]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/huge_memory.c
mm/compaction: add tracepoint to observe behaviour of compaction defer
[thirdparty/kernel/stable.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f
AA
18#include <linux/mm_inline.h>
19#include <linux/kthread.h>
20#include <linux/khugepaged.h>
878aee7d 21#include <linux/freezer.h>
a664b2d8 22#include <linux/mman.h>
325adeb5 23#include <linux/pagemap.h>
4daae3b4 24#include <linux/migrate.h>
43b5fbbd 25#include <linux/hashtable.h>
97ae1749 26
71e3aac0
AA
27#include <asm/tlb.h>
28#include <asm/pgalloc.h>
29#include "internal.h"
30
ba76149f 31/*
8bfa3f9a
JW
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
ba76149f 38 */
71e3aac0 39unsigned long transparent_hugepage_flags __read_mostly =
13ece886 40#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 41 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
42#endif
43#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45#endif
d39d33c3 46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
49
50/* default scan 8*512 pte (or vmas) every 30 second */
51static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52static unsigned int khugepaged_pages_collapsed;
53static unsigned int khugepaged_full_scans;
54static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55/* during fragmentation poll the hugepage allocator once every minute */
56static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57static struct task_struct *khugepaged_thread __read_mostly;
58static DEFINE_MUTEX(khugepaged_mutex);
59static DEFINE_SPINLOCK(khugepaged_mm_lock);
60static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
61/*
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
64 * fault.
65 */
66static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
67
68static int khugepaged(void *none);
ba76149f 69static int khugepaged_slab_init(void);
ba76149f 70
43b5fbbd
SL
71#define MM_SLOTS_HASH_BITS 10
72static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73
ba76149f
AA
74static struct kmem_cache *mm_slot_cache __read_mostly;
75
76/**
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
81 */
82struct mm_slot {
83 struct hlist_node hash;
84 struct list_head mm_node;
85 struct mm_struct *mm;
86};
87
88/**
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
93 *
94 * There is only the one khugepaged_scan instance of this cursor structure.
95 */
96struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
2f1da642
HS
100};
101static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
102 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
103};
104
f000565a
AA
105
106static int set_recommended_min_free_kbytes(void)
107{
108 struct zone *zone;
109 int nr_zones = 0;
110 unsigned long recommended_min;
f000565a 111
17c230af 112 if (!khugepaged_enabled())
f000565a
AA
113 return 0;
114
115 for_each_populated_zone(zone)
116 nr_zones++;
117
118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 recommended_min = pageblock_nr_pages * nr_zones * 2;
120
121 /*
122 * Make sure that on average at least two pageblocks are almost free
123 * of another type, one for a migratetype to fall back to and a
124 * second to avoid subsequent fallbacks of other types There are 3
125 * MIGRATE_TYPES we care about.
126 */
127 recommended_min += pageblock_nr_pages * nr_zones *
128 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
129
130 /* don't ever allow to reserve more than 5% of the lowmem */
131 recommended_min = min(recommended_min,
132 (unsigned long) nr_free_buffer_pages() / 20);
133 recommended_min <<= (PAGE_SHIFT-10);
134
42aa83cb
HP
135 if (recommended_min > min_free_kbytes) {
136 if (user_min_free_kbytes >= 0)
137 pr_info("raising min_free_kbytes from %d to %lu "
138 "to help transparent hugepage allocations\n",
139 min_free_kbytes, recommended_min);
140
f000565a 141 min_free_kbytes = recommended_min;
42aa83cb 142 }
f000565a
AA
143 setup_per_zone_wmarks();
144 return 0;
145}
146late_initcall(set_recommended_min_free_kbytes);
147
ba76149f
AA
148static int start_khugepaged(void)
149{
150 int err = 0;
151 if (khugepaged_enabled()) {
ba76149f
AA
152 if (!khugepaged_thread)
153 khugepaged_thread = kthread_run(khugepaged, NULL,
154 "khugepaged");
155 if (unlikely(IS_ERR(khugepaged_thread))) {
ae3a8c1c 156 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
157 err = PTR_ERR(khugepaged_thread);
158 khugepaged_thread = NULL;
159 }
911891af
XG
160
161 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 162 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
163
164 set_recommended_min_free_kbytes();
911891af 165 } else if (khugepaged_thread) {
911891af
XG
166 kthread_stop(khugepaged_thread);
167 khugepaged_thread = NULL;
168 }
637e3a27 169
ba76149f
AA
170 return err;
171}
71e3aac0 172
97ae1749 173static atomic_t huge_zero_refcount;
56873f43 174struct page *huge_zero_page __read_mostly;
4a6c1297 175
97ae1749
KS
176static inline bool is_huge_zero_pmd(pmd_t pmd)
177{
5918d10a 178 return is_huge_zero_page(pmd_page(pmd));
97ae1749
KS
179}
180
5918d10a 181static struct page *get_huge_zero_page(void)
97ae1749
KS
182{
183 struct page *zero_page;
184retry:
185 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
5918d10a 186 return ACCESS_ONCE(huge_zero_page);
97ae1749
KS
187
188 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 189 HPAGE_PMD_ORDER);
d8a8e1f0
KS
190 if (!zero_page) {
191 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 192 return NULL;
d8a8e1f0
KS
193 }
194 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 195 preempt_disable();
5918d10a 196 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 197 preempt_enable();
5ddacbe9 198 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
199 goto retry;
200 }
201
202 /* We take additional reference here. It will be put back by shrinker */
203 atomic_set(&huge_zero_refcount, 2);
204 preempt_enable();
5918d10a 205 return ACCESS_ONCE(huge_zero_page);
4a6c1297
KS
206}
207
97ae1749 208static void put_huge_zero_page(void)
4a6c1297 209{
97ae1749
KS
210 /*
211 * Counter should never go to zero here. Only shrinker can put
212 * last reference.
213 */
214 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
215}
216
48896466
GC
217static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
218 struct shrink_control *sc)
4a6c1297 219{
48896466
GC
220 /* we can free zero page only if last reference remains */
221 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
222}
97ae1749 223
48896466
GC
224static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
225 struct shrink_control *sc)
226{
97ae1749 227 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
228 struct page *zero_page = xchg(&huge_zero_page, NULL);
229 BUG_ON(zero_page == NULL);
5ddacbe9 230 __free_pages(zero_page, compound_order(zero_page));
48896466 231 return HPAGE_PMD_NR;
97ae1749
KS
232 }
233
234 return 0;
4a6c1297
KS
235}
236
97ae1749 237static struct shrinker huge_zero_page_shrinker = {
48896466
GC
238 .count_objects = shrink_huge_zero_page_count,
239 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
240 .seeks = DEFAULT_SEEKS,
241};
242
71e3aac0 243#ifdef CONFIG_SYSFS
ba76149f 244
71e3aac0
AA
245static ssize_t double_flag_show(struct kobject *kobj,
246 struct kobj_attribute *attr, char *buf,
247 enum transparent_hugepage_flag enabled,
248 enum transparent_hugepage_flag req_madv)
249{
250 if (test_bit(enabled, &transparent_hugepage_flags)) {
251 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
252 return sprintf(buf, "[always] madvise never\n");
253 } else if (test_bit(req_madv, &transparent_hugepage_flags))
254 return sprintf(buf, "always [madvise] never\n");
255 else
256 return sprintf(buf, "always madvise [never]\n");
257}
258static ssize_t double_flag_store(struct kobject *kobj,
259 struct kobj_attribute *attr,
260 const char *buf, size_t count,
261 enum transparent_hugepage_flag enabled,
262 enum transparent_hugepage_flag req_madv)
263{
264 if (!memcmp("always", buf,
265 min(sizeof("always")-1, count))) {
266 set_bit(enabled, &transparent_hugepage_flags);
267 clear_bit(req_madv, &transparent_hugepage_flags);
268 } else if (!memcmp("madvise", buf,
269 min(sizeof("madvise")-1, count))) {
270 clear_bit(enabled, &transparent_hugepage_flags);
271 set_bit(req_madv, &transparent_hugepage_flags);
272 } else if (!memcmp("never", buf,
273 min(sizeof("never")-1, count))) {
274 clear_bit(enabled, &transparent_hugepage_flags);
275 clear_bit(req_madv, &transparent_hugepage_flags);
276 } else
277 return -EINVAL;
278
279 return count;
280}
281
282static ssize_t enabled_show(struct kobject *kobj,
283 struct kobj_attribute *attr, char *buf)
284{
285 return double_flag_show(kobj, attr, buf,
286 TRANSPARENT_HUGEPAGE_FLAG,
287 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
288}
289static ssize_t enabled_store(struct kobject *kobj,
290 struct kobj_attribute *attr,
291 const char *buf, size_t count)
292{
ba76149f
AA
293 ssize_t ret;
294
295 ret = double_flag_store(kobj, attr, buf, count,
296 TRANSPARENT_HUGEPAGE_FLAG,
297 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
298
299 if (ret > 0) {
911891af
XG
300 int err;
301
302 mutex_lock(&khugepaged_mutex);
303 err = start_khugepaged();
304 mutex_unlock(&khugepaged_mutex);
305
ba76149f
AA
306 if (err)
307 ret = err;
308 }
309
310 return ret;
71e3aac0
AA
311}
312static struct kobj_attribute enabled_attr =
313 __ATTR(enabled, 0644, enabled_show, enabled_store);
314
315static ssize_t single_flag_show(struct kobject *kobj,
316 struct kobj_attribute *attr, char *buf,
317 enum transparent_hugepage_flag flag)
318{
e27e6151
BH
319 return sprintf(buf, "%d\n",
320 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 321}
e27e6151 322
71e3aac0
AA
323static ssize_t single_flag_store(struct kobject *kobj,
324 struct kobj_attribute *attr,
325 const char *buf, size_t count,
326 enum transparent_hugepage_flag flag)
327{
e27e6151
BH
328 unsigned long value;
329 int ret;
330
331 ret = kstrtoul(buf, 10, &value);
332 if (ret < 0)
333 return ret;
334 if (value > 1)
335 return -EINVAL;
336
337 if (value)
71e3aac0 338 set_bit(flag, &transparent_hugepage_flags);
e27e6151 339 else
71e3aac0 340 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
341
342 return count;
343}
344
345/*
346 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
347 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
348 * memory just to allocate one more hugepage.
