]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/hugetlb.c
HWPOISON, hugetlb: isolate corrupted hugepage
[thirdparty/kernel/stable.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
d6606683 22
63551ae0
DG
23#include <asm/page.h>
24#include <asm/pgtable.h>
78a34ae2 25#include <asm/io.h>
63551ae0
DG
26
27#include <linux/hugetlb.h>
9a305230 28#include <linux/node.h>
7835e98b 29#include "internal.h"
1da177e4
LT
30
31const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
32static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
33unsigned long hugepages_treat_as_movable;
a5516438 34
e5ff2159
AK
35static int max_hstate;
36unsigned int default_hstate_idx;
37struct hstate hstates[HUGE_MAX_HSTATE];
38
53ba51d2
JT
39__initdata LIST_HEAD(huge_boot_pages);
40
e5ff2159
AK
41/* for command line parsing */
42static struct hstate * __initdata parsed_hstate;
43static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 44static unsigned long __initdata default_hstate_size;
e5ff2159
AK
45
46#define for_each_hstate(h) \
47 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
396faf03 48
3935baa9
DG
49/*
50 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
51 */
52static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 53
96822904
AW
54/*
55 * Region tracking -- allows tracking of reservations and instantiated pages
56 * across the pages in a mapping.
84afd99b
AW
57 *
58 * The region data structures are protected by a combination of the mmap_sem
59 * and the hugetlb_instantion_mutex. To access or modify a region the caller
60 * must either hold the mmap_sem for write, or the mmap_sem for read and
61 * the hugetlb_instantiation mutex:
62 *
63 * down_write(&mm->mmap_sem);
64 * or
65 * down_read(&mm->mmap_sem);
66 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
67 */
68struct file_region {
69 struct list_head link;
70 long from;
71 long to;
72};
73
74static long region_add(struct list_head *head, long f, long t)
75{
76 struct file_region *rg, *nrg, *trg;
77
78 /* Locate the region we are either in or before. */
79 list_for_each_entry(rg, head, link)
80 if (f <= rg->to)
81 break;
82
83 /* Round our left edge to the current segment if it encloses us. */
84 if (f > rg->from)
85 f = rg->from;
86
87 /* Check for and consume any regions we now overlap with. */
88 nrg = rg;
89 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
90 if (&rg->link == head)
91 break;
92 if (rg->from > t)
93 break;
94
95 /* If this area reaches higher then extend our area to
96 * include it completely. If this is not the first area
97 * which we intend to reuse, free it. */
98 if (rg->to > t)
99 t = rg->to;
100 if (rg != nrg) {
101 list_del(&rg->link);
102 kfree(rg);
103 }
104 }
105 nrg->from = f;
106 nrg->to = t;
107 return 0;
108}
109
110static long region_chg(struct list_head *head, long f, long t)
111{
112 struct file_region *rg, *nrg;
113 long chg = 0;
114
115 /* Locate the region we are before or in. */
116 list_for_each_entry(rg, head, link)
117 if (f <= rg->to)
118 break;
119
120 /* If we are below the current region then a new region is required.
