]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/page_alloc.c
Merge tag 'edac_for_4.20' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[thirdparty/kernel/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <trace/events/oom.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/sched/mm.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/lockdep.h>
68 #include <linux/nmi.h>
69
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
73 #include "internal.h"
74
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
78
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
82 #endif
83
84 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
85
86 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
87 /*
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
92 */
93 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
94 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
95 int _node_numa_mem_[MAX_NUMNODES];
96 #endif
97
98 /* work_structs for global per-cpu drains */
99 DEFINE_MUTEX(pcpu_drain_mutex);
100 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
101
102 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103 volatile unsigned long latent_entropy __latent_entropy;
104 EXPORT_SYMBOL(latent_entropy);
105 #endif
106
107 /*
108 * Array of node states.
109 */
110 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
111 [N_POSSIBLE] = NODE_MASK_ALL,
112 [N_ONLINE] = { { [0] = 1UL } },
113 #ifndef CONFIG_NUMA
114 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
115 #ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY] = { { [0] = 1UL } },
117 #endif
118 [N_MEMORY] = { { [0] = 1UL } },
119 [N_CPU] = { { [0] = 1UL } },
120 #endif /* NUMA */
121 };
122 EXPORT_SYMBOL(node_states);
123
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
126
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
130
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
133
134 /*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142 static inline int get_pcppage_migratetype(struct page *page)
143 {
144 return page->index;
145 }
146
147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 {
149 page->index = migratetype;
150 }
151
152 #ifdef CONFIG_PM_SLEEP
153 /*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with system_transition_mutex held
158 * (gfp_allowed_mask also should only be modified with system_transition_mutex
159 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
160 * with that modification).
161 */
162
163 static gfp_t saved_gfp_mask;
164
165 void pm_restore_gfp_mask(void)
166 {
167 WARN_ON(!mutex_is_locked(&system_transition_mutex));
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
170 saved_gfp_mask = 0;
171 }
172 }
173
174 void pm_restrict_gfp_mask(void)
175 {
176 WARN_ON(!mutex_is_locked(&system_transition_mutex));
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180 }
181
182 bool pm_suspended_storage(void)
183 {
184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 return false;
186 return true;
187 }
188 #endif /* CONFIG_PM_SLEEP */
189
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly;
192 #endif
193
194 static void __free_pages_ok(struct page *page, unsigned int order);
195
196 /*
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203 *
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
206 */
207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
208 #ifdef CONFIG_ZONE_DMA
209 [ZONE_DMA] = 256,
210 #endif
211 #ifdef CONFIG_ZONE_DMA32
212 [ZONE_DMA32] = 256,
213 #endif
214 [ZONE_NORMAL] = 32,
215 #ifdef CONFIG_HIGHMEM
216 [ZONE_HIGHMEM] = 0,
217 #endif
218 [ZONE_MOVABLE] = 0,
219 };
220
221 EXPORT_SYMBOL(totalram_pages);
222
223 static char * const zone_names[MAX_NR_ZONES] = {
224 #ifdef CONFIG_ZONE_DMA
225 "DMA",
226 #endif
227 #ifdef CONFIG_ZONE_DMA32
228 "DMA32",
229 #endif
230 "Normal",
231 #ifdef CONFIG_HIGHMEM
232 "HighMem",
233 #endif
234 "Movable",
235 #ifdef CONFIG_ZONE_DEVICE
236 "Device",
237 #endif
238 };
239
240 char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245 #ifdef CONFIG_CMA
246 "CMA",
247 #endif
248 #ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250 #endif
251 };
252
253 compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256 #ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258 #endif
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261 #endif
262 };
263
264 int min_free_kbytes = 1024;
265 int user_min_free_kbytes = -1;
266 int watermark_scale_factor = 10;
267
268 static unsigned long nr_kernel_pages __meminitdata;
269 static unsigned long nr_all_pages __meminitdata;
270 static unsigned long dma_reserve __meminitdata;
271
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275 static unsigned long required_kernelcore __initdata;
276 static unsigned long required_kernelcore_percent __initdata;
277 static unsigned long required_movablecore __initdata;
278 static unsigned long required_movablecore_percent __initdata;
279 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
280 static bool mirrored_kernelcore __meminitdata;
281
282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
283 int movable_zone;
284 EXPORT_SYMBOL(movable_zone);
285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286
287 #if MAX_NUMNODES > 1
288 int nr_node_ids __read_mostly = MAX_NUMNODES;
289 int nr_online_nodes __read_mostly = 1;
290 EXPORT_SYMBOL(nr_node_ids);
291 EXPORT_SYMBOL(nr_online_nodes);
292 #endif
293
294 int page_group_by_mobility_disabled __read_mostly;
295
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299 {
300 int nid = early_pfn_to_nid(pfn);
301
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 return true;
304
305 return false;
306 }
307
308 /*
309 * Returns false when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
311 */
312 static inline bool update_defer_init(pg_data_t *pgdat,
313 unsigned long pfn, unsigned long zone_end,
314 unsigned long *nr_initialised)
315 {
316 /* Always populate low zones for address-constrained allocations */
317 if (zone_end < pgdat_end_pfn(pgdat))
318 return true;
319 (*nr_initialised)++;
320 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
321 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
322 pgdat->first_deferred_pfn = pfn;
323 return false;
324 }
325
326 return true;
327 }
328 #else
329 static inline bool early_page_uninitialised(unsigned long pfn)
330 {
331 return false;
332 }
333
334 static inline bool update_defer_init(pg_data_t *pgdat,
335 unsigned long pfn, unsigned long zone_end,
336 unsigned long *nr_initialised)
337 {
338 return true;
339 }
340 #endif
341
342 /* Return a pointer to the bitmap storing bits affecting a block of pages */
343 static inline unsigned long *get_pageblock_bitmap(struct page *page,
344 unsigned long pfn)
345 {
346 #ifdef CONFIG_SPARSEMEM
347 return __pfn_to_section(pfn)->pageblock_flags;
348 #else
349 return page_zone(page)->pageblock_flags;
350 #endif /* CONFIG_SPARSEMEM */
351 }
352
353 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
354 {
355 #ifdef CONFIG_SPARSEMEM
356 pfn &= (PAGES_PER_SECTION-1);
357 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
358 #else
359 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 #endif /* CONFIG_SPARSEMEM */
362 }
363
364 /**
365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366 * @page: The page within the block of interest
367 * @pfn: The target page frame number
368 * @end_bitidx: The last bit of interest to retrieve
369 * @mask: mask of bits that the caller is interested in
370 *
371 * Return: pageblock_bits flags
372 */
373 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
374 unsigned long pfn,
375 unsigned long end_bitidx,
376 unsigned long mask)
377 {
378 unsigned long *bitmap;
379 unsigned long bitidx, word_bitidx;
380 unsigned long word;
381
382 bitmap = get_pageblock_bitmap(page, pfn);
383 bitidx = pfn_to_bitidx(page, pfn);
384 word_bitidx = bitidx / BITS_PER_LONG;
385 bitidx &= (BITS_PER_LONG-1);
386
387 word = bitmap[word_bitidx];
388 bitidx += end_bitidx;
389 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
390 }
391
392 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
393 unsigned long end_bitidx,
394 unsigned long mask)
395 {
396 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
397 }
398
399 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
400 {
401 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
402 }
403
404 /**
405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
406 * @page: The page within the block of interest
407 * @flags: The flags to set
408 * @pfn: The target page frame number
409 * @end_bitidx: The last bit of interest
410 * @mask: mask of bits that the caller is interested in
411 */
412 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
413 unsigned long pfn,
414 unsigned long end_bitidx,
415 unsigned long mask)
416 {
417 unsigned long *bitmap;
418 unsigned long bitidx, word_bitidx;
419 unsigned long old_word, word;
420
421 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
422
423 bitmap = get_pageblock_bitmap(page, pfn);
424 bitidx = pfn_to_bitidx(page, pfn);
425 word_bitidx = bitidx / BITS_PER_LONG;
426 bitidx &= (BITS_PER_LONG-1);
427
428 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
429
430 bitidx += end_bitidx;
431 mask <<= (BITS_PER_LONG - bitidx - 1);
432 flags <<= (BITS_PER_LONG - bitidx - 1);
433
434 word = READ_ONCE(bitmap[word_bitidx]);
435 for (;;) {
436 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
437 if (word == old_word)
438 break;
439 word = old_word;
440 }
441 }
442
443 void set_pageblock_migratetype(struct page *page, int migratetype)
444 {
445 if (unlikely(page_group_by_mobility_disabled &&
446 migratetype < MIGRATE_PCPTYPES))
447 migratetype = MIGRATE_UNMOVABLE;
448
449 set_pageblock_flags_group(page, (unsigned long)migratetype,
450 PB_migrate, PB_migrate_end);
451 }
452
453 #ifdef CONFIG_DEBUG_VM
454 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
455 {
456 int ret = 0;
457 unsigned seq;
458 unsigned long pfn = page_to_pfn(page);
459 unsigned long sp, start_pfn;
460
461 do {
462 seq = zone_span_seqbegin(zone);
463 start_pfn = zone->zone_start_pfn;
464 sp = zone->spanned_pages;
465 if (!zone_spans_pfn(zone, pfn))
466 ret = 1;
467 } while (zone_span_seqretry(zone, seq));
468
469 if (ret)
470 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
471 pfn, zone_to_nid(zone), zone->name,
472 start_pfn, start_pfn + sp);
473
474 return ret;
475 }
476
477 static int page_is_consistent(struct zone *zone, struct page *page)
478 {
479 if (!pfn_valid_within(page_to_pfn(page)))
480 return 0;
481 if (zone != page_zone(page))
482 return 0;
483
484 return 1;
485 }
486 /*
487 * Temporary debugging check for pages not lying within a given zone.
488 */
489 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
490 {
491 if (page_outside_zone_boundaries(zone, page))
492 return 1;
493 if (!page_is_consistent(zone, page))
494 return 1;
495
496 return 0;
497 }
498 #else
499 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
500 {
501 return 0;
502 }
503 #endif
504
505 static void bad_page(struct page *page, const char *reason,
506 unsigned long bad_flags)
507 {
508 static unsigned long resume;
509 static unsigned long nr_shown;
510 static unsigned long nr_unshown;
511
512 /*
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
515 */
516 if (nr_shown == 60) {
517 if (time_before(jiffies, resume)) {
518 nr_unshown++;
519 goto out;
520 }
521 if (nr_unshown) {
522 pr_alert(
523 "BUG: Bad page state: %lu messages suppressed\n",
524 nr_unshown);
525 nr_unshown = 0;
526 }
527 nr_shown = 0;
528 }
529 if (nr_shown++ == 0)
530 resume = jiffies + 60 * HZ;
531
532 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
533 current->comm, page_to_pfn(page));
534 __dump_page(page, reason);
535 bad_flags &= page->flags;
536 if (bad_flags)
537 pr_alert("bad because of flags: %#lx(%pGp)\n",
538 bad_flags, &bad_flags);
539 dump_page_owner(page);
540
541 print_modules();
542 dump_stack();
543 out:
544 /* Leave bad fields for debug, except PageBuddy could make trouble */
545 page_mapcount_reset(page); /* remove PageBuddy */
546 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
547 }
548
549 /*
550 * Higher-order pages are called "compound pages". They are structured thusly:
551 *
552 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
553 *
554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
556 *
557 * The first tail page's ->compound_dtor holds the offset in array of compound
558 * page destructors. See compound_page_dtors.
559 *
560 * The first tail page's ->compound_order holds the order of allocation.
561 * This usage means that zero-order pages may not be compound.
562 */
563
564 void free_compound_page(struct page *page)
565 {
566 __free_pages_ok(page, compound_order(page));
567 }
568
569 void prep_compound_page(struct page *page, unsigned int order)
570 {
571 int i;
572 int nr_pages = 1 << order;
573
574 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
575 set_compound_order(page, order);
576 __SetPageHead(page);
577 for (i = 1; i < nr_pages; i++) {
578 struct page *p = page + i;
579 set_page_count(p, 0);
580 p->mapping = TAIL_MAPPING;
581 set_compound_head(p, page);
582 }
583 atomic_set(compound_mapcount_ptr(page), -1);
584 }
585
586 #ifdef CONFIG_DEBUG_PAGEALLOC
587 unsigned int _debug_guardpage_minorder;
588 bool _debug_pagealloc_enabled __read_mostly
589 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
590 EXPORT_SYMBOL(_debug_pagealloc_enabled);
591 bool _debug_guardpage_enabled __read_mostly;
592
593 static int __init early_debug_pagealloc(char *buf)
594 {
595 if (!buf)
596 return -EINVAL;
597 return kstrtobool(buf, &_debug_pagealloc_enabled);
598 }
599 early_param("debug_pagealloc", early_debug_pagealloc);
600
601 static bool need_debug_guardpage(void)
602 {
603 /* If we don't use debug_pagealloc, we don't need guard page */
604 if (!debug_pagealloc_enabled())
605 return false;
606
607 if (!debug_guardpage_minorder())
608 return false;
609
610 return true;
611 }
612
613 static void init_debug_guardpage(void)
614 {
615 if (!debug_pagealloc_enabled())
616 return;
617
618 if (!debug_guardpage_minorder())
619 return;
620
621 _debug_guardpage_enabled = true;
622 }
623
624 struct page_ext_operations debug_guardpage_ops = {
625 .need = need_debug_guardpage,
626 .init = init_debug_guardpage,
627 };
628
629 static int __init debug_guardpage_minorder_setup(char *buf)
630 {
631 unsigned long res;
632
633 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
634 pr_err("Bad debug_guardpage_minorder value\n");
635 return 0;
636 }
637 _debug_guardpage_minorder = res;
638 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
639 return 0;
640 }
641 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
642
643 static inline bool set_page_guard(struct zone *zone, struct page *page,
644 unsigned int order, int migratetype)
645 {
646 struct page_ext *page_ext;
647
648 if (!debug_guardpage_enabled())
649 return false;
650
651 if (order >= debug_guardpage_minorder())
652 return false;
653
654 page_ext = lookup_page_ext(page);
655 if (unlikely(!page_ext))
656 return false;
657
658 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
659
660 INIT_LIST_HEAD(&page->lru);
661 set_page_private(page, order);
662 /* Guard pages are not available for any usage */
663 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
664
665 return true;
666 }
667
668 static inline void clear_page_guard(struct zone *zone, struct page *page,
669 unsigned int order, int migratetype)
670 {
671 struct page_ext *page_ext;
672
673 if (!debug_guardpage_enabled())
674 return;
675
676 page_ext = lookup_page_ext(page);
677 if (unlikely(!page_ext))
678 return;
679
680 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
681
682 set_page_private(page, 0);
683 if (!is_migrate_isolate(migratetype))
684 __mod_zone_freepage_state(zone, (1 << order), migratetype);
685 }
686 #else
687 struct page_ext_operations debug_guardpage_ops;
688 static inline bool set_page_guard(struct zone *zone, struct page *page,
689 unsigned int order, int migratetype) { return false; }
690 static inline void clear_page_guard(struct zone *zone, struct page *page,
691 unsigned int order, int migratetype) {}
692 #endif
693
694 static inline void set_page_order(struct page *page, unsigned int order)
695 {
696 set_page_private(page, order);
697 __SetPageBuddy(page);
698 }
699
700 static inline void rmv_page_order(struct page *page)
701 {
702 __ClearPageBuddy(page);
703 set_page_private(page, 0);
704 }
705
706 /*
707 * This function checks whether a page is free && is the buddy
708 * we can coalesce a page and its buddy if
709 * (a) the buddy is not in a hole (check before calling!) &&
710 * (b) the buddy is in the buddy system &&
711 * (c) a page and its buddy have the same order &&
712 * (d) a page and its buddy are in the same zone.
713 *
714 * For recording whether a page is in the buddy system, we set PageBuddy.
715 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
716 *
717 * For recording page's order, we use page_private(page).
718 */
719 static inline int page_is_buddy(struct page *page, struct page *buddy,
720 unsigned int order)
721 {
722 if (page_is_guard(buddy) && page_order(buddy) == order) {
723 if (page_zone_id(page) != page_zone_id(buddy))
724 return 0;
725
726 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
727
728 return 1;
729 }
730
731 if (PageBuddy(buddy) && page_order(buddy) == order) {
732 /*
733 * zone check is done late to avoid uselessly
734 * calculating zone/node ids for pages that could
735 * never merge.
736 */
737 if (page_zone_id(page) != page_zone_id(buddy))
738 return 0;
739
740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
741
742 return 1;
743 }
744 return 0;
745 }
746
747 /*
748 * Freeing function for a buddy system allocator.
749 *
750 * The concept of a buddy system is to maintain direct-mapped table
751 * (containing bit values) for memory blocks of various "orders".
752 * The bottom level table contains the map for the smallest allocatable
753 * units of memory (here, pages), and each level above it describes
754 * pairs of units from the levels below, hence, "buddies".
755 * At a high level, all that happens here is marking the table entry
756 * at the bottom level available, and propagating the changes upward
757 * as necessary, plus some accounting needed to play nicely with other
758 * parts of the VM system.
759 * At each level, we keep a list of pages, which are heads of continuous
760 * free pages of length of (1 << order) and marked with PageBuddy.
761 * Page's order is recorded in page_private(page) field.
762 * So when we are allocating or freeing one, we can derive the state of the
763 * other. That is, if we allocate a small block, and both were
764 * free, the remainder of the region must be split into blocks.
765 * If a block is freed, and its buddy is also free, then this
766 * triggers coalescing into a block of larger size.
767 *
768 * -- nyc
769 */
770
771 static inline void __free_one_page(struct page *page,
772 unsigned long pfn,
773 struct zone *zone, unsigned int order,
774 int migratetype)
775 {
776 unsigned long combined_pfn;
777 unsigned long uninitialized_var(buddy_pfn);
778 struct page *buddy;
779 unsigned int max_order;
780
781 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
782
783 VM_BUG_ON(!zone_is_initialized(zone));
784 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
785
786 VM_BUG_ON(migratetype == -1);
787 if (likely(!is_migrate_isolate(migratetype)))
788 __mod_zone_freepage_state(zone, 1 << order, migratetype);
789
790 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
791 VM_BUG_ON_PAGE(bad_range(zone, page), page);
792
793 continue_merging:
794 while (order < max_order - 1) {
795 buddy_pfn = __find_buddy_pfn(pfn, order);
796 buddy = page + (buddy_pfn - pfn);
797
798 if (!pfn_valid_within(buddy_pfn))
799 goto done_merging;
800 if (!page_is_buddy(page, buddy, order))
801 goto done_merging;
802 /*
803 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
804 * merge with it and move up one order.
805 */
806 if (page_is_guard(buddy)) {
807 clear_page_guard(zone, buddy, order, migratetype);
808 } else {
809 list_del(&buddy->lru);
810 zone->free_area[order].nr_free--;
811 rmv_page_order(buddy);
812 }
813 combined_pfn = buddy_pfn & pfn;
814 page = page + (combined_pfn - pfn);
815 pfn = combined_pfn;
816 order++;
817 }
818 if (max_order < MAX_ORDER) {
819 /* If we are here, it means order is >= pageblock_order.
820 * We want to prevent merge between freepages on isolate
821 * pageblock and normal pageblock. Without this, pageblock
822 * isolation could cause incorrect freepage or CMA accounting.
823 *
824 * We don't want to hit this code for the more frequent
825 * low-order merging.
826 */
827 if (unlikely(has_isolate_pageblock(zone))) {
828 int buddy_mt;
829
830 buddy_pfn = __find_buddy_pfn(pfn, order);
831 buddy = page + (buddy_pfn - pfn);
832 buddy_mt = get_pageblock_migratetype(buddy);
833
834 if (migratetype != buddy_mt
835 && (is_migrate_isolate(migratetype) ||
836 is_migrate_isolate(buddy_mt)))
837 goto done_merging;
838 }
839 max_order++;
840 goto continue_merging;
841 }
842
843 done_merging:
844 set_page_order(page, order);
845
846 /*
847 * If this is not the largest possible page, check if the buddy
848 * of the next-highest order is free. If it is, it's possible
849 * that pages are being freed that will coalesce soon. In case,
850 * that is happening, add the free page to the tail of the list
851 * so it's less likely to be used soon and more likely to be merged
852 * as a higher order page
853 */
854 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
855 struct page *higher_page, *higher_buddy;
856 combined_pfn = buddy_pfn & pfn;
857 higher_page = page + (combined_pfn - pfn);
858 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
859 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
860 if (pfn_valid_within(buddy_pfn) &&
861 page_is_buddy(higher_page, higher_buddy, order + 1)) {
862 list_add_tail(&page->lru,
863 &zone->free_area[order].free_list[migratetype]);
864 goto out;
865 }
866 }
867
868 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
869 out:
870 zone->free_area[order].nr_free++;
871 }
872
873 /*
874 * A bad page could be due to a number of fields. Instead of multiple branches,
875 * try and check multiple fields with one check. The caller must do a detailed
876 * check if necessary.
877 */
878 static inline bool page_expected_state(struct page *page,
879 unsigned long check_flags)
880 {
881 if (unlikely(atomic_read(&page->_mapcount) != -1))
882 return false;
883
884 if (unlikely((unsigned long)page->mapping |
885 page_ref_count(page) |
886 #ifdef CONFIG_MEMCG
887 (unsigned long)page->mem_cgroup |
888 #endif
889 (page->flags & check_flags)))
890 return false;
891
892 return true;
893 }
894
895 static void free_pages_check_bad(struct page *page)
896 {
897 const char *bad_reason;
898 unsigned long bad_flags;
899
900 bad_reason = NULL;
901 bad_flags = 0;
902
903 if (unlikely(atomic_read(&page->_mapcount) != -1))
904 bad_reason = "nonzero mapcount";
905 if (unlikely(page->mapping != NULL))
906 bad_reason = "non-NULL mapping";
907 if (unlikely(page_ref_count(page) != 0))
908 bad_reason = "nonzero _refcount";
909 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
910 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
911 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
912 }
913 #ifdef CONFIG_MEMCG
914 if (unlikely(page->mem_cgroup))
915 bad_reason = "page still charged to cgroup";
916 #endif
917 bad_page(page, bad_reason, bad_flags);
918 }
919
920 static inline int free_pages_check(struct page *page)
921 {
922 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
923 return 0;
924
925 /* Something has gone sideways, find it */
926 free_pages_check_bad(page);
927 return 1;
928 }
929
930 static int free_tail_pages_check(struct page *head_page, struct page *page)
931 {
932 int ret = 1;
933
934 /*
935 * We rely page->lru.next never has bit 0 set, unless the page
936 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
937 */
938 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
939
940 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
941 ret = 0;
942 goto out;
943 }
944 switch (page - head_page) {
945 case 1:
946 /* the first tail page: ->mapping may be compound_mapcount() */
947 if (unlikely(compound_mapcount(page))) {
948 bad_page(page, "nonzero compound_mapcount", 0);
949 goto out;
950 }
951 break;
952 case 2:
953 /*
954 * the second tail page: ->mapping is
955 * deferred_list.next -- ignore value.
956 */
957 break;
958 default:
959 if (page->mapping != TAIL_MAPPING) {
960 bad_page(page, "corrupted mapping in tail page", 0);
961 goto out;
962 }
963 break;
964 }
965 if (unlikely(!PageTail(page))) {
966 bad_page(page, "PageTail not set", 0);
967 goto out;
968 }
969 if (unlikely(compound_head(page) != head_page)) {
970 bad_page(page, "compound_head not consistent", 0);
971 goto out;
972 }
973 ret = 0;
974 out:
975 page->mapping = NULL;
976 clear_compound_head(page);
977 return ret;
978 }
979
980 static __always_inline bool free_pages_prepare(struct page *page,
981 unsigned int order, bool check_free)
982 {
983 int bad = 0;
984
985 VM_BUG_ON_PAGE(PageTail(page), page);
986
987 trace_mm_page_free(page, order);
988
989 /*
990 * Check tail pages before head page information is cleared to
991 * avoid checking PageCompound for order-0 pages.
992 */
993 if (unlikely(order)) {
994 bool compound = PageCompound(page);
995 int i;
996
997 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
998
999 if (compound)
1000 ClearPageDoubleMap(page);
1001 for (i = 1; i < (1 << order); i++) {
1002 if (compound)
1003 bad += free_tail_pages_check(page, page + i);
1004 if (unlikely(free_pages_check(page + i))) {
1005 bad++;
1006 continue;
1007 }
1008 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1009 }
1010 }
1011 if (PageMappingFlags(page))
1012 page->mapping = NULL;
1013 if (memcg_kmem_enabled() && PageKmemcg(page))
1014 memcg_kmem_uncharge(page, order);
1015 if (check_free)
1016 bad += free_pages_check(page);
1017 if (bad)
1018 return false;
1019
1020 page_cpupid_reset_last(page);
1021 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1022 reset_page_owner(page, order);
1023
1024 if (!PageHighMem(page)) {
1025 debug_check_no_locks_freed(page_address(page),
1026 PAGE_SIZE << order);
1027 debug_check_no_obj_freed(page_address(page),
1028 PAGE_SIZE << order);
1029 }
1030 arch_free_page(page, order);
1031 kernel_poison_pages(page, 1 << order, 0);
1032 kernel_map_pages(page, 1 << order, 0);
1033 kasan_free_pages(page, order);
1034
1035 return true;
1036 }
1037
1038 #ifdef CONFIG_DEBUG_VM
1039 static inline bool free_pcp_prepare(struct page *page)
1040 {
1041 return free_pages_prepare(page, 0, true);
1042 }
1043
1044 static inline bool bulkfree_pcp_prepare(struct page *page)
1045 {
1046 return false;
1047 }
1048 #else
1049 static bool free_pcp_prepare(struct page *page)
1050 {
1051 return free_pages_prepare(page, 0, false);
1052 }
1053
1054 static bool bulkfree_pcp_prepare(struct page *page)
1055 {
1056 return free_pages_check(page);
1057 }
1058 #endif /* CONFIG_DEBUG_VM */
1059
1060 static inline void prefetch_buddy(struct page *page)
1061 {
1062 unsigned long pfn = page_to_pfn(page);
1063 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1064 struct page *buddy = page + (buddy_pfn - pfn);
1065
1066 prefetch(buddy);
1067 }
1068
1069 /*
1070 * Frees a number of pages from the PCP lists
1071 * Assumes all pages on list are in same zone, and of same order.
1072 * count is the number of pages to free.
1073 *
1074 * If the zone was previously in an "all pages pinned" state then look to
1075 * see if this freeing clears that state.
1076 *
1077 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1078 * pinned" detection logic.
1079 */
1080 static void free_pcppages_bulk(struct zone *zone, int count,
1081 struct per_cpu_pages *pcp)
1082 {
1083 int migratetype = 0;
1084 int batch_free = 0;
1085 int prefetch_nr = 0;
1086 bool isolated_pageblocks;
1087 struct page *page, *tmp;
1088 LIST_HEAD(head);
1089
1090 while (count) {
1091 struct list_head *list;
1092
1093 /*
1094 * Remove pages from lists in a round-robin fashion. A
1095 * batch_free count is maintained that is incremented when an
1096 * empty list is encountered. This is so more pages are freed
1097 * off fuller lists instead of spinning excessively around empty
1098 * lists
1099 */
1100 do {
1101 batch_free++;
1102 if (++migratetype == MIGRATE_PCPTYPES)
1103 migratetype = 0;
1104 list = &pcp->lists[migratetype];
1105 } while (list_empty(list));
1106
1107 /* This is the only non-empty list. Free them all. */
1108 if (batch_free == MIGRATE_PCPTYPES)
1109 batch_free = count;
1110
1111 do {
1112 page = list_last_entry(list, struct page, lru);
1113 /* must delete to avoid corrupting pcp list */
1114 list_del(&page->lru);
1115 pcp->count--;
1116
1117 if (bulkfree_pcp_prepare(page))
1118 continue;
1119
1120 list_add_tail(&page->lru, &head);
1121
1122 /*
1123 * We are going to put the page back to the global
1124 * pool, prefetch its buddy to speed up later access
1125 * under zone->lock. It is believed the overhead of
1126 * an additional test and calculating buddy_pfn here
1127 * can be offset by reduced memory latency later. To
1128 * avoid excessive prefetching due to large count, only
1129 * prefetch buddy for the first pcp->batch nr of pages.
1130 */
1131 if (prefetch_nr++ < pcp->batch)
1132 prefetch_buddy(page);
1133 } while (--count && --batch_free && !list_empty(list));
1134 }
1135
1136 spin_lock(&zone->lock);
1137 isolated_pageblocks = has_isolate_pageblock(zone);
1138
1139 /*
1140 * Use safe version since after __free_one_page(),
1141 * page->lru.next will not point to original list.
1142 */
1143 list_for_each_entry_safe(page, tmp, &head, lru) {
1144 int mt = get_pcppage_migratetype(page);
1145 /* MIGRATE_ISOLATE page should not go to pcplists */
1146 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1147 /* Pageblock could have been isolated meanwhile */
1148 if (unlikely(isolated_pageblocks))
1149 mt = get_pageblock_migratetype(page);
1150
1151 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1152 trace_mm_page_pcpu_drain(page, 0, mt);
1153 }
1154 spin_unlock(&zone->lock);
1155 }
1156
1157 static void free_one_page(struct zone *zone,
1158 struct page *page, unsigned long pfn,
1159 unsigned int order,
1160 int migratetype)
1161 {
1162 spin_lock(&zone->lock);
1163 if (unlikely(has_isolate_pageblock(zone) ||
1164 is_migrate_isolate(migratetype))) {
1165 migratetype = get_pfnblock_migratetype(page, pfn);
1166 }
1167 __free_one_page(page, pfn, zone, order, migratetype);
1168 spin_unlock(&zone->lock);
1169 }
1170
1171 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1172 unsigned long zone, int nid)
1173 {
1174 mm_zero_struct_page(page);
1175 set_page_links(page, zone, nid, pfn);
1176 init_page_count(page);
1177 page_mapcount_reset(page);
1178 page_cpupid_reset_last(page);
1179
1180 INIT_LIST_HEAD(&page->lru);
1181 #ifdef WANT_PAGE_VIRTUAL
1182 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1183 if (!is_highmem_idx(zone))
1184 set_page_address(page, __va(pfn << PAGE_SHIFT));
1185 #endif
1186 }
1187
1188 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1189 static void __meminit init_reserved_page(unsigned long pfn)
1190 {
1191 pg_data_t *pgdat;
1192 int nid, zid;
1193
1194 if (!early_page_uninitialised(pfn))
1195 return;
1196
1197 nid = early_pfn_to_nid(pfn);
1198 pgdat = NODE_DATA(nid);
1199
1200 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1201 struct zone *zone = &pgdat->node_zones[zid];
1202
1203 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1204 break;
1205 }
1206 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1207 }
1208 #else
1209 static inline void init_reserved_page(unsigned long pfn)
1210 {
1211 }
1212 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1213
1214 /*
1215 * Initialised pages do not have PageReserved set. This function is
1216 * called for each range allocated by the bootmem allocator and
1217 * marks the pages PageReserved. The remaining valid pages are later
1218 * sent to the buddy page allocator.
