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1098
1099 /**
1100 * kmemleak_update_trace - update object allocation stack trace
1101 * @ptr: pointer to beginning of the object
1102 *
1103 * Override the object allocation stack trace for cases where the actual
1104 * allocation place is not always useful.
1105 */
1106 void __ref kmemleak_update_trace(const void *ptr)
1107 {
1108 struct kmemleak_object *object;
1109 unsigned long flags;
1110
1111 pr_debug("%s(0x%p)\n", __func__, ptr);
1112
1113 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1114 return;
1115
1116 object = find_and_get_object((unsigned long)ptr, 1);
1117 if (!object) {
1118 #ifdef DEBUG
1119 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1120 ptr);
1121 #endif
1122 return;
1123 }
1124
1125 spin_lock_irqsave(&object->lock, flags);
1126 object->trace_len = __save_stack_trace(object->trace);
1127 spin_unlock_irqrestore(&object->lock, flags);
1128
1129 put_object(object);
1130 }
1131 EXPORT_SYMBOL(kmemleak_update_trace);
1132
1133 /**
1134 * kmemleak_not_leak - mark an allocated object as false positive
1135 * @ptr: pointer to beginning of the object
1136 *
1137 * Calling this function on an object will cause the memory block to no longer
1138 * be reported as leak and always be scanned.
1139 */
1140 void __ref kmemleak_not_leak(const void *ptr)
1141 {
1142 pr_debug("%s(0x%p)\n", __func__, ptr);
1143
1144 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1145 make_gray_object((unsigned long)ptr);
1146 else if (kmemleak_early_log)
1147 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1148 }
1149 EXPORT_SYMBOL(kmemleak_not_leak);
1150
1151 /**
1152 * kmemleak_ignore - ignore an allocated object
1153 * @ptr: pointer to beginning of the object
1154 *
1155 * Calling this function on an object will cause the memory block to be
1156 * ignored (not scanned and not reported as a leak). This is usually done when
1157 * it is known that the corresponding block is not a leak and does not contain
1158 * any references to other allocated memory blocks.
1159 */
1160 void __ref kmemleak_ignore(const void *ptr)
1161 {
1162 pr_debug("%s(0x%p)\n", __func__, ptr);
1163
1164 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1165 make_black_object((unsigned long)ptr);
1166 else if (kmemleak_early_log)
1167 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1168 }
1169 EXPORT_SYMBOL(kmemleak_ignore);
1170
1171 /**
1172 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1173 * @ptr: pointer to beginning or inside the object. This also
1174 * represents the start of the scan area
1175 * @size: size of the scan area
1176 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1177 *
1178 * This function is used when it is known that only certain parts of an object
1179 * contain references to other objects. Kmemleak will only scan these areas
1180 * reducing the number false negatives.
1181 */
1182 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1183 {
1184 pr_debug("%s(0x%p)\n", __func__, ptr);
1185
1186 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1187 add_scan_area((unsigned long)ptr, size, gfp);
1188 else if (kmemleak_early_log)
1189 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1190 }
1191 EXPORT_SYMBOL(kmemleak_scan_area);
1192
1193 /**
1194 * kmemleak_no_scan - do not scan an allocated object
1195 * @ptr: pointer to beginning of the object
1196 *
1197 * This function notifies kmemleak not to scan the given memory block. Useful
1198 * in situations where it is known that the given object does not contain any
1199 * references to other objects. Kmemleak will not scan such objects reducing
1200 * the number of false negatives.
1201 */
1202 void __ref kmemleak_no_scan(const void *ptr)
1203 {
1204 pr_debug("%s(0x%p)\n", __func__, ptr);
1205
1206 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1207 object_no_scan((unsigned long)ptr);
1208 else if (kmemleak_early_log)
1209 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1210 }
1211 EXPORT_SYMBOL(kmemleak_no_scan);
1212
1213 /**
1214 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1215 * address argument
1216 * @phys: physical address of the object
1217 * @size: size of the object
1218 * @min_count: minimum number of references to this object.