121 * Subtle, allocate a new region at the position but make it zero
122 * size such that we can guarantee to record the reservation. */
123 if (&rg->link == head || t < rg->from) {
124 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
125 if (!nrg)
126 return -ENOMEM;
127 nrg->from = f;
128 nrg->to = f;
129 INIT_LIST_HEAD(&nrg->link);
130 list_add(&nrg->link, rg->link.prev);
131
132 return t - f;
133 }
134
135 /* Round our left edge to the current segment if it encloses us. */
136 if (f > rg->from)
137 f = rg->from;
138 chg = t - f;
139
140 /* Check for and consume any regions we now overlap with. */
141 list_for_each_entry(rg, rg->link.prev, link) {
142 if (&rg->link == head)
143 break;
144 if (rg->from > t)
145 return chg;
146
147 /* We overlap with this area, if it extends futher than
148 * us then we must extend ourselves. Account for its
149 * existing reservation. */
150 if (rg->to > t) {
151 chg += rg->to - t;
152 t = rg->to;
153 }
154 chg -= rg->to - rg->from;
155 }
156 return chg;
157}
158
159static long region_truncate(struct list_head *head, long end)
160{
161 struct file_region *rg, *trg;
162 long chg = 0;
163
164 /* Locate the region we are either in or before. */
165 list_for_each_entry(rg, head, link)
166 if (end <= rg->to)
167 break;
168 if (&rg->link == head)
169 return 0;
170
171 /* If we are in the middle of a region then adjust it. */
172 if (end > rg->from) {
173 chg = rg->to - end;
174 rg->to = end;
175 rg = list_entry(rg->link.next, typeof(*rg), link);
176 }
177
178 /* Drop any remaining regions. */
179 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
180 if (&rg->link == head)
181 break;
182 chg += rg->to - rg->from;
183 list_del(&rg->link);
184 kfree(rg);
185 }
186 return chg;
187}
188
84afd99b
AW
189static long region_count(struct list_head *head, long f, long t)
190{
191 struct file_region *rg;
192 long chg = 0;
193
194 /* Locate each segment we overlap with, and count that overlap. */
195 list_for_each_entry(rg, head, link) {
196 int seg_from;
197 int seg_to;
198
199 if (rg->to <= f)
200 continue;
201 if (rg->from >= t)
202 break;
203
204 seg_from = max(rg->from, f);
205 seg_to = min(rg->to, t);
206
207 chg += seg_to - seg_from;
208 }
209
210 return chg;
211}
212
e7c4b0bf
AW
213/*
214 * Convert the address within this vma to the page offset within
215 * the mapping, in pagecache page units; huge pages here.
216 */
a5516438
AK
217static pgoff_t vma_hugecache_offset(struct hstate *h,
218 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 219{
a5516438
AK
220 return ((address - vma->vm_start) >> huge_page_shift(h)) +
221 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
222}
223
0fe6e20b
NH
224pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
225 unsigned long address)
226{
227 return vma_hugecache_offset(hstate_vma(vma), vma, address);
228}
229
08fba699
MG
230/*
231 * Return the size of the pages allocated when backing a VMA. In the majority
232 * cases this will be same size as used by the page table entries.
233 */
234unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
235{
236 struct hstate *hstate;
237
238 if (!is_vm_hugetlb_page(vma))
239 return PAGE_SIZE;
240
241 hstate = hstate_vma(vma);
242
243 return 1UL << (hstate->order + PAGE_SHIFT);
244}
f340ca0f 245EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 246
3340289d
MG
247/*
248 * Return the page size being used by the MMU to back a VMA. In the majority
249 * of cases, the page size used by the kernel matches the MMU size. On
250 * architectures where it differs, an architecture-specific version of this
251 * function is required.
252 */
253#ifndef vma_mmu_pagesize
254unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
255{
256 return vma_kernel_pagesize(vma);
257}
258#endif
259
84afd99b
AW
260/*
261 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
262 * bits of the reservation map pointer, which are always clear due to
263 * alignment.
264 */
265#define HPAGE_RESV_OWNER (1UL << 0)
266#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 267#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 268
a1e78772
MG
269/*
270 * These helpers are used to track how many pages are reserved for
271 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
272 * is guaranteed to have their future faults succeed.
273 *
274 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
275 * the reserve counters are updated with the hugetlb_lock held. It is safe
276 * to reset the VMA at fork() time as it is not in use yet and there is no
277 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
278 *
279 * The private mapping reservation is represented in a subtly different
280 * manner to a shared mapping. A shared mapping has a region map associated
281 * with the underlying file, this region map represents the backing file
282 * pages which have ever had a reservation assigned which this persists even
283 * after the page is instantiated. A private mapping has a region map
284 * associated with the original mmap which is attached to all VMAs which
285 * reference it, this region map represents those offsets which have consumed
286 * reservation ie. where pages have been instantiated.