1219 */
1220 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1221 {
1222 unsigned long start_pfn = PFN_DOWN(start);
1223 unsigned long end_pfn = PFN_UP(end);
1224
1225 for (; start_pfn < end_pfn; start_pfn++) {
1226 if (pfn_valid(start_pfn)) {
1227 struct page *page = pfn_to_page(start_pfn);
1228
1229 init_reserved_page(start_pfn);
1230
1231 /* Avoid false-positive PageTail() */
1232 INIT_LIST_HEAD(&page->lru);
1233
1234 SetPageReserved(page);
1235 }
1236 }
1237 }
1238
1239 static void __free_pages_ok(struct page *page, unsigned int order)
1240 {
1241 unsigned long flags;
1242 int migratetype;
1243 unsigned long pfn = page_to_pfn(page);
1244
1245 if (!free_pages_prepare(page, order, true))
1246 return;
1247
1248 migratetype = get_pfnblock_migratetype(page, pfn);
1249 local_irq_save(flags);
1250 __count_vm_events(PGFREE, 1 << order);
1251 free_one_page(page_zone(page), page, pfn, order, migratetype);
1252 local_irq_restore(flags);
1253 }
1254
1255 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1256 {
1257 unsigned int nr_pages = 1 << order;
1258 struct page *p = page;
1259 unsigned int loop;
1260
1261 prefetchw(p);
1262 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1263 prefetchw(p + 1);
1264 __ClearPageReserved(p);
1265 set_page_count(p, 0);
1266 }
1267 __ClearPageReserved(p);
1268 set_page_count(p, 0);
1269
1270 page_zone(page)->managed_pages += nr_pages;
1271 set_page_refcounted(page);
1272 __free_pages(page, order);
1273 }
1274
1275 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1276 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1277
1278 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1279
1280 int __meminit early_pfn_to_nid(unsigned long pfn)
1281 {
1282 static DEFINE_SPINLOCK(early_pfn_lock);
1283 int nid;
1284
1285 spin_lock(&early_pfn_lock);
1286 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1287 if (nid < 0)
1288 nid = first_online_node;
1289 spin_unlock(&early_pfn_lock);
1290
1291 return nid;
1292 }
1293 #endif
1294
1295 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1296 static inline bool __meminit __maybe_unused
1297 meminit_pfn_in_nid(unsigned long pfn, int node,
1298 struct mminit_pfnnid_cache *state)
1299 {
1300 int nid;
1301
1302 nid = __early_pfn_to_nid(pfn, state);
1303 if (nid >= 0 && nid != node)
1304 return false;
1305 return true;
1306 }
1307
1308 /* Only safe to use early in boot when initialisation is single-threaded */
1309 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1310 {
1311 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1312 }
1313
1314 #else
1315
1316 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1317 {
1318 return true;
1319 }
1320 static inline bool __meminit __maybe_unused
1321 meminit_pfn_in_nid(unsigned long pfn, int node,
1322 struct mminit_pfnnid_cache *state)
1323 {
1324 return true;
1325 }
1326 #endif
1327
1328
1329 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1330 unsigned int order)
1331 {
1332 if (early_page_uninitialised(pfn))
1333 return;
1334 return __free_pages_boot_core(page, order);
1335 }
1336
1337 /*
1338 * Check that the whole (or subset of) a pageblock given by the interval of
1339 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1340 * with the migration of free compaction scanner. The scanners then need to
1341 * use only pfn_valid_within() check for arches that allow holes within
1342 * pageblocks.
1343 *
1344 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1345 *
1346 * It's possible on some configurations to have a setup like node0 node1 node0
1347 * i.e. it's possible that all pages within a zones range of pages do not
1348 * belong to a single zone. We assume that a border between node0 and node1
1349 * can occur within a single pageblock, but not a node0 node1 node0
1350 * interleaving within a single pageblock. It is therefore sufficient to check
1351 * the first and last page of a pageblock and avoid checking each individual
1352 * page in a pageblock.
1353 */
1354 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1355 unsigned long end_pfn, struct zone *zone)
1356 {
1357 struct page *start_page;
1358 struct page *end_page;
1359
1360 /* end_pfn is one past the range we are checking */
1361 end_pfn--;
1362
1363 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1364 return NULL;
1365
1366 start_page = pfn_to_online_page(start_pfn);
1367 if (!start_page)
1368 return NULL;
1369
1370 if (page_zone(start_page) != zone)
1371 return NULL;
1372
1373 end_page = pfn_to_page(end_pfn);
1374
1375 /* This gives a shorter code than deriving page_zone(end_page) */
1376 if (page_zone_id(start_page) != page_zone_id(end_page))
1377 return NULL;
1378
1379 return start_page;
1380 }
1381
1382 void set_zone_contiguous(struct zone *zone)
1383 {
1384 unsigned long block_start_pfn = zone->zone_start_pfn;
1385 unsigned long block_end_pfn;
1386
1387 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1388 for (; block_start_pfn < zone_end_pfn(zone);
1389 block_start_pfn = block_end_pfn,
1390 block_end_pfn += pageblock_nr_pages) {
1391
1392 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1393
1394 if (!__pageblock_pfn_to_page(block_start_pfn,
1395 block_end_pfn, zone))
1396 return;
1397 }
1398
1399 /* We confirm that there is no hole */
1400 zone->contiguous = true;
1401 }
1402
1403 void clear_zone_contiguous(struct zone *zone)
1404 {
1405 zone->contiguous = false;
1406 }
1407
1408 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1409 static void __init deferred_free_range(unsigned long pfn,
1410 unsigned long nr_pages)
1411 {
1412 struct page *page;
1413 unsigned long i;
1414
1415 if (!nr_pages)
1416 return;
1417
1418 page = pfn_to_page(pfn);
1419
1420 /* Free a large naturally-aligned chunk if possible */
1421 if (nr_pages == pageblock_nr_pages &&
1422 (pfn & (pageblock_nr_pages - 1)) == 0) {
1423 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1424 __free_pages_boot_core(page, pageblock_order);
1425 return;
1426 }
1427
1428 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1429 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1430 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1431 __free_pages_boot_core(page, 0);
1432 }
1433 }
1434
1435 /* Completion tracking for deferred_init_memmap() threads */
1436 static atomic_t pgdat_init_n_undone __initdata;
1437 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1438
1439 static inline void __init pgdat_init_report_one_done(void)
1440 {
1441 if (atomic_dec_and_test(&pgdat_init_n_undone))
1442 complete(&pgdat_init_all_done_comp);
1443 }
1444
1445 /*
1446 * Returns true if page needs to be initialized or freed to buddy allocator.
1447 *
1448 * First we check if pfn is valid on architectures where it is possible to have
1449 * holes within pageblock_nr_pages. On systems where it is not possible, this
1450 * function is optimized out.
1451 *
1452 * Then, we check if a current large page is valid by only checking the validity
1453 * of the head pfn.
1454 *
1455 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1456 * within a node: a pfn is between start and end of a node, but does not belong
1457 * to this memory node.
1458 */
1459 static inline bool __init
1460 deferred_pfn_valid(int nid, unsigned long pfn,
1461 struct mminit_pfnnid_cache *nid_init_state)
1462 {
1463 if (!pfn_valid_within(pfn))
1464 return false;
1465 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1466 return false;
1467 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1468 return false;
1469 return true;
1470 }
1471
1472 /*
1473 * Free pages to buddy allocator. Try to free aligned pages in
1474 * pageblock_nr_pages sizes.
1475 */
1476 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1477 unsigned long end_pfn)
1478 {
1479 struct mminit_pfnnid_cache nid_init_state = { };
1480 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1481 unsigned long nr_free = 0;
1482
1483 for (; pfn < end_pfn; pfn++) {
1484 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1485 deferred_free_range(pfn - nr_free, nr_free);
1486 nr_free = 0;
1487 } else if (!(pfn & nr_pgmask)) {
1488 deferred_free_range(pfn - nr_free, nr_free);
1489 nr_free = 1;
1490 touch_nmi_watchdog();
1491 } else {
1492 nr_free++;
1493 }
1494 }
1495 /* Free the last block of pages to allocator */
1496 deferred_free_range(pfn - nr_free, nr_free);
1497 }
1498
1499 /*
1500 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1501 * by performing it only once every pageblock_nr_pages.
1502 * Return number of pages initialized.
1503 */
1504 static unsigned long __init deferred_init_pages(int nid, int zid,
1505 unsigned long pfn,
1506 unsigned long end_pfn)
1507 {
1508 struct mminit_pfnnid_cache nid_init_state = { };
1509 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1510 unsigned long nr_pages = 0;
1511 struct page *page = NULL;
1512
1513 for (; pfn < end_pfn; pfn++) {
1514 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1515 page = NULL;
1516 continue;
1517 } else if (!page || !(pfn & nr_pgmask)) {
1518 page = pfn_to_page(pfn);
1519 touch_nmi_watchdog();
1520 } else {
1521 page++;
1522 }
1523 __init_single_page(page, pfn, zid, nid);
1524 nr_pages++;
1525 }
1526 return (nr_pages);
1527 }
1528
1529 /* Initialise remaining memory on a node */
1530 static int __init deferred_init_memmap(void *data)
1531 {
1532 pg_data_t *pgdat = data;
1533 int nid = pgdat->node_id;
1534 unsigned long start = jiffies;
1535 unsigned long nr_pages = 0;
1536 unsigned long spfn, epfn, first_init_pfn, flags;
1537 phys_addr_t spa, epa;
1538 int zid;
1539 struct zone *zone;
1540 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1541 u64 i;
1542
1543 /* Bind memory initialisation thread to a local node if possible */
1544 if (!cpumask_empty(cpumask))
1545 set_cpus_allowed_ptr(current, cpumask);
1546
1547 pgdat_resize_lock(pgdat, &flags);
1548 first_init_pfn = pgdat->first_deferred_pfn;
1549 if (first_init_pfn == ULONG_MAX) {
1550 pgdat_resize_unlock(pgdat, &flags);
1551 pgdat_init_report_one_done();
1552 return 0;
1553 }
1554
1555 /* Sanity check boundaries */
1556 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1557 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1558 pgdat->first_deferred_pfn = ULONG_MAX;
1559
1560 /* Only the highest zone is deferred so find it */
1561 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1562 zone = pgdat->node_zones + zid;
1563 if (first_init_pfn < zone_end_pfn(zone))
1564 break;
1565 }
1566 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1567
1568 /*
1569 * Initialize and free pages. We do it in two loops: first we initialize
1570 * struct page, than free to buddy allocator, because while we are
1571 * freeing pages we can access pages that are ahead (computing buddy
1572 * page in __free_one_page()).
1573 */
1574 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1575 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1576 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1577 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1578 }
1579 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1580 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1581 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1582 deferred_free_pages(nid, zid, spfn, epfn);
1583 }
1584 pgdat_resize_unlock(pgdat, &flags);
1585
1586 /* Sanity check that the next zone really is unpopulated */
1587 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1588
1589 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1590 jiffies_to_msecs(jiffies - start));
1591
1592 pgdat_init_report_one_done();
1593 return 0;
1594 }
1595
1596 /*
1597 * During boot we initialize deferred pages on-demand, as needed, but once
1598 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1599 * and we can permanently disable that path.
1600 */
1601 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1602
1603 /*
1604 * If this zone has deferred pages, try to grow it by initializing enough
1605 * deferred pages to satisfy the allocation specified by order, rounded up to
1606 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1607 * of SECTION_SIZE bytes by initializing struct pages in increments of
1608 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1609 *
1610 * Return true when zone was grown, otherwise return false. We return true even
1611 * when we grow less than requested, to let the caller decide if there are
1612 * enough pages to satisfy the allocation.
1613 *
1614 * Note: We use noinline because this function is needed only during boot, and
1615 * it is called from a __ref function _deferred_grow_zone. This way we are
1616 * making sure that it is not inlined into permanent text section.
1617 */
1618 static noinline bool __init
1619 deferred_grow_zone(struct zone *zone, unsigned int order)
1620 {
1621 int zid = zone_idx(zone);
1622 int nid = zone_to_nid(zone);
1623 pg_data_t *pgdat = NODE_DATA(nid);
1624 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1625 unsigned long nr_pages = 0;
1626 unsigned long first_init_pfn, spfn, epfn, t, flags;
1627 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1628 phys_addr_t spa, epa;
1629 u64 i;
1630
1631 /* Only the last zone may have deferred pages */
1632 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1633 return false;
1634
1635 pgdat_resize_lock(pgdat, &flags);
1636
1637 /*
1638 * If deferred pages have been initialized while we were waiting for
1639 * the lock, return true, as the zone was grown. The caller will retry
1640 * this zone. We won't return to this function since the caller also
1641 * has this static branch.
1642 */
1643 if (!static_branch_unlikely(&deferred_pages)) {
1644 pgdat_resize_unlock(pgdat, &flags);
1645 return true;
1646 }
1647
1648 /*
1649 * If someone grew this zone while we were waiting for spinlock, return
1650 * true, as there might be enough pages already.
1651 */
1652 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1653 pgdat_resize_unlock(pgdat, &flags);
1654 return true;
1655 }
1656
1657 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1658
1659 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1660 pgdat_resize_unlock(pgdat, &flags);
1661 return false;
1662 }
1663
1664 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1665 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1666 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1667
1668 while (spfn < epfn && nr_pages < nr_pages_needed) {
1669 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1670 first_deferred_pfn = min(t, epfn);
1671 nr_pages += deferred_init_pages(nid, zid, spfn,
1672 first_deferred_pfn);
1673 spfn = first_deferred_pfn;
1674 }
1675
1676 if (nr_pages >= nr_pages_needed)
1677 break;
1678 }
1679
1680 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1681 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1682 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1683 deferred_free_pages(nid, zid, spfn, epfn);
1684
1685 if (first_deferred_pfn == epfn)
1686 break;
1687 }
1688 pgdat->first_deferred_pfn = first_deferred_pfn;
1689 pgdat_resize_unlock(pgdat, &flags);
1690
1691 return nr_pages > 0;
1692 }
1693
1694 /*
1695 * deferred_grow_zone() is __init, but it is called from
1696 * get_page_from_freelist() during early boot until deferred_pages permanently
1697 * disables this call. This is why we have refdata wrapper to avoid warning,
1698 * and to ensure that the function body gets unloaded.
1699 */
1700 static bool __ref
1701 _deferred_grow_zone(struct zone *zone, unsigned int order)
1702 {
1703 return deferred_grow_zone(zone, order);
1704 }
1705
1706 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1707
1708 void __init page_alloc_init_late(void)
1709 {
1710 struct zone *zone;
1711
1712 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1713 int nid;
1714
1715 /* There will be num_node_state(N_MEMORY) threads */
1716 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1717 for_each_node_state(nid, N_MEMORY) {
1718 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1719 }
1720
1721 /* Block until all are initialised */
1722 wait_for_completion(&pgdat_init_all_done_comp);
1723
1724 /*
1725 * We initialized the rest of the deferred pages. Permanently disable
1726 * on-demand struct page initialization.
1727 */
1728 static_branch_disable(&deferred_pages);
1729
1730 /* Reinit limits that are based on free pages after the kernel is up */
1731 files_maxfiles_init();
1732 #endif
1733 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1734 /* Discard memblock private memory */
1735 memblock_discard();
1736 #endif
1737
1738 for_each_populated_zone(zone)
1739 set_zone_contiguous(zone);
1740 }
1741
1742 #ifdef CONFIG_CMA
1743 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1744 void __init init_cma_reserved_pageblock(struct page *page)
1745 {
1746 unsigned i = pageblock_nr_pages;
1747 struct page *p = page;
1748
1749 do {
1750 __ClearPageReserved(p);
1751 set_page_count(p, 0);
1752 } while (++p, --i);
1753
1754 set_pageblock_migratetype(page, MIGRATE_CMA);
1755
1756 if (pageblock_order >= MAX_ORDER) {
1757 i = pageblock_nr_pages;
1758 p = page;
1759 do {
1760 set_page_refcounted(p);
1761 __free_pages(p, MAX_ORDER - 1);
1762 p += MAX_ORDER_NR_PAGES;
1763 } while (i -= MAX_ORDER_NR_PAGES);
1764 } else {
1765 set_page_refcounted(page);
1766 __free_pages(page, pageblock_order);
1767 }
1768
1769 adjust_managed_page_count(page, pageblock_nr_pages);
1770 }
1771 #endif
1772
1773 /*
1774 * The order of subdivision here is critical for the IO subsystem.
1775 * Please do not alter this order without good reasons and regression
1776 * testing. Specifically, as large blocks of memory are subdivided,
1777 * the order in which smaller blocks are delivered depends on the order
1778 * they're subdivided in this function. This is the primary factor
1779 * influencing the order in which pages are delivered to the IO
1780 * subsystem according to empirical testing, and this is also justified
1781 * by considering the behavior of a buddy system containing a single
1782 * large block of memory acted on by a series of small allocations.
1783 * This behavior is a critical factor in sglist merging's success.
1784 *
1785 * -- nyc
1786 */
1787 static inline void expand(struct zone *zone, struct page *page,
1788 int low, int high, struct free_area *area,
1789 int migratetype)
1790 {
1791 unsigned long size = 1 << high;
1792
1793 while (high > low) {
1794 area--;
1795 high--;
1796 size >>= 1;
1797 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1798
1799 /*
1800 * Mark as guard pages (or page), that will allow to
1801 * merge back to allocator when buddy will be freed.
1802 * Corresponding page table entries will not be touched,
1803 * pages will stay not present in virtual address space
1804 */
1805 if (set_page_guard(zone, &page[size], high, migratetype))
1806 continue;
1807
1808 list_add(&page[size].lru, &area->free_list[migratetype]);
1809 area->nr_free++;
1810 set_page_order(&page[size], high);
1811 }
1812 }
1813
1814 static void check_new_page_bad(struct page *page)
1815 {
1816 const char *bad_reason = NULL;
1817 unsigned long bad_flags = 0;
1818
1819 if (unlikely(atomic_read(&page->_mapcount) != -1))
1820 bad_reason = "nonzero mapcount";
1821 if (unlikely(page->mapping != NULL))
1822 bad_reason = "non-NULL mapping";
1823 if (unlikely(page_ref_count(page) != 0))
1824 bad_reason = "nonzero _count";
1825 if (unlikely(page->flags & __PG_HWPOISON)) {
1826 bad_reason = "HWPoisoned (hardware-corrupted)";
1827 bad_flags = __PG_HWPOISON;
1828 /* Don't complain about hwpoisoned pages */
1829 page_mapcount_reset(page); /* remove PageBuddy */
1830 return;
1831 }
1832 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1833 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1834 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1835 }
1836 #ifdef CONFIG_MEMCG
1837 if (unlikely(page->mem_cgroup))
1838 bad_reason = "page still charged to cgroup";
1839 #endif
1840 bad_page(page, bad_reason, bad_flags);
1841 }
1842
1843 /*
1844 * This page is about to be returned from the page allocator
1845 */
1846 static inline int check_new_page(struct page *page)
1847 {
1848 if (likely(page_expected_state(page,
1849 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1850 return 0;
1851
1852 check_new_page_bad(page);
1853 return 1;
1854 }
1855
1856 static inline bool free_pages_prezeroed(void)
1857 {
1858 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1859 page_poisoning_enabled();
1860 }
1861
1862 #ifdef CONFIG_DEBUG_VM
1863 static bool check_pcp_refill(struct page *page)
1864 {
1865 return false;
1866 }
1867
1868 static bool check_new_pcp(struct page *page)
1869 {
1870 return check_new_page(page);
1871 }
1872 #else
1873 static bool check_pcp_refill(struct page *page)
1874 {
1875 return check_new_page(page);
1876 }
1877 static bool check_new_pcp(struct page *page)
1878 {
1879 return false;
1880 }
1881 #endif /* CONFIG_DEBUG_VM */
1882
1883 static bool check_new_pages(struct page *page, unsigned int order)
1884 {
1885 int i;
1886 for (i = 0; i < (1 << order); i++) {
1887 struct page *p = page + i;
1888
1889 if (unlikely(check_new_page(p)))
1890 return true;
1891 }
1892
1893 return false;
1894 }
1895
1896 inline void post_alloc_hook(struct page *page, unsigned int order,
1897 gfp_t gfp_flags)
1898 {
1899 set_page_private(page, 0);
1900 set_page_refcounted(page);
1901
1902 arch_alloc_page(page, order);
1903 kernel_map_pages(page, 1 << order, 1);
1904 kernel_poison_pages(page, 1 << order, 1);
1905 kasan_alloc_pages(page, order);
1906 set_page_owner(page, order, gfp_flags);
1907 }
1908
1909 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1910 unsigned int alloc_flags)
1911 {
1912 int i;
1913
1914 post_alloc_hook(page, order, gfp_flags);
1915
1916 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1917 for (i = 0; i < (1 << order); i++)
1918 clear_highpage(page + i);
1919
1920 if (order && (gfp_flags & __GFP_COMP))
1921 prep_compound_page(page, order);
1922
1923 /*
1924 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1925 * allocate the page. The expectation is that the caller is taking
1926 * steps that will free more memory. The caller should avoid the page
1927 * being used for !PFMEMALLOC purposes.
1928 */
1929 if (alloc_flags & ALLOC_NO_WATERMARKS)
1930 set_page_pfmemalloc(page);
1931 else
1932 clear_page_pfmemalloc(page);
1933 }
1934
1935 /*
1936 * Go through the free lists for the given migratetype and remove
1937 * the smallest available page from the freelists
1938 */
1939 static __always_inline
1940 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1941 int migratetype)
1942 {
1943 unsigned int current_order;
1944 struct free_area *area;
1945 struct page *page;
1946
1947 /* Find a page of the appropriate size in the preferred list */
1948 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1949 area = &(zone->free_area[current_order]);
1950 page = list_first_entry_or_null(&area->free_list[migratetype],
1951 struct page, lru);
1952 if (!page)
1953 continue;
1954 list_del(&page->lru);
1955 rmv_page_order(page);
1956 area->nr_free--;
1957 expand(zone, page, order, current_order, area, migratetype);
1958 set_pcppage_migratetype(page, migratetype);
1959 return page;
1960 }
1961
1962 return NULL;
1963 }
1964
1965
1966 /*
1967 * This array describes the order lists are fallen back to when
1968 * the free lists for the desirable migrate type are depleted
1969 */
1970 static int fallbacks[MIGRATE_TYPES][4] = {
1971 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1972 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1973 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1974 #ifdef CONFIG_CMA
1975 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1976 #endif
1977 #ifdef CONFIG_MEMORY_ISOLATION
1978 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1979 #endif
1980 };
1981
1982 #ifdef CONFIG_CMA
1983 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1984 unsigned int order)
1985 {
1986 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1987 }
1988 #else
1989 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1990 unsigned int order) { return NULL; }
1991 #endif
1992
1993 /*
1994 * Move the free pages in a range to the free lists of the requested type.
1995 * Note that start_page and end_pages are not aligned on a pageblock
1996 * boundary. If alignment is required, use move_freepages_block()
1997 */
1998 static int move_freepages(struct zone *zone,
1999 struct page *start_page, struct page *end_page,
2000 int migratetype, int *num_movable)
2001 {
2002 struct page *page;
2003 unsigned int order;
2004 int pages_moved = 0;
2005
2006 #ifndef CONFIG_HOLES_IN_ZONE
2007 /*
2008 * page_zone is not safe to call in this context when
2009 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2010 * anyway as we check zone boundaries in move_freepages_block().
2011 * Remove at a later date when no bug reports exist related to
2012 * grouping pages by mobility
2013 */
2014 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2015 pfn_valid(page_to_pfn(end_page)) &&
2016 page_zone(start_page) != page_zone(end_page));
2017 #endif
2018
2019 if (num_movable)
2020 *num_movable = 0;
2021
2022 for (page = start_page; page <= end_page;) {
2023 if (!pfn_valid_within(page_to_pfn(page))) {
2024 page++;
2025 continue;
2026 }
2027
2028 /* Make sure we are not inadvertently changing nodes */
2029 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2030
2031 if (!PageBuddy(page)) {
2032 /*
2033 * We assume that pages that could be isolated for
2034 * migration are movable. But we don't actually try
2035 * isolating, as that would be expensive.
2036 */
2037 if (num_movable &&
2038 (PageLRU(page) || __PageMovable(page)))
2039 (*num_movable)++;
2040
2041 page++;
2042 continue;
2043 }
2044
2045 order = page_order(page);
2046 list_move(&page->lru,
2047 &zone->free_area[order].free_list[migratetype]);
2048 page += 1 << order;
2049 pages_moved += 1 << order;
2050 }
2051
2052 return pages_moved;
2053 }
2054
2055 int move_freepages_block(struct zone *zone, struct page *page,
2056 int migratetype, int *num_movable)
2057 {
2058 unsigned long start_pfn, end_pfn;
2059 struct page *start_page, *end_page;
2060
2061 start_pfn = page_to_pfn(page);
2062 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2063 start_page = pfn_to_page(start_pfn);
2064 end_page = start_page + pageblock_nr_pages - 1;
2065 end_pfn = start_pfn + pageblock_nr_pages - 1;
2066
2067 /* Do not cross zone boundaries */
2068 if (!zone_spans_pfn(zone, start_pfn))
2069 start_page = page;
2070 if (!zone_spans_pfn(zone, end_pfn))
2071 return 0;
2072
2073 return move_freepages(zone, start_page, end_page, migratetype,
2074 num_movable);
2075 }
2076
2077 static void change_pageblock_range(struct page *pageblock_page,
2078 int start_order, int migratetype)
2079 {
2080 int nr_pageblocks = 1 << (start_order - pageblock_order);
2081
2082 while (nr_pageblocks--) {
2083 set_pageblock_migratetype(pageblock_page, migratetype);
2084 pageblock_page += pageblock_nr_pages;
2085 }
2086 }
2087
2088 /*
2089 * When we are falling back to another migratetype during allocation, try to
2090 * steal extra free pages from the same pageblocks to satisfy further
2091 * allocations, instead of polluting multiple pageblocks.
2092 *
2093 * If we are stealing a relatively large buddy page, it is likely there will
2094 * be more free pages in the pageblock, so try to steal them all. For
2095 * reclaimable and unmovable allocations, we steal regardless of page size,
2096 * as fragmentation caused by those allocations polluting movable pageblocks
2097 * is worse than movable allocations stealing from unmovable and reclaimable
2098 * pageblocks.
2099 */
2100 static bool can_steal_fallback(unsigned int order, int start_mt)
2101 {
2102 /*
2103 * Leaving this order check is intended, although there is
2104 * relaxed order check in next check. The reason is that
2105 * we can actually steal whole pageblock if this condition met,
2106 * but, below check doesn't guarantee it and that is just heuristic
2107 * so could be changed anytime.
2108 */
2109 if (order >= pageblock_order)
2110 return true;
2111
2112 if (order >= pageblock_order / 2 ||
2113 start_mt == MIGRATE_RECLAIMABLE ||
2114 start_mt == MIGRATE_UNMOVABLE ||
2115 page_group_by_mobility_disabled)
2116 return true;
2117
2118 return false;
2119 }
2120
2121 /*
2122 * This function implements actual steal behaviour. If order is large enough,
2123 * we can steal whole pageblock. If not, we first move freepages in this
2124 * pageblock to our migratetype and determine how many already-allocated pages
2125 * are there in the pageblock with a compatible migratetype. If at least half
2126 * of pages are free or compatible, we can change migratetype of the pageblock
2127 * itself, so pages freed in the future will be put on the correct free list.
2128 */
2129 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2130 int start_type, bool whole_block)
2131 {
2132 unsigned int current_order = page_order(page);
2133 struct free_area *area;
2134 int free_pages, movable_pages, alike_pages;
2135 int old_block_type;
2136
2137 old_block_type = get_pageblock_migratetype(page);
2138
2139 /*
2140 * This can happen due to races and we want to prevent broken
2141 * highatomic accounting.
2142 */
2143 if (is_migrate_highatomic(old_block_type))
2144 goto single_page;
2145
2146 /* Take ownership for orders >= pageblock_order */
2147 if (current_order >= pageblock_order) {
2148 change_pageblock_range(page, current_order, start_type);
2149 goto single_page;
2150 }
2151
2152 /* We are not allowed to try stealing from the whole block */
2153 if (!whole_block)
2154 goto single_page;
2155
2156 free_pages = move_freepages_block(zone, page, start_type,
2157 &movable_pages);
2158 /*
2159 * Determine how many pages are compatible with our allocation.
2160 * For movable allocation, it's the number of movable pages which
2161 * we just obtained. For other types it's a bit more tricky.
2162 */
2163 if (start_type == MIGRATE_MOVABLE) {
2164 alike_pages = movable_pages;
2165 } else {
2166 /*
2167 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2168 * to MOVABLE pageblock, consider all non-movable pages as
2169 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2170 * vice versa, be conservative since we can't distinguish the
2171 * exact migratetype of non-movable pages.