1219 * See kmemleak_alloc()
1220 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1221 */
1222 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1223 gfp_t gfp)
1224 {
1225 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1226 kmemleak_alloc(__va(phys), size, min_count, gfp);
1227 }
1228 EXPORT_SYMBOL(kmemleak_alloc_phys);
1229
1230 /**
1231 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1232 * physical address argument
1233 * @phys: physical address if the beginning or inside an object. This
1234 * also represents the start of the range to be freed
1235 * @size: size to be unregistered
1236 */
1237 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1238 {
1239 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1240 kmemleak_free_part(__va(phys), size);
1241 }
1242 EXPORT_SYMBOL(kmemleak_free_part_phys);
1243
1244 /**
1245 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1246 * address argument
1247 * @phys: physical address of the object
1248 */
1249 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1250 {
1251 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1252 kmemleak_not_leak(__va(phys));
1253 }
1254 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1255
1256 /**
1257 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1258 * address argument
1259 * @phys: physical address of the object
1260 */
1261 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1262 {
1263 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1264 kmemleak_ignore(__va(phys));
1265 }
1266 EXPORT_SYMBOL(kmemleak_ignore_phys);
1267
1268 /*
1269 * Update an object's checksum and return true if it was modified.
1270 */
1271 static bool update_checksum(struct kmemleak_object *object)
1272 {
1273 u32 old_csum = object->checksum;
1274
1275 kasan_disable_current();
1276 object->checksum = crc32(0, (void *)object->pointer, object->size);
1277 kasan_enable_current();
1278
1279 return object->checksum != old_csum;
1280 }
1281
1282 /*
1283 * Update an object's references. object->lock must be held by the caller.
1284 */
1285 static void update_refs(struct kmemleak_object *object)
1286 {
1287 if (!color_white(object)) {
1288 /* non-orphan, ignored or new */
1289 return;
1290 }
1291
1292 /*
1293 * Increase the object's reference count (number of pointers to the
1294 * memory block). If this count reaches the required minimum, the
1295 * object's color will become gray and it will be added to the
1296 * gray_list.
1297 */
1298 object->count++;
1299 if (color_gray(object)) {
1300 /* put_object() called when removing from gray_list */
1301 WARN_ON(!get_object(object));
1302 list_add_tail(&object->gray_list, &gray_list);
1303 }
1304 }
1305
1306 /*
1307 * Memory scanning is a long process and it needs to be interruptable. This
1308 * function checks whether such interrupt condition occurred.
1309 */
1310 static int scan_should_stop(void)
1311 {
1312 if (!kmemleak_enabled)
1313 return 1;
1314
1315 /*
1316 * This function may be called from either process or kthread context,
1317 * hence the need to check for both stop conditions.
1318 */
1319 if (current->mm)
1320 return signal_pending(current);
1321 else
1322 return kthread_should_stop();
1323
1324 return 0;
1325 }
1326
1327 /*
1328 * Scan a memory block (exclusive range) for valid pointers and add those
1329 * found to the gray list.
1330 */
1331 static void scan_block(void *_start, void *_end,
1332 struct kmemleak_object *scanned)
1333 {
1334 unsigned long *ptr;
1335 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1336 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1337 unsigned long flags;
1338 unsigned long untagged_ptr;
1339
1340 read_lock_irqsave(&kmemleak_lock, flags);
1341 for (ptr = start; ptr < end; ptr++) {
1342 struct kmemleak_object *object;
1343 unsigned long pointer;
1344 unsigned long excess_ref;
1345
1346 if (scan_should_stop())
1347 break;
1348
1349 kasan_disable_current();
1350 pointer = *ptr;
1351 kasan_enable_current();
1352
1353 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1354 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1355 continue;
1356
1357 /*
1358 * No need for get_object() here since we hold kmemleak_lock.
1359 * object->use_count cannot be dropped to 0 while the object
1360 * is still present in object_tree_root and object_list
1361 * (with updates protected by kmemleak_lock).
1362 */
1363 object = lookup_object(pointer, 1);
1364 if (!object)
1365 continue;
1366 if (object == scanned)
1367 /* self referenced, ignore */
1368 continue;
1369
1370 /*
1371 * Avoid the lockdep recursive warning on object->lock being
1372 * previously acquired in scan_object(). These locks are
1373 * enclosed by scan_mutex.