349 */
350static ssize_t defrag_show(struct kobject *kobj,
351 struct kobj_attribute *attr, char *buf)
352{
353 return double_flag_show(kobj, attr, buf,
354 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
355 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
356}
357static ssize_t defrag_store(struct kobject *kobj,
358 struct kobj_attribute *attr,
359 const char *buf, size_t count)
360{
361 return double_flag_store(kobj, attr, buf, count,
362 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
363 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
364}
365static struct kobj_attribute defrag_attr =
366 __ATTR(defrag, 0644, defrag_show, defrag_store);
367
79da5407
KS
368static ssize_t use_zero_page_show(struct kobject *kobj,
369 struct kobj_attribute *attr, char *buf)
370{
371 return single_flag_show(kobj, attr, buf,
372 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
373}
374static ssize_t use_zero_page_store(struct kobject *kobj,
375 struct kobj_attribute *attr, const char *buf, size_t count)
376{
377 return single_flag_store(kobj, attr, buf, count,
378 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
379}
380static struct kobj_attribute use_zero_page_attr =
381 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
382#ifdef CONFIG_DEBUG_VM
383static ssize_t debug_cow_show(struct kobject *kobj,
384 struct kobj_attribute *attr, char *buf)
385{
386 return single_flag_show(kobj, attr, buf,
387 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
388}
389static ssize_t debug_cow_store(struct kobject *kobj,
390 struct kobj_attribute *attr,
391 const char *buf, size_t count)
392{
393 return single_flag_store(kobj, attr, buf, count,
394 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
395}
396static struct kobj_attribute debug_cow_attr =
397 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
398#endif /* CONFIG_DEBUG_VM */
399
400static struct attribute *hugepage_attr[] = {
401 &enabled_attr.attr,
402 &defrag_attr.attr,
79da5407 403 &use_zero_page_attr.attr,
71e3aac0
AA
404#ifdef CONFIG_DEBUG_VM
405 &debug_cow_attr.attr,
406#endif
407 NULL,
408};
409
410static struct attribute_group hugepage_attr_group = {
411 .attrs = hugepage_attr,
ba76149f
AA
412};
413
414static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
415 struct kobj_attribute *attr,
416 char *buf)
417{
418 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
419}
420
421static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
422 struct kobj_attribute *attr,
423 const char *buf, size_t count)
424{
425 unsigned long msecs;
426 int err;
427
3dbb95f7 428 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
429 if (err || msecs > UINT_MAX)
430 return -EINVAL;
431
432 khugepaged_scan_sleep_millisecs = msecs;
433 wake_up_interruptible(&khugepaged_wait);
434
435 return count;
436}
437static struct kobj_attribute scan_sleep_millisecs_attr =
438 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
439 scan_sleep_millisecs_store);
440
441static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
442 struct kobj_attribute *attr,
443 char *buf)
444{
445 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
446}
447
448static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
449 struct kobj_attribute *attr,
450 const char *buf, size_t count)
451{
452 unsigned long msecs;
453 int err;
454
3dbb95f7 455 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
456 if (err || msecs > UINT_MAX)
457 return -EINVAL;
458
459 khugepaged_alloc_sleep_millisecs = msecs;
460 wake_up_interruptible(&khugepaged_wait);
461
462 return count;
463}
464static struct kobj_attribute alloc_sleep_millisecs_attr =
465 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
466 alloc_sleep_millisecs_store);
467
468static ssize_t pages_to_scan_show(struct kobject *kobj,
469 struct kobj_attribute *attr,
470 char *buf)
471{
472 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
473}
474static ssize_t pages_to_scan_store(struct kobject *kobj,
475 struct kobj_attribute *attr,
476 const char *buf, size_t count)
477{
478 int err;
479 unsigned long pages;
480
3dbb95f7 481 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
482 if (err || !pages || pages > UINT_MAX)
483 return -EINVAL;
484
485 khugepaged_pages_to_scan = pages;
486
487 return count;
488}
489static struct kobj_attribute pages_to_scan_attr =
490 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
491 pages_to_scan_store);
492
493static ssize_t pages_collapsed_show(struct kobject *kobj,
494 struct kobj_attribute *attr,
495 char *buf)
496{
497 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
498}
499static struct kobj_attribute pages_collapsed_attr =
500 __ATTR_RO(pages_collapsed);
501
502static ssize_t full_scans_show(struct kobject *kobj,
503 struct kobj_attribute *attr,
504 char *buf)
505{
506 return sprintf(buf, "%u\n", khugepaged_full_scans);
507}
508static struct kobj_attribute full_scans_attr =
509 __ATTR_RO(full_scans);
510
511static ssize_t khugepaged_defrag_show(struct kobject *kobj,
512 struct kobj_attribute *attr, char *buf)
513{
514 return single_flag_show(kobj, attr, buf,
515 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
516}
517static ssize_t khugepaged_defrag_store(struct kobject *kobj,
518 struct kobj_attribute *attr,
519 const char *buf, size_t count)
520{
521 return single_flag_store(kobj, attr, buf, count,
522 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
523}
524static struct kobj_attribute khugepaged_defrag_attr =
525 __ATTR(defrag, 0644, khugepaged_defrag_show,
526 khugepaged_defrag_store);
527
528/*
529 * max_ptes_none controls if khugepaged should collapse hugepages over
530 * any unmapped ptes in turn potentially increasing the memory
531 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
532 * reduce the available free memory in the system as it
533 * runs. Increasing max_ptes_none will instead potentially reduce the
534 * free memory in the system during the khugepaged scan.
535 */
536static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
537 struct kobj_attribute *attr,
538 char *buf)
539{
540 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
541}
542static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
543 struct kobj_attribute *attr,
544 const char *buf, size_t count)
545{
546 int err;
547 unsigned long max_ptes_none;
548
3dbb95f7 549 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
550 if (err || max_ptes_none > HPAGE_PMD_NR-1)
551 return -EINVAL;
552
553 khugepaged_max_ptes_none = max_ptes_none;
554
555 return count;
556}
557static struct kobj_attribute khugepaged_max_ptes_none_attr =
558 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
559 khugepaged_max_ptes_none_store);
560
561static struct attribute *khugepaged_attr[] = {
562 &khugepaged_defrag_attr.attr,
563 &khugepaged_max_ptes_none_attr.attr,
564 &pages_to_scan_attr.attr,
565 &pages_collapsed_attr.attr,
566 &full_scans_attr.attr,
567 &scan_sleep_millisecs_attr.attr,
568 &alloc_sleep_millisecs_attr.attr,
569 NULL,
570};
571
572static struct attribute_group khugepaged_attr_group = {
573 .attrs = khugepaged_attr,
574 .name = "khugepaged",
71e3aac0 575};
71e3aac0 576
569e5590 577static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 578{
71e3aac0
AA
579 int err;
580
569e5590
SL
581 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
582 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 583 pr_err("failed to create transparent hugepage kobject\n");
569e5590 584 return -ENOMEM;
ba76149f
AA
585 }
586
569e5590 587 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 588 if (err) {
ae3a8c1c 589 pr_err("failed to register transparent hugepage group\n");
569e5590 590 goto delete_obj;
ba76149f
AA
591 }
592
569e5590 593 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 594 if (err) {
ae3a8c1c 595 pr_err("failed to register transparent hugepage group\n");
569e5590 596 goto remove_hp_group;
ba76149f 597 }
569e5590
SL
598
599 return 0;
600
601remove_hp_group:
602 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
603delete_obj:
604 kobject_put(*hugepage_kobj);
605 return err;
606}
607
608static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
609{
610 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
611 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
612 kobject_put(hugepage_kobj);
613}
614#else
615static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
616{
617 return 0;
618}
619
620static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
621{
622}
623#endif /* CONFIG_SYSFS */
624
625static int __init hugepage_init(void)
626{
627 int err;
628 struct kobject *hugepage_kobj;
629
630 if (!has_transparent_hugepage()) {
631 transparent_hugepage_flags = 0;
632 return -EINVAL;
633 }
634
635 err = hugepage_init_sysfs(&hugepage_kobj);
636 if (err)
637 return err;
ba76149f
AA
638
639 err = khugepaged_slab_init();
640 if (err)
641 goto out;
642
97ae1749
KS
643 register_shrinker(&huge_zero_page_shrinker);
644
97562cd2
RR
645 /*
646 * By default disable transparent hugepages on smaller systems,
647 * where the extra memory used could hurt more than TLB overhead
648 * is likely to save. The admin can still enable it through /sys.
649 */
650 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
651 transparent_hugepage_flags = 0;
652
ba76149f
AA
653 start_khugepaged();
654
569e5590 655 return 0;
ba76149f 656out:
569e5590 657 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 658 return err;
71e3aac0 659}
a64fb3cd 660subsys_initcall(hugepage_init);
71e3aac0
AA
661
662static int __init setup_transparent_hugepage(char *str)
663{
664 int ret = 0;
665 if (!str)
666 goto out;
667 if (!strcmp(str, "always")) {
668 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
669 &transparent_hugepage_flags);
670 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
671 &transparent_hugepage_flags);
672 ret = 1;
673 } else if (!strcmp(str, "madvise")) {
674 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
675 &transparent_hugepage_flags);
676 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
677 &transparent_hugepage_flags);
678 ret = 1;
679 } else if (!strcmp(str, "never")) {
680 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
681 &transparent_hugepage_flags);
682 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
683 &transparent_hugepage_flags);
684 ret = 1;
685 }
686out:
687 if (!ret)
ae3a8c1c 688 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
689 return ret;
690}
691__setup("transparent_hugepage=", setup_transparent_hugepage);
692
b32967ff 693pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
694{
695 if (likely(vma->vm_flags & VM_WRITE))
696 pmd = pmd_mkwrite(pmd);
697 return pmd;
698}
699
3122359a 700static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
701{
702 pmd_t entry;
3122359a 703 entry = mk_pmd(page, prot);
b3092b3b
BL
704 entry = pmd_mkhuge(entry);
705 return entry;
706}
707
71e3aac0
AA
708static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
709 struct vm_area_struct *vma,
710 unsigned long haddr, pmd_t *pmd,
711 struct page *page)
712{
00501b53 713 struct mem_cgroup *memcg;
71e3aac0 714 pgtable_t pgtable;
c4088ebd 715 spinlock_t *ptl;
71e3aac0 716
309381fe 717 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53
JW
718
719 if (mem_cgroup_try_charge(page, mm, GFP_TRANSHUGE, &memcg))
720 return VM_FAULT_OOM;
721
71e3aac0 722 pgtable = pte_alloc_one(mm, haddr);
00501b53
JW
723 if (unlikely(!pgtable)) {
724 mem_cgroup_cancel_charge(page, memcg);
71e3aac0 725 return VM_FAULT_OOM;
00501b53 726 }
71e3aac0
AA
727
728 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
729 /*
730 * The memory barrier inside __SetPageUptodate makes sure that
731 * clear_huge_page writes become visible before the set_pmd_at()
732 * write.
733 */
71e3aac0
AA
734 __SetPageUptodate(page);
735
c4088ebd 736 ptl = pmd_lock(mm, pmd);
71e3aac0 737 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 738 spin_unlock(ptl);
00501b53 739 mem_cgroup_cancel_charge(page, memcg);
71e3aac0
AA
740 put_page(page);
741 pte_free(mm, pgtable);
742 } else {
743 pmd_t entry;
3122359a
KS
744 entry = mk_huge_pmd(page, vma->vm_page_prot);
745 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
71e3aac0 746 page_add_new_anon_rmap(page, vma, haddr);
00501b53
JW
747 mem_cgroup_commit_charge(page, memcg, false);
748 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 749 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 750 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 751 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 752 atomic_long_inc(&mm->nr_ptes);
c4088ebd 753 spin_unlock(ptl);
71e3aac0
AA
754 }
755
aa2e878e 756 return 0;
71e3aac0
AA
757}
758
cc5d462f 759static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 760{
cc5d462f 761 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
762}
763
764static inline struct page *alloc_hugepage_vma(int defrag,
765 struct vm_area_struct *vma,
cc5d462f
AK
766 unsigned long haddr, int nd,
767 gfp_t extra_gfp)
0bbbc0b3 768{
cc5d462f 769 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 770 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
771}
772
c4088ebd 773/* Caller must hold page table lock. */
3ea41e62 774static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 775 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 776 struct page *zero_page)
fc9fe822
KS
777{
778 pmd_t entry;
3ea41e62
KS
779 if (!pmd_none(*pmd))
780 return false;
5918d10a 781 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 782 entry = pmd_mkhuge(entry);
6b0b50b0 783 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 784 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 785 atomic_long_inc(&mm->nr_ptes);
3ea41e62 786 return true;
fc9fe822
KS
787}
788
71e3aac0
AA
789int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
790 unsigned long address, pmd_t *pmd,
791 unsigned int flags)
792{
793 struct page *page;
794 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 795
128ec037 796 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 797 return VM_FAULT_FALLBACK;
128ec037
KS
798 if (unlikely(anon_vma_prepare(vma)))
799 return VM_FAULT_OOM;
6d50e60c 800 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 801 return VM_FAULT_OOM;
593befa6 802 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 803 transparent_hugepage_use_zero_page()) {
c4088ebd 804 spinlock_t *ptl;
128ec037
KS
805 pgtable_t pgtable;
806 struct page *zero_page;
807 bool set;
808 pgtable = pte_alloc_one(mm, haddr);
809 if (unlikely(!pgtable))
ba76149f 810 return VM_FAULT_OOM;
128ec037
KS
811 zero_page = get_huge_zero_page();
812 if (unlikely(!zero_page)) {
813 pte_free(mm, pgtable);
81ab4201 814 count_vm_event(THP_FAULT_FALLBACK);
c0292554 815 return VM_FAULT_FALLBACK;
b9bbfbe3 816 }
c4088ebd 817 ptl = pmd_lock(mm, pmd);
128ec037
KS
818 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
819 zero_page);
c4088ebd 820 spin_unlock(ptl);
128ec037
KS
821 if (!set) {
822 pte_free(mm, pgtable);
823 put_huge_zero_page();
edad9d2c 824 }
edad9d2c 825 return 0;
71e3aac0 826 }
128ec037
KS
827 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
828 vma, haddr, numa_node_id(), 0);
829 if (unlikely(!page)) {
830 count_vm_event(THP_FAULT_FALLBACK);
c0292554 831 return VM_FAULT_FALLBACK;
128ec037 832 }
128ec037 833 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
128ec037 834 put_page(page);
17766dde 835 count_vm_event(THP_FAULT_FALLBACK);
c0292554 836 return VM_FAULT_FALLBACK;
128ec037
KS
837 }
838
17766dde 839 count_vm_event(THP_FAULT_ALLOC);
128ec037 840 return 0;
71e3aac0
AA
841}
842
843int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
844 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
845 struct vm_area_struct *vma)
846{
c4088ebd 847 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
848 struct page *src_page;
849 pmd_t pmd;
850 pgtable_t pgtable;
851 int ret;
852
853 ret = -ENOMEM;
854 pgtable = pte_alloc_one(dst_mm, addr);
855 if (unlikely(!pgtable))
856 goto out;
857
c4088ebd
KS
858 dst_ptl = pmd_lock(dst_mm, dst_pmd);
859 src_ptl = pmd_lockptr(src_mm, src_pmd);
860 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
861
862 ret = -EAGAIN;
863 pmd = *src_pmd;
864 if (unlikely(!pmd_trans_huge(pmd))) {
865 pte_free(dst_mm, pgtable);
866 goto out_unlock;
867 }
fc9fe822 868 /*
c4088ebd 869 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
870 * under splitting since we don't split the page itself, only pmd to
871 * a page table.