2172 */
2173 if (old_block_type == MIGRATE_MOVABLE)
2174 alike_pages = pageblock_nr_pages
2175 - (free_pages + movable_pages);
2176 else
2177 alike_pages = 0;
2178 }
2179
2180 /* moving whole block can fail due to zone boundary conditions */
2181 if (!free_pages)
2182 goto single_page;
2183
2184 /*
2185 * If a sufficient number of pages in the block are either free or of
2186 * comparable migratability as our allocation, claim the whole block.
2187 */
2188 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2189 page_group_by_mobility_disabled)
2190 set_pageblock_migratetype(page, start_type);
2191
2192 return;
2193
2194 single_page:
2195 area = &zone->free_area[current_order];
2196 list_move(&page->lru, &area->free_list[start_type]);
2197 }
2198
2199 /*
2200 * Check whether there is a suitable fallback freepage with requested order.
2201 * If only_stealable is true, this function returns fallback_mt only if
2202 * we can steal other freepages all together. This would help to reduce
2203 * fragmentation due to mixed migratetype pages in one pageblock.
2204 */
2205 int find_suitable_fallback(struct free_area *area, unsigned int order,
2206 int migratetype, bool only_stealable, bool *can_steal)
2207 {
2208 int i;
2209 int fallback_mt;
2210
2211 if (area->nr_free == 0)
2212 return -1;
2213
2214 *can_steal = false;
2215 for (i = 0;; i++) {
2216 fallback_mt = fallbacks[migratetype][i];
2217 if (fallback_mt == MIGRATE_TYPES)
2218 break;
2219
2220 if (list_empty(&area->free_list[fallback_mt]))
2221 continue;
2222
2223 if (can_steal_fallback(order, migratetype))
2224 *can_steal = true;
2225
2226 if (!only_stealable)
2227 return fallback_mt;
2228
2229 if (*can_steal)
2230 return fallback_mt;
2231 }
2232
2233 return -1;
2234 }
2235
2236 /*
2237 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2238 * there are no empty page blocks that contain a page with a suitable order
2239 */
2240 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2241 unsigned int alloc_order)
2242 {
2243 int mt;
2244 unsigned long max_managed, flags;
2245
2246 /*
2247 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2248 * Check is race-prone but harmless.
2249 */
2250 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2251 if (zone->nr_reserved_highatomic >= max_managed)
2252 return;
2253
2254 spin_lock_irqsave(&zone->lock, flags);
2255
2256 /* Recheck the nr_reserved_highatomic limit under the lock */
2257 if (zone->nr_reserved_highatomic >= max_managed)
2258 goto out_unlock;
2259
2260 /* Yoink! */
2261 mt = get_pageblock_migratetype(page);
2262 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2263 && !is_migrate_cma(mt)) {
2264 zone->nr_reserved_highatomic += pageblock_nr_pages;
2265 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2266 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2267 }
2268
2269 out_unlock:
2270 spin_unlock_irqrestore(&zone->lock, flags);
2271 }
2272
2273 /*
2274 * Used when an allocation is about to fail under memory pressure. This
2275 * potentially hurts the reliability of high-order allocations when under
2276 * intense memory pressure but failed atomic allocations should be easier
2277 * to recover from than an OOM.
2278 *
2279 * If @force is true, try to unreserve a pageblock even though highatomic
2280 * pageblock is exhausted.
2281 */
2282 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2283 bool force)
2284 {
2285 struct zonelist *zonelist = ac->zonelist;
2286 unsigned long flags;
2287 struct zoneref *z;
2288 struct zone *zone;
2289 struct page *page;
2290 int order;
2291 bool ret;
2292
2293 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2294 ac->nodemask) {
2295 /*
2296 * Preserve at least one pageblock unless memory pressure
2297 * is really high.
2298 */
2299 if (!force && zone->nr_reserved_highatomic <=
2300 pageblock_nr_pages)
2301 continue;
2302
2303 spin_lock_irqsave(&zone->lock, flags);
2304 for (order = 0; order < MAX_ORDER; order++) {
2305 struct free_area *area = &(zone->free_area[order]);
2306
2307 page = list_first_entry_or_null(
2308 &area->free_list[MIGRATE_HIGHATOMIC],
2309 struct page, lru);
2310 if (!page)
2311 continue;
2312
2313 /*
2314 * In page freeing path, migratetype change is racy so
2315 * we can counter several free pages in a pageblock
2316 * in this loop althoug we changed the pageblock type
2317 * from highatomic to ac->migratetype. So we should
2318 * adjust the count once.
2319 */
2320 if (is_migrate_highatomic_page(page)) {
2321 /*
2322 * It should never happen but changes to
2323 * locking could inadvertently allow a per-cpu
2324 * drain to add pages to MIGRATE_HIGHATOMIC
2325 * while unreserving so be safe and watch for
2326 * underflows.
2327 */
2328 zone->nr_reserved_highatomic -= min(
2329 pageblock_nr_pages,
2330 zone->nr_reserved_highatomic);
2331 }
2332
2333 /*
2334 * Convert to ac->migratetype and avoid the normal
2335 * pageblock stealing heuristics. Minimally, the caller
2336 * is doing the work and needs the pages. More
2337 * importantly, if the block was always converted to
2338 * MIGRATE_UNMOVABLE or another type then the number
2339 * of pageblocks that cannot be completely freed
2340 * may increase.
2341 */
2342 set_pageblock_migratetype(page, ac->migratetype);
2343 ret = move_freepages_block(zone, page, ac->migratetype,
2344 NULL);
2345 if (ret) {
2346 spin_unlock_irqrestore(&zone->lock, flags);
2347 return ret;
2348 }
2349 }
2350 spin_unlock_irqrestore(&zone->lock, flags);
2351 }
2352
2353 return false;
2354 }
2355
2356 /*
2357 * Try finding a free buddy page on the fallback list and put it on the free
2358 * list of requested migratetype, possibly along with other pages from the same
2359 * block, depending on fragmentation avoidance heuristics. Returns true if
2360 * fallback was found so that __rmqueue_smallest() can grab it.
2361 *
2362 * The use of signed ints for order and current_order is a deliberate
2363 * deviation from the rest of this file, to make the for loop
2364 * condition simpler.
2365 */
2366 static __always_inline bool
2367 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2368 {
2369 struct free_area *area;
2370 int current_order;
2371 struct page *page;
2372 int fallback_mt;
2373 bool can_steal;
2374
2375 /*
2376 * Find the largest available free page in the other list. This roughly
2377 * approximates finding the pageblock with the most free pages, which
2378 * would be too costly to do exactly.
2379 */
2380 for (current_order = MAX_ORDER - 1; current_order >= order;
2381 --current_order) {
2382 area = &(zone->free_area[current_order]);
2383 fallback_mt = find_suitable_fallback(area, current_order,
2384 start_migratetype, false, &can_steal);
2385 if (fallback_mt == -1)
2386 continue;
2387
2388 /*
2389 * We cannot steal all free pages from the pageblock and the
2390 * requested migratetype is movable. In that case it's better to
2391 * steal and split the smallest available page instead of the
2392 * largest available page, because even if the next movable
2393 * allocation falls back into a different pageblock than this
2394 * one, it won't cause permanent fragmentation.
2395 */
2396 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2397 && current_order > order)
2398 goto find_smallest;
2399
2400 goto do_steal;
2401 }
2402
2403 return false;
2404
2405 find_smallest:
2406 for (current_order = order; current_order < MAX_ORDER;
2407 current_order++) {
2408 area = &(zone->free_area[current_order]);
2409 fallback_mt = find_suitable_fallback(area, current_order,
2410 start_migratetype, false, &can_steal);
2411 if (fallback_mt != -1)
2412 break;
2413 }
2414
2415 /*
2416 * This should not happen - we already found a suitable fallback
2417 * when looking for the largest page.
2418 */
2419 VM_BUG_ON(current_order == MAX_ORDER);
2420
2421 do_steal:
2422 page = list_first_entry(&area->free_list[fallback_mt],
2423 struct page, lru);
2424
2425 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2426
2427 trace_mm_page_alloc_extfrag(page, order, current_order,
2428 start_migratetype, fallback_mt);
2429
2430 return true;
2431
2432 }
2433
2434 /*
2435 * Do the hard work of removing an element from the buddy allocator.
2436 * Call me with the zone->lock already held.
2437 */
2438 static __always_inline struct page *
2439 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2440 {
2441 struct page *page;
2442
2443 retry:
2444 page = __rmqueue_smallest(zone, order, migratetype);
2445 if (unlikely(!page)) {
2446 if (migratetype == MIGRATE_MOVABLE)
2447 page = __rmqueue_cma_fallback(zone, order);
2448
2449 if (!page && __rmqueue_fallback(zone, order, migratetype))
2450 goto retry;
2451 }
2452
2453 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2454 return page;
2455 }
2456
2457 /*
2458 * Obtain a specified number of elements from the buddy allocator, all under
2459 * a single hold of the lock, for efficiency. Add them to the supplied list.
2460 * Returns the number of new pages which were placed at *list.
2461 */
2462 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2463 unsigned long count, struct list_head *list,
2464 int migratetype)
2465 {
2466 int i, alloced = 0;
2467
2468 spin_lock(&zone->lock);
2469 for (i = 0; i < count; ++i) {
2470 struct page *page = __rmqueue(zone, order, migratetype);
2471 if (unlikely(page == NULL))
2472 break;
2473
2474 if (unlikely(check_pcp_refill(page)))
2475 continue;
2476
2477 /*
2478 * Split buddy pages returned by expand() are received here in
2479 * physical page order. The page is added to the tail of
2480 * caller's list. From the callers perspective, the linked list
2481 * is ordered by page number under some conditions. This is
2482 * useful for IO devices that can forward direction from the
2483 * head, thus also in the physical page order. This is useful
2484 * for IO devices that can merge IO requests if the physical
2485 * pages are ordered properly.
2486 */
2487 list_add_tail(&page->lru, list);
2488 alloced++;
2489 if (is_migrate_cma(get_pcppage_migratetype(page)))
2490 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2491 -(1 << order));
2492 }
2493
2494 /*
2495 * i pages were removed from the buddy list even if some leak due
2496 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2497 * on i. Do not confuse with 'alloced' which is the number of
2498 * pages added to the pcp list.
2499 */
2500 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2501 spin_unlock(&zone->lock);
2502 return alloced;
2503 }
2504
2505 #ifdef CONFIG_NUMA
2506 /*
2507 * Called from the vmstat counter updater to drain pagesets of this
2508 * currently executing processor on remote nodes after they have
2509 * expired.
2510 *
2511 * Note that this function must be called with the thread pinned to
2512 * a single processor.
2513 */
2514 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2515 {
2516 unsigned long flags;
2517 int to_drain, batch;
2518
2519 local_irq_save(flags);
2520 batch = READ_ONCE(pcp->batch);
2521 to_drain = min(pcp->count, batch);
2522 if (to_drain > 0)
2523 free_pcppages_bulk(zone, to_drain, pcp);
2524 local_irq_restore(flags);
2525 }
2526 #endif
2527
2528 /*
2529 * Drain pcplists of the indicated processor and zone.
2530 *
2531 * The processor must either be the current processor and the
2532 * thread pinned to the current processor or a processor that
2533 * is not online.
2534 */
2535 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2536 {
2537 unsigned long flags;
2538 struct per_cpu_pageset *pset;
2539 struct per_cpu_pages *pcp;
2540
2541 local_irq_save(flags);
2542 pset = per_cpu_ptr(zone->pageset, cpu);
2543
2544 pcp = &pset->pcp;
2545 if (pcp->count)
2546 free_pcppages_bulk(zone, pcp->count, pcp);
2547 local_irq_restore(flags);
2548 }
2549
2550 /*
2551 * Drain pcplists of all zones on the indicated processor.
2552 *
2553 * The processor must either be the current processor and the
2554 * thread pinned to the current processor or a processor that
2555 * is not online.
2556 */
2557 static void drain_pages(unsigned int cpu)
2558 {
2559 struct zone *zone;
2560
2561 for_each_populated_zone(zone) {
2562 drain_pages_zone(cpu, zone);
2563 }
2564 }
2565
2566 /*
2567 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2568 *
2569 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2570 * the single zone's pages.
2571 */
2572 void drain_local_pages(struct zone *zone)
2573 {
2574 int cpu = smp_processor_id();
2575
2576 if (zone)
2577 drain_pages_zone(cpu, zone);
2578 else
2579 drain_pages(cpu);
2580 }
2581
2582 static void drain_local_pages_wq(struct work_struct *work)
2583 {
2584 /*
2585 * drain_all_pages doesn't use proper cpu hotplug protection so
2586 * we can race with cpu offline when the WQ can move this from
2587 * a cpu pinned worker to an unbound one. We can operate on a different
2588 * cpu which is allright but we also have to make sure to not move to
2589 * a different one.
2590 */
2591 preempt_disable();
2592 drain_local_pages(NULL);
2593 preempt_enable();
2594 }
2595
2596 /*
2597 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2598 *
2599 * When zone parameter is non-NULL, spill just the single zone's pages.
2600 *
2601 * Note that this can be extremely slow as the draining happens in a workqueue.
2602 */
2603 void drain_all_pages(struct zone *zone)
2604 {
2605 int cpu;
2606
2607 /*
2608 * Allocate in the BSS so we wont require allocation in
2609 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2610 */
2611 static cpumask_t cpus_with_pcps;
2612
2613 /*
2614 * Make sure nobody triggers this path before mm_percpu_wq is fully
2615 * initialized.
2616 */
2617 if (WARN_ON_ONCE(!mm_percpu_wq))
2618 return;
2619
2620 /*
2621 * Do not drain if one is already in progress unless it's specific to
2622 * a zone. Such callers are primarily CMA and memory hotplug and need
2623 * the drain to be complete when the call returns.
2624 */
2625 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2626 if (!zone)
2627 return;
2628 mutex_lock(&pcpu_drain_mutex);
2629 }
2630
2631 /*
2632 * We don't care about racing with CPU hotplug event
2633 * as offline notification will cause the notified
2634 * cpu to drain that CPU pcps and on_each_cpu_mask
2635 * disables preemption as part of its processing
2636 */
2637 for_each_online_cpu(cpu) {
2638 struct per_cpu_pageset *pcp;
2639 struct zone *z;
2640 bool has_pcps = false;
2641
2642 if (zone) {
2643 pcp = per_cpu_ptr(zone->pageset, cpu);
2644 if (pcp->pcp.count)
2645 has_pcps = true;
2646 } else {
2647 for_each_populated_zone(z) {
2648 pcp = per_cpu_ptr(z->pageset, cpu);
2649 if (pcp->pcp.count) {
2650 has_pcps = true;
2651 break;
2652 }
2653 }
2654 }
2655
2656 if (has_pcps)
2657 cpumask_set_cpu(cpu, &cpus_with_pcps);
2658 else
2659 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2660 }
2661
2662 for_each_cpu(cpu, &cpus_with_pcps) {
2663 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2664 INIT_WORK(work, drain_local_pages_wq);
2665 queue_work_on(cpu, mm_percpu_wq, work);
2666 }
2667 for_each_cpu(cpu, &cpus_with_pcps)
2668 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2669
2670 mutex_unlock(&pcpu_drain_mutex);
2671 }
2672
2673 #ifdef CONFIG_HIBERNATION
2674
2675 /*
2676 * Touch the watchdog for every WD_PAGE_COUNT pages.
2677 */
2678 #define WD_PAGE_COUNT (128*1024)
2679
2680 void mark_free_pages(struct zone *zone)
2681 {
2682 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2683 unsigned long flags;
2684 unsigned int order, t;
2685 struct page *page;
2686
2687 if (zone_is_empty(zone))
2688 return;
2689
2690 spin_lock_irqsave(&zone->lock, flags);
2691
2692 max_zone_pfn = zone_end_pfn(zone);
2693 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2694 if (pfn_valid(pfn)) {
2695 page = pfn_to_page(pfn);
2696
2697 if (!--page_count) {
2698 touch_nmi_watchdog();
2699 page_count = WD_PAGE_COUNT;
2700 }
2701
2702 if (page_zone(page) != zone)
2703 continue;
2704
2705 if (!swsusp_page_is_forbidden(page))
2706 swsusp_unset_page_free(page);
2707 }
2708
2709 for_each_migratetype_order(order, t) {
2710 list_for_each_entry(page,
2711 &zone->free_area[order].free_list[t], lru) {
2712 unsigned long i;
2713
2714 pfn = page_to_pfn(page);
2715 for (i = 0; i < (1UL << order); i++) {
2716 if (!--page_count) {
2717 touch_nmi_watchdog();
2718 page_count = WD_PAGE_COUNT;
2719 }
2720 swsusp_set_page_free(pfn_to_page(pfn + i));
2721 }
2722 }
2723 }
2724 spin_unlock_irqrestore(&zone->lock, flags);
2725 }
2726 #endif /* CONFIG_PM */
2727
2728 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2729 {
2730 int migratetype;
2731
2732 if (!free_pcp_prepare(page))
2733 return false;
2734
2735 migratetype = get_pfnblock_migratetype(page, pfn);
2736 set_pcppage_migratetype(page, migratetype);
2737 return true;
2738 }
2739
2740 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2741 {
2742 struct zone *zone = page_zone(page);
2743 struct per_cpu_pages *pcp;
2744 int migratetype;
2745
2746 migratetype = get_pcppage_migratetype(page);
2747 __count_vm_event(PGFREE);
2748
2749 /*
2750 * We only track unmovable, reclaimable and movable on pcp lists.
2751 * Free ISOLATE pages back to the allocator because they are being
2752 * offlined but treat HIGHATOMIC as movable pages so we can get those
2753 * areas back if necessary. Otherwise, we may have to free
2754 * excessively into the page allocator
2755 */
2756 if (migratetype >= MIGRATE_PCPTYPES) {
2757 if (unlikely(is_migrate_isolate(migratetype))) {
2758 free_one_page(zone, page, pfn, 0, migratetype);
2759 return;
2760 }
2761 migratetype = MIGRATE_MOVABLE;
2762 }
2763
2764 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2765 list_add(&page->lru, &pcp->lists[migratetype]);
2766 pcp->count++;
2767 if (pcp->count >= pcp->high) {
2768 unsigned long batch = READ_ONCE(pcp->batch);
2769 free_pcppages_bulk(zone, batch, pcp);
2770 }
2771 }
2772
2773 /*
2774 * Free a 0-order page
2775 */
2776 void free_unref_page(struct page *page)
2777 {
2778 unsigned long flags;
2779 unsigned long pfn = page_to_pfn(page);
2780
2781 if (!free_unref_page_prepare(page, pfn))
2782 return;
2783
2784 local_irq_save(flags);
2785 free_unref_page_commit(page, pfn);
2786 local_irq_restore(flags);
2787 }
2788
2789 /*
2790 * Free a list of 0-order pages
2791 */
2792 void free_unref_page_list(struct list_head *list)
2793 {
2794 struct page *page, *next;
2795 unsigned long flags, pfn;
2796 int batch_count = 0;
2797
2798 /* Prepare pages for freeing */
2799 list_for_each_entry_safe(page, next, list, lru) {
2800 pfn = page_to_pfn(page);
2801 if (!free_unref_page_prepare(page, pfn))
2802 list_del(&page->lru);
2803 set_page_private(page, pfn);
2804 }
2805
2806 local_irq_save(flags);
2807 list_for_each_entry_safe(page, next, list, lru) {
2808 unsigned long pfn = page_private(page);
2809
2810 set_page_private(page, 0);
2811 trace_mm_page_free_batched(page);
2812 free_unref_page_commit(page, pfn);
2813
2814 /*
2815 * Guard against excessive IRQ disabled times when we get
2816 * a large list of pages to free.
2817 */
2818 if (++batch_count == SWAP_CLUSTER_MAX) {
2819 local_irq_restore(flags);
2820 batch_count = 0;
2821 local_irq_save(flags);
2822 }
2823 }
2824 local_irq_restore(flags);
2825 }
2826
2827 /*
2828 * split_page takes a non-compound higher-order page, and splits it into
2829 * n (1<<order) sub-pages: page[0..n]
2830 * Each sub-page must be freed individually.
2831 *
2832 * Note: this is probably too low level an operation for use in drivers.
2833 * Please consult with lkml before using this in your driver.
2834 */
2835 void split_page(struct page *page, unsigned int order)
2836 {
2837 int i;
2838
2839 VM_BUG_ON_PAGE(PageCompound(page), page);
2840 VM_BUG_ON_PAGE(!page_count(page), page);
2841
2842 for (i = 1; i < (1 << order); i++)
2843 set_page_refcounted(page + i);
2844 split_page_owner(page, order);
2845 }
2846 EXPORT_SYMBOL_GPL(split_page);
2847
2848 int __isolate_free_page(struct page *page, unsigned int order)
2849 {
2850 unsigned long watermark;
2851 struct zone *zone;
2852 int mt;
2853
2854 BUG_ON(!PageBuddy(page));
2855
2856 zone = page_zone(page);
2857 mt = get_pageblock_migratetype(page);
2858
2859 if (!is_migrate_isolate(mt)) {
2860 /*
2861 * Obey watermarks as if the page was being allocated. We can
2862 * emulate a high-order watermark check with a raised order-0
2863 * watermark, because we already know our high-order page
2864 * exists.
2865 */
2866 watermark = min_wmark_pages(zone) + (1UL << order);
2867 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2868 return 0;
2869
2870 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2871 }
2872
2873 /* Remove page from free list */
2874 list_del(&page->lru);
2875 zone->free_area[order].nr_free--;
2876 rmv_page_order(page);
2877
2878 /*
2879 * Set the pageblock if the isolated page is at least half of a
2880 * pageblock
2881 */
2882 if (order >= pageblock_order - 1) {
2883 struct page *endpage = page + (1 << order) - 1;
2884 for (; page < endpage; page += pageblock_nr_pages) {
2885 int mt = get_pageblock_migratetype(page);
2886 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2887 && !is_migrate_highatomic(mt))
2888 set_pageblock_migratetype(page,
2889 MIGRATE_MOVABLE);
2890 }
2891 }
2892
2893
2894 return 1UL << order;
2895 }
2896
2897 /*
2898 * Update NUMA hit/miss statistics
2899 *
2900 * Must be called with interrupts disabled.
2901 */
2902 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2903 {
2904 #ifdef CONFIG_NUMA
2905 enum numa_stat_item local_stat = NUMA_LOCAL;
2906
2907 /* skip numa counters update if numa stats is disabled */
2908 if (!static_branch_likely(&vm_numa_stat_key))
2909 return;
2910
2911 if (zone_to_nid(z) != numa_node_id())
2912 local_stat = NUMA_OTHER;
2913
2914 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2915 __inc_numa_state(z, NUMA_HIT);
2916 else {
2917 __inc_numa_state(z, NUMA_MISS);
2918 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2919 }
2920 __inc_numa_state(z, local_stat);
2921 #endif
2922 }
2923
2924 /* Remove page from the per-cpu list, caller must protect the list */
2925 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2926 struct per_cpu_pages *pcp,
2927 struct list_head *list)
2928 {
2929 struct page *page;
2930
2931 do {
2932 if (list_empty(list)) {
2933 pcp->count += rmqueue_bulk(zone, 0,
2934 pcp->batch, list,
2935 migratetype);
2936 if (unlikely(list_empty(list)))
2937 return NULL;
2938 }
2939
2940 page = list_first_entry(list, struct page, lru);
2941 list_del(&page->lru);
2942 pcp->count--;
2943 } while (check_new_pcp(page));
2944
2945 return page;
2946 }
2947
2948 /* Lock and remove page from the per-cpu list */
2949 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2950 struct zone *zone, unsigned int order,
2951 gfp_t gfp_flags, int migratetype)
2952 {
2953 struct per_cpu_pages *pcp;
2954 struct list_head *list;
2955 struct page *page;
2956 unsigned long flags;
2957
2958 local_irq_save(flags);
2959 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2960 list = &pcp->lists[migratetype];
2961 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2962 if (page) {
2963 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2964 zone_statistics(preferred_zone, zone);
2965 }
2966 local_irq_restore(flags);
2967 return page;
2968 }
2969
2970 /*
2971 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2972 */
2973 static inline
2974 struct page *rmqueue(struct zone *preferred_zone,
2975 struct zone *zone, unsigned int order,
2976 gfp_t gfp_flags, unsigned int alloc_flags,
2977 int migratetype)
2978 {
2979 unsigned long flags;
2980 struct page *page;
2981
2982 if (likely(order == 0)) {
2983 page = rmqueue_pcplist(preferred_zone, zone, order,
2984 gfp_flags, migratetype);
2985 goto out;
2986 }
2987
2988 /*
2989 * We most definitely don't want callers attempting to
2990 * allocate greater than order-1 page units with __GFP_NOFAIL.
2991 */
2992 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2993 spin_lock_irqsave(&zone->lock, flags);
2994
2995 do {
2996 page = NULL;
2997 if (alloc_flags & ALLOC_HARDER) {
2998 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2999 if (page)
3000 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3001 }
3002 if (!page)
3003 page = __rmqueue(zone, order, migratetype);
3004 } while (page && check_new_pages(page, order));
3005 spin_unlock(&zone->lock);
3006 if (!page)
3007 goto failed;
3008 __mod_zone_freepage_state(zone, -(1 << order),
3009 get_pcppage_migratetype(page));
3010
3011 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3012 zone_statistics(preferred_zone, zone);
3013 local_irq_restore(flags);
3014
3015 out:
3016 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3017 return page;
3018
3019 failed:
3020 local_irq_restore(flags);
3021 return NULL;
3022 }
3023
3024 #ifdef CONFIG_FAIL_PAGE_ALLOC
3025
3026 static struct {
3027 struct fault_attr attr;
3028
3029 bool ignore_gfp_highmem;
3030 bool ignore_gfp_reclaim;
3031 u32 min_order;
3032 } fail_page_alloc = {
3033 .attr = FAULT_ATTR_INITIALIZER,
3034 .ignore_gfp_reclaim = true,
3035 .ignore_gfp_highmem = true,
3036 .min_order = 1,
3037 };
3038
3039 static int __init setup_fail_page_alloc(char *str)
3040 {
3041 return setup_fault_attr(&fail_page_alloc.attr, str);
3042 }
3043 __setup("fail_page_alloc=", setup_fail_page_alloc);
3044
3045 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3046 {
3047 if (order < fail_page_alloc.min_order)
3048 return false;
3049 if (gfp_mask & __GFP_NOFAIL)
3050 return false;
3051 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3052 return false;
3053 if (fail_page_alloc.ignore_gfp_reclaim &&
3054 (gfp_mask & __GFP_DIRECT_RECLAIM))
3055 return false;
3056
3057 return should_fail(&fail_page_alloc.attr, 1 << order);
3058 }
3059
3060 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3061
3062 static int __init fail_page_alloc_debugfs(void)
3063 {
3064 umode_t mode = S_IFREG | 0600;
3065 struct dentry *dir;
3066
3067 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3068 &fail_page_alloc.attr);
3069 if (IS_ERR(dir))
3070 return PTR_ERR(dir);
3071
3072 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3073 &fail_page_alloc.ignore_gfp_reclaim))
3074 goto fail;
3075 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3076 &fail_page_alloc.ignore_gfp_highmem))
3077 goto fail;
3078 if (!debugfs_create_u32("min-order", mode, dir,
3079 &fail_page_alloc.min_order))
3080 goto fail;
3081
3082 return 0;
3083 fail:
3084 debugfs_remove_recursive(dir);
3085
3086 return -ENOMEM;
3087 }
3088
3089 late_initcall(fail_page_alloc_debugfs);
3090
3091 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3092
3093 #else /* CONFIG_FAIL_PAGE_ALLOC */
3094
3095 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3096 {
3097 return false;
3098 }
3099
3100 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3101
3102 /*
3103 * Return true if free base pages are above 'mark'. For high-order checks it
3104 * will return true of the order-0 watermark is reached and there is at least
3105 * one free page of a suitable size. Checking now avoids taking the zone lock
3106 * to check in the allocation paths if no pages are free.
3107 */
3108 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3109 int classzone_idx, unsigned int alloc_flags,
3110 long free_pages)
3111 {
3112 long min = mark;
3113 int o;
3114 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3115
3116 /* free_pages may go negative - that's OK */
3117 free_pages -= (1 << order) - 1;
3118
3119 if (alloc_flags & ALLOC_HIGH)
3120 min -= min / 2;
3121
3122 /*
3123 * If the caller does not have rights to ALLOC_HARDER then subtract
3124 * the high-atomic reserves. This will over-estimate the size of the
3125 * atomic reserve but it avoids a search.
3126 */
3127 if (likely(!alloc_harder)) {
3128 free_pages -= z->nr_reserved_highatomic;
3129 } else {
3130 /*
3131 * OOM victims can try even harder than normal ALLOC_HARDER
3132 * users on the grounds that it's definitely going to be in
3133 * the exit path shortly and free memory. Any allocation it
3134 * makes during the free path will be small and short-lived.
3135 */
3136 if (alloc_flags & ALLOC_OOM)
3137 min -= min / 2;
3138 else
3139 min -= min / 4;
3140 }
3141
3142
3143 #ifdef CONFIG_CMA
3144 /* If allocation can't use CMA areas don't use free CMA pages */
3145 if (!(alloc_flags & ALLOC_CMA))
3146 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3147 #endif
3148
3149 /*
3150 * Check watermarks for an order-0 allocation request. If these
3151 * are not met, then a high-order request also cannot go ahead
3152 * even if a suitable page happened to be free.