1374 */
1375 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1376 /* only pass surplus references (object already gray) */
1377 if (color_gray(object)) {
1378 excess_ref = object->excess_ref;
1379 /* no need for update_refs() if object already gray */
1380 } else {
1381 excess_ref = 0;
1382 update_refs(object);
1383 }
1384 spin_unlock(&object->lock);
1385
1386 if (excess_ref) {
1387 object = lookup_object(excess_ref, 0);
1388 if (!object)
1389 continue;
1390 if (object == scanned)
1391 /* circular reference, ignore */
1392 continue;
1393 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1394 update_refs(object);
1395 spin_unlock(&object->lock);
1396 }
1397 }
1398 read_unlock_irqrestore(&kmemleak_lock, flags);
1399 }
1400
1401 /*
1402 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1403 */
1404 static void scan_large_block(void *start, void *end)
1405 {
1406 void *next;
1407
1408 while (start < end) {
1409 next = min(start + MAX_SCAN_SIZE, end);
1410 scan_block(start, next, NULL);
1411 start = next;
1412 cond_resched();
1413 }
1414 }
1415
1416 /*
1417 * Scan a memory block corresponding to a kmemleak_object. A condition is
1418 * that object->use_count >= 1.
1419 */
1420 static void scan_object(struct kmemleak_object *object)
1421 {
1422 struct kmemleak_scan_area *area;
1423 unsigned long flags;
1424
1425 /*
1426 * Once the object->lock is acquired, the corresponding memory block
1427 * cannot be freed (the same lock is acquired in delete_object).
1428 */
1429 spin_lock_irqsave(&object->lock, flags);
1430 if (object->flags & OBJECT_NO_SCAN)
1431 goto out;
1432 if (!(object->flags & OBJECT_ALLOCATED))
1433 /* already freed object */
1434 goto out;
1435 if (hlist_empty(&object->area_list)) {
1436 void *start = (void *)object->pointer;
1437 void *end = (void *)(object->pointer + object->size);
1438 void *next;
1439
1440 do {
1441 next = min(start + MAX_SCAN_SIZE, end);
1442 scan_block(start, next, object);
1443
1444 start = next;
1445 if (start >= end)
1446 break;
1447
1448 spin_unlock_irqrestore(&object->lock, flags);
1449 cond_resched();
1450 spin_lock_irqsave(&object->lock, flags);
1451 } while (object->flags & OBJECT_ALLOCATED);
1452 } else
1453 hlist_for_each_entry(area, &object->area_list, node)
1454 scan_block((void *)area->start,
1455 (void *)(area->start + area->size),
1456 object);
1457 out:
1458 spin_unlock_irqrestore(&object->lock, flags);
1459 }
1460
1461 /*
1462 * Scan the objects already referenced (gray objects). More objects will be
1463 * referenced and, if there are no memory leaks, all the objects are scanned.
1464 */
1465 static void scan_gray_list(void)
1466 {
1467 struct kmemleak_object *object, *tmp;
1468
1469 /*
1470 * The list traversal is safe for both tail additions and removals
1471 * from inside the loop. The kmemleak objects cannot be freed from
1472 * outside the loop because their use_count was incremented.
1473 */
1474 object = list_entry(gray_list.next, typeof(*object), gray_list);
1475 while (&object->gray_list != &gray_list) {
1476 cond_resched();
1477
1478 /* may add new objects to the list */
1479 if (!scan_should_stop())
1480 scan_object(object);
1481
1482 tmp = list_entry(object->gray_list.next, typeof(*object),
1483 gray_list);
1484
1485 /* remove the object from the list and release it */
1486 list_del(&object->gray_list);
1487 put_object(object);
1488
1489 object = tmp;
1490 }
1491 WARN_ON(!list_empty(&gray_list));
1492 }
1493
1494 /*
1495 * Scan data sections and all the referenced memory blocks allocated via the
1496 * kernel's standard allocators. This function must be called with the
1497 * scan_mutex held.