872 */
873 if (is_huge_zero_pmd(pmd)) {
5918d10a 874 struct page *zero_page;
3ea41e62 875 bool set;
97ae1749
KS
876 /*
877 * get_huge_zero_page() will never allocate a new page here,
878 * since we already have a zero page to copy. It just takes a
879 * reference.
880 */
5918d10a 881 zero_page = get_huge_zero_page();
3ea41e62 882 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 883 zero_page);
3ea41e62 884 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
fc9fe822
KS
885 ret = 0;
886 goto out_unlock;
887 }
de466bd6 888
71e3aac0
AA
889 if (unlikely(pmd_trans_splitting(pmd))) {
890 /* split huge page running from under us */
c4088ebd
KS
891 spin_unlock(src_ptl);
892 spin_unlock(dst_ptl);
71e3aac0
AA
893 pte_free(dst_mm, pgtable);
894
895 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
896 goto out;
897 }
898 src_page = pmd_page(pmd);
309381fe 899 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
71e3aac0
AA
900 get_page(src_page);
901 page_dup_rmap(src_page);
902 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
903
904 pmdp_set_wrprotect(src_mm, addr, src_pmd);
905 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 906 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 907 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e1f56c89 908 atomic_long_inc(&dst_mm->nr_ptes);
71e3aac0
AA
909
910 ret = 0;
911out_unlock:
c4088ebd
KS
912 spin_unlock(src_ptl);
913 spin_unlock(dst_ptl);
71e3aac0
AA
914out:
915 return ret;
916}
917
a1dd450b
WD
918void huge_pmd_set_accessed(struct mm_struct *mm,
919 struct vm_area_struct *vma,
920 unsigned long address,
921 pmd_t *pmd, pmd_t orig_pmd,
922 int dirty)
923{
c4088ebd 924 spinlock_t *ptl;
a1dd450b
WD
925 pmd_t entry;
926 unsigned long haddr;
927
c4088ebd 928 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
929 if (unlikely(!pmd_same(*pmd, orig_pmd)))
930 goto unlock;
931
932 entry = pmd_mkyoung(orig_pmd);
933 haddr = address & HPAGE_PMD_MASK;
934 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
935 update_mmu_cache_pmd(vma, address, pmd);
936
937unlock:
c4088ebd 938 spin_unlock(ptl);
a1dd450b
WD
939}
940
5338a937
HD
941/*
942 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
943 * during copy_user_huge_page()'s copy_page_rep(): in the case when
944 * the source page gets split and a tail freed before copy completes.
945 * Called under pmd_lock of checked pmd, so safe from splitting itself.
946 */
947static void get_user_huge_page(struct page *page)
948{
949 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
950 struct page *endpage = page + HPAGE_PMD_NR;
951
952 atomic_add(HPAGE_PMD_NR, &page->_count);
953 while (++page < endpage)
954 get_huge_page_tail(page);
955 } else {
956 get_page(page);
957 }
958}
959
960static void put_user_huge_page(struct page *page)
961{
962 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
963 struct page *endpage = page + HPAGE_PMD_NR;
964
965 while (page < endpage)
966 put_page(page++);
967 } else {
968 put_page(page);
969 }
970}
971
71e3aac0
AA
972static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
973 struct vm_area_struct *vma,
974 unsigned long address,
975 pmd_t *pmd, pmd_t orig_pmd,
976 struct page *page,
977 unsigned long haddr)
978{
00501b53 979 struct mem_cgroup *memcg;
c4088ebd 980 spinlock_t *ptl;
71e3aac0
AA
981 pgtable_t pgtable;
982 pmd_t _pmd;
983 int ret = 0, i;
984 struct page **pages;
2ec74c3e
SG
985 unsigned long mmun_start; /* For mmu_notifiers */
986 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
987
988 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
989 GFP_KERNEL);
990 if (unlikely(!pages)) {
991 ret |= VM_FAULT_OOM;
992 goto out;
993 }
994
995 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
996 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
997 __GFP_OTHER_NODE,
19ee151e 998 vma, address, page_to_nid(page));
b9bbfbe3 999 if (unlikely(!pages[i] ||
00501b53
JW
1000 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1001 &memcg))) {
b9bbfbe3 1002 if (pages[i])
71e3aac0 1003 put_page(pages[i]);
b9bbfbe3 1004 while (--i >= 0) {
00501b53
JW
1005 memcg = (void *)page_private(pages[i]);
1006 set_page_private(pages[i], 0);
1007 mem_cgroup_cancel_charge(pages[i], memcg);
b9bbfbe3
AA
1008 put_page(pages[i]);
1009 }
71e3aac0
AA
1010 kfree(pages);
1011 ret |= VM_FAULT_OOM;
1012 goto out;
1013 }
00501b53 1014 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1015 }
1016
1017 for (i = 0; i < HPAGE_PMD_NR; i++) {
1018 copy_user_highpage(pages[i], page + i,
0089e485 1019 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1020 __SetPageUptodate(pages[i]);
1021 cond_resched();
1022 }
1023
2ec74c3e
SG
1024 mmun_start = haddr;
1025 mmun_end = haddr + HPAGE_PMD_SIZE;
1026 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1027
c4088ebd 1028 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1029 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1030 goto out_free_pages;
309381fe 1031 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1032
34ee645e 1033 pmdp_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1034 /* leave pmd empty until pte is filled */
1035
6b0b50b0 1036 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1037 pmd_populate(mm, &_pmd, pgtable);
1038
1039 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1040 pte_t *pte, entry;
1041 entry = mk_pte(pages[i], vma->vm_page_prot);
1042 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1043 memcg = (void *)page_private(pages[i]);
1044 set_page_private(pages[i], 0);
71e3aac0 1045 page_add_new_anon_rmap(pages[i], vma, haddr);
00501b53
JW
1046 mem_cgroup_commit_charge(pages[i], memcg, false);
1047 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1048 pte = pte_offset_map(&_pmd, haddr);
1049 VM_BUG_ON(!pte_none(*pte));
1050 set_pte_at(mm, haddr, pte, entry);
1051 pte_unmap(pte);
1052 }
1053 kfree(pages);
1054
71e3aac0
AA
1055 smp_wmb(); /* make pte visible before pmd */
1056 pmd_populate(mm, pmd, pgtable);
1057 page_remove_rmap(page);
c4088ebd 1058 spin_unlock(ptl);
71e3aac0 1059
2ec74c3e
SG
1060 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1061
71e3aac0
AA
1062 ret |= VM_FAULT_WRITE;
1063 put_page(page);
1064
1065out:
1066 return ret;
1067
1068out_free_pages:
c4088ebd 1069 spin_unlock(ptl);
2ec74c3e 1070 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1071 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1072 memcg = (void *)page_private(pages[i]);
1073 set_page_private(pages[i], 0);
1074 mem_cgroup_cancel_charge(pages[i], memcg);
71e3aac0 1075 put_page(pages[i]);
b9bbfbe3 1076 }
71e3aac0
AA
1077 kfree(pages);
1078 goto out;
1079}
1080
1081int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1082 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1083{
c4088ebd 1084 spinlock_t *ptl;
71e3aac0 1085 int ret = 0;
93b4796d 1086 struct page *page = NULL, *new_page;
00501b53 1087 struct mem_cgroup *memcg;
71e3aac0 1088 unsigned long haddr;
2ec74c3e
SG
1089 unsigned long mmun_start; /* For mmu_notifiers */
1090 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0 1091
c4088ebd 1092 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1093 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1094 haddr = address & HPAGE_PMD_MASK;
1095 if (is_huge_zero_pmd(orig_pmd))
1096 goto alloc;
c4088ebd 1097 spin_lock(ptl);
71e3aac0
AA
1098 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1099 goto out_unlock;
1100
1101 page = pmd_page(orig_pmd);
309381fe 1102 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
71e3aac0
AA
1103 if (page_mapcount(page) == 1) {
1104 pmd_t entry;
1105 entry = pmd_mkyoung(orig_pmd);
1106 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1107 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1108 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1109 ret |= VM_FAULT_WRITE;
1110 goto out_unlock;
1111 }
5338a937 1112 get_user_huge_page(page);
c4088ebd 1113 spin_unlock(ptl);
93b4796d 1114alloc:
71e3aac0
AA
1115 if (transparent_hugepage_enabled(vma) &&
1116 !transparent_hugepage_debug_cow())
0bbbc0b3 1117 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 1118 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
1119 else
1120 new_page = NULL;
1121
1122 if (unlikely(!new_page)) {
eecc1e42 1123 if (!page) {
e9b71ca9
KS
1124 split_huge_page_pmd(vma, address, pmd);
1125 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1126 } else {
1127 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1128 pmd, orig_pmd, page, haddr);
9845cbbd 1129 if (ret & VM_FAULT_OOM) {
93b4796d 1130 split_huge_page(page);
9845cbbd
KS
1131 ret |= VM_FAULT_FALLBACK;
1132 }
5338a937 1133 put_user_huge_page(page);
93b4796d 1134 }
17766dde 1135 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1136 goto out;
1137 }
1138
00501b53
JW
1139 if (unlikely(mem_cgroup_try_charge(new_page, mm,
1140 GFP_TRANSHUGE, &memcg))) {
b9bbfbe3 1141 put_page(new_page);
93b4796d
KS
1142 if (page) {
1143 split_huge_page(page);
5338a937 1144 put_user_huge_page(page);
9845cbbd
KS
1145 } else
1146 split_huge_page_pmd(vma, address, pmd);
1147 ret |= VM_FAULT_FALLBACK;
17766dde 1148 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1149 goto out;
1150 }
1151
17766dde
DR
1152 count_vm_event(THP_FAULT_ALLOC);
1153
eecc1e42 1154 if (!page)
93b4796d
KS
1155 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1156 else
1157 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1158 __SetPageUptodate(new_page);
1159
2ec74c3e
SG
1160 mmun_start = haddr;
1161 mmun_end = haddr + HPAGE_PMD_SIZE;
1162 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1163
c4088ebd 1164 spin_lock(ptl);
93b4796d 1165 if (page)
5338a937 1166 put_user_huge_page(page);
b9bbfbe3 1167 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1168 spin_unlock(ptl);
00501b53 1169 mem_cgroup_cancel_charge(new_page, memcg);
71e3aac0 1170 put_page(new_page);
2ec74c3e 1171 goto out_mn;
b9bbfbe3 1172 } else {
71e3aac0 1173 pmd_t entry;
3122359a
KS
1174 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1175 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
34ee645e 1176 pmdp_clear_flush_notify(vma, haddr, pmd);
71e3aac0 1177 page_add_new_anon_rmap(new_page, vma, haddr);
00501b53
JW
1178 mem_cgroup_commit_charge(new_page, memcg, false);
1179 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1180 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1181 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1182 if (!page) {
93b4796d 1183 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1184 put_huge_zero_page();
1185 } else {
309381fe 1186 VM_BUG_ON_PAGE(!PageHead(page), page);
93b4796d
KS
1187 page_remove_rmap(page);
1188 put_page(page);
1189 }
71e3aac0
AA
1190 ret |= VM_FAULT_WRITE;
1191 }
c4088ebd 1192 spin_unlock(ptl);
2ec74c3e
SG
1193out_mn:
1194 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1195out:
1196 return ret;
2ec74c3e 1197out_unlock:
c4088ebd 1198 spin_unlock(ptl);
2ec74c3e 1199 return ret;
71e3aac0
AA
1200}
1201
b676b293 1202struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1203 unsigned long addr,
1204 pmd_t *pmd,
1205 unsigned int flags)
1206{
b676b293 1207 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1208 struct page *page = NULL;
1209
c4088ebd 1210 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1211
1212 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1213 goto out;
1214
85facf25
KS
1215 /* Avoid dumping huge zero page */
1216 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1217 return ERR_PTR(-EFAULT);
1218
2b4847e7
MG
1219 /* Full NUMA hinting faults to serialise migration in fault paths */
1220 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1221 goto out;
1222
71e3aac0 1223 page = pmd_page(*pmd);
309381fe 1224 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0
AA
1225 if (flags & FOLL_TOUCH) {
1226 pmd_t _pmd;
1227 /*
1228 * We should set the dirty bit only for FOLL_WRITE but
1229 * for now the dirty bit in the pmd is meaningless.