3153 */
3154 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3155 return false;
3156
3157 /* If this is an order-0 request then the watermark is fine */
3158 if (!order)
3159 return true;
3160
3161 /* For a high-order request, check at least one suitable page is free */
3162 for (o = order; o < MAX_ORDER; o++) {
3163 struct free_area *area = &z->free_area[o];
3164 int mt;
3165
3166 if (!area->nr_free)
3167 continue;
3168
3169 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3170 if (!list_empty(&area->free_list[mt]))
3171 return true;
3172 }
3173
3174 #ifdef CONFIG_CMA
3175 if ((alloc_flags & ALLOC_CMA) &&
3176 !list_empty(&area->free_list[MIGRATE_CMA])) {
3177 return true;
3178 }
3179 #endif
3180 if (alloc_harder &&
3181 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3182 return true;
3183 }
3184 return false;
3185 }
3186
3187 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3188 int classzone_idx, unsigned int alloc_flags)
3189 {
3190 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3191 zone_page_state(z, NR_FREE_PAGES));
3192 }
3193
3194 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3195 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3196 {
3197 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3198 long cma_pages = 0;
3199
3200 #ifdef CONFIG_CMA
3201 /* If allocation can't use CMA areas don't use free CMA pages */
3202 if (!(alloc_flags & ALLOC_CMA))
3203 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3204 #endif
3205
3206 /*
3207 * Fast check for order-0 only. If this fails then the reserves
3208 * need to be calculated. There is a corner case where the check
3209 * passes but only the high-order atomic reserve are free. If
3210 * the caller is !atomic then it'll uselessly search the free
3211 * list. That corner case is then slower but it is harmless.
3212 */
3213 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3214 return true;
3215
3216 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3217 free_pages);
3218 }
3219
3220 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3221 unsigned long mark, int classzone_idx)
3222 {
3223 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3224
3225 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3226 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3227
3228 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3229 free_pages);
3230 }
3231
3232 #ifdef CONFIG_NUMA
3233 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3234 {
3235 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3236 RECLAIM_DISTANCE;
3237 }
3238 #else /* CONFIG_NUMA */
3239 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3240 {
3241 return true;
3242 }
3243 #endif /* CONFIG_NUMA */
3244
3245 /*
3246 * get_page_from_freelist goes through the zonelist trying to allocate
3247 * a page.
3248 */
3249 static struct page *
3250 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3251 const struct alloc_context *ac)
3252 {
3253 struct zoneref *z = ac->preferred_zoneref;
3254 struct zone *zone;
3255 struct pglist_data *last_pgdat_dirty_limit = NULL;
3256
3257 /*
3258 * Scan zonelist, looking for a zone with enough free.
3259 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3260 */
3261 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3262 ac->nodemask) {
3263 struct page *page;
3264 unsigned long mark;
3265
3266 if (cpusets_enabled() &&
3267 (alloc_flags & ALLOC_CPUSET) &&
3268 !__cpuset_zone_allowed(zone, gfp_mask))
3269 continue;
3270 /*
3271 * When allocating a page cache page for writing, we
3272 * want to get it from a node that is within its dirty
3273 * limit, such that no single node holds more than its
3274 * proportional share of globally allowed dirty pages.
3275 * The dirty limits take into account the node's
3276 * lowmem reserves and high watermark so that kswapd
3277 * should be able to balance it without having to
3278 * write pages from its LRU list.
3279 *
3280 * XXX: For now, allow allocations to potentially
3281 * exceed the per-node dirty limit in the slowpath
3282 * (spread_dirty_pages unset) before going into reclaim,
3283 * which is important when on a NUMA setup the allowed
3284 * nodes are together not big enough to reach the
3285 * global limit. The proper fix for these situations
3286 * will require awareness of nodes in the
3287 * dirty-throttling and the flusher threads.
3288 */
3289 if (ac->spread_dirty_pages) {
3290 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3291 continue;
3292
3293 if (!node_dirty_ok(zone->zone_pgdat)) {
3294 last_pgdat_dirty_limit = zone->zone_pgdat;
3295 continue;
3296 }
3297 }
3298
3299 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3300 if (!zone_watermark_fast(zone, order, mark,
3301 ac_classzone_idx(ac), alloc_flags)) {
3302 int ret;
3303
3304 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3305 /*
3306 * Watermark failed for this zone, but see if we can
3307 * grow this zone if it contains deferred pages.
3308 */
3309 if (static_branch_unlikely(&deferred_pages)) {
3310 if (_deferred_grow_zone(zone, order))
3311 goto try_this_zone;
3312 }
3313 #endif
3314 /* Checked here to keep the fast path fast */
3315 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3316 if (alloc_flags & ALLOC_NO_WATERMARKS)
3317 goto try_this_zone;
3318
3319 if (node_reclaim_mode == 0 ||
3320 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3321 continue;
3322
3323 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3324 switch (ret) {
3325 case NODE_RECLAIM_NOSCAN:
3326 /* did not scan */
3327 continue;
3328 case NODE_RECLAIM_FULL:
3329 /* scanned but unreclaimable */
3330 continue;
3331 default:
3332 /* did we reclaim enough */
3333 if (zone_watermark_ok(zone, order, mark,
3334 ac_classzone_idx(ac), alloc_flags))
3335 goto try_this_zone;
3336
3337 continue;
3338 }
3339 }
3340
3341 try_this_zone:
3342 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3343 gfp_mask, alloc_flags, ac->migratetype);
3344 if (page) {
3345 prep_new_page(page, order, gfp_mask, alloc_flags);
3346
3347 /*
3348 * If this is a high-order atomic allocation then check
3349 * if the pageblock should be reserved for the future
3350 */
3351 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3352 reserve_highatomic_pageblock(page, zone, order);
3353
3354 return page;
3355 } else {
3356 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3357 /* Try again if zone has deferred pages */
3358 if (static_branch_unlikely(&deferred_pages)) {
3359 if (_deferred_grow_zone(zone, order))
3360 goto try_this_zone;
3361 }
3362 #endif
3363 }
3364 }
3365
3366 return NULL;
3367 }
3368
3369 /*
3370 * Large machines with many possible nodes should not always dump per-node
3371 * meminfo in irq context.
3372 */
3373 static inline bool should_suppress_show_mem(void)
3374 {
3375 bool ret = false;
3376
3377 #if NODES_SHIFT > 8
3378 ret = in_interrupt();
3379 #endif
3380 return ret;
3381 }
3382
3383 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3384 {
3385 unsigned int filter = SHOW_MEM_FILTER_NODES;
3386 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3387
3388 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3389 return;
3390
3391 /*
3392 * This documents exceptions given to allocations in certain
3393 * contexts that are allowed to allocate outside current's set
3394 * of allowed nodes.
3395 */
3396 if (!(gfp_mask & __GFP_NOMEMALLOC))
3397 if (tsk_is_oom_victim(current) ||
3398 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3399 filter &= ~SHOW_MEM_FILTER_NODES;
3400 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3401 filter &= ~SHOW_MEM_FILTER_NODES;
3402
3403 show_mem(filter, nodemask);
3404 }
3405
3406 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3407 {
3408 struct va_format vaf;
3409 va_list args;
3410 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3411 DEFAULT_RATELIMIT_BURST);
3412
3413 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3414 return;
3415
3416 va_start(args, fmt);
3417 vaf.fmt = fmt;
3418 vaf.va = &args;
3419 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3420 current->comm, &vaf, gfp_mask, &gfp_mask,
3421 nodemask_pr_args(nodemask));
3422 va_end(args);
3423
3424 cpuset_print_current_mems_allowed();
3425
3426 dump_stack();
3427 warn_alloc_show_mem(gfp_mask, nodemask);
3428 }
3429
3430 static inline struct page *
3431 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3432 unsigned int alloc_flags,
3433 const struct alloc_context *ac)
3434 {
3435 struct page *page;
3436
3437 page = get_page_from_freelist(gfp_mask, order,
3438 alloc_flags|ALLOC_CPUSET, ac);
3439 /*
3440 * fallback to ignore cpuset restriction if our nodes
3441 * are depleted
3442 */
3443 if (!page)
3444 page = get_page_from_freelist(gfp_mask, order,
3445 alloc_flags, ac);
3446
3447 return page;
3448 }
3449
3450 static inline struct page *
3451 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3452 const struct alloc_context *ac, unsigned long *did_some_progress)
3453 {
3454 struct oom_control oc = {
3455 .zonelist = ac->zonelist,
3456 .nodemask = ac->nodemask,
3457 .memcg = NULL,
3458 .gfp_mask = gfp_mask,
3459 .order = order,
3460 };
3461 struct page *page;
3462
3463 *did_some_progress = 0;
3464
3465 /*
3466 * Acquire the oom lock. If that fails, somebody else is
3467 * making progress for us.
3468 */
3469 if (!mutex_trylock(&oom_lock)) {
3470 *did_some_progress = 1;
3471 schedule_timeout_uninterruptible(1);
3472 return NULL;
3473 }
3474
3475 /*
3476 * Go through the zonelist yet one more time, keep very high watermark
3477 * here, this is only to catch a parallel oom killing, we must fail if
3478 * we're still under heavy pressure. But make sure that this reclaim
3479 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3480 * allocation which will never fail due to oom_lock already held.
3481 */
3482 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3483 ~__GFP_DIRECT_RECLAIM, order,
3484 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3485 if (page)
3486 goto out;
3487
3488 /* Coredumps can quickly deplete all memory reserves */
3489 if (current->flags & PF_DUMPCORE)
3490 goto out;
3491 /* The OOM killer will not help higher order allocs */
3492 if (order > PAGE_ALLOC_COSTLY_ORDER)
3493 goto out;
3494 /*
3495 * We have already exhausted all our reclaim opportunities without any
3496 * success so it is time to admit defeat. We will skip the OOM killer
3497 * because it is very likely that the caller has a more reasonable
3498 * fallback than shooting a random task.
3499 */
3500 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3501 goto out;
3502 /* The OOM killer does not needlessly kill tasks for lowmem */
3503 if (ac->high_zoneidx < ZONE_NORMAL)
3504 goto out;
3505 if (pm_suspended_storage())
3506 goto out;
3507 /*
3508 * XXX: GFP_NOFS allocations should rather fail than rely on
3509 * other request to make a forward progress.
3510 * We are in an unfortunate situation where out_of_memory cannot
3511 * do much for this context but let's try it to at least get
3512 * access to memory reserved if the current task is killed (see
3513 * out_of_memory). Once filesystems are ready to handle allocation
3514 * failures more gracefully we should just bail out here.
3515 */
3516
3517 /* The OOM killer may not free memory on a specific node */
3518 if (gfp_mask & __GFP_THISNODE)
3519 goto out;
3520
3521 /* Exhausted what can be done so it's blame time */
3522 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3523 *did_some_progress = 1;
3524
3525 /*
3526 * Help non-failing allocations by giving them access to memory
3527 * reserves
3528 */
3529 if (gfp_mask & __GFP_NOFAIL)
3530 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3531 ALLOC_NO_WATERMARKS, ac);
3532 }
3533 out:
3534 mutex_unlock(&oom_lock);
3535 return page;
3536 }
3537
3538 /*
3539 * Maximum number of compaction retries wit a progress before OOM
3540 * killer is consider as the only way to move forward.
3541 */
3542 #define MAX_COMPACT_RETRIES 16
3543
3544 #ifdef CONFIG_COMPACTION
3545 /* Try memory compaction for high-order allocations before reclaim */
3546 static struct page *
3547 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3548 unsigned int alloc_flags, const struct alloc_context *ac,
3549 enum compact_priority prio, enum compact_result *compact_result)
3550 {
3551 struct page *page;
3552 unsigned int noreclaim_flag;
3553
3554 if (!order)
3555 return NULL;
3556
3557 noreclaim_flag = memalloc_noreclaim_save();
3558 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3559 prio);
3560 memalloc_noreclaim_restore(noreclaim_flag);
3561
3562 if (*compact_result <= COMPACT_INACTIVE)
3563 return NULL;
3564
3565 /*
3566 * At least in one zone compaction wasn't deferred or skipped, so let's
3567 * count a compaction stall
3568 */
3569 count_vm_event(COMPACTSTALL);
3570
3571 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3572
3573 if (page) {
3574 struct zone *zone = page_zone(page);
3575
3576 zone->compact_blockskip_flush = false;
3577 compaction_defer_reset(zone, order, true);
3578 count_vm_event(COMPACTSUCCESS);
3579 return page;
3580 }
3581
3582 /*
3583 * It's bad if compaction run occurs and fails. The most likely reason
3584 * is that pages exist, but not enough to satisfy watermarks.
3585 */
3586 count_vm_event(COMPACTFAIL);
3587
3588 cond_resched();
3589
3590 return NULL;
3591 }
3592
3593 static inline bool
3594 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3595 enum compact_result compact_result,
3596 enum compact_priority *compact_priority,
3597 int *compaction_retries)
3598 {
3599 int max_retries = MAX_COMPACT_RETRIES;
3600 int min_priority;
3601 bool ret = false;
3602 int retries = *compaction_retries;
3603 enum compact_priority priority = *compact_priority;
3604
3605 if (!order)
3606 return false;
3607
3608 if (compaction_made_progress(compact_result))
3609 (*compaction_retries)++;
3610
3611 /*
3612 * compaction considers all the zone as desperately out of memory
3613 * so it doesn't really make much sense to retry except when the
3614 * failure could be caused by insufficient priority
3615 */
3616 if (compaction_failed(compact_result))
3617 goto check_priority;
3618
3619 /*
3620 * make sure the compaction wasn't deferred or didn't bail out early
3621 * due to locks contention before we declare that we should give up.
3622 * But do not retry if the given zonelist is not suitable for
3623 * compaction.
3624 */
3625 if (compaction_withdrawn(compact_result)) {
3626 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3627 goto out;
3628 }
3629
3630 /*
3631 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3632 * costly ones because they are de facto nofail and invoke OOM
3633 * killer to move on while costly can fail and users are ready
3634 * to cope with that. 1/4 retries is rather arbitrary but we
3635 * would need much more detailed feedback from compaction to
3636 * make a better decision.
3637 */
3638 if (order > PAGE_ALLOC_COSTLY_ORDER)
3639 max_retries /= 4;
3640 if (*compaction_retries <= max_retries) {
3641 ret = true;
3642 goto out;
3643 }
3644
3645 /*
3646 * Make sure there are attempts at the highest priority if we exhausted
3647 * all retries or failed at the lower priorities.
3648 */
3649 check_priority:
3650 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3651 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3652
3653 if (*compact_priority > min_priority) {
3654 (*compact_priority)--;
3655 *compaction_retries = 0;
3656 ret = true;
3657 }
3658 out:
3659 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3660 return ret;
3661 }
3662 #else
3663 static inline struct page *
3664 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3665 unsigned int alloc_flags, const struct alloc_context *ac,
3666 enum compact_priority prio, enum compact_result *compact_result)
3667 {
3668 *compact_result = COMPACT_SKIPPED;
3669 return NULL;
3670 }
3671
3672 static inline bool
3673 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3674 enum compact_result compact_result,
3675 enum compact_priority *compact_priority,
3676 int *compaction_retries)
3677 {
3678 struct zone *zone;
3679 struct zoneref *z;
3680
3681 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3682 return false;
3683
3684 /*
3685 * There are setups with compaction disabled which would prefer to loop
3686 * inside the allocator rather than hit the oom killer prematurely.
3687 * Let's give them a good hope and keep retrying while the order-0
3688 * watermarks are OK.
3689 */
3690 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3691 ac->nodemask) {
3692 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3693 ac_classzone_idx(ac), alloc_flags))
3694 return true;
3695 }
3696 return false;
3697 }
3698 #endif /* CONFIG_COMPACTION */
3699
3700 #ifdef CONFIG_LOCKDEP
3701 static struct lockdep_map __fs_reclaim_map =
3702 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3703
3704 static bool __need_fs_reclaim(gfp_t gfp_mask)
3705 {
3706 gfp_mask = current_gfp_context(gfp_mask);
3707
3708 /* no reclaim without waiting on it */
3709 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3710 return false;
3711
3712 /* this guy won't enter reclaim */
3713 if (current->flags & PF_MEMALLOC)
3714 return false;
3715
3716 /* We're only interested __GFP_FS allocations for now */
3717 if (!(gfp_mask & __GFP_FS))
3718 return false;
3719
3720 if (gfp_mask & __GFP_NOLOCKDEP)
3721 return false;
3722
3723 return true;
3724 }
3725
3726 void __fs_reclaim_acquire(void)
3727 {
3728 lock_map_acquire(&__fs_reclaim_map);
3729 }
3730
3731 void __fs_reclaim_release(void)
3732 {
3733 lock_map_release(&__fs_reclaim_map);
3734 }
3735
3736 void fs_reclaim_acquire(gfp_t gfp_mask)
3737 {
3738 if (__need_fs_reclaim(gfp_mask))
3739 __fs_reclaim_acquire();
3740 }
3741 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3742
3743 void fs_reclaim_release(gfp_t gfp_mask)
3744 {
3745 if (__need_fs_reclaim(gfp_mask))
3746 __fs_reclaim_release();
3747 }
3748 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3749 #endif
3750
3751 /* Perform direct synchronous page reclaim */
3752 static int
3753 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3754 const struct alloc_context *ac)
3755 {
3756 struct reclaim_state reclaim_state;
3757 int progress;
3758 unsigned int noreclaim_flag;
3759
3760 cond_resched();
3761
3762 /* We now go into synchronous reclaim */
3763 cpuset_memory_pressure_bump();
3764 fs_reclaim_acquire(gfp_mask);
3765 noreclaim_flag = memalloc_noreclaim_save();
3766 reclaim_state.reclaimed_slab = 0;
3767 current->reclaim_state = &reclaim_state;
3768
3769 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3770 ac->nodemask);
3771
3772 current->reclaim_state = NULL;
3773 memalloc_noreclaim_restore(noreclaim_flag);
3774 fs_reclaim_release(gfp_mask);
3775
3776 cond_resched();
3777
3778 return progress;
3779 }
3780
3781 /* The really slow allocator path where we enter direct reclaim */
3782 static inline struct page *
3783 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3784 unsigned int alloc_flags, const struct alloc_context *ac,
3785 unsigned long *did_some_progress)
3786 {
3787 struct page *page = NULL;
3788 bool drained = false;
3789
3790 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3791 if (unlikely(!(*did_some_progress)))
3792 return NULL;
3793
3794 retry:
3795 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3796
3797 /*
3798 * If an allocation failed after direct reclaim, it could be because
3799 * pages are pinned on the per-cpu lists or in high alloc reserves.
3800 * Shrink them them and try again
3801 */
3802 if (!page && !drained) {
3803 unreserve_highatomic_pageblock(ac, false);
3804 drain_all_pages(NULL);
3805 drained = true;
3806 goto retry;
3807 }
3808
3809 return page;
3810 }
3811
3812 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3813 const struct alloc_context *ac)
3814 {
3815 struct zoneref *z;
3816 struct zone *zone;
3817 pg_data_t *last_pgdat = NULL;
3818 enum zone_type high_zoneidx = ac->high_zoneidx;
3819
3820 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3821 ac->nodemask) {
3822 if (last_pgdat != zone->zone_pgdat)
3823 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3824 last_pgdat = zone->zone_pgdat;
3825 }
3826 }
3827
3828 static inline unsigned int
3829 gfp_to_alloc_flags(gfp_t gfp_mask)
3830 {
3831 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3832
3833 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3834 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3835
3836 /*
3837 * The caller may dip into page reserves a bit more if the caller
3838 * cannot run direct reclaim, or if the caller has realtime scheduling
3839 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3840 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3841 */
3842 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3843
3844 if (gfp_mask & __GFP_ATOMIC) {
3845 /*
3846 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3847 * if it can't schedule.
3848 */
3849 if (!(gfp_mask & __GFP_NOMEMALLOC))
3850 alloc_flags |= ALLOC_HARDER;
3851 /*
3852 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3853 * comment for __cpuset_node_allowed().
3854 */
3855 alloc_flags &= ~ALLOC_CPUSET;
3856 } else if (unlikely(rt_task(current)) && !in_interrupt())
3857 alloc_flags |= ALLOC_HARDER;
3858
3859 #ifdef CONFIG_CMA
3860 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3861 alloc_flags |= ALLOC_CMA;
3862 #endif
3863 return alloc_flags;
3864 }
3865
3866 static bool oom_reserves_allowed(struct task_struct *tsk)
3867 {
3868 if (!tsk_is_oom_victim(tsk))
3869 return false;
3870
3871 /*
3872 * !MMU doesn't have oom reaper so give access to memory reserves
3873 * only to the thread with TIF_MEMDIE set
3874 */
3875 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3876 return false;
3877
3878 return true;
3879 }
3880
3881 /*
3882 * Distinguish requests which really need access to full memory
3883 * reserves from oom victims which can live with a portion of it
3884 */
3885 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3886 {
3887 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3888 return 0;
3889 if (gfp_mask & __GFP_MEMALLOC)
3890 return ALLOC_NO_WATERMARKS;
3891 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3892 return ALLOC_NO_WATERMARKS;
3893 if (!in_interrupt()) {
3894 if (current->flags & PF_MEMALLOC)
3895 return ALLOC_NO_WATERMARKS;
3896 else if (oom_reserves_allowed(current))
3897 return ALLOC_OOM;
3898 }
3899
3900 return 0;
3901 }
3902
3903 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3904 {
3905 return !!__gfp_pfmemalloc_flags(gfp_mask);
3906 }
3907
3908 /*
3909 * Checks whether it makes sense to retry the reclaim to make a forward progress
3910 * for the given allocation request.
3911 *
3912 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3913 * without success, or when we couldn't even meet the watermark if we
3914 * reclaimed all remaining pages on the LRU lists.
3915 *
3916 * Returns true if a retry is viable or false to enter the oom path.
3917 */
3918 static inline bool
3919 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3920 struct alloc_context *ac, int alloc_flags,
3921 bool did_some_progress, int *no_progress_loops)
3922 {
3923 struct zone *zone;
3924 struct zoneref *z;
3925
3926 /*
3927 * Costly allocations might have made a progress but this doesn't mean
3928 * their order will become available due to high fragmentation so
3929 * always increment the no progress counter for them
3930 */
3931 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3932 *no_progress_loops = 0;
3933 else
3934 (*no_progress_loops)++;
3935
3936 /*
3937 * Make sure we converge to OOM if we cannot make any progress
3938 * several times in the row.
3939 */
3940 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3941 /* Before OOM, exhaust highatomic_reserve */
3942 return unreserve_highatomic_pageblock(ac, true);
3943 }
3944
3945 /*
3946 * Keep reclaiming pages while there is a chance this will lead
3947 * somewhere. If none of the target zones can satisfy our allocation
3948 * request even if all reclaimable pages are considered then we are
3949 * screwed and have to go OOM.
3950 */
3951 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3952 ac->nodemask) {
3953 unsigned long available;
3954 unsigned long reclaimable;
3955 unsigned long min_wmark = min_wmark_pages(zone);
3956 bool wmark;
3957
3958 available = reclaimable = zone_reclaimable_pages(zone);
3959 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3960
3961 /*
3962 * Would the allocation succeed if we reclaimed all
3963 * reclaimable pages?
3964 */
3965 wmark = __zone_watermark_ok(zone, order, min_wmark,
3966 ac_classzone_idx(ac), alloc_flags, available);
3967 trace_reclaim_retry_zone(z, order, reclaimable,
3968 available, min_wmark, *no_progress_loops, wmark);
3969 if (wmark) {
3970 /*
3971 * If we didn't make any progress and have a lot of
3972 * dirty + writeback pages then we should wait for
3973 * an IO to complete to slow down the reclaim and
3974 * prevent from pre mature OOM
3975 */
3976 if (!did_some_progress) {
3977 unsigned long write_pending;
3978
3979 write_pending = zone_page_state_snapshot(zone,
3980 NR_ZONE_WRITE_PENDING);
3981
3982 if (2 * write_pending > reclaimable) {
3983 congestion_wait(BLK_RW_ASYNC, HZ/10);
3984 return true;
3985 }
3986 }
3987
3988 /*
3989 * Memory allocation/reclaim might be called from a WQ
3990 * context and the current implementation of the WQ
3991 * concurrency control doesn't recognize that
3992 * a particular WQ is congested if the worker thread is
3993 * looping without ever sleeping. Therefore we have to
3994 * do a short sleep here rather than calling
3995 * cond_resched().
3996 */
3997 if (current->flags & PF_WQ_WORKER)
3998 schedule_timeout_uninterruptible(1);
3999 else
4000 cond_resched();
4001
4002 return true;
4003 }
4004 }
4005
4006 return false;
4007 }
4008
4009 static inline bool
4010 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4011 {
4012 /*
4013 * It's possible that cpuset's mems_allowed and the nodemask from
4014 * mempolicy don't intersect. This should be normally dealt with by
4015 * policy_nodemask(), but it's possible to race with cpuset update in
4016 * such a way the check therein was true, and then it became false
4017 * before we got our cpuset_mems_cookie here.
4018 * This assumes that for all allocations, ac->nodemask can come only
4019 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4020 * when it does not intersect with the cpuset restrictions) or the
4021 * caller can deal with a violated nodemask.
4022 */
4023 if (cpusets_enabled() && ac->nodemask &&
4024 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4025 ac->nodemask = NULL;
4026 return true;
4027 }
4028
4029 /*
4030 * When updating a task's mems_allowed or mempolicy nodemask, it is
4031 * possible to race with parallel threads in such a way that our
4032 * allocation can fail while the mask is being updated. If we are about
4033 * to fail, check if the cpuset changed during allocation and if so,
4034 * retry.
4035 */
4036 if (read_mems_allowed_retry(cpuset_mems_cookie))
4037 return true;
4038
4039 return false;
4040 }
4041
4042 static inline struct page *
4043 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4044 struct alloc_context *ac)
4045 {
4046 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4047 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4048 struct page *page = NULL;
4049 unsigned int alloc_flags;
4050 unsigned long did_some_progress;
4051 enum compact_priority compact_priority;
4052 enum compact_result compact_result;
4053 int compaction_retries;
4054 int no_progress_loops;
4055 unsigned int cpuset_mems_cookie;
4056 int reserve_flags;
4057
4058 /*
4059 * In the slowpath, we sanity check order to avoid ever trying to
4060 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4061 * be using allocators in order of preference for an area that is
4062 * too large.
4063 */
4064 if (order >= MAX_ORDER) {
4065 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4066 return NULL;
4067 }
4068
4069 /*
4070 * We also sanity check to catch abuse of atomic reserves being used by
4071 * callers that are not in atomic context.
4072 */
4073 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4074 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4075 gfp_mask &= ~__GFP_ATOMIC;
4076
4077 retry_cpuset:
4078 compaction_retries = 0;
4079 no_progress_loops = 0;
4080 compact_priority = DEF_COMPACT_PRIORITY;
4081 cpuset_mems_cookie = read_mems_allowed_begin();
4082
4083 /*
4084 * The fast path uses conservative alloc_flags to succeed only until
4085 * kswapd needs to be woken up, and to avoid the cost of setting up
4086 * alloc_flags precisely. So we do that now.
4087 */
4088 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4089
4090 /*
4091 * We need to recalculate the starting point for the zonelist iterator
4092 * because we might have used different nodemask in the fast path, or
4093 * there was a cpuset modification and we are retrying - otherwise we
4094 * could end up iterating over non-eligible zones endlessly.
4095 */
4096 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4097 ac->high_zoneidx, ac->nodemask);
4098 if (!ac->preferred_zoneref->zone)
4099 goto nopage;
4100
4101 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4102 wake_all_kswapds(order, gfp_mask, ac);
4103
4104 /*
4105 * The adjusted alloc_flags might result in immediate success, so try
4106 * that first
4107 */
4108 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4109 if (page)
4110 goto got_pg;
4111
4112 /*
4113 * For costly allocations, try direct compaction first, as it's likely
4114 * that we have enough base pages and don't need to reclaim. For non-
4115 * movable high-order allocations, do that as well, as compaction will
4116 * try prevent permanent fragmentation by migrating from blocks of the
4117 * same migratetype.
4118 * Don't try this for allocations that are allowed to ignore
4119 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4120 */
4121 if (can_direct_reclaim &&
4122 (costly_order ||
4123 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4124 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4125 page = __alloc_pages_direct_compact(gfp_mask, order,
4126 alloc_flags, ac,
4127 INIT_COMPACT_PRIORITY,
4128 &compact_result);
4129 if (page)
4130 goto got_pg;
4131
4132 /*
4133 * Checks for costly allocations with __GFP_NORETRY, which
4134 * includes THP page fault allocations
4135 */
4136 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4137 /*
4138 * If compaction is deferred for high-order allocations,
4139 * it is because sync compaction recently failed. If
4140 * this is the case and the caller requested a THP
4141 * allocation, we do not want to heavily disrupt the
4142 * system, so we fail the allocation instead of entering
4143 * direct reclaim.
4144 */
4145 if (compact_result == COMPACT_DEFERRED)
4146 goto nopage;
4147
4148 /*
4149 * Looks like reclaim/compaction is worth trying, but
4150 * sync compaction could be very expensive, so keep
4151 * using async compaction.
4152 */
4153 compact_priority = INIT_COMPACT_PRIORITY;
4154 }
4155 }
4156
4157 retry:
4158 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4159 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4160 wake_all_kswapds(order, gfp_mask, ac);
4161
4162 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4163 if (reserve_flags)
4164 alloc_flags = reserve_flags;
4165
4166 /*
4167 * Reset the nodemask and zonelist iterators if memory policies can be
4168 * ignored. These allocations are high priority and system rather than
4169 * user oriented.