1498 */
1499 static void kmemleak_scan(void)
1500 {
1501 unsigned long flags;
1502 struct kmemleak_object *object;
1503 int i;
1504 int new_leaks = 0;
1505
1506 jiffies_last_scan = jiffies;
1507
1508 /* prepare the kmemleak_object's */
1509 rcu_read_lock();
1510 list_for_each_entry_rcu(object, &object_list, object_list) {
1511 spin_lock_irqsave(&object->lock, flags);
1512 #ifdef DEBUG
1513 /*
1514 * With a few exceptions there should be a maximum of
1515 * 1 reference to any object at this point.
1516 */
1517 if (atomic_read(&object->use_count) > 1) {
1518 pr_debug("object->use_count = %d\n",
1519 atomic_read(&object->use_count));
1520 dump_object_info(object);
1521 }
1522 #endif
1523 /* reset the reference count (whiten the object) */
1524 object->count = 0;
1525 if (color_gray(object) && get_object(object))
1526 list_add_tail(&object->gray_list, &gray_list);
1527
1528 spin_unlock_irqrestore(&object->lock, flags);
1529 }
1530 rcu_read_unlock();
1531
1532 #ifdef CONFIG_SMP
1533 /* per-cpu sections scanning */
1534 for_each_possible_cpu(i)
1535 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1536 __per_cpu_end + per_cpu_offset(i));
1537 #endif
1538
1539 /*
1540 * Struct page scanning for each node.
1541 */
1542 get_online_mems();
1543 for_each_online_node(i) {
1544 unsigned long start_pfn = node_start_pfn(i);
1545 unsigned long end_pfn = node_end_pfn(i);
1546 unsigned long pfn;
1547
1548 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1549 struct page *page = pfn_to_online_page(pfn);
1550
1551 if (!page)
1552 continue;
1553
1554 /* only scan pages belonging to this node */
1555 if (page_to_nid(page) != i)
1556 continue;
1557 /* only scan if page is in use */
1558 if (page_count(page) == 0)
1559 continue;
1560 scan_block(page, page + 1, NULL);
1561 if (!(pfn & 63))
1562 cond_resched();
1563 }
1564 }
1565 put_online_mems();
1566
1567 /*
1568 * Scanning the task stacks (may introduce false negatives).
1569 */
1570 if (kmemleak_stack_scan) {
1571 struct task_struct *p, *g;
1572
1573 read_lock(&tasklist_lock);
1574 do_each_thread(g, p) {
1575 void *stack = try_get_task_stack(p);
1576 if (stack) {
1577 scan_block(stack, stack + THREAD_SIZE, NULL);
1578 put_task_stack(p);
1579 }
1580 } while_each_thread(g, p);
1581 read_unlock(&tasklist_lock);
1582 }
1583
1584 /*
1585 * Scan the objects already referenced from the sections scanned
1586 * above.
1587 */
1588 scan_gray_list();
1589
1590 /*
1591 * Check for new or unreferenced objects modified since the previous
1592 * scan and color them gray until the next scan.
1593 */
1594 rcu_read_lock();
1595 list_for_each_entry_rcu(object, &object_list, object_list) {
1596 spin_lock_irqsave(&object->lock, flags);
1597 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1598 && update_checksum(object) && get_object(object)) {
1599 /* color it gray temporarily */
1600 object->count = object->min_count;
1601 list_add_tail(&object->gray_list, &gray_list);
1602 }
1603 spin_unlock_irqrestore(&object->lock, flags);
1604 }
1605 rcu_read_unlock();
1606
1607 /*
1608 * Re-scan the gray list for modified unreferenced objects.
1609 */
1610 scan_gray_list();
1611
1612 /*
1613 * If scanning was stopped do not report any new unreferenced objects.
1614 */
1615 if (scan_should_stop())
1616 return;
1617
1618 /*
1619 * Scanning result reporting.
1620 */
1621 rcu_read_lock();
1622 list_for_each_entry_rcu(object, &object_list, object_list) {
1623 spin_lock_irqsave(&object->lock, flags);
1624 if (unreferenced_object(object) &&
1625 !(object->flags & OBJECT_REPORTED)) {
1626 object->flags |= OBJECT_REPORTED;
1627
1628 if (kmemleak_verbose)
1629 print_unreferenced(NULL, object);
1630
1631 new_leaks++;
1632 }
1633 spin_unlock_irqrestore(&object->lock, flags);
1634 }
1635 rcu_read_unlock();
1636
1637 if (new_leaks) {
1638 kmemleak_found_leaks = true;
1639
1640 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1641 new_leaks);
1642 }
1643
1644 }
1645
1646 /*
1647 * Thread function performing automatic memory scanning. Unreferenced objects
1648 * at the end of a memory scan are reported but only the first time.