1230 * And if the dirty bit will become meaningful and
1231 * we'll only set it with FOLL_WRITE, an atomic
1232 * set_bit will be required on the pmd to set the
1233 * young bit, instead of the current set_pmd_at.
1234 */
1235 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1236 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1237 pmd, _pmd, 1))
1238 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1239 }
b676b293
DR
1240 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1241 if (page->mapping && trylock_page(page)) {
1242 lru_add_drain();
1243 if (page->mapping)
1244 mlock_vma_page(page);
1245 unlock_page(page);
1246 }
1247 }
71e3aac0 1248 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1249 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1250 if (flags & FOLL_GET)
70b50f94 1251 get_page_foll(page);
71e3aac0
AA
1252
1253out:
1254 return page;
1255}
1256
d10e63f2 1257/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1258int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1259 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1260{
c4088ebd 1261 spinlock_t *ptl;
b8916634 1262 struct anon_vma *anon_vma = NULL;
b32967ff 1263 struct page *page;
d10e63f2 1264 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1265 int page_nid = -1, this_nid = numa_node_id();
90572890 1266 int target_nid, last_cpupid = -1;
8191acbd
MG
1267 bool page_locked;
1268 bool migrated = false;
6688cc05 1269 int flags = 0;
d10e63f2 1270
c4088ebd 1271 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1272 if (unlikely(!pmd_same(pmd, *pmdp)))
1273 goto out_unlock;
1274
de466bd6
MG
1275 /*
1276 * If there are potential migrations, wait for completion and retry
1277 * without disrupting NUMA hinting information. Do not relock and
1278 * check_same as the page may no longer be mapped.
1279 */
1280 if (unlikely(pmd_trans_migrating(*pmdp))) {
1281 spin_unlock(ptl);
1282 wait_migrate_huge_page(vma->anon_vma, pmdp);
1283 goto out;
1284 }
1285
d10e63f2 1286 page = pmd_page(pmd);
a1a46184 1287 BUG_ON(is_huge_zero_page(page));
8191acbd 1288 page_nid = page_to_nid(page);
90572890 1289 last_cpupid = page_cpupid_last(page);
03c5a6e1 1290 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1291 if (page_nid == this_nid) {
03c5a6e1 1292 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1293 flags |= TNF_FAULT_LOCAL;
1294 }
4daae3b4 1295
6688cc05
PZ
1296 /*
1297 * Avoid grouping on DSO/COW pages in specific and RO pages
1298 * in general, RO pages shouldn't hurt as much anyway since
1299 * they can be in shared cache state.
1300 */
1301 if (!pmd_write(pmd))
1302 flags |= TNF_NO_GROUP;
1303
ff9042b1
MG
1304 /*
1305 * Acquire the page lock to serialise THP migrations but avoid dropping
1306 * page_table_lock if at all possible
1307 */
b8916634
MG
1308 page_locked = trylock_page(page);
1309 target_nid = mpol_misplaced(page, vma, haddr);
1310 if (target_nid == -1) {
1311 /* If the page was locked, there are no parallel migrations */
a54a407f 1312 if (page_locked)
b8916634 1313 goto clear_pmdnuma;
2b4847e7 1314 }
4daae3b4 1315
de466bd6 1316 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1317 if (!page_locked) {
c4088ebd 1318 spin_unlock(ptl);
b8916634 1319 wait_on_page_locked(page);
a54a407f 1320 page_nid = -1;
b8916634
MG
1321 goto out;
1322 }
1323
2b4847e7
MG
1324 /*
1325 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1326 * to serialises splits
1327 */
b8916634 1328 get_page(page);
c4088ebd 1329 spin_unlock(ptl);
b8916634 1330 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1331
c69307d5 1332 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1333 spin_lock(ptl);
b32967ff
MG
1334 if (unlikely(!pmd_same(pmd, *pmdp))) {
1335 unlock_page(page);
1336 put_page(page);
a54a407f 1337 page_nid = -1;
4daae3b4 1338 goto out_unlock;
b32967ff 1339 }
ff9042b1 1340
c3a489ca
MG
1341 /* Bail if we fail to protect against THP splits for any reason */
1342 if (unlikely(!anon_vma)) {
1343 put_page(page);
1344 page_nid = -1;
1345 goto clear_pmdnuma;
1346 }
1347
a54a407f
MG
1348 /*
1349 * Migrate the THP to the requested node, returns with page unlocked
1350 * and pmd_numa cleared.
1351 */
c4088ebd 1352 spin_unlock(ptl);
b32967ff 1353 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1354 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1355 if (migrated) {
1356 flags |= TNF_MIGRATED;
8191acbd 1357 page_nid = target_nid;
6688cc05 1358 }
b32967ff 1359
8191acbd 1360 goto out;
b32967ff 1361clear_pmdnuma:
a54a407f 1362 BUG_ON(!PageLocked(page));
d10e63f2
MG
1363 pmd = pmd_mknonnuma(pmd);
1364 set_pmd_at(mm, haddr, pmdp, pmd);
1365 VM_BUG_ON(pmd_numa(*pmdp));
1366 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1367 unlock_page(page);
d10e63f2 1368out_unlock:
c4088ebd 1369 spin_unlock(ptl);
b8916634
MG
1370
1371out:
1372 if (anon_vma)
1373 page_unlock_anon_vma_read(anon_vma);
1374
8191acbd 1375 if (page_nid != -1)
6688cc05 1376 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1377
d10e63f2
MG
1378 return 0;
1379}
1380
71e3aac0 1381int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1382 pmd_t *pmd, unsigned long addr)
71e3aac0 1383{
bf929152 1384 spinlock_t *ptl;
71e3aac0
AA
1385 int ret = 0;
1386
bf929152 1387 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24
NH
1388 struct page *page;
1389 pgtable_t pgtable;
f5c8ad47 1390 pmd_t orig_pmd;
a6bf2bb0
AK
1391 /*
1392 * For architectures like ppc64 we look at deposited pgtable
1393 * when calling pmdp_get_and_clear. So do the
1394 * pgtable_trans_huge_withdraw after finishing pmdp related
1395 * operations.
1396 */
fcbe08d6
MS
1397 orig_pmd = pmdp_get_and_clear_full(tlb->mm, addr, pmd,
1398 tlb->fullmm);
025c5b24 1399 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
a6bf2bb0 1400 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
479f0abb 1401 if (is_huge_zero_pmd(orig_pmd)) {
e1f56c89 1402 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1403 spin_unlock(ptl);
97ae1749 1404 put_huge_zero_page();
479f0abb
KS
1405 } else {
1406 page = pmd_page(orig_pmd);
1407 page_remove_rmap(page);
309381fe 1408 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
479f0abb 1409 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
309381fe 1410 VM_BUG_ON_PAGE(!PageHead(page), page);
e1f56c89 1411 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1412 spin_unlock(ptl);
479f0abb
KS
1413 tlb_remove_page(tlb, page);
1414 }
025c5b24
NH
1415 pte_free(tlb->mm, pgtable);
1416 ret = 1;
1417 }
71e3aac0
AA
1418 return ret;
1419}
1420
0ca1634d
JW
1421int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1422 unsigned long addr, unsigned long end,
1423 unsigned char *vec)
1424{
bf929152 1425 spinlock_t *ptl;
0ca1634d
JW
1426 int ret = 0;
1427
bf929152 1428 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24
NH
1429 /*
1430 * All logical pages in the range are present
1431 * if backed by a huge page.
1432 */
bf929152 1433 spin_unlock(ptl);
025c5b24
NH
1434 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1435 ret = 1;
1436 }
0ca1634d
JW
1437
1438 return ret;
1439}
1440
37a1c49a
AA
1441int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1442 unsigned long old_addr,
1443 unsigned long new_addr, unsigned long old_end,
1444 pmd_t *old_pmd, pmd_t *new_pmd)
1445{
bf929152 1446 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1447 int ret = 0;
1448 pmd_t pmd;
1449
1450 struct mm_struct *mm = vma->vm_mm;
1451
1452 if ((old_addr & ~HPAGE_PMD_MASK) ||
1453 (new_addr & ~HPAGE_PMD_MASK) ||
1454 old_end - old_addr < HPAGE_PMD_SIZE ||
1455 (new_vma->vm_flags & VM_NOHUGEPAGE))
1456 goto out;
1457
1458 /*
1459 * The destination pmd shouldn't be established, free_pgtables()
1460 * should have release it.
1461 */
1462 if (WARN_ON(!pmd_none(*new_pmd))) {
1463 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1464 goto out;
1465 }
1466
bf929152
KS
1467 /*
1468 * We don't have to worry about the ordering of src and dst
1469 * ptlocks because exclusive mmap_sem prevents deadlock.
1470 */
1471 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
025c5b24 1472 if (ret == 1) {
bf929152
KS
1473 new_ptl = pmd_lockptr(mm, new_pmd);
1474 if (new_ptl != old_ptl)
1475 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
025c5b24
NH
1476 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1477 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1478
b3084f4d
AK
1479 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1480 pgtable_t pgtable;
3592806c
KS
1481 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1482 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1483 }
b3084f4d
AK
1484 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1485 if (new_ptl != old_ptl)
1486 spin_unlock(new_ptl);
bf929152 1487 spin_unlock(old_ptl);
37a1c49a
AA
1488 }
1489out:
1490 return ret;
1491}
1492
f123d74a
MG
1493/*
1494 * Returns
1495 * - 0 if PMD could not be locked
1496 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1497 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1498 */
cd7548ab 1499int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
4b10e7d5 1500 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1501{
1502 struct mm_struct *mm = vma->vm_mm;
bf929152 1503 spinlock_t *ptl;
cd7548ab
JW
1504 int ret = 0;
1505
bf929152 1506 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24 1507 pmd_t entry;
f123d74a 1508 ret = 1;
a4f1de17 1509 if (!prot_numa) {
34ee645e 1510 entry = pmdp_get_and_clear_notify(mm, addr, pmd);
1667918b
MG
1511 if (pmd_numa(entry))
1512 entry = pmd_mknonnuma(entry);
4b10e7d5 1513 entry = pmd_modify(entry, newprot);
f123d74a 1514 ret = HPAGE_PMD_NR;
56eecdb9 1515 set_pmd_at(mm, addr, pmd, entry);
a4f1de17
HD
1516 BUG_ON(pmd_write(entry));
1517 } else {
4b10e7d5
MG
1518 struct page *page = pmd_page(*pmd);
1519
a1a46184 1520 /*
1bc115d8
MG
1521 * Do not trap faults against the zero page. The
1522 * read-only data is likely to be read-cached on the
1523 * local CPU cache and it is less useful to know about
1524 * local vs remote hits on the zero page.
a1a46184 1525 */
1bc115d8 1526 if (!is_huge_zero_page(page) &&
4b10e7d5 1527 !pmd_numa(*pmd)) {
56eecdb9 1528 pmdp_set_numa(mm, addr, pmd);
f123d74a 1529 ret = HPAGE_PMD_NR;
4b10e7d5
MG
1530 }
1531 }
bf929152 1532 spin_unlock(ptl);
025c5b24
NH
1533 }
1534
1535 return ret;
1536}
1537
1538/*
1539 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1540 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1541 *
1542 * Note that if it returns 1, this routine returns without unlocking page
1543 * table locks. So callers must unlock them.