a1e78772 287 */
e7c4b0bf
AW
288static unsigned long get_vma_private_data(struct vm_area_struct *vma)
289{
290 return (unsigned long)vma->vm_private_data;
291}
292
293static void set_vma_private_data(struct vm_area_struct *vma,
294 unsigned long value)
295{
296 vma->vm_private_data = (void *)value;
297}
298
84afd99b
AW
299struct resv_map {
300 struct kref refs;
301 struct list_head regions;
302};
303
2a4b3ded 304static struct resv_map *resv_map_alloc(void)
84afd99b
AW
305{
306 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
307 if (!resv_map)
308 return NULL;
309
310 kref_init(&resv_map->refs);
311 INIT_LIST_HEAD(&resv_map->regions);
312
313 return resv_map;
314}
315
2a4b3ded 316static void resv_map_release(struct kref *ref)
84afd99b
AW
317{
318 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
319
320 /* Clear out any active regions before we release the map. */
321 region_truncate(&resv_map->regions, 0);
322 kfree(resv_map);
323}
324
325static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
326{
327 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 328 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
329 return (struct resv_map *)(get_vma_private_data(vma) &
330 ~HPAGE_RESV_MASK);
2a4b3ded 331 return NULL;
a1e78772
MG
332}
333
84afd99b 334static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
335{
336 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 337 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 338
84afd99b
AW
339 set_vma_private_data(vma, (get_vma_private_data(vma) &
340 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
341}
342
343static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
344{
04f2cbe3 345 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 346 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
347
348 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
349}
350
351static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
352{
353 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
354
355 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
356}
357
358/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
359static void decrement_hugepage_resv_vma(struct hstate *h,
360 struct vm_area_struct *vma)
a1e78772 361{
c37f9fb1
AW
362 if (vma->vm_flags & VM_NORESERVE)
363 return;
364
f83a275d 365 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 366 /* Shared mappings always use reserves */
a5516438 367 h->resv_huge_pages--;
84afd99b 368 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
369 /*
370 * Only the process that called mmap() has reserves for
371 * private mappings.
372 */
a5516438 373 h->resv_huge_pages--;
a1e78772
MG
374 }
375}
376
04f2cbe3 377/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
378void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
379{
380 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 381 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
382 vma->vm_private_data = (void *)0;
383}
384
385/* Returns true if the VMA has associated reserve pages */
7f09ca51 386static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 387{
f83a275d 388 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
389 return 1;
390 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
391 return 1;
392 return 0;
a1e78772
MG
393}
394
69d177c2
AW
395static void clear_gigantic_page(struct page *page,
396 unsigned long addr, unsigned long sz)
397{
398 int i;
399 struct page *p = page;
400
401 might_sleep();
402 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
403 cond_resched();
404 clear_user_highpage(p, addr + i * PAGE_SIZE);
405 }
406}
a5516438
AK
407static void clear_huge_page(struct page *page,
408 unsigned long addr, unsigned long sz)
79ac6ba4
DG
409{
410 int i;
411
74dbdd23 412 if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
ebdd4aea
HE
413 clear_gigantic_page(page, addr, sz);
414 return;
415 }
69d177c2 416
79ac6ba4 417 might_sleep();
a5516438 418 for (i = 0; i < sz/PAGE_SIZE; i++) {
79ac6ba4 419 cond_resched();
281e0e3b 420 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
421 }
422}
423
69d177c2
AW
424static void copy_gigantic_page(struct page *dst, struct page *src,
425 unsigned long addr, struct vm_area_struct *vma)
426{
427 int i;
428 struct hstate *h = hstate_vma(vma);
429 struct page *dst_base = dst;
430 struct page *src_base = src;
431 might_sleep();
432 for (i = 0; i < pages_per_huge_page(h); ) {
433 cond_resched();
434 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
435
436 i++;
437 dst = mem_map_next(dst, dst_base, i);