1649 */
1650 static int kmemleak_scan_thread(void *arg)
1651 {
1652 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1653
1654 pr_info("Automatic memory scanning thread started\n");
1655 set_user_nice(current, 10);
1656
1657 /*
1658 * Wait before the first scan to allow the system to fully initialize.
1659 */
1660 if (first_run) {
1661 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1662 first_run = 0;
1663 while (timeout && !kthread_should_stop())
1664 timeout = schedule_timeout_interruptible(timeout);
1665 }
1666
1667 while (!kthread_should_stop()) {
1668 signed long timeout = jiffies_scan_wait;
1669
1670 mutex_lock(&scan_mutex);
1671 kmemleak_scan();
1672 mutex_unlock(&scan_mutex);
1673
1674 /* wait before the next scan */
1675 while (timeout && !kthread_should_stop())
1676 timeout = schedule_timeout_interruptible(timeout);
1677 }
1678
1679 pr_info("Automatic memory scanning thread ended\n");
1680
1681 return 0;
1682 }
1683
1684 /*
1685 * Start the automatic memory scanning thread. This function must be called
1686 * with the scan_mutex held.
1687 */
1688 static void start_scan_thread(void)
1689 {
1690 if (scan_thread)
1691 return;
1692 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1693 if (IS_ERR(scan_thread)) {
1694 pr_warn("Failed to create the scan thread\n");
1695 scan_thread = NULL;
1696 }
1697 }
1698
1699 /*
1700 * Stop the automatic memory scanning thread.
1701 */
1702 static void stop_scan_thread(void)
1703 {
1704 if (scan_thread) {
1705 kthread_stop(scan_thread);
1706 scan_thread = NULL;
1707 }
1708 }
1709
1710 /*
1711 * Iterate over the object_list and return the first valid object at or after
1712 * the required position with its use_count incremented. The function triggers
1713 * a memory scanning when the pos argument points to the first position.
1714 */
1715 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1716 {
1717 struct kmemleak_object *object;
1718 loff_t n = *pos;
1719 int err;
1720
1721 err = mutex_lock_interruptible(&scan_mutex);
1722 if (err < 0)
1723 return ERR_PTR(err);
1724
1725 rcu_read_lock();
1726 list_for_each_entry_rcu(object, &object_list, object_list) {
1727 if (n-- > 0)
1728 continue;
1729 if (get_object(object))
1730 goto out;
1731 }
1732 object = NULL;
1733 out:
1734 return object;
1735 }
1736
1737 /*
1738 * Return the next object in the object_list. The function decrements the
1739 * use_count of the previous object and increases that of the next one.
1740 */
1741 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1742 {
1743 struct kmemleak_object *prev_obj = v;
1744 struct kmemleak_object *next_obj = NULL;
1745 struct kmemleak_object *obj = prev_obj;
1746
1747 ++(*pos);
1748
1749 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1750 if (get_object(obj)) {
1751 next_obj = obj;
1752 break;
1753 }
1754 }
1755
1756 put_object(prev_obj);
1757 return next_obj;
1758 }
1759
1760 /*
1761 * Decrement the use_count of the last object required, if any.
1762 */
1763 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1764 {
1765 if (!IS_ERR(v)) {
1766 /*
1767 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1768 * waiting was interrupted, so only release it if !IS_ERR.
1769 */
1770 rcu_read_unlock();
1771 mutex_unlock(&scan_mutex);
1772 if (v)
1773 put_object(v);
1774 }
1775 }
1776
1777 /*
1778 * Print the information for an unreferenced object to the seq file.