1544 */
bf929152
KS
1545int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1546 spinlock_t **ptl)
025c5b24 1547{
bf929152 1548 *ptl = pmd_lock(vma->vm_mm, pmd);
cd7548ab
JW
1549 if (likely(pmd_trans_huge(*pmd))) {
1550 if (unlikely(pmd_trans_splitting(*pmd))) {
bf929152 1551 spin_unlock(*ptl);
cd7548ab 1552 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1553 return -1;
cd7548ab 1554 } else {
025c5b24
NH
1555 /* Thp mapped by 'pmd' is stable, so we can
1556 * handle it as it is. */
1557 return 1;
cd7548ab 1558 }
025c5b24 1559 }
bf929152 1560 spin_unlock(*ptl);
025c5b24 1561 return 0;
cd7548ab
JW
1562}
1563
117b0791
KS
1564/*
1565 * This function returns whether a given @page is mapped onto the @address
1566 * in the virtual space of @mm.
1567 *
1568 * When it's true, this function returns *pmd with holding the page table lock
1569 * and passing it back to the caller via @ptl.
1570 * If it's false, returns NULL without holding the page table lock.
1571 */
71e3aac0
AA
1572pmd_t *page_check_address_pmd(struct page *page,
1573 struct mm_struct *mm,
1574 unsigned long address,
117b0791
KS
1575 enum page_check_address_pmd_flag flag,
1576 spinlock_t **ptl)
71e3aac0 1577{
b5a8cad3
KS
1578 pgd_t *pgd;
1579 pud_t *pud;
117b0791 1580 pmd_t *pmd;
71e3aac0
AA
1581
1582 if (address & ~HPAGE_PMD_MASK)
117b0791 1583 return NULL;
71e3aac0 1584
b5a8cad3
KS
1585 pgd = pgd_offset(mm, address);
1586 if (!pgd_present(*pgd))
117b0791 1587 return NULL;
b5a8cad3
KS
1588 pud = pud_offset(pgd, address);
1589 if (!pud_present(*pud))
1590 return NULL;
1591 pmd = pmd_offset(pud, address);
1592
117b0791 1593 *ptl = pmd_lock(mm, pmd);
b5a8cad3 1594 if (!pmd_present(*pmd))
117b0791 1595 goto unlock;
71e3aac0 1596 if (pmd_page(*pmd) != page)
117b0791 1597 goto unlock;
94fcc585
AA
1598 /*
1599 * split_vma() may create temporary aliased mappings. There is
1600 * no risk as long as all huge pmd are found and have their
1601 * splitting bit set before __split_huge_page_refcount
1602 * runs. Finding the same huge pmd more than once during the
1603 * same rmap walk is not a problem.
1604 */
1605 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1606 pmd_trans_splitting(*pmd))
117b0791 1607 goto unlock;
71e3aac0
AA
1608 if (pmd_trans_huge(*pmd)) {
1609 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1610 !pmd_trans_splitting(*pmd));
117b0791 1611 return pmd;
71e3aac0 1612 }
117b0791
KS
1613unlock:
1614 spin_unlock(*ptl);
1615 return NULL;
71e3aac0
AA
1616}
1617
1618static int __split_huge_page_splitting(struct page *page,
1619 struct vm_area_struct *vma,
1620 unsigned long address)
1621{
1622 struct mm_struct *mm = vma->vm_mm;
117b0791 1623 spinlock_t *ptl;
71e3aac0
AA
1624 pmd_t *pmd;
1625 int ret = 0;
2ec74c3e
SG
1626 /* For mmu_notifiers */
1627 const unsigned long mmun_start = address;
1628 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1629
2ec74c3e 1630 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0 1631 pmd = page_check_address_pmd(page, mm, address,
117b0791 1632 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
71e3aac0
AA
1633 if (pmd) {
1634 /*
1635 * We can't temporarily set the pmd to null in order
1636 * to split it, the pmd must remain marked huge at all
1637 * times or the VM won't take the pmd_trans_huge paths
5a505085 1638 * and it won't wait on the anon_vma->root->rwsem to
71e3aac0
AA
1639 * serialize against split_huge_page*.
1640 */
2ec74c3e 1641 pmdp_splitting_flush(vma, address, pmd);
34ee645e 1642
71e3aac0 1643 ret = 1;
117b0791 1644 spin_unlock(ptl);
71e3aac0 1645 }
2ec74c3e 1646 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1647
1648 return ret;
1649}
1650
5bc7b8ac
SL
1651static void __split_huge_page_refcount(struct page *page,
1652 struct list_head *list)
71e3aac0
AA
1653{
1654 int i;
71e3aac0 1655 struct zone *zone = page_zone(page);
fa9add64 1656 struct lruvec *lruvec;
70b50f94 1657 int tail_count = 0;
71e3aac0
AA
1658
1659 /* prevent PageLRU to go away from under us, and freeze lru stats */
1660 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1661 lruvec = mem_cgroup_page_lruvec(page, zone);
1662
71e3aac0 1663 compound_lock(page);
e94c8a9c
KH
1664 /* complete memcg works before add pages to LRU */
1665 mem_cgroup_split_huge_fixup(page);
71e3aac0 1666
45676885 1667 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1668 struct page *page_tail = page + i;
1669
70b50f94
AA
1670 /* tail_page->_mapcount cannot change */
1671 BUG_ON(page_mapcount(page_tail) < 0);
1672 tail_count += page_mapcount(page_tail);
1673 /* check for overflow */
1674 BUG_ON(tail_count < 0);
1675 BUG_ON(atomic_read(&page_tail->_count) != 0);
1676 /*
1677 * tail_page->_count is zero and not changing from
1678 * under us. But get_page_unless_zero() may be running
1679 * from under us on the tail_page. If we used
1680 * atomic_set() below instead of atomic_add(), we
1681 * would then run atomic_set() concurrently with
1682 * get_page_unless_zero(), and atomic_set() is
1683 * implemented in C not using locked ops. spin_unlock
1684 * on x86 sometime uses locked ops because of PPro
1685 * errata 66, 92, so unless somebody can guarantee
1686 * atomic_set() here would be safe on all archs (and
1687 * not only on x86), it's safer to use atomic_add().
1688 */
1689 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1690 &page_tail->_count);
71e3aac0
AA
1691
1692 /* after clearing PageTail the gup refcount can be released */
3a79d52a 1693 smp_mb__after_atomic();
71e3aac0 1694
a6d30ddd
JD
1695 /*
1696 * retain hwpoison flag of the poisoned tail page:
1697 * fix for the unsuitable process killed on Guest Machine(KVM)
1698 * by the memory-failure.
1699 */
1700 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1701 page_tail->flags |= (page->flags &
1702 ((1L << PG_referenced) |
1703 (1L << PG_swapbacked) |
1704 (1L << PG_mlocked) |
e180cf80
KS
1705 (1L << PG_uptodate) |
1706 (1L << PG_active) |
1707 (1L << PG_unevictable)));
71e3aac0
AA
1708 page_tail->flags |= (1L << PG_dirty);
1709
70b50f94 1710 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1711 smp_wmb();
1712
1713 /*
1714 * __split_huge_page_splitting() already set the
1715 * splitting bit in all pmd that could map this
1716 * hugepage, that will ensure no CPU can alter the
1717 * mapcount on the head page. The mapcount is only
1718 * accounted in the head page and it has to be
1719 * transferred to all tail pages in the below code. So
1720 * for this code to be safe, the split the mapcount
1721 * can't change. But that doesn't mean userland can't
1722 * keep changing and reading the page contents while
1723 * we transfer the mapcount, so the pmd splitting
1724 * status is achieved setting a reserved bit in the
1725 * pmd, not by clearing the present bit.
1726 */
71e3aac0
AA
1727 page_tail->_mapcount = page->_mapcount;
1728
1729 BUG_ON(page_tail->mapping);
1730 page_tail->mapping = page->mapping;
1731
45676885 1732 page_tail->index = page->index + i;
90572890 1733 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
71e3aac0
AA
1734
1735 BUG_ON(!PageAnon(page_tail));
1736 BUG_ON(!PageUptodate(page_tail));
1737 BUG_ON(!PageDirty(page_tail));
1738 BUG_ON(!PageSwapBacked(page_tail));
1739
5bc7b8ac 1740 lru_add_page_tail(page, page_tail, lruvec, list);
71e3aac0 1741 }
70b50f94
AA
1742 atomic_sub(tail_count, &page->_count);
1743 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1744
fa9add64 1745 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171 1746
71e3aac0
AA
1747 ClearPageCompound(page);
1748 compound_unlock(page);
1749 spin_unlock_irq(&zone->lru_lock);
1750
1751 for (i = 1; i < HPAGE_PMD_NR; i++) {
1752 struct page *page_tail = page + i;
1753 BUG_ON(page_count(page_tail) <= 0);
1754 /*
1755 * Tail pages may be freed if there wasn't any mapping
1756 * like if add_to_swap() is running on a lru page that
1757 * had its mapping zapped. And freeing these pages
1758 * requires taking the lru_lock so we do the put_page
1759 * of the tail pages after the split is complete.
1760 */
1761 put_page(page_tail);
1762 }
1763
1764 /*
1765 * Only the head page (now become a regular page) is required
1766 * to be pinned by the caller.
1767 */
1768 BUG_ON(page_count(page) <= 0);
1769}
1770
1771static int __split_huge_page_map(struct page *page,
1772 struct vm_area_struct *vma,
1773 unsigned long address)
1774{
1775 struct mm_struct *mm = vma->vm_mm;
117b0791 1776 spinlock_t *ptl;
71e3aac0
AA
1777 pmd_t *pmd, _pmd;
1778 int ret = 0, i;
1779 pgtable_t pgtable;
1780 unsigned long haddr;
1781
71e3aac0 1782 pmd = page_check_address_pmd(page, mm, address,
117b0791 1783 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
71e3aac0 1784 if (pmd) {
6b0b50b0 1785 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0 1786 pmd_populate(mm, &_pmd, pgtable);
f8303c25
WL
1787 if (pmd_write(*pmd))
1788 BUG_ON(page_mapcount(page) != 1);
71e3aac0 1789
e3ebcf64
GS
1790 haddr = address;
1791 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1792 pte_t *pte, entry;
1793 BUG_ON(PageCompound(page+i));
abc40bd2
MG
1794 /*
1795 * Note that pmd_numa is not transferred deliberately
1796 * to avoid any possibility that pte_numa leaks to
1797 * a PROT_NONE VMA by accident.
1798 */
71e3aac0
AA
1799 entry = mk_pte(page + i, vma->vm_page_prot);
1800 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1801 if (!pmd_write(*pmd))
1802 entry = pte_wrprotect(entry);
71e3aac0
AA
1803 if (!pmd_young(*pmd))
1804 entry = pte_mkold(entry);
1805 pte = pte_offset_map(&_pmd, haddr);
1806 BUG_ON(!pte_none(*pte));
1807 set_pte_at(mm, haddr, pte, entry);
1808 pte_unmap(pte);
1809 }
1810
71e3aac0
AA
1811 smp_wmb(); /* make pte visible before pmd */
1812 /*
1813 * Up to this point the pmd is present and huge and
1814 * userland has the whole access to the hugepage
1815 * during the split (which happens in place). If we
1816 * overwrite the pmd with the not-huge version
1817 * pointing to the pte here (which of course we could
1818 * if all CPUs were bug free), userland could trigger
1819 * a small page size TLB miss on the small sized TLB
1820 * while the hugepage TLB entry is still established
1821 * in the huge TLB. Some CPU doesn't like that. See
1822 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1823 * Erratum 383 on page 93. Intel should be safe but is
1824 * also warns that it's only safe if the permission
1825 * and cache attributes of the two entries loaded in
1826 * the two TLB is identical (which should be the case
1827 * here). But it is generally safer to never allow
1828 * small and huge TLB entries for the same virtual
1829 * address to be loaded simultaneously. So instead of
1830 * doing "pmd_populate(); flush_tlb_range();" we first
1831 * mark the current pmd notpresent (atomically because
1832 * here the pmd_trans_huge and pmd_trans_splitting
1833 * must remain set at all times on the pmd until the
1834 * split is complete for this pmd), then we flush the
1835 * SMP TLB and finally we write the non-huge version
1836 * of the pmd entry with pmd_populate.