4170 */
4171 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4172 ac->nodemask = NULL;
4173 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4174 ac->high_zoneidx, ac->nodemask);
4175 }
4176
4177 /* Attempt with potentially adjusted zonelist and alloc_flags */
4178 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4179 if (page)
4180 goto got_pg;
4181
4182 /* Caller is not willing to reclaim, we can't balance anything */
4183 if (!can_direct_reclaim)
4184 goto nopage;
4185
4186 /* Avoid recursion of direct reclaim */
4187 if (current->flags & PF_MEMALLOC)
4188 goto nopage;
4189
4190 /* Try direct reclaim and then allocating */
4191 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4192 &did_some_progress);
4193 if (page)
4194 goto got_pg;
4195
4196 /* Try direct compaction and then allocating */
4197 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4198 compact_priority, &compact_result);
4199 if (page)
4200 goto got_pg;
4201
4202 /* Do not loop if specifically requested */
4203 if (gfp_mask & __GFP_NORETRY)
4204 goto nopage;
4205
4206 /*
4207 * Do not retry costly high order allocations unless they are
4208 * __GFP_RETRY_MAYFAIL
4209 */
4210 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4211 goto nopage;
4212
4213 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4214 did_some_progress > 0, &no_progress_loops))
4215 goto retry;
4216
4217 /*
4218 * It doesn't make any sense to retry for the compaction if the order-0
4219 * reclaim is not able to make any progress because the current
4220 * implementation of the compaction depends on the sufficient amount
4221 * of free memory (see __compaction_suitable)
4222 */
4223 if (did_some_progress > 0 &&
4224 should_compact_retry(ac, order, alloc_flags,
4225 compact_result, &compact_priority,
4226 &compaction_retries))
4227 goto retry;
4228
4229
4230 /* Deal with possible cpuset update races before we start OOM killing */
4231 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4232 goto retry_cpuset;
4233
4234 /* Reclaim has failed us, start killing things */
4235 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4236 if (page)
4237 goto got_pg;
4238
4239 /* Avoid allocations with no watermarks from looping endlessly */
4240 if (tsk_is_oom_victim(current) &&
4241 (alloc_flags == ALLOC_OOM ||
4242 (gfp_mask & __GFP_NOMEMALLOC)))
4243 goto nopage;
4244
4245 /* Retry as long as the OOM killer is making progress */
4246 if (did_some_progress) {
4247 no_progress_loops = 0;
4248 goto retry;
4249 }
4250
4251 nopage:
4252 /* Deal with possible cpuset update races before we fail */
4253 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4254 goto retry_cpuset;
4255
4256 /*
4257 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4258 * we always retry
4259 */
4260 if (gfp_mask & __GFP_NOFAIL) {
4261 /*
4262 * All existing users of the __GFP_NOFAIL are blockable, so warn
4263 * of any new users that actually require GFP_NOWAIT
4264 */
4265 if (WARN_ON_ONCE(!can_direct_reclaim))
4266 goto fail;
4267
4268 /*
4269 * PF_MEMALLOC request from this context is rather bizarre
4270 * because we cannot reclaim anything and only can loop waiting
4271 * for somebody to do a work for us
4272 */
4273 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4274
4275 /*
4276 * non failing costly orders are a hard requirement which we
4277 * are not prepared for much so let's warn about these users
4278 * so that we can identify them and convert them to something
4279 * else.
4280 */
4281 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4282
4283 /*
4284 * Help non-failing allocations by giving them access to memory
4285 * reserves but do not use ALLOC_NO_WATERMARKS because this
4286 * could deplete whole memory reserves which would just make
4287 * the situation worse
4288 */
4289 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4290 if (page)
4291 goto got_pg;
4292
4293 cond_resched();
4294 goto retry;
4295 }
4296 fail:
4297 warn_alloc(gfp_mask, ac->nodemask,
4298 "page allocation failure: order:%u", order);
4299 got_pg:
4300 return page;
4301 }
4302
4303 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4304 int preferred_nid, nodemask_t *nodemask,
4305 struct alloc_context *ac, gfp_t *alloc_mask,
4306 unsigned int *alloc_flags)
4307 {
4308 ac->high_zoneidx = gfp_zone(gfp_mask);
4309 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4310 ac->nodemask = nodemask;
4311 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4312
4313 if (cpusets_enabled()) {
4314 *alloc_mask |= __GFP_HARDWALL;
4315 if (!ac->nodemask)
4316 ac->nodemask = &cpuset_current_mems_allowed;
4317 else
4318 *alloc_flags |= ALLOC_CPUSET;
4319 }
4320
4321 fs_reclaim_acquire(gfp_mask);
4322 fs_reclaim_release(gfp_mask);
4323
4324 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4325
4326 if (should_fail_alloc_page(gfp_mask, order))
4327 return false;
4328
4329 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4330 *alloc_flags |= ALLOC_CMA;
4331
4332 return true;
4333 }
4334
4335 /* Determine whether to spread dirty pages and what the first usable zone */
4336 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4337 {
4338 /* Dirty zone balancing only done in the fast path */
4339 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4340
4341 /*
4342 * The preferred zone is used for statistics but crucially it is
4343 * also used as the starting point for the zonelist iterator. It
4344 * may get reset for allocations that ignore memory policies.
4345 */
4346 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4347 ac->high_zoneidx, ac->nodemask);
4348 }
4349
4350 /*
4351 * This is the 'heart' of the zoned buddy allocator.
4352 */
4353 struct page *
4354 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4355 nodemask_t *nodemask)
4356 {
4357 struct page *page;
4358 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4359 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4360 struct alloc_context ac = { };
4361
4362 gfp_mask &= gfp_allowed_mask;
4363 alloc_mask = gfp_mask;
4364 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4365 return NULL;
4366
4367 finalise_ac(gfp_mask, &ac);
4368
4369 /* First allocation attempt */
4370 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4371 if (likely(page))
4372 goto out;
4373
4374 /*
4375 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4376 * resp. GFP_NOIO which has to be inherited for all allocation requests
4377 * from a particular context which has been marked by
4378 * memalloc_no{fs,io}_{save,restore}.
4379 */
4380 alloc_mask = current_gfp_context(gfp_mask);
4381 ac.spread_dirty_pages = false;
4382
4383 /*
4384 * Restore the original nodemask if it was potentially replaced with
4385 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4386 */
4387 if (unlikely(ac.nodemask != nodemask))
4388 ac.nodemask = nodemask;
4389
4390 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4391
4392 out:
4393 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4394 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4395 __free_pages(page, order);
4396 page = NULL;
4397 }
4398
4399 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4400
4401 return page;
4402 }
4403 EXPORT_SYMBOL(__alloc_pages_nodemask);
4404
4405 /*
4406 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4407 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4408 * you need to access high mem.
4409 */
4410 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4411 {
4412 struct page *page;
4413
4414 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4415 if (!page)
4416 return 0;
4417 return (unsigned long) page_address(page);
4418 }
4419 EXPORT_SYMBOL(__get_free_pages);
4420
4421 unsigned long get_zeroed_page(gfp_t gfp_mask)
4422 {
4423 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4424 }
4425 EXPORT_SYMBOL(get_zeroed_page);
4426
4427 void __free_pages(struct page *page, unsigned int order)
4428 {
4429 if (put_page_testzero(page)) {
4430 if (order == 0)
4431 free_unref_page(page);
4432 else
4433 __free_pages_ok(page, order);
4434 }
4435 }
4436
4437 EXPORT_SYMBOL(__free_pages);
4438
4439 void free_pages(unsigned long addr, unsigned int order)
4440 {
4441 if (addr != 0) {
4442 VM_BUG_ON(!virt_addr_valid((void *)addr));
4443 __free_pages(virt_to_page((void *)addr), order);
4444 }
4445 }
4446
4447 EXPORT_SYMBOL(free_pages);
4448
4449 /*
4450 * Page Fragment:
4451 * An arbitrary-length arbitrary-offset area of memory which resides
4452 * within a 0 or higher order page. Multiple fragments within that page
4453 * are individually refcounted, in the page's reference counter.
4454 *
4455 * The page_frag functions below provide a simple allocation framework for
4456 * page fragments. This is used by the network stack and network device
4457 * drivers to provide a backing region of memory for use as either an
4458 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4459 */
4460 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4461 gfp_t gfp_mask)
4462 {
4463 struct page *page = NULL;
4464 gfp_t gfp = gfp_mask;
4465
4466 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4467 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4468 __GFP_NOMEMALLOC;
4469 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4470 PAGE_FRAG_CACHE_MAX_ORDER);
4471 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4472 #endif
4473 if (unlikely(!page))
4474 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4475
4476 nc->va = page ? page_address(page) : NULL;
4477
4478 return page;
4479 }
4480
4481 void __page_frag_cache_drain(struct page *page, unsigned int count)
4482 {
4483 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4484
4485 if (page_ref_sub_and_test(page, count)) {
4486 unsigned int order = compound_order(page);
4487
4488 if (order == 0)
4489 free_unref_page(page);
4490 else
4491 __free_pages_ok(page, order);
4492 }
4493 }
4494 EXPORT_SYMBOL(__page_frag_cache_drain);
4495
4496 void *page_frag_alloc(struct page_frag_cache *nc,
4497 unsigned int fragsz, gfp_t gfp_mask)
4498 {
4499 unsigned int size = PAGE_SIZE;
4500 struct page *page;
4501 int offset;
4502
4503 if (unlikely(!nc->va)) {
4504 refill:
4505 page = __page_frag_cache_refill(nc, gfp_mask);
4506 if (!page)
4507 return NULL;
4508
4509 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4510 /* if size can vary use size else just use PAGE_SIZE */
4511 size = nc->size;
4512 #endif
4513 /* Even if we own the page, we do not use atomic_set().
4514 * This would break get_page_unless_zero() users.
4515 */
4516 page_ref_add(page, size - 1);
4517
4518 /* reset page count bias and offset to start of new frag */
4519 nc->pfmemalloc = page_is_pfmemalloc(page);
4520 nc->pagecnt_bias = size;
4521 nc->offset = size;
4522 }
4523
4524 offset = nc->offset - fragsz;
4525 if (unlikely(offset < 0)) {
4526 page = virt_to_page(nc->va);
4527
4528 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4529 goto refill;
4530
4531 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4532 /* if size can vary use size else just use PAGE_SIZE */
4533 size = nc->size;
4534 #endif
4535 /* OK, page count is 0, we can safely set it */
4536 set_page_count(page, size);
4537
4538 /* reset page count bias and offset to start of new frag */
4539 nc->pagecnt_bias = size;
4540 offset = size - fragsz;
4541 }
4542
4543 nc->pagecnt_bias--;
4544 nc->offset = offset;
4545
4546 return nc->va + offset;
4547 }
4548 EXPORT_SYMBOL(page_frag_alloc);
4549
4550 /*
4551 * Frees a page fragment allocated out of either a compound or order 0 page.
4552 */
4553 void page_frag_free(void *addr)
4554 {
4555 struct page *page = virt_to_head_page(addr);
4556
4557 if (unlikely(put_page_testzero(page)))
4558 __free_pages_ok(page, compound_order(page));
4559 }
4560 EXPORT_SYMBOL(page_frag_free);
4561
4562 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4563 size_t size)
4564 {
4565 if (addr) {
4566 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4567 unsigned long used = addr + PAGE_ALIGN(size);
4568
4569 split_page(virt_to_page((void *)addr), order);
4570 while (used < alloc_end) {
4571 free_page(used);
4572 used += PAGE_SIZE;
4573 }
4574 }
4575 return (void *)addr;
4576 }
4577
4578 /**
4579 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4580 * @size: the number of bytes to allocate
4581 * @gfp_mask: GFP flags for the allocation
4582 *
4583 * This function is similar to alloc_pages(), except that it allocates the
4584 * minimum number of pages to satisfy the request. alloc_pages() can only
4585 * allocate memory in power-of-two pages.
4586 *
4587 * This function is also limited by MAX_ORDER.
4588 *
4589 * Memory allocated by this function must be released by free_pages_exact().
4590 */
4591 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4592 {
4593 unsigned int order = get_order(size);
4594 unsigned long addr;
4595
4596 addr = __get_free_pages(gfp_mask, order);
4597 return make_alloc_exact(addr, order, size);
4598 }
4599 EXPORT_SYMBOL(alloc_pages_exact);
4600
4601 /**
4602 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4603 * pages on a node.
4604 * @nid: the preferred node ID where memory should be allocated
4605 * @size: the number of bytes to allocate
4606 * @gfp_mask: GFP flags for the allocation
4607 *
4608 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4609 * back.
4610 */
4611 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4612 {
4613 unsigned int order = get_order(size);
4614 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4615 if (!p)
4616 return NULL;
4617 return make_alloc_exact((unsigned long)page_address(p), order, size);
4618 }
4619
4620 /**
4621 * free_pages_exact - release memory allocated via alloc_pages_exact()
4622 * @virt: the value returned by alloc_pages_exact.
4623 * @size: size of allocation, same value as passed to alloc_pages_exact().
4624 *
4625 * Release the memory allocated by a previous call to alloc_pages_exact.
4626 */
4627 void free_pages_exact(void *virt, size_t size)
4628 {
4629 unsigned long addr = (unsigned long)virt;
4630 unsigned long end = addr + PAGE_ALIGN(size);
4631
4632 while (addr < end) {
4633 free_page(addr);
4634 addr += PAGE_SIZE;
4635 }
4636 }
4637 EXPORT_SYMBOL(free_pages_exact);
4638
4639 /**
4640 * nr_free_zone_pages - count number of pages beyond high watermark
4641 * @offset: The zone index of the highest zone
4642 *
4643 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4644 * high watermark within all zones at or below a given zone index. For each
4645 * zone, the number of pages is calculated as:
4646 *
4647 * nr_free_zone_pages = managed_pages - high_pages
4648 */
4649 static unsigned long nr_free_zone_pages(int offset)
4650 {
4651 struct zoneref *z;
4652 struct zone *zone;
4653
4654 /* Just pick one node, since fallback list is circular */
4655 unsigned long sum = 0;
4656
4657 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4658
4659 for_each_zone_zonelist(zone, z, zonelist, offset) {
4660 unsigned long size = zone->managed_pages;
4661 unsigned long high = high_wmark_pages(zone);
4662 if (size > high)
4663 sum += size - high;
4664 }
4665
4666 return sum;
4667 }
4668
4669 /**
4670 * nr_free_buffer_pages - count number of pages beyond high watermark
4671 *
4672 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4673 * watermark within ZONE_DMA and ZONE_NORMAL.
4674 */
4675 unsigned long nr_free_buffer_pages(void)
4676 {
4677 return nr_free_zone_pages(gfp_zone(GFP_USER));
4678 }
4679 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4680
4681 /**
4682 * nr_free_pagecache_pages - count number of pages beyond high watermark
4683 *
4684 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4685 * high watermark within all zones.
4686 */
4687 unsigned long nr_free_pagecache_pages(void)
4688 {
4689 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4690 }
4691
4692 static inline void show_node(struct zone *zone)
4693 {
4694 if (IS_ENABLED(CONFIG_NUMA))
4695 printk("Node %d ", zone_to_nid(zone));
4696 }
4697
4698 long si_mem_available(void)
4699 {
4700 long available;
4701 unsigned long pagecache;
4702 unsigned long wmark_low = 0;
4703 unsigned long pages[NR_LRU_LISTS];
4704 struct zone *zone;
4705 int lru;
4706
4707 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4708 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4709
4710 for_each_zone(zone)
4711 wmark_low += zone->watermark[WMARK_LOW];
4712
4713 /*
4714 * Estimate the amount of memory available for userspace allocations,
4715 * without causing swapping.
4716 */
4717 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4718
4719 /*
4720 * Not all the page cache can be freed, otherwise the system will
4721 * start swapping. Assume at least half of the page cache, or the
4722 * low watermark worth of cache, needs to stay.
4723 */
4724 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4725 pagecache -= min(pagecache / 2, wmark_low);
4726 available += pagecache;
4727
4728 /*
4729 * Part of the reclaimable slab consists of items that are in use,
4730 * and cannot be freed. Cap this estimate at the low watermark.
4731 */
4732 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4733 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4734 wmark_low);
4735
4736 /*
4737 * Part of the kernel memory, which can be released under memory
4738 * pressure.
4739 */
4740 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4741 PAGE_SHIFT;
4742
4743 if (available < 0)
4744 available = 0;
4745 return available;
4746 }
4747 EXPORT_SYMBOL_GPL(si_mem_available);
4748
4749 void si_meminfo(struct sysinfo *val)
4750 {
4751 val->totalram = totalram_pages;
4752 val->sharedram = global_node_page_state(NR_SHMEM);
4753 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4754 val->bufferram = nr_blockdev_pages();
4755 val->totalhigh = totalhigh_pages;
4756 val->freehigh = nr_free_highpages();
4757 val->mem_unit = PAGE_SIZE;
4758 }
4759
4760 EXPORT_SYMBOL(si_meminfo);
4761
4762 #ifdef CONFIG_NUMA
4763 void si_meminfo_node(struct sysinfo *val, int nid)
4764 {
4765 int zone_type; /* needs to be signed */
4766 unsigned long managed_pages = 0;
4767 unsigned long managed_highpages = 0;
4768 unsigned long free_highpages = 0;
4769 pg_data_t *pgdat = NODE_DATA(nid);
4770
4771 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4772 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4773 val->totalram = managed_pages;
4774 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4775 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4776 #ifdef CONFIG_HIGHMEM
4777 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4778 struct zone *zone = &pgdat->node_zones[zone_type];
4779
4780 if (is_highmem(zone)) {
4781 managed_highpages += zone->managed_pages;
4782 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4783 }
4784 }
4785 val->totalhigh = managed_highpages;
4786 val->freehigh = free_highpages;
4787 #else
4788 val->totalhigh = managed_highpages;
4789 val->freehigh = free_highpages;
4790 #endif
4791 val->mem_unit = PAGE_SIZE;
4792 }
4793 #endif
4794
4795 /*
4796 * Determine whether the node should be displayed or not, depending on whether
4797 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4798 */
4799 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4800 {
4801 if (!(flags & SHOW_MEM_FILTER_NODES))
4802 return false;
4803
4804 /*
4805 * no node mask - aka implicit memory numa policy. Do not bother with
4806 * the synchronization - read_mems_allowed_begin - because we do not
4807 * have to be precise here.
4808 */
4809 if (!nodemask)
4810 nodemask = &cpuset_current_mems_allowed;
4811
4812 return !node_isset(nid, *nodemask);
4813 }
4814
4815 #define K(x) ((x) << (PAGE_SHIFT-10))
4816
4817 static void show_migration_types(unsigned char type)
4818 {
4819 static const char types[MIGRATE_TYPES] = {
4820 [MIGRATE_UNMOVABLE] = 'U',
4821 [MIGRATE_MOVABLE] = 'M',
4822 [MIGRATE_RECLAIMABLE] = 'E',
4823 [MIGRATE_HIGHATOMIC] = 'H',
4824 #ifdef CONFIG_CMA
4825 [MIGRATE_CMA] = 'C',
4826 #endif
4827 #ifdef CONFIG_MEMORY_ISOLATION
4828 [MIGRATE_ISOLATE] = 'I',
4829 #endif
4830 };
4831 char tmp[MIGRATE_TYPES + 1];
4832 char *p = tmp;
4833 int i;
4834
4835 for (i = 0; i < MIGRATE_TYPES; i++) {
4836 if (type & (1 << i))
4837 *p++ = types[i];
4838 }
4839
4840 *p = '\0';
4841 printk(KERN_CONT "(%s) ", tmp);
4842 }
4843
4844 /*
4845 * Show free area list (used inside shift_scroll-lock stuff)
4846 * We also calculate the percentage fragmentation. We do this by counting the
4847 * memory on each free list with the exception of the first item on the list.
4848 *
4849 * Bits in @filter:
4850 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4851 * cpuset.
4852 */
4853 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4854 {
4855 unsigned long free_pcp = 0;
4856 int cpu;
4857 struct zone *zone;
4858 pg_data_t *pgdat;
4859
4860 for_each_populated_zone(zone) {
4861 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4862 continue;
4863
4864 for_each_online_cpu(cpu)
4865 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4866 }
4867
4868 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4869 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4870 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4871 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4872 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4873 " free:%lu free_pcp:%lu free_cma:%lu\n",
4874 global_node_page_state(NR_ACTIVE_ANON),
4875 global_node_page_state(NR_INACTIVE_ANON),
4876 global_node_page_state(NR_ISOLATED_ANON),
4877 global_node_page_state(NR_ACTIVE_FILE),
4878 global_node_page_state(NR_INACTIVE_FILE),
4879 global_node_page_state(NR_ISOLATED_FILE),
4880 global_node_page_state(NR_UNEVICTABLE),
4881 global_node_page_state(NR_FILE_DIRTY),
4882 global_node_page_state(NR_WRITEBACK),
4883 global_node_page_state(NR_UNSTABLE_NFS),
4884 global_node_page_state(NR_SLAB_RECLAIMABLE),
4885 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4886 global_node_page_state(NR_FILE_MAPPED),
4887 global_node_page_state(NR_SHMEM),
4888 global_zone_page_state(NR_PAGETABLE),
4889 global_zone_page_state(NR_BOUNCE),
4890 global_zone_page_state(NR_FREE_PAGES),
4891 free_pcp,
4892 global_zone_page_state(NR_FREE_CMA_PAGES));
4893
4894 for_each_online_pgdat(pgdat) {
4895 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4896 continue;
4897
4898 printk("Node %d"
4899 " active_anon:%lukB"
4900 " inactive_anon:%lukB"
4901 " active_file:%lukB"
4902 " inactive_file:%lukB"
4903 " unevictable:%lukB"
4904 " isolated(anon):%lukB"
4905 " isolated(file):%lukB"
4906 " mapped:%lukB"
4907 " dirty:%lukB"
4908 " writeback:%lukB"
4909 " shmem:%lukB"
4910 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4911 " shmem_thp: %lukB"
4912 " shmem_pmdmapped: %lukB"
4913 " anon_thp: %lukB"
4914 #endif
4915 " writeback_tmp:%lukB"
4916 " unstable:%lukB"
4917 " all_unreclaimable? %s"
4918 "\n",
4919 pgdat->node_id,
4920 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4921 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4922 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4923 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4924 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4925 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4926 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4927 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4928 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4929 K(node_page_state(pgdat, NR_WRITEBACK)),
4930 K(node_page_state(pgdat, NR_SHMEM)),
4931 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4932 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4933 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4934 * HPAGE_PMD_NR),
4935 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4936 #endif
4937 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4938 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4939 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4940 "yes" : "no");
4941 }
4942
4943 for_each_populated_zone(zone) {
4944 int i;
4945
4946 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4947 continue;
4948
4949 free_pcp = 0;
4950 for_each_online_cpu(cpu)
4951 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4952
4953 show_node(zone);
4954 printk(KERN_CONT
4955 "%s"
4956 " free:%lukB"
4957 " min:%lukB"
4958 " low:%lukB"
4959 " high:%lukB"
4960 " active_anon:%lukB"
4961 " inactive_anon:%lukB"
4962 " active_file:%lukB"
4963 " inactive_file:%lukB"
4964 " unevictable:%lukB"
4965 " writepending:%lukB"
4966 " present:%lukB"
4967 " managed:%lukB"
4968 " mlocked:%lukB"
4969 " kernel_stack:%lukB"
4970 " pagetables:%lukB"
4971 " bounce:%lukB"
4972 " free_pcp:%lukB"
4973 " local_pcp:%ukB"
4974 " free_cma:%lukB"
4975 "\n",
4976 zone->name,
4977 K(zone_page_state(zone, NR_FREE_PAGES)),
4978 K(min_wmark_pages(zone)),
4979 K(low_wmark_pages(zone)),
4980 K(high_wmark_pages(zone)),
4981 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4982 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4983 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4984 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4985 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4986 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4987 K(zone->present_pages),
4988 K(zone->managed_pages),
4989 K(zone_page_state(zone, NR_MLOCK)),
4990 zone_page_state(zone, NR_KERNEL_STACK_KB),
4991 K(zone_page_state(zone, NR_PAGETABLE)),
4992 K(zone_page_state(zone, NR_BOUNCE)),
4993 K(free_pcp),
4994 K(this_cpu_read(zone->pageset->pcp.count)),
4995 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4996 printk("lowmem_reserve[]:");
4997 for (i = 0; i < MAX_NR_ZONES; i++)
4998 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4999 printk(KERN_CONT "\n");
5000 }
5001
5002 for_each_populated_zone(zone) {
5003 unsigned int order;
5004 unsigned long nr[MAX_ORDER], flags, total = 0;
5005 unsigned char types[MAX_ORDER];
5006
5007 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5008 continue;
5009 show_node(zone);
5010 printk(KERN_CONT "%s: ", zone->name);
5011
5012 spin_lock_irqsave(&zone->lock, flags);
5013 for (order = 0; order < MAX_ORDER; order++) {
5014 struct free_area *area = &zone->free_area[order];
5015 int type;
5016
5017 nr[order] = area->nr_free;
5018 total += nr[order] << order;
5019
5020 types[order] = 0;
5021 for (type = 0; type < MIGRATE_TYPES; type++) {
5022 if (!list_empty(&area->free_list[type]))
5023 types[order] |= 1 << type;
5024 }
5025 }
5026 spin_unlock_irqrestore(&zone->lock, flags);
5027 for (order = 0; order < MAX_ORDER; order++) {
5028 printk(KERN_CONT "%lu*%lukB ",
5029 nr[order], K(1UL) << order);
5030 if (nr[order])
5031 show_migration_types(types[order]);
5032 }
5033 printk(KERN_CONT "= %lukB\n", K(total));
5034 }
5035
5036 hugetlb_show_meminfo();
5037
5038 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5039
5040 show_swap_cache_info();
5041 }
5042
5043 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5044 {
5045 zoneref->zone = zone;
5046 zoneref->zone_idx = zone_idx(zone);
5047 }
5048
5049 /*
5050 * Builds allocation fallback zone lists.
5051 *
5052 * Add all populated zones of a node to the zonelist.
5053 */
5054 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5055 {
5056 struct zone *zone;
5057 enum zone_type zone_type = MAX_NR_ZONES;
5058 int nr_zones = 0;
5059
5060 do {
5061 zone_type--;
5062 zone = pgdat->node_zones + zone_type;
5063 if (managed_zone(zone)) {
5064 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5065 check_highest_zone(zone_type);
5066 }
5067 } while (zone_type);
5068
5069 return nr_zones;
5070 }
5071
5072 #ifdef CONFIG_NUMA
5073
5074 static int __parse_numa_zonelist_order(char *s)
5075 {
5076 /*
5077 * We used to support different zonlists modes but they turned
5078 * out to be just not useful. Let's keep the warning in place
5079 * if somebody still use the cmd line parameter so that we do
5080 * not fail it silently
5081 */
5082 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5083 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5084 return -EINVAL;
5085 }
5086 return 0;
5087 }
5088
5089 static __init int setup_numa_zonelist_order(char *s)
5090 {
5091 if (!s)
5092 return 0;
5093
5094 return __parse_numa_zonelist_order(s);
5095 }
5096 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5097
5098 char numa_zonelist_order[] = "Node";
5099
5100 /*
5101 * sysctl handler for numa_zonelist_order
5102 */
5103 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5104 void __user *buffer, size_t *length,
5105 loff_t *ppos)
5106 {
5107 char *str;
5108 int ret;
5109
5110 if (!write)
5111 return proc_dostring(table, write, buffer, length, ppos);
5112 str = memdup_user_nul(buffer, 16);
5113 if (IS_ERR(str))
5114 return PTR_ERR(str);
5115
5116 ret = __parse_numa_zonelist_order(str);
5117 kfree(str);
5118 return ret;
5119 }
5120
5121
5122 #define MAX_NODE_LOAD (nr_online_nodes)
5123 static int node_load[MAX_NUMNODES];
5124
5125 /**
5126 * find_next_best_node - find the next node that should appear in a given node's fallback list
5127 * @node: node whose fallback list we're appending
5128 * @used_node_mask: nodemask_t of already used nodes
5129 *
5130 * We use a number of factors to determine which is the next node that should
5131 * appear on a given node's fallback list. The node should not have appeared
5132 * already in @node's fallback list, and it should be the next closest node
5133 * according to the distance array (which contains arbitrary distance values
5134 * from each node to each node in the system), and should also prefer nodes
5135 * with no CPUs, since presumably they'll have very little allocation pressure
5136 * on them otherwise.
5137 * It returns -1 if no node is found.
5138 */
5139 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5140 {
5141 int n, val;
5142 int min_val = INT_MAX;
5143 int best_node = NUMA_NO_NODE;
5144 const struct cpumask *tmp = cpumask_of_node(0);
5145
5146 /* Use the local node if we haven't already */
5147 if (!node_isset(node, *used_node_mask)) {
5148 node_set(node, *used_node_mask);
5149 return node;
5150 }
5151
5152 for_each_node_state(n, N_MEMORY) {
5153
5154 /* Don't want a node to appear more than once */
5155 if (node_isset(n, *used_node_mask))
5156 continue;
5157
5158 /* Use the distance array to find the distance */
5159 val = node_distance(node, n);
5160
5161 /* Penalize nodes under us ("prefer the next node") */
5162 val += (n < node);
5163
5164 /* Give preference to headless and unused nodes */
5165 tmp = cpumask_of_node(n);
5166 if (!cpumask_empty(tmp))
5167 val += PENALTY_FOR_NODE_WITH_CPUS;
5168
5169 /* Slight preference for less loaded node */
5170 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5171 val += node_load[n];
5172
5173 if (val < min_val) {
5174 min_val = val;
5175 best_node = n;
5176 }
5177 }
5178
5179 if (best_node >= 0)
5180 node_set(best_node, *used_node_mask);
5181
5182 return best_node;
5183 }
5184
5185
5186 /*
5187 * Build zonelists ordered by node and zones within node.
5188 * This results in maximum locality--normal zone overflows into local
5189 * DMA zone, if any--but risks exhausting DMA zone.