1779 */
1780 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1781 {
1782 struct kmemleak_object *object = v;
1783 unsigned long flags;
1784
1785 spin_lock_irqsave(&object->lock, flags);
1786 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1787 print_unreferenced(seq, object);
1788 spin_unlock_irqrestore(&object->lock, flags);
1789 return 0;
1790 }
1791
1792 static const struct seq_operations kmemleak_seq_ops = {
1793 .start = kmemleak_seq_start,
1794 .next = kmemleak_seq_next,
1795 .stop = kmemleak_seq_stop,
1796 .show = kmemleak_seq_show,
1797 };
1798
1799 static int kmemleak_open(struct inode *inode, struct file *file)
1800 {
1801 return seq_open(file, &kmemleak_seq_ops);
1802 }
1803
1804 static int dump_str_object_info(const char *str)
1805 {
1806 unsigned long flags;
1807 struct kmemleak_object *object;
1808 unsigned long addr;
1809
1810 if (kstrtoul(str, 0, &addr))
1811 return -EINVAL;
1812 object = find_and_get_object(addr, 0);
1813 if (!object) {
1814 pr_info("Unknown object at 0x%08lx\n", addr);
1815 return -EINVAL;
1816 }
1817
1818 spin_lock_irqsave(&object->lock, flags);
1819 dump_object_info(object);
1820 spin_unlock_irqrestore(&object->lock, flags);
1821
1822 put_object(object);
1823 return 0;
1824 }
1825
1826 /*
1827 * We use grey instead of black to ensure we can do future scans on the same
1828 * objects. If we did not do future scans these black objects could
1829 * potentially contain references to newly allocated objects in the future and
1830 * we'd end up with false positives.
1831 */
1832 static void kmemleak_clear(void)
1833 {
1834 struct kmemleak_object *object;
1835 unsigned long flags;
1836
1837 rcu_read_lock();
1838 list_for_each_entry_rcu(object, &object_list, object_list) {
1839 spin_lock_irqsave(&object->lock, flags);
1840 if ((object->flags & OBJECT_REPORTED) &&
1841 unreferenced_object(object))
1842 __paint_it(object, KMEMLEAK_GREY);
1843 spin_unlock_irqrestore(&object->lock, flags);
1844 }
1845 rcu_read_unlock();
1846
1847 kmemleak_found_leaks = false;
1848 }
1849
1850 static void __kmemleak_do_cleanup(void);
1851
1852 /*
1853 * File write operation to configure kmemleak at run-time. The following
1854 * commands can be written to the /sys/kernel/debug/kmemleak file:
1855 * off - disable kmemleak (irreversible)
1856 * stack=on - enable the task stacks scanning
1857 * stack=off - disable the tasks stacks scanning
1858 * scan=on - start the automatic memory scanning thread
1859 * scan=off - stop the automatic memory scanning thread
1860 * scan=... - set the automatic memory scanning period in seconds (0 to
1861 * disable it)
1862 * scan - trigger a memory scan
1863 * clear - mark all current reported unreferenced kmemleak objects as
1864 * grey to ignore printing them, or free all kmemleak objects
1865 * if kmemleak has been disabled.
1866 * dump=... - dump information about the object found at the given address
1867 */
1868 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1869 size_t size, loff_t *ppos)
1870 {
1871 char buf[64];
1872 int buf_size;
1873 int ret;
1874
1875 buf_size = min(size, (sizeof(buf) - 1));
1876 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1877 return -EFAULT;
1878 buf[buf_size] = 0;
1879
1880 ret = mutex_lock_interruptible(&scan_mutex);
1881 if (ret < 0)
1882 return ret;
1883
1884 if (strncmp(buf, "clear", 5) == 0) {
1885 if (kmemleak_enabled)
1886 kmemleak_clear();
1887 else
1888 __kmemleak_do_cleanup();
1889 goto out;
1890 }
1891
1892 if (!kmemleak_enabled) {
1893 ret = -EBUSY;
1894 goto out;
1895 }
1896
1897 if (strncmp(buf, "off", 3) == 0)
1898 kmemleak_disable();
1899 else if (strncmp(buf, "stack=on", 8) == 0)