1837 */
46dcde73 1838 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1839 pmd_populate(mm, pmd, pgtable);
1840 ret = 1;
117b0791 1841 spin_unlock(ptl);
71e3aac0 1842 }
71e3aac0
AA
1843
1844 return ret;
1845}
1846
5a505085 1847/* must be called with anon_vma->root->rwsem held */
71e3aac0 1848static void __split_huge_page(struct page *page,
5bc7b8ac
SL
1849 struct anon_vma *anon_vma,
1850 struct list_head *list)
71e3aac0
AA
1851{
1852 int mapcount, mapcount2;
bf181b9f 1853 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1854 struct anon_vma_chain *avc;
1855
1856 BUG_ON(!PageHead(page));
1857 BUG_ON(PageTail(page));
1858
1859 mapcount = 0;
bf181b9f 1860 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1861 struct vm_area_struct *vma = avc->vma;
1862 unsigned long addr = vma_address(page, vma);
1863 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1864 mapcount += __split_huge_page_splitting(page, vma, addr);
1865 }
05759d38
AA
1866 /*
1867 * It is critical that new vmas are added to the tail of the
1868 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1869 * and establishes a child pmd before
1870 * __split_huge_page_splitting() freezes the parent pmd (so if
1871 * we fail to prevent copy_huge_pmd() from running until the
1872 * whole __split_huge_page() is complete), we will still see
1873 * the newly established pmd of the child later during the
1874 * walk, to be able to set it as pmd_trans_splitting too.
1875 */
ff9e43eb 1876 if (mapcount != page_mapcount(page)) {
ae3a8c1c
AM
1877 pr_err("mapcount %d page_mapcount %d\n",
1878 mapcount, page_mapcount(page));
ff9e43eb
KS
1879 BUG();
1880 }
71e3aac0 1881
5bc7b8ac 1882 __split_huge_page_refcount(page, list);
71e3aac0
AA
1883
1884 mapcount2 = 0;
bf181b9f 1885 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1886 struct vm_area_struct *vma = avc->vma;
1887 unsigned long addr = vma_address(page, vma);
1888 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1889 mapcount2 += __split_huge_page_map(page, vma, addr);
1890 }
ff9e43eb 1891 if (mapcount != mapcount2) {
ae3a8c1c
AM
1892 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1893 mapcount, mapcount2, page_mapcount(page));
ff9e43eb
KS
1894 BUG();
1895 }
71e3aac0
AA
1896}
1897
5bc7b8ac
SL
1898/*
1899 * Split a hugepage into normal pages. This doesn't change the position of head
1900 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1901 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1902 * from the hugepage.
1903 * Return 0 if the hugepage is split successfully otherwise return 1.
1904 */
1905int split_huge_page_to_list(struct page *page, struct list_head *list)
71e3aac0
AA
1906{
1907 struct anon_vma *anon_vma;
1908 int ret = 1;
1909
5918d10a 1910 BUG_ON(is_huge_zero_page(page));
71e3aac0 1911 BUG_ON(!PageAnon(page));
062f1af2
MG
1912
1913 /*
1914 * The caller does not necessarily hold an mmap_sem that would prevent
1915 * the anon_vma disappearing so we first we take a reference to it
1916 * and then lock the anon_vma for write. This is similar to
1917 * page_lock_anon_vma_read except the write lock is taken to serialise
1918 * against parallel split or collapse operations.
1919 */
1920 anon_vma = page_get_anon_vma(page);
71e3aac0
AA
1921 if (!anon_vma)
1922 goto out;
062f1af2
MG
1923 anon_vma_lock_write(anon_vma);
1924
71e3aac0
AA
1925 ret = 0;
1926 if (!PageCompound(page))
1927 goto out_unlock;
1928
1929 BUG_ON(!PageSwapBacked(page));
5bc7b8ac 1930 __split_huge_page(page, anon_vma, list);
81ab4201 1931 count_vm_event(THP_SPLIT);
71e3aac0
AA
1932
1933 BUG_ON(PageCompound(page));
1934out_unlock:
08b52706 1935 anon_vma_unlock_write(anon_vma);
062f1af2 1936 put_anon_vma(anon_vma);
71e3aac0
AA
1937out:
1938 return ret;
1939}
1940
9050d7eb 1941#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1942
60ab3244
AA
1943int hugepage_madvise(struct vm_area_struct *vma,
1944 unsigned long *vm_flags, int advice)
0af4e98b 1945{
a664b2d8
AA
1946 switch (advice) {
1947 case MADV_HUGEPAGE:
1e1836e8
AT
1948#ifdef CONFIG_S390
1949 /*
1950 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1951 * can't handle this properly after s390_enable_sie, so we simply
1952 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1953 */
1954 if (mm_has_pgste(vma->vm_mm))
1955 return 0;
1956#endif
a664b2d8
AA
1957 /*
1958 * Be somewhat over-protective like KSM for now!
1959 */
78f11a25 1960 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8
AA
1961 return -EINVAL;
1962 *vm_flags &= ~VM_NOHUGEPAGE;
1963 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1964 /*
1965 * If the vma become good for khugepaged to scan,
1966 * register it here without waiting a page fault that
1967 * may not happen any time soon.
1968 */
6d50e60c 1969 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1970 return -ENOMEM;
a664b2d8
AA
1971 break;
1972 case MADV_NOHUGEPAGE:
1973 /*
1974 * Be somewhat over-protective like KSM for now!
1975 */
78f11a25 1976 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1977 return -EINVAL;
1978 *vm_flags &= ~VM_HUGEPAGE;
1979 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1980 /*
1981 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1982 * this vma even if we leave the mm registered in khugepaged if
1983 * it got registered before VM_NOHUGEPAGE was set.
1984 */
a664b2d8
AA
1985 break;
1986 }
0af4e98b
AA
1987
1988 return 0;
1989}
1990
ba76149f
AA
1991static int __init khugepaged_slab_init(void)
1992{
1993 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1994 sizeof(struct mm_slot),
1995 __alignof__(struct mm_slot), 0, NULL);
1996 if (!mm_slot_cache)
1997 return -ENOMEM;
1998
1999 return 0;
2000}
2001
ba76149f
AA
2002static inline struct mm_slot *alloc_mm_slot(void)
2003{
2004 if (!mm_slot_cache) /* initialization failed */
2005 return NULL;
2006 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2007}
2008
2009static inline void free_mm_slot(struct mm_slot *mm_slot)
2010{
2011 kmem_cache_free(mm_slot_cache, mm_slot);
2012}
2013
ba76149f
AA
2014static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2015{
2016 struct mm_slot *mm_slot;
ba76149f 2017
b67bfe0d 2018 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
2019 if (mm == mm_slot->mm)
2020 return mm_slot;
43b5fbbd 2021
ba76149f
AA
2022 return NULL;
2023}
2024
2025static void insert_to_mm_slots_hash(struct mm_struct *mm,
2026 struct mm_slot *mm_slot)
2027{
ba76149f 2028 mm_slot->mm = mm;
43b5fbbd 2029 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
2030}
2031
2032static inline int khugepaged_test_exit(struct mm_struct *mm)
2033{
2034 return atomic_read(&mm->mm_users) == 0;
2035}
2036
2037int __khugepaged_enter(struct mm_struct *mm)
2038{
2039 struct mm_slot *mm_slot;
2040 int wakeup;
2041
2042 mm_slot = alloc_mm_slot();
2043 if (!mm_slot)
2044 return -ENOMEM;
2045
2046 /* __khugepaged_exit() must not run from under us */
96dad67f 2047 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
2048 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2049 free_mm_slot(mm_slot);
2050 return 0;
2051 }
2052
2053 spin_lock(&khugepaged_mm_lock);
2054 insert_to_mm_slots_hash(mm, mm_slot);
2055 /*
2056 * Insert just behind the scanning cursor, to let the area settle
2057 * down a little.
2058 */
2059 wakeup = list_empty(&khugepaged_scan.mm_head);
2060 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2061 spin_unlock(&khugepaged_mm_lock);
2062
2063 atomic_inc(&mm->mm_count);
2064 if (wakeup)
2065 wake_up_interruptible(&khugepaged_wait);
2066
2067 return 0;
2068}
2069
6d50e60c
DR
2070int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2071 unsigned long vm_flags)
ba76149f
AA
2072{
2073 unsigned long hstart, hend;
2074 if (!vma->anon_vma)
2075 /*
2076 * Not yet faulted in so we will register later in the
2077 * page fault if needed.
2078 */
2079 return 0;
78f11a25 2080 if (vma->vm_ops)
ba76149f
AA
2081 /* khugepaged not yet working on file or special mappings */
2082 return 0;
6d50e60c 2083 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
2084 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2085 hend = vma->vm_end & HPAGE_PMD_MASK;
2086 if (hstart < hend)
6d50e60c 2087 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
2088 return 0;
2089}
2090
2091void __khugepaged_exit(struct mm_struct *mm)
2092{
2093 struct mm_slot *mm_slot;
2094 int free = 0;
2095
2096 spin_lock(&khugepaged_mm_lock);
2097 mm_slot = get_mm_slot(mm);
2098 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 2099 hash_del(&mm_slot->hash);
ba76149f
AA
2100 list_del(&mm_slot->mm_node);
2101 free = 1;
2102 }
d788e80a 2103 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2104
2105 if (free) {
ba76149f
AA
2106 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2107 free_mm_slot(mm_slot);
2108 mmdrop(mm);
2109 } else if (mm_slot) {
ba76149f
AA
2110 /*
2111 * This is required to serialize against
2112 * khugepaged_test_exit() (which is guaranteed to run
2113 * under mmap sem read mode). Stop here (after we
2114 * return all pagetables will be destroyed) until
2115 * khugepaged has finished working on the pagetables
2116 * under the mmap_sem.
2117 */
2118 down_write(&mm->mmap_sem);
2119 up_write(&mm->mmap_sem);
d788e80a 2120 }
ba76149f
AA
2121}
2122
2123static void release_pte_page(struct page *page)
2124{
2125 /* 0 stands for page_is_file_cache(page) == false */
2126 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2127 unlock_page(page);
2128 putback_lru_page(page);
2129}
2130
2131static void release_pte_pages(pte_t *pte, pte_t *_pte)
2132{
2133 while (--_pte >= pte) {
2134 pte_t pteval = *_pte;
2135 if (!pte_none(pteval))
2136 release_pte_page(pte_page(pteval));
2137 }
2138}
2139
ba76149f
AA
2140static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2141 unsigned long address,
2142 pte_t *pte)
2143{
2144 struct page *page;
2145 pte_t *_pte;
344aa35c 2146 int referenced = 0, none = 0;
ba76149f
AA
2147 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2148 _pte++, address += PAGE_SIZE) {
2149 pte_t pteval = *_pte;
2150 if (pte_none(pteval)) {
2151 if (++none <= khugepaged_max_ptes_none)
2152 continue;
344aa35c 2153 else
ba76149f 2154 goto out;
ba76149f 2155 }
344aa35c 2156 if (!pte_present(pteval) || !pte_write(pteval))
ba76149f 2157 goto out;
ba76149f 2158 page = vm_normal_page(vma, address, pteval);
344aa35c 2159 if (unlikely(!page))
ba76149f 2160 goto out;
344aa35c 2161
309381fe
SL
2162 VM_BUG_ON_PAGE(PageCompound(page), page);
2163 VM_BUG_ON_PAGE(!PageAnon(page), page);
2164 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f
AA
2165
2166 /* cannot use mapcount: can't collapse if there's a gup pin */
344aa35c 2167 if (page_count(page) != 1)
ba76149f 2168 goto out;
ba76149f
AA
2169 /*
2170 * We can do it before isolate_lru_page because the
2171 * page can't be freed from under us. NOTE: PG_lock
2172 * is needed to serialize against split_huge_page
2173 * when invoked from the VM.
2174 */
344aa35c 2175 if (!trylock_page(page))
ba76149f 2176 goto out;
ba76149f
AA
2177 /*
2178 * Isolate the page to avoid collapsing an hugepage
2179 * currently in use by the VM.
2180 */
2181 if (isolate_lru_page(page)) {
2182 unlock_page(page);
ba76149f
AA
2183 goto out;
2184 }
2185 /* 0 stands for page_is_file_cache(page) == false */
2186 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2187 VM_BUG_ON_PAGE(!PageLocked(page), page);
2188 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2189
2190 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
2191 if (pte_young(pteval) || PageReferenced(page) ||
2192 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2193 referenced = 1;
2194 }
344aa35c
BL
2195 if (likely(referenced))
2196 return 1;
ba76149f 2197out:
344aa35c
BL
2198 release_pte_pages(pte, _pte);
2199 return 0;
ba76149f
AA
2200}
2201
2202static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2203 struct vm_area_struct *vma,
2204 unsigned long address,
2205 spinlock_t *ptl)
2206{
2207 pte_t *_pte;
2208 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2209 pte_t pteval = *_pte;
2210 struct page *src_page;
2211
2212 if (pte_none(pteval)) {
2213 clear_user_highpage(page, address);
2214 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2215 } else {
2216 src_page = pte_page(pteval);
2217 copy_user_highpage(page, src_page, address, vma);
309381fe 2218 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2219 release_pte_page(src_page);
2220 /*
2221 * ptl mostly unnecessary, but preempt has to
2222 * be disabled to update the per-cpu stats
2223 * inside page_remove_rmap().