5190 */
5191 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5192 unsigned nr_nodes)
5193 {
5194 struct zoneref *zonerefs;
5195 int i;
5196
5197 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5198
5199 for (i = 0; i < nr_nodes; i++) {
5200 int nr_zones;
5201
5202 pg_data_t *node = NODE_DATA(node_order[i]);
5203
5204 nr_zones = build_zonerefs_node(node, zonerefs);
5205 zonerefs += nr_zones;
5206 }
5207 zonerefs->zone = NULL;
5208 zonerefs->zone_idx = 0;
5209 }
5210
5211 /*
5212 * Build gfp_thisnode zonelists
5213 */
5214 static void build_thisnode_zonelists(pg_data_t *pgdat)
5215 {
5216 struct zoneref *zonerefs;
5217 int nr_zones;
5218
5219 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5220 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5221 zonerefs += nr_zones;
5222 zonerefs->zone = NULL;
5223 zonerefs->zone_idx = 0;
5224 }
5225
5226 /*
5227 * Build zonelists ordered by zone and nodes within zones.
5228 * This results in conserving DMA zone[s] until all Normal memory is
5229 * exhausted, but results in overflowing to remote node while memory
5230 * may still exist in local DMA zone.
5231 */
5232
5233 static void build_zonelists(pg_data_t *pgdat)
5234 {
5235 static int node_order[MAX_NUMNODES];
5236 int node, load, nr_nodes = 0;
5237 nodemask_t used_mask;
5238 int local_node, prev_node;
5239
5240 /* NUMA-aware ordering of nodes */
5241 local_node = pgdat->node_id;
5242 load = nr_online_nodes;
5243 prev_node = local_node;
5244 nodes_clear(used_mask);
5245
5246 memset(node_order, 0, sizeof(node_order));
5247 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5248 /*
5249 * We don't want to pressure a particular node.
5250 * So adding penalty to the first node in same
5251 * distance group to make it round-robin.
5252 */
5253 if (node_distance(local_node, node) !=
5254 node_distance(local_node, prev_node))
5255 node_load[node] = load;
5256
5257 node_order[nr_nodes++] = node;
5258 prev_node = node;
5259 load--;
5260 }
5261
5262 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5263 build_thisnode_zonelists(pgdat);
5264 }
5265
5266 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5267 /*
5268 * Return node id of node used for "local" allocations.
5269 * I.e., first node id of first zone in arg node's generic zonelist.
5270 * Used for initializing percpu 'numa_mem', which is used primarily
5271 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5272 */
5273 int local_memory_node(int node)
5274 {
5275 struct zoneref *z;
5276
5277 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5278 gfp_zone(GFP_KERNEL),
5279 NULL);
5280 return zone_to_nid(z->zone);
5281 }
5282 #endif
5283
5284 static void setup_min_unmapped_ratio(void);
5285 static void setup_min_slab_ratio(void);
5286 #else /* CONFIG_NUMA */
5287
5288 static void build_zonelists(pg_data_t *pgdat)
5289 {
5290 int node, local_node;
5291 struct zoneref *zonerefs;
5292 int nr_zones;
5293
5294 local_node = pgdat->node_id;
5295
5296 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5297 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5298 zonerefs += nr_zones;
5299
5300 /*
5301 * Now we build the zonelist so that it contains the zones
5302 * of all the other nodes.
5303 * We don't want to pressure a particular node, so when
5304 * building the zones for node N, we make sure that the
5305 * zones coming right after the local ones are those from
5306 * node N+1 (modulo N)
5307 */
5308 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5309 if (!node_online(node))
5310 continue;
5311 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5312 zonerefs += nr_zones;
5313 }
5314 for (node = 0; node < local_node; node++) {
5315 if (!node_online(node))
5316 continue;
5317 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5318 zonerefs += nr_zones;
5319 }
5320
5321 zonerefs->zone = NULL;
5322 zonerefs->zone_idx = 0;
5323 }
5324
5325 #endif /* CONFIG_NUMA */
5326
5327 /*
5328 * Boot pageset table. One per cpu which is going to be used for all
5329 * zones and all nodes. The parameters will be set in such a way
5330 * that an item put on a list will immediately be handed over to
5331 * the buddy list. This is safe since pageset manipulation is done
5332 * with interrupts disabled.
5333 *
5334 * The boot_pagesets must be kept even after bootup is complete for
5335 * unused processors and/or zones. They do play a role for bootstrapping
5336 * hotplugged processors.
5337 *
5338 * zoneinfo_show() and maybe other functions do
5339 * not check if the processor is online before following the pageset pointer.
5340 * Other parts of the kernel may not check if the zone is available.
5341 */
5342 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5343 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5344 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5345
5346 static void __build_all_zonelists(void *data)
5347 {
5348 int nid;
5349 int __maybe_unused cpu;
5350 pg_data_t *self = data;
5351 static DEFINE_SPINLOCK(lock);
5352
5353 spin_lock(&lock);
5354
5355 #ifdef CONFIG_NUMA
5356 memset(node_load, 0, sizeof(node_load));
5357 #endif
5358
5359 /*
5360 * This node is hotadded and no memory is yet present. So just
5361 * building zonelists is fine - no need to touch other nodes.
5362 */
5363 if (self && !node_online(self->node_id)) {
5364 build_zonelists(self);
5365 } else {
5366 for_each_online_node(nid) {
5367 pg_data_t *pgdat = NODE_DATA(nid);
5368
5369 build_zonelists(pgdat);
5370 }
5371
5372 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5373 /*
5374 * We now know the "local memory node" for each node--
5375 * i.e., the node of the first zone in the generic zonelist.
5376 * Set up numa_mem percpu variable for on-line cpus. During
5377 * boot, only the boot cpu should be on-line; we'll init the
5378 * secondary cpus' numa_mem as they come on-line. During
5379 * node/memory hotplug, we'll fixup all on-line cpus.
5380 */
5381 for_each_online_cpu(cpu)
5382 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5383 #endif
5384 }
5385
5386 spin_unlock(&lock);
5387 }
5388
5389 static noinline void __init
5390 build_all_zonelists_init(void)
5391 {
5392 int cpu;
5393
5394 __build_all_zonelists(NULL);
5395
5396 /*
5397 * Initialize the boot_pagesets that are going to be used
5398 * for bootstrapping processors. The real pagesets for
5399 * each zone will be allocated later when the per cpu
5400 * allocator is available.
5401 *
5402 * boot_pagesets are used also for bootstrapping offline
5403 * cpus if the system is already booted because the pagesets
5404 * are needed to initialize allocators on a specific cpu too.
5405 * F.e. the percpu allocator needs the page allocator which
5406 * needs the percpu allocator in order to allocate its pagesets
5407 * (a chicken-egg dilemma).
5408 */
5409 for_each_possible_cpu(cpu)
5410 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5411
5412 mminit_verify_zonelist();
5413 cpuset_init_current_mems_allowed();
5414 }
5415
5416 /*
5417 * unless system_state == SYSTEM_BOOTING.
5418 *
5419 * __ref due to call of __init annotated helper build_all_zonelists_init
5420 * [protected by SYSTEM_BOOTING].
5421 */
5422 void __ref build_all_zonelists(pg_data_t *pgdat)
5423 {
5424 if (system_state == SYSTEM_BOOTING) {
5425 build_all_zonelists_init();
5426 } else {
5427 __build_all_zonelists(pgdat);
5428 /* cpuset refresh routine should be here */
5429 }
5430 vm_total_pages = nr_free_pagecache_pages();
5431 /*
5432 * Disable grouping by mobility if the number of pages in the
5433 * system is too low to allow the mechanism to work. It would be
5434 * more accurate, but expensive to check per-zone. This check is
5435 * made on memory-hotadd so a system can start with mobility
5436 * disabled and enable it later
5437 */
5438 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5439 page_group_by_mobility_disabled = 1;
5440 else
5441 page_group_by_mobility_disabled = 0;
5442
5443 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5444 nr_online_nodes,
5445 page_group_by_mobility_disabled ? "off" : "on",
5446 vm_total_pages);
5447 #ifdef CONFIG_NUMA
5448 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5449 #endif
5450 }
5451
5452 /*
5453 * Initially all pages are reserved - free ones are freed
5454 * up by free_all_bootmem() once the early boot process is
5455 * done. Non-atomic initialization, single-pass.
5456 */
5457 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5458 unsigned long start_pfn, enum memmap_context context,
5459 struct vmem_altmap *altmap)
5460 {
5461 unsigned long end_pfn = start_pfn + size;
5462 pg_data_t *pgdat = NODE_DATA(nid);
5463 unsigned long pfn;
5464 unsigned long nr_initialised = 0;
5465 struct page *page;
5466 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5467 struct memblock_region *r = NULL, *tmp;
5468 #endif
5469
5470 if (highest_memmap_pfn < end_pfn - 1)
5471 highest_memmap_pfn = end_pfn - 1;
5472
5473 /*
5474 * Honor reservation requested by the driver for this ZONE_DEVICE
5475 * memory
5476 */
5477 if (altmap && start_pfn == altmap->base_pfn)
5478 start_pfn += altmap->reserve;
5479
5480 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5481 /*
5482 * There can be holes in boot-time mem_map[]s handed to this
5483 * function. They do not exist on hotplugged memory.
5484 */
5485 if (context != MEMMAP_EARLY)
5486 goto not_early;
5487
5488 if (!early_pfn_valid(pfn))
5489 continue;
5490 if (!early_pfn_in_nid(pfn, nid))
5491 continue;
5492 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5493 break;
5494
5495 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5496 /*
5497 * Check given memblock attribute by firmware which can affect
5498 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5499 * mirrored, it's an overlapped memmap init. skip it.
5500 */
5501 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5502 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5503 for_each_memblock(memory, tmp)
5504 if (pfn < memblock_region_memory_end_pfn(tmp))
5505 break;
5506 r = tmp;
5507 }
5508 if (pfn >= memblock_region_memory_base_pfn(r) &&
5509 memblock_is_mirror(r)) {
5510 /* already initialized as NORMAL */
5511 pfn = memblock_region_memory_end_pfn(r);
5512 continue;
5513 }
5514 }
5515 #endif
5516
5517 not_early:
5518 page = pfn_to_page(pfn);
5519 __init_single_page(page, pfn, zone, nid);
5520 if (context == MEMMAP_HOTPLUG)
5521 SetPageReserved(page);
5522
5523 /*
5524 * Mark the block movable so that blocks are reserved for
5525 * movable at startup. This will force kernel allocations
5526 * to reserve their blocks rather than leaking throughout
5527 * the address space during boot when many long-lived
5528 * kernel allocations are made.
5529 *
5530 * bitmap is created for zone's valid pfn range. but memmap
5531 * can be created for invalid pages (for alignment)
5532 * check here not to call set_pageblock_migratetype() against
5533 * pfn out of zone.
5534 *
5535 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5536 * because this is done early in sparse_add_one_section
5537 */
5538 if (!(pfn & (pageblock_nr_pages - 1))) {
5539 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5540 cond_resched();
5541 }
5542 }
5543 }
5544
5545 static void __meminit zone_init_free_lists(struct zone *zone)
5546 {
5547 unsigned int order, t;
5548 for_each_migratetype_order(order, t) {
5549 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5550 zone->free_area[order].nr_free = 0;
5551 }
5552 }
5553
5554 #ifndef __HAVE_ARCH_MEMMAP_INIT
5555 #define memmap_init(size, nid, zone, start_pfn) \
5556 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5557 #endif
5558
5559 static int zone_batchsize(struct zone *zone)
5560 {
5561 #ifdef CONFIG_MMU
5562 int batch;
5563
5564 /*
5565 * The per-cpu-pages pools are set to around 1000th of the
5566 * size of the zone.
5567 */
5568 batch = zone->managed_pages / 1024;
5569 /* But no more than a meg. */
5570 if (batch * PAGE_SIZE > 1024 * 1024)
5571 batch = (1024 * 1024) / PAGE_SIZE;
5572 batch /= 4; /* We effectively *= 4 below */
5573 if (batch < 1)
5574 batch = 1;
5575
5576 /*
5577 * Clamp the batch to a 2^n - 1 value. Having a power
5578 * of 2 value was found to be more likely to have
5579 * suboptimal cache aliasing properties in some cases.
5580 *
5581 * For example if 2 tasks are alternately allocating
5582 * batches of pages, one task can end up with a lot
5583 * of pages of one half of the possible page colors
5584 * and the other with pages of the other colors.
5585 */
5586 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5587
5588 return batch;
5589
5590 #else
5591 /* The deferral and batching of frees should be suppressed under NOMMU
5592 * conditions.
5593 *
5594 * The problem is that NOMMU needs to be able to allocate large chunks
5595 * of contiguous memory as there's no hardware page translation to
5596 * assemble apparent contiguous memory from discontiguous pages.
5597 *
5598 * Queueing large contiguous runs of pages for batching, however,
5599 * causes the pages to actually be freed in smaller chunks. As there
5600 * can be a significant delay between the individual batches being
5601 * recycled, this leads to the once large chunks of space being
5602 * fragmented and becoming unavailable for high-order allocations.
5603 */
5604 return 0;
5605 #endif
5606 }
5607
5608 /*
5609 * pcp->high and pcp->batch values are related and dependent on one another:
5610 * ->batch must never be higher then ->high.
5611 * The following function updates them in a safe manner without read side
5612 * locking.
5613 *
5614 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5615 * those fields changing asynchronously (acording the the above rule).
5616 *
5617 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5618 * outside of boot time (or some other assurance that no concurrent updaters
5619 * exist).
5620 */
5621 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5622 unsigned long batch)
5623 {
5624 /* start with a fail safe value for batch */
5625 pcp->batch = 1;
5626 smp_wmb();
5627
5628 /* Update high, then batch, in order */
5629 pcp->high = high;
5630 smp_wmb();
5631
5632 pcp->batch = batch;
5633 }
5634
5635 /* a companion to pageset_set_high() */
5636 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5637 {
5638 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5639 }
5640
5641 static void pageset_init(struct per_cpu_pageset *p)
5642 {
5643 struct per_cpu_pages *pcp;
5644 int migratetype;
5645
5646 memset(p, 0, sizeof(*p));
5647
5648 pcp = &p->pcp;
5649 pcp->count = 0;
5650 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5651 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5652 }
5653
5654 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5655 {
5656 pageset_init(p);
5657 pageset_set_batch(p, batch);
5658 }
5659
5660 /*
5661 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5662 * to the value high for the pageset p.
5663 */
5664 static void pageset_set_high(struct per_cpu_pageset *p,
5665 unsigned long high)
5666 {
5667 unsigned long batch = max(1UL, high / 4);
5668 if ((high / 4) > (PAGE_SHIFT * 8))
5669 batch = PAGE_SHIFT * 8;
5670
5671 pageset_update(&p->pcp, high, batch);
5672 }
5673
5674 static void pageset_set_high_and_batch(struct zone *zone,
5675 struct per_cpu_pageset *pcp)
5676 {
5677 if (percpu_pagelist_fraction)
5678 pageset_set_high(pcp,
5679 (zone->managed_pages /
5680 percpu_pagelist_fraction));
5681 else
5682 pageset_set_batch(pcp, zone_batchsize(zone));
5683 }
5684
5685 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5686 {
5687 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5688
5689 pageset_init(pcp);
5690 pageset_set_high_and_batch(zone, pcp);
5691 }
5692
5693 void __meminit setup_zone_pageset(struct zone *zone)
5694 {
5695 int cpu;
5696 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5697 for_each_possible_cpu(cpu)
5698 zone_pageset_init(zone, cpu);
5699 }
5700
5701 /*
5702 * Allocate per cpu pagesets and initialize them.
5703 * Before this call only boot pagesets were available.
5704 */
5705 void __init setup_per_cpu_pageset(void)
5706 {
5707 struct pglist_data *pgdat;
5708 struct zone *zone;
5709
5710 for_each_populated_zone(zone)
5711 setup_zone_pageset(zone);
5712
5713 for_each_online_pgdat(pgdat)
5714 pgdat->per_cpu_nodestats =
5715 alloc_percpu(struct per_cpu_nodestat);
5716 }
5717
5718 static __meminit void zone_pcp_init(struct zone *zone)
5719 {
5720 /*
5721 * per cpu subsystem is not up at this point. The following code
5722 * relies on the ability of the linker to provide the
5723 * offset of a (static) per cpu variable into the per cpu area.
5724 */
5725 zone->pageset = &boot_pageset;
5726
5727 if (populated_zone(zone))
5728 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5729 zone->name, zone->present_pages,
5730 zone_batchsize(zone));
5731 }
5732
5733 void __meminit init_currently_empty_zone(struct zone *zone,
5734 unsigned long zone_start_pfn,
5735 unsigned long size)
5736 {
5737 struct pglist_data *pgdat = zone->zone_pgdat;
5738
5739 pgdat->nr_zones = zone_idx(zone) + 1;
5740
5741 zone->zone_start_pfn = zone_start_pfn;
5742
5743 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5744 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5745 pgdat->node_id,
5746 (unsigned long)zone_idx(zone),
5747 zone_start_pfn, (zone_start_pfn + size));
5748
5749 zone_init_free_lists(zone);
5750 zone->initialized = 1;
5751 }
5752
5753 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5754 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5755
5756 /*
5757 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5758 */
5759 int __meminit __early_pfn_to_nid(unsigned long pfn,
5760 struct mminit_pfnnid_cache *state)
5761 {
5762 unsigned long start_pfn, end_pfn;
5763 int nid;
5764
5765 if (state->last_start <= pfn && pfn < state->last_end)
5766 return state->last_nid;
5767
5768 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5769 if (nid != -1) {
5770 state->last_start = start_pfn;
5771 state->last_end = end_pfn;
5772 state->last_nid = nid;
5773 }
5774
5775 return nid;
5776 }
5777 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5778
5779 /**
5780 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5781 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5782 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5783 *
5784 * If an architecture guarantees that all ranges registered contain no holes
5785 * and may be freed, this this function may be used instead of calling
5786 * memblock_free_early_nid() manually.
5787 */
5788 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5789 {
5790 unsigned long start_pfn, end_pfn;
5791 int i, this_nid;
5792
5793 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5794 start_pfn = min(start_pfn, max_low_pfn);
5795 end_pfn = min(end_pfn, max_low_pfn);
5796
5797 if (start_pfn < end_pfn)
5798 memblock_free_early_nid(PFN_PHYS(start_pfn),
5799 (end_pfn - start_pfn) << PAGE_SHIFT,
5800 this_nid);
5801 }
5802 }
5803
5804 /**
5805 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5806 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5807 *
5808 * If an architecture guarantees that all ranges registered contain no holes and may
5809 * be freed, this function may be used instead of calling memory_present() manually.
5810 */
5811 void __init sparse_memory_present_with_active_regions(int nid)
5812 {
5813 unsigned long start_pfn, end_pfn;
5814 int i, this_nid;
5815
5816 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5817 memory_present(this_nid, start_pfn, end_pfn);
5818 }
5819
5820 /**
5821 * get_pfn_range_for_nid - Return the start and end page frames for a node
5822 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5823 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5824 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5825 *
5826 * It returns the start and end page frame of a node based on information
5827 * provided by memblock_set_node(). If called for a node
5828 * with no available memory, a warning is printed and the start and end
5829 * PFNs will be 0.
5830 */
5831 void __meminit get_pfn_range_for_nid(unsigned int nid,
5832 unsigned long *start_pfn, unsigned long *end_pfn)
5833 {
5834 unsigned long this_start_pfn, this_end_pfn;
5835 int i;
5836
5837 *start_pfn = -1UL;
5838 *end_pfn = 0;
5839
5840 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5841 *start_pfn = min(*start_pfn, this_start_pfn);
5842 *end_pfn = max(*end_pfn, this_end_pfn);
5843 }
5844
5845 if (*start_pfn == -1UL)
5846 *start_pfn = 0;
5847 }
5848
5849 /*
5850 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5851 * assumption is made that zones within a node are ordered in monotonic
5852 * increasing memory addresses so that the "highest" populated zone is used
5853 */
5854 static void __init find_usable_zone_for_movable(void)
5855 {
5856 int zone_index;
5857 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5858 if (zone_index == ZONE_MOVABLE)
5859 continue;
5860
5861 if (arch_zone_highest_possible_pfn[zone_index] >
5862 arch_zone_lowest_possible_pfn[zone_index])
5863 break;
5864 }
5865
5866 VM_BUG_ON(zone_index == -1);
5867 movable_zone = zone_index;
5868 }
5869
5870 /*
5871 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5872 * because it is sized independent of architecture. Unlike the other zones,
5873 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5874 * in each node depending on the size of each node and how evenly kernelcore
5875 * is distributed. This helper function adjusts the zone ranges
5876 * provided by the architecture for a given node by using the end of the
5877 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5878 * zones within a node are in order of monotonic increases memory addresses
5879 */
5880 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5881 unsigned long zone_type,
5882 unsigned long node_start_pfn,
5883 unsigned long node_end_pfn,
5884 unsigned long *zone_start_pfn,
5885 unsigned long *zone_end_pfn)
5886 {
5887 /* Only adjust if ZONE_MOVABLE is on this node */
5888 if (zone_movable_pfn[nid]) {
5889 /* Size ZONE_MOVABLE */
5890 if (zone_type == ZONE_MOVABLE) {
5891 *zone_start_pfn = zone_movable_pfn[nid];
5892 *zone_end_pfn = min(node_end_pfn,
5893 arch_zone_highest_possible_pfn[movable_zone]);
5894
5895 /* Adjust for ZONE_MOVABLE starting within this range */
5896 } else if (!mirrored_kernelcore &&
5897 *zone_start_pfn < zone_movable_pfn[nid] &&
5898 *zone_end_pfn > zone_movable_pfn[nid]) {
5899 *zone_end_pfn = zone_movable_pfn[nid];
5900
5901 /* Check if this whole range is within ZONE_MOVABLE */
5902 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5903 *zone_start_pfn = *zone_end_pfn;
5904 }
5905 }
5906
5907 /*
5908 * Return the number of pages a zone spans in a node, including holes
5909 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5910 */
5911 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5912 unsigned long zone_type,
5913 unsigned long node_start_pfn,
5914 unsigned long node_end_pfn,
5915 unsigned long *zone_start_pfn,
5916 unsigned long *zone_end_pfn,
5917 unsigned long *ignored)
5918 {
5919 /* When hotadd a new node from cpu_up(), the node should be empty */
5920 if (!node_start_pfn && !node_end_pfn)
5921 return 0;
5922
5923 /* Get the start and end of the zone */
5924 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5925 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5926 adjust_zone_range_for_zone_movable(nid, zone_type,
5927 node_start_pfn, node_end_pfn,
5928 zone_start_pfn, zone_end_pfn);
5929
5930 /* Check that this node has pages within the zone's required range */
5931 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5932 return 0;
5933
5934 /* Move the zone boundaries inside the node if necessary */
5935 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5936 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5937
5938 /* Return the spanned pages */
5939 return *zone_end_pfn - *zone_start_pfn;
5940 }
5941
5942 /*
5943 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5944 * then all holes in the requested range will be accounted for.
5945 */
5946 unsigned long __meminit __absent_pages_in_range(int nid,
5947 unsigned long range_start_pfn,
5948 unsigned long range_end_pfn)
5949 {
5950 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5951 unsigned long start_pfn, end_pfn;
5952 int i;
5953
5954 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5955 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5956 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5957 nr_absent -= end_pfn - start_pfn;
5958 }
5959 return nr_absent;
5960 }
5961
5962 /**
5963 * absent_pages_in_range - Return number of page frames in holes within a range
5964 * @start_pfn: The start PFN to start searching for holes
5965 * @end_pfn: The end PFN to stop searching for holes
5966 *
5967 * It returns the number of pages frames in memory holes within a range.
5968 */
5969 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5970 unsigned long end_pfn)
5971 {
5972 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5973 }
5974
5975 /* Return the number of page frames in holes in a zone on a node */
5976 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5977 unsigned long zone_type,
5978 unsigned long node_start_pfn,
5979 unsigned long node_end_pfn,
5980 unsigned long *ignored)
5981 {
5982 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5983 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5984 unsigned long zone_start_pfn, zone_end_pfn;
5985 unsigned long nr_absent;
5986
5987 /* When hotadd a new node from cpu_up(), the node should be empty */
5988 if (!node_start_pfn && !node_end_pfn)
5989 return 0;
5990
5991 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5992 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5993
5994 adjust_zone_range_for_zone_movable(nid, zone_type,
5995 node_start_pfn, node_end_pfn,
5996 &zone_start_pfn, &zone_end_pfn);
5997 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5998
5999 /*
6000 * ZONE_MOVABLE handling.
6001 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6002 * and vice versa.
6003 */
6004 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6005 unsigned long start_pfn, end_pfn;
6006 struct memblock_region *r;
6007
6008 for_each_memblock(memory, r) {
6009 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6010 zone_start_pfn, zone_end_pfn);
6011 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6012 zone_start_pfn, zone_end_pfn);
6013
6014 if (zone_type == ZONE_MOVABLE &&
6015 memblock_is_mirror(r))
6016 nr_absent += end_pfn - start_pfn;
6017
6018 if (zone_type == ZONE_NORMAL &&
6019 !memblock_is_mirror(r))
6020 nr_absent += end_pfn - start_pfn;
6021 }
6022 }
6023
6024 return nr_absent;
6025 }
6026
6027 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6028 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6029 unsigned long zone_type,
6030 unsigned long node_start_pfn,
6031 unsigned long node_end_pfn,
6032 unsigned long *zone_start_pfn,
6033 unsigned long *zone_end_pfn,
6034 unsigned long *zones_size)
6035 {
6036 unsigned int zone;
6037
6038 *zone_start_pfn = node_start_pfn;
6039 for (zone = 0; zone < zone_type; zone++)
6040 *zone_start_pfn += zones_size[zone];
6041
6042 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6043
6044 return zones_size[zone_type];
6045 }
6046
6047 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6048 unsigned long zone_type,
6049 unsigned long node_start_pfn,
6050 unsigned long node_end_pfn,
6051 unsigned long *zholes_size)
6052 {
6053 if (!zholes_size)
6054 return 0;
6055
6056 return zholes_size[zone_type];
6057 }
6058
6059 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6060
6061 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6062 unsigned long node_start_pfn,
6063 unsigned long node_end_pfn,
6064 unsigned long *zones_size,
6065 unsigned long *zholes_size)
6066 {
6067 unsigned long realtotalpages = 0, totalpages = 0;
6068 enum zone_type i;
6069
6070 for (i = 0; i < MAX_NR_ZONES; i++) {
6071 struct zone *zone = pgdat->node_zones + i;
6072 unsigned long zone_start_pfn, zone_end_pfn;
6073 unsigned long size, real_size;
6074
6075 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6076 node_start_pfn,
6077 node_end_pfn,
6078 &zone_start_pfn,
6079 &zone_end_pfn,
6080 zones_size);
6081 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6082 node_start_pfn, node_end_pfn,
6083 zholes_size);
6084 if (size)
6085 zone->zone_start_pfn = zone_start_pfn;
6086 else
6087 zone->zone_start_pfn = 0;
6088 zone->spanned_pages = size;
6089 zone->present_pages = real_size;
6090
6091 totalpages += size;
6092 realtotalpages += real_size;
6093 }
6094
6095 pgdat->node_spanned_pages = totalpages;
6096 pgdat->node_present_pages = realtotalpages;
6097 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6098 realtotalpages);
6099 }
6100
6101 #ifndef CONFIG_SPARSEMEM
6102 /*
6103 * Calculate the size of the zone->blockflags rounded to an unsigned long
6104 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6105 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6106 * round what is now in bits to nearest long in bits, then return it in
6107 * bytes.
6108 */
6109 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6110 {
6111 unsigned long usemapsize;
6112
6113 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6114 usemapsize = roundup(zonesize, pageblock_nr_pages);
6115 usemapsize = usemapsize >> pageblock_order;
6116 usemapsize *= NR_PAGEBLOCK_BITS;
6117 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6118
6119 return usemapsize / 8;
6120 }
6121
6122 static void __ref setup_usemap(struct pglist_data *pgdat,
6123 struct zone *zone,
6124 unsigned long zone_start_pfn,
6125 unsigned long zonesize)
6126 {
6127 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6128 zone->pageblock_flags = NULL;
6129 if (usemapsize)
6130 zone->pageblock_flags =
6131 memblock_virt_alloc_node_nopanic(usemapsize,
6132 pgdat->node_id);
6133 }
6134 #else
6135 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6136 unsigned long zone_start_pfn, unsigned long zonesize) {}
6137 #endif /* CONFIG_SPARSEMEM */
6138
6139 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6140
6141 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6142 void __init set_pageblock_order(void)
6143 {
6144 unsigned int order;
6145
6146 /* Check that pageblock_nr_pages has not already been setup */
6147 if (pageblock_order)
6148 return;
6149
6150 if (HPAGE_SHIFT > PAGE_SHIFT)
6151 order = HUGETLB_PAGE_ORDER;
6152 else
6153 order = MAX_ORDER - 1;
6154
6155 /*
6156 * Assume the largest contiguous order of interest is a huge page.
6157 * This value may be variable depending on boot parameters on IA64 and
6158 * powerpc.
6159 */
6160 pageblock_order = order;
6161 }
6162 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6163
6164 /*
6165 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6166 * is unused as pageblock_order is set at compile-time. See
6167 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6168 * the kernel config
6169 */
6170 void __init set_pageblock_order(void)
6171 {
6172 }
6173
6174 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6175
6176 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6177 unsigned long present_pages)
6178 {
6179 unsigned long pages = spanned_pages;
6180
6181 /*
6182 * Provide a more accurate estimation if there are holes within
6183 * the zone and SPARSEMEM is in use. If there are holes within the
6184 * zone, each populated memory region may cost us one or two extra
6185 * memmap pages due to alignment because memmap pages for each
6186 * populated regions may not be naturally aligned on page boundary.