1900 kmemleak_stack_scan = 1;
1901 else if (strncmp(buf, "stack=off", 9) == 0)
1902 kmemleak_stack_scan = 0;
1903 else if (strncmp(buf, "scan=on", 7) == 0)
1904 start_scan_thread();
1905 else if (strncmp(buf, "scan=off", 8) == 0)
1906 stop_scan_thread();
1907 else if (strncmp(buf, "scan=", 5) == 0) {
1908 unsigned long secs;
1909
1910 ret = kstrtoul(buf + 5, 0, &secs);
1911 if (ret < 0)
1912 goto out;
1913 stop_scan_thread();
1914 if (secs) {
1915 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1916 start_scan_thread();
1917 }
1918 } else if (strncmp(buf, "scan", 4) == 0)
1919 kmemleak_scan();
1920 else if (strncmp(buf, "dump=", 5) == 0)
1921 ret = dump_str_object_info(buf + 5);
1922 else
1923 ret = -EINVAL;
1924
1925 out:
1926 mutex_unlock(&scan_mutex);
1927 if (ret < 0)
1928 return ret;
1929
1930 /* ignore the rest of the buffer, only one command at a time */
1931 *ppos += size;
1932 return size;
1933 }
1934
1935 static const struct file_operations kmemleak_fops = {
1936 .owner = THIS_MODULE,
1937 .open = kmemleak_open,
1938 .read = seq_read,
1939 .write = kmemleak_write,
1940 .llseek = seq_lseek,
1941 .release = seq_release,
1942 };
1943
1944 static void __kmemleak_do_cleanup(void)
1945 {
1946 struct kmemleak_object *object;
1947
1948 rcu_read_lock();
1949 list_for_each_entry_rcu(object, &object_list, object_list)
1950 delete_object_full(object->pointer);
1951 rcu_read_unlock();
1952 }
1953
1954 /*
1955 * Stop the memory scanning thread and free the kmemleak internal objects if
1956 * no previous scan thread (otherwise, kmemleak may still have some useful
1957 * information on memory leaks).
1958 */
1959 static void kmemleak_do_cleanup(struct work_struct *work)
1960 {
1961 stop_scan_thread();
1962
1963 mutex_lock(&scan_mutex);
1964 /*
1965 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1966 * longer track object freeing. Ordering of the scan thread stopping and
1967 * the memory accesses below is guaranteed by the kthread_stop()
1968 * function.
1969 */
1970 kmemleak_free_enabled = 0;
1971 mutex_unlock(&scan_mutex);
1972
1973 if (!kmemleak_found_leaks)
1974 __kmemleak_do_cleanup();
1975 else
1976 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1977 }
1978
1979 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1980
1981 /*
1982 * Disable kmemleak. No memory allocation/freeing will be traced once this
1983 * function is called. Disabling kmemleak is an irreversible operation.
1984 */
1985 static void kmemleak_disable(void)
1986 {
1987 /* atomically check whether it was already invoked */
1988 if (cmpxchg(&kmemleak_error, 0, 1))
1989 return;
1990
1991 /* stop any memory operation tracing */
1992 kmemleak_enabled = 0;
1993
1994 /* check whether it is too early for a kernel thread */
1995 if (kmemleak_initialized)
1996 schedule_work(&cleanup_work);
1997 else
1998 kmemleak_free_enabled = 0;
1999
2000 pr_info("Kernel memory leak detector disabled\n");
2001 }
2002
2003 /*
2004 * Allow boot-time kmemleak disabling (enabled by default).
2005 */
2006 static int __init kmemleak_boot_config(char *str)
2007 {
2008 if (!str)
2009 return -EINVAL;
2010 if (strcmp(str, "off") == 0)
2011 kmemleak_disable();
2012 else if (strcmp(str, "on") == 0)
2013 kmemleak_skip_disable = 1;
2014 else
2015 return -EINVAL;
2016 return 0;
2017 }
2018 early_param("kmemleak", kmemleak_boot_config);
2019
2020 static void __init print_log_trace(struct early_log *log)
2021 {
2022 struct stack_trace trace;
2023
2024 trace.nr_entries = log->trace_len;
2025 trace.entries = log->trace;
2026
2027 pr_notice("Early log backtrace:\n");
2028 print_stack_trace(&trace, 2);
2029 }
2030
2031 /*
2032 * Kmemleak initialization.