2224 */
2225 spin_lock(ptl);
2226 /*
2227 * paravirt calls inside pte_clear here are
2228 * superfluous.
2229 */
2230 pte_clear(vma->vm_mm, address, _pte);
2231 page_remove_rmap(src_page);
2232 spin_unlock(ptl);
2233 free_page_and_swap_cache(src_page);
2234 }
2235
2236 address += PAGE_SIZE;
2237 page++;
2238 }
2239}
2240
26234f36 2241static void khugepaged_alloc_sleep(void)
ba76149f 2242{
26234f36
XG
2243 wait_event_freezable_timeout(khugepaged_wait, false,
2244 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2245}
ba76149f 2246
9f1b868a
BL
2247static int khugepaged_node_load[MAX_NUMNODES];
2248
14a4e214
DR
2249static bool khugepaged_scan_abort(int nid)
2250{
2251 int i;
2252
2253 /*
2254 * If zone_reclaim_mode is disabled, then no extra effort is made to
2255 * allocate memory locally.
2256 */
2257 if (!zone_reclaim_mode)
2258 return false;
2259
2260 /* If there is a count for this node already, it must be acceptable */
2261 if (khugepaged_node_load[nid])
2262 return false;
2263
2264 for (i = 0; i < MAX_NUMNODES; i++) {
2265 if (!khugepaged_node_load[i])
2266 continue;
2267 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2268 return true;
2269 }
2270 return false;
2271}
2272
26234f36 2273#ifdef CONFIG_NUMA
9f1b868a
BL
2274static int khugepaged_find_target_node(void)
2275{
2276 static int last_khugepaged_target_node = NUMA_NO_NODE;
2277 int nid, target_node = 0, max_value = 0;
2278
2279 /* find first node with max normal pages hit */
2280 for (nid = 0; nid < MAX_NUMNODES; nid++)
2281 if (khugepaged_node_load[nid] > max_value) {
2282 max_value = khugepaged_node_load[nid];
2283 target_node = nid;
2284 }
2285
2286 /* do some balance if several nodes have the same hit record */
2287 if (target_node <= last_khugepaged_target_node)
2288 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2289 nid++)
2290 if (max_value == khugepaged_node_load[nid]) {
2291 target_node = nid;
2292 break;
2293 }
2294
2295 last_khugepaged_target_node = target_node;
2296 return target_node;
2297}
2298
26234f36
XG
2299static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2300{
2301 if (IS_ERR(*hpage)) {
2302 if (!*wait)
2303 return false;
2304
2305 *wait = false;
e3b4126c 2306 *hpage = NULL;
26234f36
XG
2307 khugepaged_alloc_sleep();
2308 } else if (*hpage) {
2309 put_page(*hpage);
2310 *hpage = NULL;
2311 }
2312
2313 return true;
2314}
2315
2316static struct page
2317*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2318 struct vm_area_struct *vma, unsigned long address,
2319 int node)
2320{
309381fe 2321 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2322
ce83d217 2323 /*
8b164568
VB
2324 * Before allocating the hugepage, release the mmap_sem read lock.
2325 * The allocation can take potentially a long time if it involves
2326 * sync compaction, and we do not need to hold the mmap_sem during
2327 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2328 */
8b164568
VB
2329 up_read(&mm->mmap_sem);
2330
9f1b868a
BL
2331 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2332 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
26234f36 2333 if (unlikely(!*hpage)) {
81ab4201 2334 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2335 *hpage = ERR_PTR(-ENOMEM);
26234f36 2336 return NULL;
ce83d217 2337 }
26234f36 2338
65b3c07b 2339 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2340 return *hpage;
2341}
2342#else
9f1b868a
BL
2343static int khugepaged_find_target_node(void)
2344{
2345 return 0;
2346}
2347
10dc4155
BL
2348static inline struct page *alloc_hugepage(int defrag)
2349{
2350 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2351 HPAGE_PMD_ORDER);
2352}
2353
26234f36
XG
2354static struct page *khugepaged_alloc_hugepage(bool *wait)
2355{
2356 struct page *hpage;
2357
2358 do {
2359 hpage = alloc_hugepage(khugepaged_defrag());
2360 if (!hpage) {
2361 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2362 if (!*wait)
2363 return NULL;
2364
2365 *wait = false;
2366 khugepaged_alloc_sleep();
2367 } else
2368 count_vm_event(THP_COLLAPSE_ALLOC);
2369 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2370
2371 return hpage;
2372}
2373
2374static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2375{
2376 if (!*hpage)
2377 *hpage = khugepaged_alloc_hugepage(wait);
2378
2379 if (unlikely(!*hpage))
2380 return false;
2381
2382 return true;
2383}
2384
2385static struct page
2386*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2387 struct vm_area_struct *vma, unsigned long address,
2388 int node)
2389{
2390 up_read(&mm->mmap_sem);
2391 VM_BUG_ON(!*hpage);
2392 return *hpage;
2393}
692e0b35
AA
2394#endif
2395
fa475e51
BL
2396static bool hugepage_vma_check(struct vm_area_struct *vma)
2397{
2398 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2399 (vma->vm_flags & VM_NOHUGEPAGE))
2400 return false;
2401
2402 if (!vma->anon_vma || vma->vm_ops)
2403 return false;
2404 if (is_vma_temporary_stack(vma))
2405 return false;
81d1b09c 2406 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2407 return true;
2408}
2409
26234f36
XG
2410static void collapse_huge_page(struct mm_struct *mm,
2411 unsigned long address,
2412 struct page **hpage,
2413 struct vm_area_struct *vma,
2414 int node)
2415{
26234f36
XG
2416 pmd_t *pmd, _pmd;
2417 pte_t *pte;
2418 pgtable_t pgtable;
2419 struct page *new_page;
c4088ebd 2420 spinlock_t *pmd_ptl, *pte_ptl;
26234f36
XG
2421 int isolated;
2422 unsigned long hstart, hend;
00501b53 2423 struct mem_cgroup *memcg;
2ec74c3e
SG
2424 unsigned long mmun_start; /* For mmu_notifiers */
2425 unsigned long mmun_end; /* For mmu_notifiers */
26234f36
XG
2426
2427 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2428
2429 /* release the mmap_sem read lock. */
2430 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2431 if (!new_page)
2432 return;
2433
00501b53
JW
2434 if (unlikely(mem_cgroup_try_charge(new_page, mm,
2435 GFP_TRANSHUGE, &memcg)))
ce83d217 2436 return;
ba76149f
AA
2437
2438 /*
2439 * Prevent all access to pagetables with the exception of
2440 * gup_fast later hanlded by the ptep_clear_flush and the VM
2441 * handled by the anon_vma lock + PG_lock.
2442 */
2443 down_write(&mm->mmap_sem);
2444 if (unlikely(khugepaged_test_exit(mm)))
2445 goto out;
2446
2447 vma = find_vma(mm, address);
a8f531eb
L
2448 if (!vma)
2449 goto out;
ba76149f
AA
2450 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2451 hend = vma->vm_end & HPAGE_PMD_MASK;
2452 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2453 goto out;
fa475e51 2454 if (!hugepage_vma_check(vma))
a7d6e4ec 2455 goto out;
6219049a
BL
2456 pmd = mm_find_pmd(mm, address);
2457 if (!pmd)
ba76149f 2458 goto out;
ba76149f 2459
4fc3f1d6 2460 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2461
2462 pte = pte_offset_map(pmd, address);
c4088ebd 2463 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2464
2ec74c3e
SG
2465 mmun_start = address;
2466 mmun_end = address + HPAGE_PMD_SIZE;
2467 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2468 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2469 /*
2470 * After this gup_fast can't run anymore. This also removes
2471 * any huge TLB entry from the CPU so we won't allow
2472 * huge and small TLB entries for the same virtual address
2473 * to avoid the risk of CPU bugs in that area.
2474 */
2ec74c3e 2475 _pmd = pmdp_clear_flush(vma, address, pmd);
c4088ebd 2476 spin_unlock(pmd_ptl);
2ec74c3e 2477 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2478
c4088ebd 2479 spin_lock(pte_ptl);
ba76149f 2480 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2481 spin_unlock(pte_ptl);
ba76149f
AA
2482
2483 if (unlikely(!isolated)) {
453c7192 2484 pte_unmap(pte);
c4088ebd 2485 spin_lock(pmd_ptl);
ba76149f 2486 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2487 /*
2488 * We can only use set_pmd_at when establishing
2489 * hugepmds and never for establishing regular pmds that
2490 * points to regular pagetables. Use pmd_populate for that
2491 */
2492 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2493 spin_unlock(pmd_ptl);
08b52706 2494 anon_vma_unlock_write(vma->anon_vma);
ce83d217 2495 goto out;
ba76149f
AA
2496 }
2497
2498 /*
2499 * All pages are isolated and locked so anon_vma rmap
2500 * can't run anymore.
2501 */
08b52706 2502 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2503
c4088ebd 2504 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2505 pte_unmap(pte);
ba76149f
AA
2506 __SetPageUptodate(new_page);
2507 pgtable = pmd_pgtable(_pmd);
ba76149f 2508
3122359a
KS
2509 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2510 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2511
2512 /*
2513 * spin_lock() below is not the equivalent of smp_wmb(), so
2514 * this is needed to avoid the copy_huge_page writes to become
2515 * visible after the set_pmd_at() write.
2516 */
2517 smp_wmb();
2518
c4088ebd 2519 spin_lock(pmd_ptl);
ba76149f
AA
2520 BUG_ON(!pmd_none(*pmd));
2521 page_add_new_anon_rmap(new_page, vma, address);
00501b53
JW
2522 mem_cgroup_commit_charge(new_page, memcg, false);
2523 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2524 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2525 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2526 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2527 spin_unlock(pmd_ptl);
ba76149f
AA
2528
2529 *hpage = NULL;
420256ef 2530
ba76149f 2531 khugepaged_pages_collapsed++;
ce83d217 2532out_up_write:
ba76149f 2533 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2534 return;
2535
ce83d217 2536out:
00501b53 2537 mem_cgroup_cancel_charge(new_page, memcg);
ce83d217 2538 goto out_up_write;
ba76149f
AA
2539}
2540
2541static int khugepaged_scan_pmd(struct mm_struct *mm,
2542 struct vm_area_struct *vma,
2543 unsigned long address,
2544 struct page **hpage)
2545{
ba76149f
AA
2546 pmd_t *pmd;
2547 pte_t *pte, *_pte;
2548 int ret = 0, referenced = 0, none = 0;
2549 struct page *page;
2550 unsigned long _address;
2551 spinlock_t *ptl;
00ef2d2f 2552 int node = NUMA_NO_NODE;
ba76149f
AA
2553
2554 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2555
6219049a
BL
2556 pmd = mm_find_pmd(mm, address);
2557 if (!pmd)
ba76149f 2558 goto out;
ba76149f 2559
9f1b868a 2560 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2561 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2562 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2563 _pte++, _address += PAGE_SIZE) {
2564 pte_t pteval = *_pte;
2565 if (pte_none(pteval)) {
2566 if (++none <= khugepaged_max_ptes_none)
2567 continue;
2568 else
2569 goto out_unmap;
2570 }
2571 if (!pte_present(pteval) || !pte_write(pteval))
2572 goto out_unmap;
2573 page = vm_normal_page(vma, _address, pteval);
2574 if (unlikely(!page))
2575 goto out_unmap;
5c4b4be3 2576 /*
9f1b868a
BL
2577 * Record which node the original page is from and save this
2578 * information to khugepaged_node_load[].
2579 * Khupaged will allocate hugepage from the node has the max
2580 * hit record.