6187 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6188 */
6189 if (spanned_pages > present_pages + (present_pages >> 4) &&
6190 IS_ENABLED(CONFIG_SPARSEMEM))
6191 pages = present_pages;
6192
6193 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6194 }
6195
6196 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6197 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6198 {
6199 spin_lock_init(&pgdat->split_queue_lock);
6200 INIT_LIST_HEAD(&pgdat->split_queue);
6201 pgdat->split_queue_len = 0;
6202 }
6203 #else
6204 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6205 #endif
6206
6207 #ifdef CONFIG_COMPACTION
6208 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6209 {
6210 init_waitqueue_head(&pgdat->kcompactd_wait);
6211 }
6212 #else
6213 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6214 #endif
6215
6216 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6217 {
6218 pgdat_resize_init(pgdat);
6219
6220 pgdat_init_split_queue(pgdat);
6221 pgdat_init_kcompactd(pgdat);
6222
6223 init_waitqueue_head(&pgdat->kswapd_wait);
6224 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6225
6226 pgdat_page_ext_init(pgdat);
6227 spin_lock_init(&pgdat->lru_lock);
6228 lruvec_init(node_lruvec(pgdat));
6229 }
6230
6231 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6232 unsigned long remaining_pages)
6233 {
6234 zone->managed_pages = remaining_pages;
6235 zone_set_nid(zone, nid);
6236 zone->name = zone_names[idx];
6237 zone->zone_pgdat = NODE_DATA(nid);
6238 spin_lock_init(&zone->lock);
6239 zone_seqlock_init(zone);
6240 zone_pcp_init(zone);
6241 }
6242
6243 /*
6244 * Set up the zone data structures
6245 * - init pgdat internals
6246 * - init all zones belonging to this node
6247 *
6248 * NOTE: this function is only called during memory hotplug
6249 */
6250 #ifdef CONFIG_MEMORY_HOTPLUG
6251 void __ref free_area_init_core_hotplug(int nid)
6252 {
6253 enum zone_type z;
6254 pg_data_t *pgdat = NODE_DATA(nid);
6255
6256 pgdat_init_internals(pgdat);
6257 for (z = 0; z < MAX_NR_ZONES; z++)
6258 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6259 }
6260 #endif
6261
6262 /*
6263 * Set up the zone data structures:
6264 * - mark all pages reserved
6265 * - mark all memory queues empty
6266 * - clear the memory bitmaps
6267 *
6268 * NOTE: pgdat should get zeroed by caller.
6269 * NOTE: this function is only called during early init.
6270 */
6271 static void __init free_area_init_core(struct pglist_data *pgdat)
6272 {
6273 enum zone_type j;
6274 int nid = pgdat->node_id;
6275
6276 pgdat_init_internals(pgdat);
6277 pgdat->per_cpu_nodestats = &boot_nodestats;
6278
6279 for (j = 0; j < MAX_NR_ZONES; j++) {
6280 struct zone *zone = pgdat->node_zones + j;
6281 unsigned long size, freesize, memmap_pages;
6282 unsigned long zone_start_pfn = zone->zone_start_pfn;
6283
6284 size = zone->spanned_pages;
6285 freesize = zone->present_pages;
6286
6287 /*
6288 * Adjust freesize so that it accounts for how much memory
6289 * is used by this zone for memmap. This affects the watermark
6290 * and per-cpu initialisations
6291 */
6292 memmap_pages = calc_memmap_size(size, freesize);
6293 if (!is_highmem_idx(j)) {
6294 if (freesize >= memmap_pages) {
6295 freesize -= memmap_pages;
6296 if (memmap_pages)
6297 printk(KERN_DEBUG
6298 " %s zone: %lu pages used for memmap\n",
6299 zone_names[j], memmap_pages);
6300 } else
6301 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6302 zone_names[j], memmap_pages, freesize);
6303 }
6304
6305 /* Account for reserved pages */
6306 if (j == 0 && freesize > dma_reserve) {
6307 freesize -= dma_reserve;
6308 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6309 zone_names[0], dma_reserve);
6310 }
6311
6312 if (!is_highmem_idx(j))
6313 nr_kernel_pages += freesize;
6314 /* Charge for highmem memmap if there are enough kernel pages */
6315 else if (nr_kernel_pages > memmap_pages * 2)
6316 nr_kernel_pages -= memmap_pages;
6317 nr_all_pages += freesize;
6318
6319 /*
6320 * Set an approximate value for lowmem here, it will be adjusted
6321 * when the bootmem allocator frees pages into the buddy system.
6322 * And all highmem pages will be managed by the buddy system.
6323 */
6324 zone_init_internals(zone, j, nid, freesize);
6325
6326 if (!size)
6327 continue;
6328
6329 set_pageblock_order();
6330 setup_usemap(pgdat, zone, zone_start_pfn, size);
6331 init_currently_empty_zone(zone, zone_start_pfn, size);
6332 memmap_init(size, nid, j, zone_start_pfn);
6333 }
6334 }
6335
6336 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6337 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6338 {
6339 unsigned long __maybe_unused start = 0;
6340 unsigned long __maybe_unused offset = 0;
6341
6342 /* Skip empty nodes */
6343 if (!pgdat->node_spanned_pages)
6344 return;
6345
6346 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6347 offset = pgdat->node_start_pfn - start;
6348 /* ia64 gets its own node_mem_map, before this, without bootmem */
6349 if (!pgdat->node_mem_map) {
6350 unsigned long size, end;
6351 struct page *map;
6352
6353 /*
6354 * The zone's endpoints aren't required to be MAX_ORDER
6355 * aligned but the node_mem_map endpoints must be in order
6356 * for the buddy allocator to function correctly.
6357 */
6358 end = pgdat_end_pfn(pgdat);
6359 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6360 size = (end - start) * sizeof(struct page);
6361 map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
6362 pgdat->node_mem_map = map + offset;
6363 }
6364 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6365 __func__, pgdat->node_id, (unsigned long)pgdat,
6366 (unsigned long)pgdat->node_mem_map);
6367 #ifndef CONFIG_NEED_MULTIPLE_NODES
6368 /*
6369 * With no DISCONTIG, the global mem_map is just set as node 0's
6370 */
6371 if (pgdat == NODE_DATA(0)) {
6372 mem_map = NODE_DATA(0)->node_mem_map;
6373 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6374 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6375 mem_map -= offset;
6376 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6377 }
6378 #endif
6379 }
6380 #else
6381 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6382 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6383
6384 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6385 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6386 {
6387 /*
6388 * We start only with one section of pages, more pages are added as
6389 * needed until the rest of deferred pages are initialized.
6390 */
6391 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6392 pgdat->node_spanned_pages);
6393 pgdat->first_deferred_pfn = ULONG_MAX;
6394 }
6395 #else
6396 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6397 #endif
6398
6399 void __init free_area_init_node(int nid, unsigned long *zones_size,
6400 unsigned long node_start_pfn,
6401 unsigned long *zholes_size)
6402 {
6403 pg_data_t *pgdat = NODE_DATA(nid);
6404 unsigned long start_pfn = 0;
6405 unsigned long end_pfn = 0;
6406
6407 /* pg_data_t should be reset to zero when it's allocated */
6408 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6409
6410 pgdat->node_id = nid;
6411 pgdat->node_start_pfn = node_start_pfn;
6412 pgdat->per_cpu_nodestats = NULL;
6413 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6414 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6415 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6416 (u64)start_pfn << PAGE_SHIFT,
6417 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6418 #else
6419 start_pfn = node_start_pfn;
6420 #endif
6421 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6422 zones_size, zholes_size);
6423
6424 alloc_node_mem_map(pgdat);
6425 pgdat_set_deferred_range(pgdat);
6426
6427 free_area_init_core(pgdat);
6428 }
6429
6430 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6431 /*
6432 * Only struct pages that are backed by physical memory are zeroed and
6433 * initialized by going through __init_single_page(). But, there are some
6434 * struct pages which are reserved in memblock allocator and their fields
6435 * may be accessed (for example page_to_pfn() on some configuration accesses
6436 * flags). We must explicitly zero those struct pages.
6437 */
6438 void __init zero_resv_unavail(void)
6439 {
6440 phys_addr_t start, end;
6441 unsigned long pfn;
6442 u64 i, pgcnt;
6443
6444 /*
6445 * Loop through ranges that are reserved, but do not have reported
6446 * physical memory backing.
6447 */
6448 pgcnt = 0;
6449 for_each_resv_unavail_range(i, &start, &end) {
6450 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6451 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6452 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6453 + pageblock_nr_pages - 1;
6454 continue;
6455 }
6456 mm_zero_struct_page(pfn_to_page(pfn));
6457 pgcnt++;
6458 }
6459 }
6460
6461 /*
6462 * Struct pages that do not have backing memory. This could be because
6463 * firmware is using some of this memory, or for some other reasons.
6464 * Once memblock is changed so such behaviour is not allowed: i.e.
6465 * list of "reserved" memory must be a subset of list of "memory", then
6466 * this code can be removed.
6467 */
6468 if (pgcnt)
6469 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6470 }
6471 #endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6472
6473 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6474
6475 #if MAX_NUMNODES > 1
6476 /*
6477 * Figure out the number of possible node ids.
6478 */
6479 void __init setup_nr_node_ids(void)
6480 {
6481 unsigned int highest;
6482
6483 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6484 nr_node_ids = highest + 1;
6485 }
6486 #endif
6487
6488 /**
6489 * node_map_pfn_alignment - determine the maximum internode alignment
6490 *
6491 * This function should be called after node map is populated and sorted.
6492 * It calculates the maximum power of two alignment which can distinguish
6493 * all the nodes.
6494 *
6495 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6496 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6497 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6498 * shifted, 1GiB is enough and this function will indicate so.
6499 *
6500 * This is used to test whether pfn -> nid mapping of the chosen memory
6501 * model has fine enough granularity to avoid incorrect mapping for the
6502 * populated node map.
6503 *
6504 * Returns the determined alignment in pfn's. 0 if there is no alignment
6505 * requirement (single node).
6506 */
6507 unsigned long __init node_map_pfn_alignment(void)
6508 {
6509 unsigned long accl_mask = 0, last_end = 0;
6510 unsigned long start, end, mask;
6511 int last_nid = -1;
6512 int i, nid;
6513
6514 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6515 if (!start || last_nid < 0 || last_nid == nid) {
6516 last_nid = nid;
6517 last_end = end;
6518 continue;
6519 }
6520
6521 /*
6522 * Start with a mask granular enough to pin-point to the
6523 * start pfn and tick off bits one-by-one until it becomes
6524 * too coarse to separate the current node from the last.
6525 */
6526 mask = ~((1 << __ffs(start)) - 1);
6527 while (mask && last_end <= (start & (mask << 1)))
6528 mask <<= 1;
6529
6530 /* accumulate all internode masks */
6531 accl_mask |= mask;
6532 }
6533
6534 /* convert mask to number of pages */
6535 return ~accl_mask + 1;
6536 }
6537
6538 /* Find the lowest pfn for a node */
6539 static unsigned long __init find_min_pfn_for_node(int nid)
6540 {
6541 unsigned long min_pfn = ULONG_MAX;
6542 unsigned long start_pfn;
6543 int i;
6544
6545 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6546 min_pfn = min(min_pfn, start_pfn);
6547
6548 if (min_pfn == ULONG_MAX) {
6549 pr_warn("Could not find start_pfn for node %d\n", nid);
6550 return 0;
6551 }
6552
6553 return min_pfn;
6554 }
6555
6556 /**
6557 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6558 *
6559 * It returns the minimum PFN based on information provided via
6560 * memblock_set_node().
6561 */
6562 unsigned long __init find_min_pfn_with_active_regions(void)
6563 {
6564 return find_min_pfn_for_node(MAX_NUMNODES);
6565 }
6566
6567 /*
6568 * early_calculate_totalpages()
6569 * Sum pages in active regions for movable zone.
6570 * Populate N_MEMORY for calculating usable_nodes.
6571 */
6572 static unsigned long __init early_calculate_totalpages(void)
6573 {
6574 unsigned long totalpages = 0;
6575 unsigned long start_pfn, end_pfn;
6576 int i, nid;
6577
6578 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6579 unsigned long pages = end_pfn - start_pfn;
6580
6581 totalpages += pages;
6582 if (pages)
6583 node_set_state(nid, N_MEMORY);
6584 }
6585 return totalpages;
6586 }
6587
6588 /*
6589 * Find the PFN the Movable zone begins in each node. Kernel memory
6590 * is spread evenly between nodes as long as the nodes have enough
6591 * memory. When they don't, some nodes will have more kernelcore than
6592 * others
6593 */
6594 static void __init find_zone_movable_pfns_for_nodes(void)
6595 {
6596 int i, nid;
6597 unsigned long usable_startpfn;
6598 unsigned long kernelcore_node, kernelcore_remaining;
6599 /* save the state before borrow the nodemask */
6600 nodemask_t saved_node_state = node_states[N_MEMORY];
6601 unsigned long totalpages = early_calculate_totalpages();
6602 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6603 struct memblock_region *r;
6604
6605 /* Need to find movable_zone earlier when movable_node is specified. */
6606 find_usable_zone_for_movable();
6607
6608 /*
6609 * If movable_node is specified, ignore kernelcore and movablecore
6610 * options.
6611 */
6612 if (movable_node_is_enabled()) {
6613 for_each_memblock(memory, r) {
6614 if (!memblock_is_hotpluggable(r))
6615 continue;
6616
6617 nid = r->nid;
6618
6619 usable_startpfn = PFN_DOWN(r->base);
6620 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6621 min(usable_startpfn, zone_movable_pfn[nid]) :
6622 usable_startpfn;
6623 }
6624
6625 goto out2;
6626 }
6627
6628 /*
6629 * If kernelcore=mirror is specified, ignore movablecore option
6630 */
6631 if (mirrored_kernelcore) {
6632 bool mem_below_4gb_not_mirrored = false;
6633
6634 for_each_memblock(memory, r) {
6635 if (memblock_is_mirror(r))
6636 continue;
6637
6638 nid = r->nid;
6639
6640 usable_startpfn = memblock_region_memory_base_pfn(r);
6641
6642 if (usable_startpfn < 0x100000) {
6643 mem_below_4gb_not_mirrored = true;
6644 continue;
6645 }
6646
6647 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6648 min(usable_startpfn, zone_movable_pfn[nid]) :
6649 usable_startpfn;
6650 }
6651
6652 if (mem_below_4gb_not_mirrored)
6653 pr_warn("This configuration results in unmirrored kernel memory.");
6654
6655 goto out2;
6656 }
6657
6658 /*
6659 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6660 * amount of necessary memory.
6661 */
6662 if (required_kernelcore_percent)
6663 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6664 10000UL;
6665 if (required_movablecore_percent)
6666 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6667 10000UL;
6668
6669 /*
6670 * If movablecore= was specified, calculate what size of
6671 * kernelcore that corresponds so that memory usable for
6672 * any allocation type is evenly spread. If both kernelcore
6673 * and movablecore are specified, then the value of kernelcore
6674 * will be used for required_kernelcore if it's greater than
6675 * what movablecore would have allowed.
6676 */
6677 if (required_movablecore) {
6678 unsigned long corepages;
6679
6680 /*
6681 * Round-up so that ZONE_MOVABLE is at least as large as what
6682 * was requested by the user
6683 */
6684 required_movablecore =
6685 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6686 required_movablecore = min(totalpages, required_movablecore);
6687 corepages = totalpages - required_movablecore;
6688
6689 required_kernelcore = max(required_kernelcore, corepages);
6690 }
6691
6692 /*
6693 * If kernelcore was not specified or kernelcore size is larger
6694 * than totalpages, there is no ZONE_MOVABLE.
6695 */
6696 if (!required_kernelcore || required_kernelcore >= totalpages)
6697 goto out;
6698
6699 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6700 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6701
6702 restart:
6703 /* Spread kernelcore memory as evenly as possible throughout nodes */
6704 kernelcore_node = required_kernelcore / usable_nodes;
6705 for_each_node_state(nid, N_MEMORY) {
6706 unsigned long start_pfn, end_pfn;
6707
6708 /*
6709 * Recalculate kernelcore_node if the division per node
6710 * now exceeds what is necessary to satisfy the requested
6711 * amount of memory for the kernel
6712 */
6713 if (required_kernelcore < kernelcore_node)
6714 kernelcore_node = required_kernelcore / usable_nodes;
6715
6716 /*
6717 * As the map is walked, we track how much memory is usable
6718 * by the kernel using kernelcore_remaining. When it is
6719 * 0, the rest of the node is usable by ZONE_MOVABLE
6720 */
6721 kernelcore_remaining = kernelcore_node;
6722
6723 /* Go through each range of PFNs within this node */
6724 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6725 unsigned long size_pages;
6726
6727 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6728 if (start_pfn >= end_pfn)
6729 continue;
6730
6731 /* Account for what is only usable for kernelcore */
6732 if (start_pfn < usable_startpfn) {
6733 unsigned long kernel_pages;
6734 kernel_pages = min(end_pfn, usable_startpfn)
6735 - start_pfn;
6736
6737 kernelcore_remaining -= min(kernel_pages,
6738 kernelcore_remaining);
6739 required_kernelcore -= min(kernel_pages,
6740 required_kernelcore);
6741
6742 /* Continue if range is now fully accounted */
6743 if (end_pfn <= usable_startpfn) {
6744
6745 /*
6746 * Push zone_movable_pfn to the end so
6747 * that if we have to rebalance
6748 * kernelcore across nodes, we will
6749 * not double account here
6750 */
6751 zone_movable_pfn[nid] = end_pfn;
6752 continue;
6753 }
6754 start_pfn = usable_startpfn;
6755 }
6756
6757 /*
6758 * The usable PFN range for ZONE_MOVABLE is from
6759 * start_pfn->end_pfn. Calculate size_pages as the
6760 * number of pages used as kernelcore
6761 */
6762 size_pages = end_pfn - start_pfn;
6763 if (size_pages > kernelcore_remaining)
6764 size_pages = kernelcore_remaining;
6765 zone_movable_pfn[nid] = start_pfn + size_pages;
6766
6767 /*
6768 * Some kernelcore has been met, update counts and
6769 * break if the kernelcore for this node has been
6770 * satisfied
6771 */
6772 required_kernelcore -= min(required_kernelcore,
6773 size_pages);
6774 kernelcore_remaining -= size_pages;
6775 if (!kernelcore_remaining)
6776 break;
6777 }
6778 }
6779
6780 /*
6781 * If there is still required_kernelcore, we do another pass with one
6782 * less node in the count. This will push zone_movable_pfn[nid] further
6783 * along on the nodes that still have memory until kernelcore is
6784 * satisfied
6785 */
6786 usable_nodes--;
6787 if (usable_nodes && required_kernelcore > usable_nodes)
6788 goto restart;
6789
6790 out2:
6791 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6792 for (nid = 0; nid < MAX_NUMNODES; nid++)
6793 zone_movable_pfn[nid] =
6794 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6795
6796 out:
6797 /* restore the node_state */
6798 node_states[N_MEMORY] = saved_node_state;
6799 }
6800
6801 /* Any regular or high memory on that node ? */
6802 static void check_for_memory(pg_data_t *pgdat, int nid)
6803 {
6804 enum zone_type zone_type;
6805
6806 if (N_MEMORY == N_NORMAL_MEMORY)
6807 return;
6808
6809 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6810 struct zone *zone = &pgdat->node_zones[zone_type];
6811 if (populated_zone(zone)) {
6812 node_set_state(nid, N_HIGH_MEMORY);
6813 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6814 zone_type <= ZONE_NORMAL)
6815 node_set_state(nid, N_NORMAL_MEMORY);
6816 break;
6817 }
6818 }
6819 }
6820
6821 /**
6822 * free_area_init_nodes - Initialise all pg_data_t and zone data
6823 * @max_zone_pfn: an array of max PFNs for each zone
6824 *
6825 * This will call free_area_init_node() for each active node in the system.
6826 * Using the page ranges provided by memblock_set_node(), the size of each
6827 * zone in each node and their holes is calculated. If the maximum PFN
6828 * between two adjacent zones match, it is assumed that the zone is empty.
6829 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6830 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6831 * starts where the previous one ended. For example, ZONE_DMA32 starts
6832 * at arch_max_dma_pfn.
6833 */
6834 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6835 {
6836 unsigned long start_pfn, end_pfn;
6837 int i, nid;
6838
6839 /* Record where the zone boundaries are */
6840 memset(arch_zone_lowest_possible_pfn, 0,
6841 sizeof(arch_zone_lowest_possible_pfn));
6842 memset(arch_zone_highest_possible_pfn, 0,
6843 sizeof(arch_zone_highest_possible_pfn));
6844
6845 start_pfn = find_min_pfn_with_active_regions();
6846
6847 for (i = 0; i < MAX_NR_ZONES; i++) {
6848 if (i == ZONE_MOVABLE)
6849 continue;
6850
6851 end_pfn = max(max_zone_pfn[i], start_pfn);
6852 arch_zone_lowest_possible_pfn[i] = start_pfn;
6853 arch_zone_highest_possible_pfn[i] = end_pfn;
6854
6855 start_pfn = end_pfn;
6856 }
6857
6858 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6859 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6860 find_zone_movable_pfns_for_nodes();
6861
6862 /* Print out the zone ranges */
6863 pr_info("Zone ranges:\n");
6864 for (i = 0; i < MAX_NR_ZONES; i++) {
6865 if (i == ZONE_MOVABLE)
6866 continue;
6867 pr_info(" %-8s ", zone_names[i]);
6868 if (arch_zone_lowest_possible_pfn[i] ==
6869 arch_zone_highest_possible_pfn[i])
6870 pr_cont("empty\n");
6871 else
6872 pr_cont("[mem %#018Lx-%#018Lx]\n",
6873 (u64)arch_zone_lowest_possible_pfn[i]
6874 << PAGE_SHIFT,
6875 ((u64)arch_zone_highest_possible_pfn[i]
6876 << PAGE_SHIFT) - 1);
6877 }
6878
6879 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6880 pr_info("Movable zone start for each node\n");
6881 for (i = 0; i < MAX_NUMNODES; i++) {
6882 if (zone_movable_pfn[i])
6883 pr_info(" Node %d: %#018Lx\n", i,
6884 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6885 }
6886
6887 /* Print out the early node map */
6888 pr_info("Early memory node ranges\n");
6889 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6890 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6891 (u64)start_pfn << PAGE_SHIFT,
6892 ((u64)end_pfn << PAGE_SHIFT) - 1);
6893
6894 /* Initialise every node */
6895 mminit_verify_pageflags_layout();
6896 setup_nr_node_ids();
6897 zero_resv_unavail();
6898 for_each_online_node(nid) {
6899 pg_data_t *pgdat = NODE_DATA(nid);
6900 free_area_init_node(nid, NULL,
6901 find_min_pfn_for_node(nid), NULL);
6902
6903 /* Any memory on that node */
6904 if (pgdat->node_present_pages)
6905 node_set_state(nid, N_MEMORY);
6906 check_for_memory(pgdat, nid);
6907 }
6908 }
6909
6910 static int __init cmdline_parse_core(char *p, unsigned long *core,
6911 unsigned long *percent)
6912 {
6913 unsigned long long coremem;
6914 char *endptr;
6915
6916 if (!p)
6917 return -EINVAL;
6918
6919 /* Value may be a percentage of total memory, otherwise bytes */
6920 coremem = simple_strtoull(p, &endptr, 0);
6921 if (*endptr == '%') {
6922 /* Paranoid check for percent values greater than 100 */
6923 WARN_ON(coremem > 100);
6924
6925 *percent = coremem;
6926 } else {
6927 coremem = memparse(p, &p);
6928 /* Paranoid check that UL is enough for the coremem value */
6929 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6930
6931 *core = coremem >> PAGE_SHIFT;
6932 *percent = 0UL;
6933 }
6934 return 0;
6935 }
6936
6937 /*
6938 * kernelcore=size sets the amount of memory for use for allocations that
6939 * cannot be reclaimed or migrated.
6940 */
6941 static int __init cmdline_parse_kernelcore(char *p)
6942 {
6943 /* parse kernelcore=mirror */
6944 if (parse_option_str(p, "mirror")) {
6945 mirrored_kernelcore = true;
6946 return 0;
6947 }
6948
6949 return cmdline_parse_core(p, &required_kernelcore,
6950 &required_kernelcore_percent);
6951 }
6952
6953 /*
6954 * movablecore=size sets the amount of memory for use for allocations that
6955 * can be reclaimed or migrated.
6956 */
6957 static int __init cmdline_parse_movablecore(char *p)
6958 {
6959 return cmdline_parse_core(p, &required_movablecore,
6960 &required_movablecore_percent);
6961 }
6962
6963 early_param("kernelcore", cmdline_parse_kernelcore);
6964 early_param("movablecore", cmdline_parse_movablecore);
6965
6966 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6967
6968 void adjust_managed_page_count(struct page *page, long count)
6969 {
6970 spin_lock(&managed_page_count_lock);
6971 page_zone(page)->managed_pages += count;
6972 totalram_pages += count;
6973 #ifdef CONFIG_HIGHMEM
6974 if (PageHighMem(page))
6975 totalhigh_pages += count;
6976 #endif
6977 spin_unlock(&managed_page_count_lock);
6978 }
6979 EXPORT_SYMBOL(adjust_managed_page_count);
6980
6981 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6982 {
6983 void *pos;
6984 unsigned long pages = 0;
6985
6986 start = (void *)PAGE_ALIGN((unsigned long)start);
6987 end = (void *)((unsigned long)end & PAGE_MASK);
6988 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6989 struct page *page = virt_to_page(pos);
6990 void *direct_map_addr;
6991
6992 /*
6993 * 'direct_map_addr' might be different from 'pos'
6994 * because some architectures' virt_to_page()
6995 * work with aliases. Getting the direct map
6996 * address ensures that we get a _writeable_
6997 * alias for the memset().
6998 */
6999 direct_map_addr = page_address(page);
7000 if ((unsigned int)poison <= 0xFF)
7001 memset(direct_map_addr, poison, PAGE_SIZE);
7002
7003 free_reserved_page(page);
7004 }
7005
7006 if (pages && s)
7007 pr_info("Freeing %s memory: %ldK\n",
7008 s, pages << (PAGE_SHIFT - 10));
7009
7010 return pages;
7011 }
7012 EXPORT_SYMBOL(free_reserved_area);
7013
7014 #ifdef CONFIG_HIGHMEM
7015 void free_highmem_page(struct page *page)
7016 {
7017 __free_reserved_page(page);
7018 totalram_pages++;
7019 page_zone(page)->managed_pages++;
7020 totalhigh_pages++;
7021 }
7022 #endif
7023
7024
7025 void __init mem_init_print_info(const char *str)
7026 {
7027 unsigned long physpages, codesize, datasize, rosize, bss_size;
7028 unsigned long init_code_size, init_data_size;
7029
7030 physpages = get_num_physpages();
7031 codesize = _etext - _stext;
7032 datasize = _edata - _sdata;
7033 rosize = __end_rodata - __start_rodata;
7034 bss_size = __bss_stop - __bss_start;
7035 init_data_size = __init_end - __init_begin;
7036 init_code_size = _einittext - _sinittext;
7037
7038 /*
7039 * Detect special cases and adjust section sizes accordingly:
7040 * 1) .init.* may be embedded into .data sections
7041 * 2) .init.text.* may be out of [__init_begin, __init_end],
7042 * please refer to arch/tile/kernel/vmlinux.lds.S.
7043 * 3) .rodata.* may be embedded into .text or .data sections.
7044 */
7045 #define adj_init_size(start, end, size, pos, adj) \
7046 do { \
7047 if (start <= pos && pos < end && size > adj) \
7048 size -= adj; \
7049 } while (0)
7050
7051 adj_init_size(__init_begin, __init_end, init_data_size,
7052 _sinittext, init_code_size);
7053 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7054 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7055 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7056 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7057
7058 #undef adj_init_size
7059
7060 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7061 #ifdef CONFIG_HIGHMEM
7062 ", %luK highmem"
7063 #endif
7064 "%s%s)\n",
7065 nr_free_pages() << (PAGE_SHIFT - 10),
7066 physpages << (PAGE_SHIFT - 10),
7067 codesize >> 10, datasize >> 10, rosize >> 10,
7068 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7069 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7070 totalcma_pages << (PAGE_SHIFT - 10),
7071 #ifdef CONFIG_HIGHMEM
7072 totalhigh_pages << (PAGE_SHIFT - 10),
7073 #endif
7074 str ? ", " : "", str ? str : "");
7075 }
7076
7077 /**
7078 * set_dma_reserve - set the specified number of pages reserved in the first zone
7079 * @new_dma_reserve: The number of pages to mark reserved
7080 *
7081 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7082 * In the DMA zone, a significant percentage may be consumed by kernel image
7083 * and other unfreeable allocations which can skew the watermarks badly. This
7084 * function may optionally be used to account for unfreeable pages in the
7085 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7086 * smaller per-cpu batchsize.
7087 */
7088 void __init set_dma_reserve(unsigned long new_dma_reserve)
7089 {
7090 dma_reserve = new_dma_reserve;
7091 }
7092
7093 void __init free_area_init(unsigned long *zones_size)
7094 {
7095 zero_resv_unavail();
7096 free_area_init_node(0, zones_size,
7097 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7098 }
7099
7100 static int page_alloc_cpu_dead(unsigned int cpu)
7101 {
7102
7103 lru_add_drain_cpu(cpu);
7104 drain_pages(cpu);
7105
7106 /*
7107 * Spill the event counters of the dead processor
7108 * into the current processors event counters.
7109 * This artificially elevates the count of the current
7110 * processor.
7111 */
7112 vm_events_fold_cpu(cpu);
7113
7114 /*
7115 * Zero the differential counters of the dead processor
7116 * so that the vm statistics are consistent.
7117 *
7118 * This is only okay since the processor is dead and cannot
7119 * race with what we are doing.
7120 */
7121 cpu_vm_stats_fold(cpu);
7122 return 0;
7123 }
7124
7125 void __init page_alloc_init(void)
7126 {
7127 int ret;
7128
7129 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7130 "mm/page_alloc:dead", NULL,
7131 page_alloc_cpu_dead);
7132 WARN_ON(ret < 0);
7133 }
7134
7135 /*
7136 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7137 * or min_free_kbytes changes.