2033 */
2034 void __init kmemleak_init(void)
2035 {
2036 int i;
2037 unsigned long flags;
2038
2039 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2040 if (!kmemleak_skip_disable) {
2041 kmemleak_early_log = 0;
2042 kmemleak_disable();
2043 return;
2044 }
2045 #endif
2046
2047 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2048 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2049
2050 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2051 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2052
2053 if (crt_early_log > ARRAY_SIZE(early_log))
2054 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2055 crt_early_log);
2056
2057 /* the kernel is still in UP mode, so disabling the IRQs is enough */
2058 local_irq_save(flags);
2059 kmemleak_early_log = 0;
2060 if (kmemleak_error) {
2061 local_irq_restore(flags);
2062 return;
2063 } else {
2064 kmemleak_enabled = 1;
2065 kmemleak_free_enabled = 1;
2066 }
2067 local_irq_restore(flags);
2068
2069 /* register the data/bss sections */
2070 create_object((unsigned long)_sdata, _edata - _sdata,
2071 KMEMLEAK_GREY, GFP_ATOMIC);
2072 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2073 KMEMLEAK_GREY, GFP_ATOMIC);
2074 /* only register .data..ro_after_init if not within .data */
2075 if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
2076 create_object((unsigned long)__start_ro_after_init,
2077 __end_ro_after_init - __start_ro_after_init,
2078 KMEMLEAK_GREY, GFP_ATOMIC);
2079
2080 /*
2081 * This is the point where tracking allocations is safe. Automatic
2082 * scanning is started during the late initcall. Add the early logged
2083 * callbacks to the kmemleak infrastructure.
2084 */
2085 for (i = 0; i < crt_early_log; i++) {
2086 struct early_log *log = &early_log[i];
2087
2088 switch (log->op_type) {
2089 case KMEMLEAK_ALLOC:
2090 early_alloc(log);
2091 break;
2092 case KMEMLEAK_ALLOC_PERCPU:
2093 early_alloc_percpu(log);
2094 break;
2095 case KMEMLEAK_FREE:
2096 kmemleak_free(log->ptr);
2097 break;
2098 case KMEMLEAK_FREE_PART:
2099 kmemleak_free_part(log->ptr, log->size);
2100 break;
2101 case KMEMLEAK_FREE_PERCPU:
2102 kmemleak_free_percpu(log->ptr);
2103 break;
2104 case KMEMLEAK_NOT_LEAK:
2105 kmemleak_not_leak(log->ptr);
2106 break;
2107 case KMEMLEAK_IGNORE:
2108 kmemleak_ignore(log->ptr);
2109 break;
2110 case KMEMLEAK_SCAN_AREA:
2111 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2112 break;
2113 case KMEMLEAK_NO_SCAN:
2114 kmemleak_no_scan(log->ptr);
2115 break;
2116 case KMEMLEAK_SET_EXCESS_REF:
2117 object_set_excess_ref((unsigned long)log->ptr,
2118 log->excess_ref);
2119 break;
2120 default:
2121 kmemleak_warn("Unknown early log operation: %d\n",
2122 log->op_type);
2123 }
2124
2125 if (kmemleak_warning) {
2126 print_log_trace(log);
2127 kmemleak_warning = 0;
2128 }
2129 }
2130 }
2131
2132 /*
2133 * Late initialization function.
2134 */
2135 static int __init kmemleak_late_init(void)
2136 {
2137 struct dentry *dentry;
2138
2139 kmemleak_initialized = 1;
2140
2141 dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2142 &kmemleak_fops);
2143 if (!dentry)
2144 pr_warn("Failed to create the debugfs kmemleak file\n");
2145
2146 if (kmemleak_error) {
2147 /*
2148 * Some error occurred and kmemleak was disabled. There is a
2149 * small chance that kmemleak_disable() was called immediately
2150 * after setting kmemleak_initialized and we may end up with
2151 * two clean-up threads but serialized by scan_mutex.
2152 */
2153 schedule_work(&cleanup_work);
2154 return -ENOMEM;
2155 }
2156
2157 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2158 mutex_lock(&scan_mutex);
2159 start_scan_thread();
2160 mutex_unlock(&scan_mutex);
2161 }
2162
2163 pr_info("Kernel memory leak detector initialized\n");
2164
2165 return 0;
2166 }
2167 late_initcall(kmemleak_late_init);