5c4b4be3 2581 */
9f1b868a 2582 node = page_to_nid(page);
14a4e214
DR
2583 if (khugepaged_scan_abort(node))
2584 goto out_unmap;
9f1b868a 2585 khugepaged_node_load[node]++;
309381fe 2586 VM_BUG_ON_PAGE(PageCompound(page), page);
ba76149f
AA
2587 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2588 goto out_unmap;
2589 /* cannot use mapcount: can't collapse if there's a gup pin */
2590 if (page_count(page) != 1)
2591 goto out_unmap;
8ee53820
AA
2592 if (pte_young(pteval) || PageReferenced(page) ||
2593 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2594 referenced = 1;
2595 }
2596 if (referenced)
2597 ret = 1;
2598out_unmap:
2599 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2600 if (ret) {
2601 node = khugepaged_find_target_node();
ce83d217 2602 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2603 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2604 }
ba76149f
AA
2605out:
2606 return ret;
2607}
2608
2609static void collect_mm_slot(struct mm_slot *mm_slot)
2610{
2611 struct mm_struct *mm = mm_slot->mm;
2612
b9980cdc 2613 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2614
2615 if (khugepaged_test_exit(mm)) {
2616 /* free mm_slot */
43b5fbbd 2617 hash_del(&mm_slot->hash);
ba76149f
AA
2618 list_del(&mm_slot->mm_node);
2619
2620 /*
2621 * Not strictly needed because the mm exited already.
2622 *
2623 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2624 */
2625
2626 /* khugepaged_mm_lock actually not necessary for the below */
2627 free_mm_slot(mm_slot);
2628 mmdrop(mm);
2629 }
2630}
2631
2632static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2633 struct page **hpage)
2f1da642
HS
2634 __releases(&khugepaged_mm_lock)
2635 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2636{
2637 struct mm_slot *mm_slot;
2638 struct mm_struct *mm;
2639 struct vm_area_struct *vma;
2640 int progress = 0;
2641
2642 VM_BUG_ON(!pages);
b9980cdc 2643 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2644
2645 if (khugepaged_scan.mm_slot)
2646 mm_slot = khugepaged_scan.mm_slot;
2647 else {
2648 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2649 struct mm_slot, mm_node);
2650 khugepaged_scan.address = 0;
2651 khugepaged_scan.mm_slot = mm_slot;
2652 }
2653 spin_unlock(&khugepaged_mm_lock);
2654
2655 mm = mm_slot->mm;
2656 down_read(&mm->mmap_sem);
2657 if (unlikely(khugepaged_test_exit(mm)))
2658 vma = NULL;
2659 else
2660 vma = find_vma(mm, khugepaged_scan.address);
2661
2662 progress++;
2663 for (; vma; vma = vma->vm_next) {
2664 unsigned long hstart, hend;
2665
2666 cond_resched();
2667 if (unlikely(khugepaged_test_exit(mm))) {
2668 progress++;
2669 break;
2670 }
fa475e51
BL
2671 if (!hugepage_vma_check(vma)) {
2672skip:
ba76149f
AA
2673 progress++;
2674 continue;
2675 }
ba76149f
AA
2676 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2677 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2678 if (hstart >= hend)
2679 goto skip;
2680 if (khugepaged_scan.address > hend)
2681 goto skip;
ba76149f
AA
2682 if (khugepaged_scan.address < hstart)
2683 khugepaged_scan.address = hstart;
a7d6e4ec 2684 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2685
2686 while (khugepaged_scan.address < hend) {
2687 int ret;
2688 cond_resched();
2689 if (unlikely(khugepaged_test_exit(mm)))
2690 goto breakouterloop;
2691
2692 VM_BUG_ON(khugepaged_scan.address < hstart ||
2693 khugepaged_scan.address + HPAGE_PMD_SIZE >
2694 hend);
2695 ret = khugepaged_scan_pmd(mm, vma,
2696 khugepaged_scan.address,
2697 hpage);
2698 /* move to next address */
2699 khugepaged_scan.address += HPAGE_PMD_SIZE;
2700 progress += HPAGE_PMD_NR;
2701 if (ret)
2702 /* we released mmap_sem so break loop */
2703 goto breakouterloop_mmap_sem;
2704 if (progress >= pages)
2705 goto breakouterloop;
2706 }
2707 }
2708breakouterloop:
2709 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2710breakouterloop_mmap_sem:
2711
2712 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2713 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2714 /*
2715 * Release the current mm_slot if this mm is about to die, or
2716 * if we scanned all vmas of this mm.
2717 */
2718 if (khugepaged_test_exit(mm) || !vma) {
2719 /*
2720 * Make sure that if mm_users is reaching zero while
2721 * khugepaged runs here, khugepaged_exit will find
2722 * mm_slot not pointing to the exiting mm.
2723 */
2724 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2725 khugepaged_scan.mm_slot = list_entry(
2726 mm_slot->mm_node.next,
2727 struct mm_slot, mm_node);
2728 khugepaged_scan.address = 0;
2729 } else {
2730 khugepaged_scan.mm_slot = NULL;
2731 khugepaged_full_scans++;
2732 }
2733
2734 collect_mm_slot(mm_slot);
2735 }
2736
2737 return progress;
2738}
2739
2740static int khugepaged_has_work(void)
2741{
2742 return !list_empty(&khugepaged_scan.mm_head) &&
2743 khugepaged_enabled();
2744}
2745
2746static int khugepaged_wait_event(void)
2747{
2748 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2749 kthread_should_stop();
ba76149f
AA
2750}
2751
d516904b 2752static void khugepaged_do_scan(void)
ba76149f 2753{
d516904b 2754 struct page *hpage = NULL;
ba76149f
AA
2755 unsigned int progress = 0, pass_through_head = 0;
2756 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2757 bool wait = true;
ba76149f
AA
2758
2759 barrier(); /* write khugepaged_pages_to_scan to local stack */
2760
2761 while (progress < pages) {
26234f36 2762 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2763 break;
26234f36 2764
420256ef 2765 cond_resched();
ba76149f 2766
878aee7d
AA
2767 if (unlikely(kthread_should_stop() || freezing(current)))
2768 break;
2769
ba76149f
AA
2770 spin_lock(&khugepaged_mm_lock);
2771 if (!khugepaged_scan.mm_slot)
2772 pass_through_head++;
2773 if (khugepaged_has_work() &&
2774 pass_through_head < 2)
2775 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2776 &hpage);
ba76149f
AA
2777 else
2778 progress = pages;
2779 spin_unlock(&khugepaged_mm_lock);
2780 }
ba76149f 2781
d516904b
XG
2782 if (!IS_ERR_OR_NULL(hpage))
2783 put_page(hpage);
0bbbc0b3
AA
2784}
2785
2017c0bf
XG
2786static void khugepaged_wait_work(void)
2787{
2788 try_to_freeze();
2789
2790 if (khugepaged_has_work()) {
2791 if (!khugepaged_scan_sleep_millisecs)
2792 return;
2793
2794 wait_event_freezable_timeout(khugepaged_wait,
2795 kthread_should_stop(),
2796 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2797 return;
2798 }
2799
2800 if (khugepaged_enabled())
2801 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2802}
2803
ba76149f
AA
2804static int khugepaged(void *none)
2805{
2806 struct mm_slot *mm_slot;
2807
878aee7d 2808 set_freezable();
8698a745 2809 set_user_nice(current, MAX_NICE);
ba76149f 2810
b7231789
XG
2811 while (!kthread_should_stop()) {
2812 khugepaged_do_scan();
2813 khugepaged_wait_work();
2814 }
ba76149f
AA
2815
2816 spin_lock(&khugepaged_mm_lock);
2817 mm_slot = khugepaged_scan.mm_slot;
2818 khugepaged_scan.mm_slot = NULL;
2819 if (mm_slot)
2820 collect_mm_slot(mm_slot);
2821 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2822 return 0;
2823}
2824
c5a647d0
KS
2825static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2826 unsigned long haddr, pmd_t *pmd)
2827{
2828 struct mm_struct *mm = vma->vm_mm;
2829 pgtable_t pgtable;
2830 pmd_t _pmd;
2831 int i;
2832
34ee645e 2833 pmdp_clear_flush_notify(vma, haddr, pmd);
c5a647d0
KS
2834 /* leave pmd empty until pte is filled */
2835
6b0b50b0 2836 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
c5a647d0
KS
2837 pmd_populate(mm, &_pmd, pgtable);
2838
2839 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2840 pte_t *pte, entry;
2841 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2842 entry = pte_mkspecial(entry);
2843 pte = pte_offset_map(&_pmd, haddr);
2844 VM_BUG_ON(!pte_none(*pte));
2845 set_pte_at(mm, haddr, pte, entry);
2846 pte_unmap(pte);
2847 }
2848 smp_wmb(); /* make pte visible before pmd */
2849 pmd_populate(mm, pmd, pgtable);
97ae1749 2850 put_huge_zero_page();
c5a647d0
KS
2851}
2852
e180377f
KS
2853void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2854 pmd_t *pmd)
71e3aac0 2855{
c4088ebd 2856 spinlock_t *ptl;
71e3aac0 2857 struct page *page;
e180377f 2858 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
2859 unsigned long haddr = address & HPAGE_PMD_MASK;
2860 unsigned long mmun_start; /* For mmu_notifiers */
2861 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
2862
2863 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 2864
c5a647d0
KS
2865 mmun_start = haddr;
2866 mmun_end = haddr + HPAGE_PMD_SIZE;
750e8165 2867again:
c5a647d0 2868 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2869 ptl = pmd_lock(mm, pmd);
71e3aac0 2870 if (unlikely(!pmd_trans_huge(*pmd))) {
c4088ebd 2871 spin_unlock(ptl);
c5a647d0
KS
2872 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2873 return;
2874 }
2875 if (is_huge_zero_pmd(*pmd)) {
2876 __split_huge_zero_page_pmd(vma, haddr, pmd);
c4088ebd 2877 spin_unlock(ptl);
c5a647d0 2878 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2879 return;
2880 }
2881 page = pmd_page(*pmd);
309381fe 2882 VM_BUG_ON_PAGE(!page_count(page), page);
71e3aac0 2883 get_page(page);
c4088ebd 2884 spin_unlock(ptl);
c5a647d0 2885 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2886
2887 split_huge_page(page);
2888
2889 put_page(page);
750e8165
HD
2890
2891 /*
2892 * We don't always have down_write of mmap_sem here: a racing
2893 * do_huge_pmd_wp_page() might have copied-on-write to another
2894 * huge page before our split_huge_page() got the anon_vma lock.
2895 */
2896 if (unlikely(pmd_trans_huge(*pmd)))
2897 goto again;
71e3aac0 2898}
94fcc585 2899
e180377f
KS
2900void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2901 pmd_t *pmd)
2902{
2903 struct vm_area_struct *vma;
2904
2905 vma = find_vma(mm, address);
2906 BUG_ON(vma == NULL);
2907 split_huge_page_pmd(vma, address, pmd);
2908}
2909
94fcc585
AA
2910static void split_huge_page_address(struct mm_struct *mm,
2911 unsigned long address)
2912{
f72e7dcd
HD
2913 pgd_t *pgd;
2914 pud_t *pud;
94fcc585
AA
2915 pmd_t *pmd;
2916
2917 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2918
f72e7dcd
HD
2919 pgd = pgd_offset(mm, address);
2920 if (!pgd_present(*pgd))
2921 return;
2922
2923 pud = pud_offset(pgd, address);
2924 if (!pud_present(*pud))
2925 return;
2926
2927 pmd = pmd_offset(pud, address);
2928 if (!pmd_present(*pmd))
94fcc585
AA
2929 return;
2930 /*
2931 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2932 * materialize from under us.
2933 */
e180377f 2934 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
2935}
2936
2937void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2938 unsigned long start,
2939 unsigned long end,
2940 long adjust_next)
2941{
2942 /*
2943 * If the new start address isn't hpage aligned and it could
2944 * previously contain an hugepage: check if we need to split
2945 * an huge pmd.
2946 */
2947 if (start & ~HPAGE_PMD_MASK &&
2948 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2949 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2950 split_huge_page_address(vma->vm_mm, start);
2951
2952 /*
2953 * If the new end address isn't hpage aligned and it could
2954 * previously contain an hugepage: check if we need to split
2955 * an huge pmd.
2956 */
2957 if (end & ~HPAGE_PMD_MASK &&
2958 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2959 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2960 split_huge_page_address(vma->vm_mm, end);
2961
2962 /*
2963 * If we're also updating the vma->vm_next->vm_start, if the new
2964 * vm_next->vm_start isn't page aligned and it could previously
2965 * contain an hugepage: check if we need to split an huge pmd.
2966 */
2967 if (adjust_next > 0) {
2968 struct vm_area_struct *next = vma->vm_next;
2969 unsigned long nstart = next->vm_start;
2970 nstart += adjust_next << PAGE_SHIFT;
2971 if (nstart & ~HPAGE_PMD_MASK &&
2972 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2973 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2974 split_huge_page_address(next->vm_mm, nstart);
2975 }
2976}