7138 */
7139 static void calculate_totalreserve_pages(void)
7140 {
7141 struct pglist_data *pgdat;
7142 unsigned long reserve_pages = 0;
7143 enum zone_type i, j;
7144
7145 for_each_online_pgdat(pgdat) {
7146
7147 pgdat->totalreserve_pages = 0;
7148
7149 for (i = 0; i < MAX_NR_ZONES; i++) {
7150 struct zone *zone = pgdat->node_zones + i;
7151 long max = 0;
7152
7153 /* Find valid and maximum lowmem_reserve in the zone */
7154 for (j = i; j < MAX_NR_ZONES; j++) {
7155 if (zone->lowmem_reserve[j] > max)
7156 max = zone->lowmem_reserve[j];
7157 }
7158
7159 /* we treat the high watermark as reserved pages. */
7160 max += high_wmark_pages(zone);
7161
7162 if (max > zone->managed_pages)
7163 max = zone->managed_pages;
7164
7165 pgdat->totalreserve_pages += max;
7166
7167 reserve_pages += max;
7168 }
7169 }
7170 totalreserve_pages = reserve_pages;
7171 }
7172
7173 /*
7174 * setup_per_zone_lowmem_reserve - called whenever
7175 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7176 * has a correct pages reserved value, so an adequate number of
7177 * pages are left in the zone after a successful __alloc_pages().
7178 */
7179 static void setup_per_zone_lowmem_reserve(void)
7180 {
7181 struct pglist_data *pgdat;
7182 enum zone_type j, idx;
7183
7184 for_each_online_pgdat(pgdat) {
7185 for (j = 0; j < MAX_NR_ZONES; j++) {
7186 struct zone *zone = pgdat->node_zones + j;
7187 unsigned long managed_pages = zone->managed_pages;
7188
7189 zone->lowmem_reserve[j] = 0;
7190
7191 idx = j;
7192 while (idx) {
7193 struct zone *lower_zone;
7194
7195 idx--;
7196 lower_zone = pgdat->node_zones + idx;
7197
7198 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7199 sysctl_lowmem_reserve_ratio[idx] = 0;
7200 lower_zone->lowmem_reserve[j] = 0;
7201 } else {
7202 lower_zone->lowmem_reserve[j] =
7203 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7204 }
7205 managed_pages += lower_zone->managed_pages;
7206 }
7207 }
7208 }
7209
7210 /* update totalreserve_pages */
7211 calculate_totalreserve_pages();
7212 }
7213
7214 static void __setup_per_zone_wmarks(void)
7215 {
7216 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7217 unsigned long lowmem_pages = 0;
7218 struct zone *zone;
7219 unsigned long flags;
7220
7221 /* Calculate total number of !ZONE_HIGHMEM pages */
7222 for_each_zone(zone) {
7223 if (!is_highmem(zone))
7224 lowmem_pages += zone->managed_pages;
7225 }
7226
7227 for_each_zone(zone) {
7228 u64 tmp;
7229
7230 spin_lock_irqsave(&zone->lock, flags);
7231 tmp = (u64)pages_min * zone->managed_pages;
7232 do_div(tmp, lowmem_pages);
7233 if (is_highmem(zone)) {
7234 /*
7235 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7236 * need highmem pages, so cap pages_min to a small
7237 * value here.
7238 *
7239 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7240 * deltas control asynch page reclaim, and so should
7241 * not be capped for highmem.
7242 */
7243 unsigned long min_pages;
7244
7245 min_pages = zone->managed_pages / 1024;
7246 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7247 zone->watermark[WMARK_MIN] = min_pages;
7248 } else {
7249 /*
7250 * If it's a lowmem zone, reserve a number of pages
7251 * proportionate to the zone's size.
7252 */
7253 zone->watermark[WMARK_MIN] = tmp;
7254 }
7255
7256 /*
7257 * Set the kswapd watermarks distance according to the
7258 * scale factor in proportion to available memory, but
7259 * ensure a minimum size on small systems.
7260 */
7261 tmp = max_t(u64, tmp >> 2,
7262 mult_frac(zone->managed_pages,
7263 watermark_scale_factor, 10000));
7264
7265 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7266 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7267
7268 spin_unlock_irqrestore(&zone->lock, flags);
7269 }
7270
7271 /* update totalreserve_pages */
7272 calculate_totalreserve_pages();
7273 }
7274
7275 /**
7276 * setup_per_zone_wmarks - called when min_free_kbytes changes
7277 * or when memory is hot-{added|removed}
7278 *
7279 * Ensures that the watermark[min,low,high] values for each zone are set
7280 * correctly with respect to min_free_kbytes.
7281 */
7282 void setup_per_zone_wmarks(void)
7283 {
7284 static DEFINE_SPINLOCK(lock);
7285
7286 spin_lock(&lock);
7287 __setup_per_zone_wmarks();
7288 spin_unlock(&lock);
7289 }
7290
7291 /*
7292 * Initialise min_free_kbytes.
7293 *
7294 * For small machines we want it small (128k min). For large machines
7295 * we want it large (64MB max). But it is not linear, because network
7296 * bandwidth does not increase linearly with machine size. We use
7297 *
7298 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7299 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7300 *
7301 * which yields
7302 *
7303 * 16MB: 512k
7304 * 32MB: 724k
7305 * 64MB: 1024k
7306 * 128MB: 1448k
7307 * 256MB: 2048k
7308 * 512MB: 2896k
7309 * 1024MB: 4096k
7310 * 2048MB: 5792k
7311 * 4096MB: 8192k
7312 * 8192MB: 11584k
7313 * 16384MB: 16384k
7314 */
7315 int __meminit init_per_zone_wmark_min(void)
7316 {
7317 unsigned long lowmem_kbytes;
7318 int new_min_free_kbytes;
7319
7320 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7321 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7322
7323 if (new_min_free_kbytes > user_min_free_kbytes) {
7324 min_free_kbytes = new_min_free_kbytes;
7325 if (min_free_kbytes < 128)
7326 min_free_kbytes = 128;
7327 if (min_free_kbytes > 65536)
7328 min_free_kbytes = 65536;
7329 } else {
7330 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7331 new_min_free_kbytes, user_min_free_kbytes);
7332 }
7333 setup_per_zone_wmarks();
7334 refresh_zone_stat_thresholds();
7335 setup_per_zone_lowmem_reserve();
7336
7337 #ifdef CONFIG_NUMA
7338 setup_min_unmapped_ratio();
7339 setup_min_slab_ratio();
7340 #endif
7341
7342 return 0;
7343 }
7344 core_initcall(init_per_zone_wmark_min)
7345
7346 /*
7347 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7348 * that we can call two helper functions whenever min_free_kbytes
7349 * changes.
7350 */
7351 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7352 void __user *buffer, size_t *length, loff_t *ppos)
7353 {
7354 int rc;
7355
7356 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7357 if (rc)
7358 return rc;
7359
7360 if (write) {
7361 user_min_free_kbytes = min_free_kbytes;
7362 setup_per_zone_wmarks();
7363 }
7364 return 0;
7365 }
7366
7367 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7368 void __user *buffer, size_t *length, loff_t *ppos)
7369 {
7370 int rc;
7371
7372 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7373 if (rc)
7374 return rc;
7375
7376 if (write)
7377 setup_per_zone_wmarks();
7378
7379 return 0;
7380 }
7381
7382 #ifdef CONFIG_NUMA
7383 static void setup_min_unmapped_ratio(void)
7384 {
7385 pg_data_t *pgdat;
7386 struct zone *zone;
7387
7388 for_each_online_pgdat(pgdat)
7389 pgdat->min_unmapped_pages = 0;
7390
7391 for_each_zone(zone)
7392 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7393 sysctl_min_unmapped_ratio) / 100;
7394 }
7395
7396
7397 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7398 void __user *buffer, size_t *length, loff_t *ppos)
7399 {
7400 int rc;
7401
7402 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7403 if (rc)
7404 return rc;
7405
7406 setup_min_unmapped_ratio();
7407
7408 return 0;
7409 }
7410
7411 static void setup_min_slab_ratio(void)
7412 {
7413 pg_data_t *pgdat;
7414 struct zone *zone;
7415
7416 for_each_online_pgdat(pgdat)
7417 pgdat->min_slab_pages = 0;
7418
7419 for_each_zone(zone)
7420 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7421 sysctl_min_slab_ratio) / 100;
7422 }
7423
7424 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7425 void __user *buffer, size_t *length, loff_t *ppos)
7426 {
7427 int rc;
7428
7429 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7430 if (rc)
7431 return rc;
7432
7433 setup_min_slab_ratio();
7434
7435 return 0;
7436 }
7437 #endif
7438
7439 /*
7440 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7441 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7442 * whenever sysctl_lowmem_reserve_ratio changes.
7443 *
7444 * The reserve ratio obviously has absolutely no relation with the
7445 * minimum watermarks. The lowmem reserve ratio can only make sense
7446 * if in function of the boot time zone sizes.
7447 */
7448 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7449 void __user *buffer, size_t *length, loff_t *ppos)
7450 {
7451 proc_dointvec_minmax(table, write, buffer, length, ppos);
7452 setup_per_zone_lowmem_reserve();
7453 return 0;
7454 }
7455
7456 /*
7457 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7458 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7459 * pagelist can have before it gets flushed back to buddy allocator.
7460 */
7461 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7462 void __user *buffer, size_t *length, loff_t *ppos)
7463 {
7464 struct zone *zone;
7465 int old_percpu_pagelist_fraction;
7466 int ret;
7467
7468 mutex_lock(&pcp_batch_high_lock);
7469 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7470
7471 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7472 if (!write || ret < 0)
7473 goto out;
7474
7475 /* Sanity checking to avoid pcp imbalance */
7476 if (percpu_pagelist_fraction &&
7477 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7478 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7479 ret = -EINVAL;
7480 goto out;
7481 }
7482
7483 /* No change? */
7484 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7485 goto out;
7486
7487 for_each_populated_zone(zone) {
7488 unsigned int cpu;
7489
7490 for_each_possible_cpu(cpu)
7491 pageset_set_high_and_batch(zone,
7492 per_cpu_ptr(zone->pageset, cpu));
7493 }
7494 out:
7495 mutex_unlock(&pcp_batch_high_lock);
7496 return ret;
7497 }
7498
7499 #ifdef CONFIG_NUMA
7500 int hashdist = HASHDIST_DEFAULT;
7501
7502 static int __init set_hashdist(char *str)
7503 {
7504 if (!str)
7505 return 0;
7506 hashdist = simple_strtoul(str, &str, 0);
7507 return 1;
7508 }
7509 __setup("hashdist=", set_hashdist);
7510 #endif
7511
7512 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7513 /*
7514 * Returns the number of pages that arch has reserved but
7515 * is not known to alloc_large_system_hash().
7516 */
7517 static unsigned long __init arch_reserved_kernel_pages(void)
7518 {
7519 return 0;
7520 }
7521 #endif
7522
7523 /*
7524 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7525 * machines. As memory size is increased the scale is also increased but at
7526 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7527 * quadruples the scale is increased by one, which means the size of hash table
7528 * only doubles, instead of quadrupling as well.
7529 * Because 32-bit systems cannot have large physical memory, where this scaling
7530 * makes sense, it is disabled on such platforms.
7531 */
7532 #if __BITS_PER_LONG > 32
7533 #define ADAPT_SCALE_BASE (64ul << 30)
7534 #define ADAPT_SCALE_SHIFT 2
7535 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7536 #endif
7537
7538 /*
7539 * allocate a large system hash table from bootmem
7540 * - it is assumed that the hash table must contain an exact power-of-2
7541 * quantity of entries
7542 * - limit is the number of hash buckets, not the total allocation size
7543 */
7544 void *__init alloc_large_system_hash(const char *tablename,
7545 unsigned long bucketsize,
7546 unsigned long numentries,
7547 int scale,
7548 int flags,
7549 unsigned int *_hash_shift,
7550 unsigned int *_hash_mask,
7551 unsigned long low_limit,
7552 unsigned long high_limit)
7553 {
7554 unsigned long long max = high_limit;
7555 unsigned long log2qty, size;
7556 void *table = NULL;
7557 gfp_t gfp_flags;
7558
7559 /* allow the kernel cmdline to have a say */
7560 if (!numentries) {
7561 /* round applicable memory size up to nearest megabyte */
7562 numentries = nr_kernel_pages;
7563 numentries -= arch_reserved_kernel_pages();
7564
7565 /* It isn't necessary when PAGE_SIZE >= 1MB */
7566 if (PAGE_SHIFT < 20)
7567 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7568
7569 #if __BITS_PER_LONG > 32
7570 if (!high_limit) {
7571 unsigned long adapt;
7572
7573 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7574 adapt <<= ADAPT_SCALE_SHIFT)
7575 scale++;
7576 }
7577 #endif
7578
7579 /* limit to 1 bucket per 2^scale bytes of low memory */
7580 if (scale > PAGE_SHIFT)
7581 numentries >>= (scale - PAGE_SHIFT);
7582 else
7583 numentries <<= (PAGE_SHIFT - scale);
7584
7585 /* Make sure we've got at least a 0-order allocation.. */
7586 if (unlikely(flags & HASH_SMALL)) {
7587 /* Makes no sense without HASH_EARLY */
7588 WARN_ON(!(flags & HASH_EARLY));
7589 if (!(numentries >> *_hash_shift)) {
7590 numentries = 1UL << *_hash_shift;
7591 BUG_ON(!numentries);
7592 }
7593 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7594 numentries = PAGE_SIZE / bucketsize;
7595 }
7596 numentries = roundup_pow_of_two(numentries);
7597
7598 /* limit allocation size to 1/16 total memory by default */
7599 if (max == 0) {
7600 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7601 do_div(max, bucketsize);
7602 }
7603 max = min(max, 0x80000000ULL);
7604
7605 if (numentries < low_limit)
7606 numentries = low_limit;
7607 if (numentries > max)
7608 numentries = max;
7609
7610 log2qty = ilog2(numentries);
7611
7612 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7613 do {
7614 size = bucketsize << log2qty;
7615 if (flags & HASH_EARLY) {
7616 if (flags & HASH_ZERO)
7617 table = memblock_virt_alloc_nopanic(size, 0);
7618 else
7619 table = memblock_virt_alloc_raw(size, 0);
7620 } else if (hashdist) {
7621 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7622 } else {
7623 /*
7624 * If bucketsize is not a power-of-two, we may free
7625 * some pages at the end of hash table which
7626 * alloc_pages_exact() automatically does
7627 */
7628 if (get_order(size) < MAX_ORDER) {
7629 table = alloc_pages_exact(size, gfp_flags);
7630 kmemleak_alloc(table, size, 1, gfp_flags);
7631 }
7632 }
7633 } while (!table && size > PAGE_SIZE && --log2qty);
7634
7635 if (!table)
7636 panic("Failed to allocate %s hash table\n", tablename);
7637
7638 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7639 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7640
7641 if (_hash_shift)
7642 *_hash_shift = log2qty;
7643 if (_hash_mask)
7644 *_hash_mask = (1 << log2qty) - 1;
7645
7646 return table;
7647 }
7648
7649 /*
7650 * This function checks whether pageblock includes unmovable pages or not.
7651 * If @count is not zero, it is okay to include less @count unmovable pages
7652 *
7653 * PageLRU check without isolation or lru_lock could race so that
7654 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7655 * check without lock_page also may miss some movable non-lru pages at
7656 * race condition. So you can't expect this function should be exact.
7657 */
7658 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7659 int migratetype,
7660 bool skip_hwpoisoned_pages)
7661 {
7662 unsigned long pfn, iter, found;
7663
7664 /*
7665 * TODO we could make this much more efficient by not checking every
7666 * page in the range if we know all of them are in MOVABLE_ZONE and
7667 * that the movable zone guarantees that pages are migratable but
7668 * the later is not the case right now unfortunatelly. E.g. movablecore
7669 * can still lead to having bootmem allocations in zone_movable.
7670 */
7671
7672 /*
7673 * CMA allocations (alloc_contig_range) really need to mark isolate
7674 * CMA pageblocks even when they are not movable in fact so consider
7675 * them movable here.
7676 */
7677 if (is_migrate_cma(migratetype) &&
7678 is_migrate_cma(get_pageblock_migratetype(page)))
7679 return false;
7680
7681 pfn = page_to_pfn(page);
7682 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7683 unsigned long check = pfn + iter;
7684
7685 if (!pfn_valid_within(check))
7686 continue;
7687
7688 page = pfn_to_page(check);
7689
7690 if (PageReserved(page))
7691 goto unmovable;
7692
7693 /*
7694 * Hugepages are not in LRU lists, but they're movable.
7695 * We need not scan over tail pages bacause we don't
7696 * handle each tail page individually in migration.
7697 */
7698 if (PageHuge(page)) {
7699
7700 if (!hugepage_migration_supported(page_hstate(page)))
7701 goto unmovable;
7702
7703 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7704 continue;
7705 }
7706
7707 /*
7708 * We can't use page_count without pin a page
7709 * because another CPU can free compound page.
7710 * This check already skips compound tails of THP
7711 * because their page->_refcount is zero at all time.
7712 */
7713 if (!page_ref_count(page)) {
7714 if (PageBuddy(page))
7715 iter += (1 << page_order(page)) - 1;
7716 continue;
7717 }
7718
7719 /*
7720 * The HWPoisoned page may be not in buddy system, and
7721 * page_count() is not 0.
7722 */
7723 if (skip_hwpoisoned_pages && PageHWPoison(page))
7724 continue;
7725
7726 if (__PageMovable(page))
7727 continue;
7728
7729 if (!PageLRU(page))
7730 found++;
7731 /*
7732 * If there are RECLAIMABLE pages, we need to check
7733 * it. But now, memory offline itself doesn't call
7734 * shrink_node_slabs() and it still to be fixed.
7735 */
7736 /*
7737 * If the page is not RAM, page_count()should be 0.
7738 * we don't need more check. This is an _used_ not-movable page.
7739 *
7740 * The problematic thing here is PG_reserved pages. PG_reserved
7741 * is set to both of a memory hole page and a _used_ kernel
7742 * page at boot.
7743 */
7744 if (found > count)
7745 goto unmovable;
7746 }
7747 return false;
7748 unmovable:
7749 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7750 return true;
7751 }
7752
7753 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7754
7755 static unsigned long pfn_max_align_down(unsigned long pfn)
7756 {
7757 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7758 pageblock_nr_pages) - 1);
7759 }
7760
7761 static unsigned long pfn_max_align_up(unsigned long pfn)
7762 {
7763 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7764 pageblock_nr_pages));
7765 }
7766
7767 /* [start, end) must belong to a single zone. */
7768 static int __alloc_contig_migrate_range(struct compact_control *cc,
7769 unsigned long start, unsigned long end)
7770 {
7771 /* This function is based on compact_zone() from compaction.c. */
7772 unsigned long nr_reclaimed;
7773 unsigned long pfn = start;
7774 unsigned int tries = 0;
7775 int ret = 0;
7776
7777 migrate_prep();
7778
7779 while (pfn < end || !list_empty(&cc->migratepages)) {
7780 if (fatal_signal_pending(current)) {
7781 ret = -EINTR;
7782 break;
7783 }
7784
7785 if (list_empty(&cc->migratepages)) {
7786 cc->nr_migratepages = 0;
7787 pfn = isolate_migratepages_range(cc, pfn, end);
7788 if (!pfn) {
7789 ret = -EINTR;
7790 break;
7791 }
7792 tries = 0;
7793 } else if (++tries == 5) {
7794 ret = ret < 0 ? ret : -EBUSY;
7795 break;
7796 }
7797
7798 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7799 &cc->migratepages);
7800 cc->nr_migratepages -= nr_reclaimed;
7801
7802 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7803 NULL, 0, cc->mode, MR_CONTIG_RANGE);
7804 }
7805 if (ret < 0) {
7806 putback_movable_pages(&cc->migratepages);
7807 return ret;
7808 }
7809 return 0;
7810 }
7811
7812 /**
7813 * alloc_contig_range() -- tries to allocate given range of pages
7814 * @start: start PFN to allocate
7815 * @end: one-past-the-last PFN to allocate
7816 * @migratetype: migratetype of the underlaying pageblocks (either
7817 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7818 * in range must have the same migratetype and it must
7819 * be either of the two.
7820 * @gfp_mask: GFP mask to use during compaction
7821 *
7822 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7823 * aligned. The PFN range must belong to a single zone.
7824 *
7825 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7826 * pageblocks in the range. Once isolated, the pageblocks should not
7827 * be modified by others.
7828 *
7829 * Returns zero on success or negative error code. On success all
7830 * pages which PFN is in [start, end) are allocated for the caller and
7831 * need to be freed with free_contig_range().
7832 */
7833 int alloc_contig_range(unsigned long start, unsigned long end,
7834 unsigned migratetype, gfp_t gfp_mask)
7835 {
7836 unsigned long outer_start, outer_end;
7837 unsigned int order;
7838 int ret = 0;
7839
7840 struct compact_control cc = {
7841 .nr_migratepages = 0,
7842 .order = -1,
7843 .zone = page_zone(pfn_to_page(start)),
7844 .mode = MIGRATE_SYNC,
7845 .ignore_skip_hint = true,
7846 .no_set_skip_hint = true,
7847 .gfp_mask = current_gfp_context(gfp_mask),
7848 };
7849 INIT_LIST_HEAD(&cc.migratepages);
7850
7851 /*
7852 * What we do here is we mark all pageblocks in range as
7853 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7854 * have different sizes, and due to the way page allocator
7855 * work, we align the range to biggest of the two pages so
7856 * that page allocator won't try to merge buddies from
7857 * different pageblocks and change MIGRATE_ISOLATE to some
7858 * other migration type.
7859 *
7860 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7861 * migrate the pages from an unaligned range (ie. pages that
7862 * we are interested in). This will put all the pages in
7863 * range back to page allocator as MIGRATE_ISOLATE.
7864 *
7865 * When this is done, we take the pages in range from page
7866 * allocator removing them from the buddy system. This way
7867 * page allocator will never consider using them.
7868 *
7869 * This lets us mark the pageblocks back as
7870 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7871 * aligned range but not in the unaligned, original range are
7872 * put back to page allocator so that buddy can use them.
7873 */
7874
7875 ret = start_isolate_page_range(pfn_max_align_down(start),
7876 pfn_max_align_up(end), migratetype,
7877 false);
7878 if (ret)
7879 return ret;
7880
7881 /*
7882 * In case of -EBUSY, we'd like to know which page causes problem.
7883 * So, just fall through. test_pages_isolated() has a tracepoint
7884 * which will report the busy page.
7885 *
7886 * It is possible that busy pages could become available before
7887 * the call to test_pages_isolated, and the range will actually be
7888 * allocated. So, if we fall through be sure to clear ret so that
7889 * -EBUSY is not accidentally used or returned to caller.
7890 */
7891 ret = __alloc_contig_migrate_range(&cc, start, end);
7892 if (ret && ret != -EBUSY)
7893 goto done;
7894 ret =0;
7895
7896 /*
7897 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7898 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7899 * more, all pages in [start, end) are free in page allocator.
7900 * What we are going to do is to allocate all pages from
7901 * [start, end) (that is remove them from page allocator).
7902 *
7903 * The only problem is that pages at the beginning and at the
7904 * end of interesting range may be not aligned with pages that
7905 * page allocator holds, ie. they can be part of higher order
7906 * pages. Because of this, we reserve the bigger range and
7907 * once this is done free the pages we are not interested in.
7908 *
7909 * We don't have to hold zone->lock here because the pages are
7910 * isolated thus they won't get removed from buddy.
7911 */
7912
7913 lru_add_drain_all();
7914 drain_all_pages(cc.zone);
7915
7916 order = 0;
7917 outer_start = start;
7918 while (!PageBuddy(pfn_to_page(outer_start))) {
7919 if (++order >= MAX_ORDER) {
7920 outer_start = start;
7921 break;
7922 }
7923 outer_start &= ~0UL << order;
7924 }
7925
7926 if (outer_start != start) {
7927 order = page_order(pfn_to_page(outer_start));
7928
7929 /*
7930 * outer_start page could be small order buddy page and
7931 * it doesn't include start page. Adjust outer_start
7932 * in this case to report failed page properly
7933 * on tracepoint in test_pages_isolated()
7934 */
7935 if (outer_start + (1UL << order) <= start)
7936 outer_start = start;
7937 }
7938
7939 /* Make sure the range is really isolated. */
7940 if (test_pages_isolated(outer_start, end, false)) {
7941 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7942 __func__, outer_start, end);
7943 ret = -EBUSY;
7944 goto done;
7945 }
7946
7947 /* Grab isolated pages from freelists. */
7948 outer_end = isolate_freepages_range(&cc, outer_start, end);
7949 if (!outer_end) {
7950 ret = -EBUSY;
7951 goto done;
7952 }
7953
7954 /* Free head and tail (if any) */
7955 if (start != outer_start)
7956 free_contig_range(outer_start, start - outer_start);
7957 if (end != outer_end)
7958 free_contig_range(end, outer_end - end);
7959
7960 done:
7961 undo_isolate_page_range(pfn_max_align_down(start),
7962 pfn_max_align_up(end), migratetype);
7963 return ret;
7964 }
7965
7966 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7967 {
7968 unsigned int count = 0;
7969
7970 for (; nr_pages--; pfn++) {
7971 struct page *page = pfn_to_page(pfn);
7972
7973 count += page_count(page) != 1;
7974 __free_page(page);
7975 }
7976 WARN(count != 0, "%d pages are still in use!\n", count);
7977 }
7978 #endif
7979
7980 #ifdef CONFIG_MEMORY_HOTPLUG
7981 /*
7982 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7983 * page high values need to be recalulated.
7984 */
7985 void __meminit zone_pcp_update(struct zone *zone)
7986 {
7987 unsigned cpu;
7988 mutex_lock(&pcp_batch_high_lock);
7989 for_each_possible_cpu(cpu)
7990 pageset_set_high_and_batch(zone,
7991 per_cpu_ptr(zone->pageset, cpu));
7992 mutex_unlock(&pcp_batch_high_lock);
7993 }
7994 #endif
7995
7996 void zone_pcp_reset(struct zone *zone)
7997 {
7998 unsigned long flags;
7999 int cpu;
8000 struct per_cpu_pageset *pset;
8001
8002 /* avoid races with drain_pages() */
8003 local_irq_save(flags);
8004 if (zone->pageset != &boot_pageset) {
8005 for_each_online_cpu(cpu) {
8006 pset = per_cpu_ptr(zone->pageset, cpu);
8007 drain_zonestat(zone, pset);
8008 }
8009 free_percpu(zone->pageset);
8010 zone->pageset = &boot_pageset;
8011 }
8012 local_irq_restore(flags);
8013 }
8014
8015 #ifdef CONFIG_MEMORY_HOTREMOVE
8016 /*
8017 * All pages in the range must be in a single zone and isolated
8018 * before calling this.
8019 */
8020 void
8021 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8022 {
8023 struct page *page;
8024 struct zone *zone;
8025 unsigned int order, i;
8026 unsigned long pfn;
8027 unsigned long flags;
8028 /* find the first valid pfn */
8029 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8030 if (pfn_valid(pfn))
8031 break;
8032 if (pfn == end_pfn)
8033 return;
8034 offline_mem_sections(pfn, end_pfn);
8035 zone = page_zone(pfn_to_page(pfn));
8036 spin_lock_irqsave(&zone->lock, flags);
8037 pfn = start_pfn;
8038 while (pfn < end_pfn) {
8039 if (!pfn_valid(pfn)) {
8040 pfn++;
8041 continue;
8042 }
8043 page = pfn_to_page(pfn);
8044 /*
8045 * The HWPoisoned page may be not in buddy system, and
8046 * page_count() is not 0.
8047 */
8048 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8049 pfn++;
8050 SetPageReserved(page);
8051 continue;
8052 }
8053
8054 BUG_ON(page_count(page));
8055 BUG_ON(!PageBuddy(page));
8056 order = page_order(page);
8057 #ifdef CONFIG_DEBUG_VM
8058 pr_info("remove from free list %lx %d %lx\n",
8059 pfn, 1 << order, end_pfn);
8060 #endif
8061 list_del(&page->lru);
8062 rmv_page_order(page);
8063 zone->free_area[order].nr_free--;
8064 for (i = 0; i < (1 << order); i++)
8065 SetPageReserved((page+i));
8066 pfn += (1 << order);
8067 }
8068 spin_unlock_irqrestore(&zone->lock, flags);
8069 }
8070 #endif
8071
8072 bool is_free_buddy_page(struct page *page)
8073 {
8074 struct zone *zone = page_zone(page);
8075 unsigned long pfn = page_to_pfn(page);
8076 unsigned long flags;
8077 unsigned int order;
8078
8079 spin_lock_irqsave(&zone->lock, flags);
8080 for (order = 0; order < MAX_ORDER; order++) {
8081 struct page *page_head = page - (pfn & ((1 << order) - 1));
8082
8083 if (PageBuddy(page_head) && page_order(page_head) >= order)
8084 break;
8085 }
8086 spin_unlock_irqrestore(&zone->lock, flags);
8087
8088 return order < MAX_ORDER;
8089 }
8090
8091 #ifdef CONFIG_MEMORY_FAILURE
8092 /*
8093 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8094 * test is performed under the zone lock to prevent a race against page
8095 * allocation.
8096 */
8097 bool set_hwpoison_free_buddy_page(struct page *page)
8098 {
8099 struct zone *zone = page_zone(page);
8100 unsigned long pfn = page_to_pfn(page);
8101 unsigned long flags;
8102 unsigned int order;
8103 bool hwpoisoned = false;
8104
8105 spin_lock_irqsave(&zone->lock, flags);
8106 for (order = 0; order < MAX_ORDER; order++) {
8107 struct page *page_head = page - (pfn & ((1 << order) - 1));
8108
8109 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8110 if (!TestSetPageHWPoison(page))
8111 hwpoisoned = true;
8112 break;
8113 }
8114 }
8115 spin_unlock_irqrestore(&zone->lock, flags);
8116
8117 return hwpoisoned;
8118 }
8119 #endif