438 src = mem_map_next(src, src_base, i);
439 }
440}
79ac6ba4 441static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 442 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
443{
444 int i;
a5516438 445 struct hstate *h = hstate_vma(vma);
79ac6ba4 446
ebdd4aea
HE
447 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
448 copy_gigantic_page(dst, src, addr, vma);
449 return;
450 }
69d177c2 451
79ac6ba4 452 might_sleep();
a5516438 453 for (i = 0; i < pages_per_huge_page(h); i++) {
79ac6ba4 454 cond_resched();
9de455b2 455 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
456 }
457}
458
a5516438 459static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
460{
461 int nid = page_to_nid(page);
a5516438
AK
462 list_add(&page->lru, &h->hugepage_freelists[nid]);
463 h->free_huge_pages++;
464 h->free_huge_pages_node[nid]++;
1da177e4
LT
465}
466
a5516438
AK
467static struct page *dequeue_huge_page_vma(struct hstate *h,
468 struct vm_area_struct *vma,
04f2cbe3 469 unsigned long address, int avoid_reserve)
1da177e4 470{
31a5c6e4 471 int nid;
1da177e4 472 struct page *page = NULL;
480eccf9 473 struct mempolicy *mpol;
19770b32 474 nodemask_t *nodemask;
c0ff7453 475 struct zonelist *zonelist;
dd1a239f
MG
476 struct zone *zone;
477 struct zoneref *z;
1da177e4 478
c0ff7453
MX
479 get_mems_allowed();
480 zonelist = huge_zonelist(vma, address,
481 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
482 /*
483 * A child process with MAP_PRIVATE mappings created by their parent
484 * have no page reserves. This check ensures that reservations are
485 * not "stolen". The child may still get SIGKILLed
486 */
7f09ca51 487 if (!vma_has_reserves(vma) &&
a5516438 488 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 489 goto err;
a1e78772 490
04f2cbe3 491 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 492 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 493 goto err;;
04f2cbe3 494
19770b32
MG
495 for_each_zone_zonelist_nodemask(zone, z, zonelist,
496 MAX_NR_ZONES - 1, nodemask) {
54a6eb5c
MG
497 nid = zone_to_nid(zone);
498 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
a5516438
AK
499 !list_empty(&h->hugepage_freelists[nid])) {
500 page = list_entry(h->hugepage_freelists[nid].next,
3abf7afd
AM
501 struct page, lru);
502 list_del(&page->lru);
a5516438
AK
503 h->free_huge_pages--;
504 h->free_huge_pages_node[nid]--;
04f2cbe3
MG
505
506 if (!avoid_reserve)
a5516438 507 decrement_hugepage_resv_vma(h, vma);
a1e78772 508
5ab3ee7b 509 break;
3abf7afd 510 }
1da177e4 511 }
c0ff7453 512err:
52cd3b07 513 mpol_cond_put(mpol);
c0ff7453 514 put_mems_allowed();
1da177e4
LT
515 return page;
516}
517
a5516438 518static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
519{
520 int i;
a5516438 521
18229df5
AW
522 VM_BUG_ON(h->order >= MAX_ORDER);
523
a5516438
AK
524 h->nr_huge_pages--;
525 h->nr_huge_pages_node[page_to_nid(page)]--;
526 for (i = 0; i < pages_per_huge_page(h); i++) {
6af2acb6
AL
527 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
528 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
529 1 << PG_private | 1<< PG_writeback);
530 }
531 set_compound_page_dtor(page, NULL);
532 set_page_refcounted(page);
7f2e9525 533 arch_release_hugepage(page);
a5516438 534 __free_pages(page, huge_page_order(h));
6af2acb6
AL
535}
536
e5ff2159
AK
537struct hstate *size_to_hstate(unsigned long size)
538{
539 struct hstate *h;
540
541 for_each_hstate(h) {
542 if (huge_page_size(h) == size)
543 return h;
544 }
545 return NULL;
546}
547
27a85ef1
DG
548static void free_huge_page(struct page *page)
549{
a5516438
AK
550 /*
551 * Can't pass hstate in here because it is called from the
552 * compound page destructor.
553 */
e5ff2159 554 struct hstate *h = page_hstate(page);
7893d1d5 555 int nid = page_to_nid(page);
c79fb75e 556 struct address_space *mapping;
27a85ef1 557
c79fb75e 558 mapping = (struct address_space *) page_private(page);
e5df70ab 559 set_page_private(page, 0);
23be7468 560 page->mapping = NULL;
7893d1d5 561 BUG_ON(page_count(page));
0fe6e20b 562 BUG_ON(page_mapcount(page));
27a85ef1
DG
563 INIT_LIST_HEAD(&page->lru);
564
565 spin_lock(&hugetlb_lock);
aa888a74 566 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
a5516438
AK
567 update_and_free_page(h, page);
568 h->surplus_huge_pages--;
569 h->surplus_huge_pages_node[nid]--;
7893d1d5 570 } else {
a5516438 571 enqueue_huge_page(h, page);
7893d1d5 572 }
27a85ef1 573 spin_unlock(&hugetlb_lock);
c79fb75e 574 if (mapping)
9a119c05 575 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
576}
577
a5516438 578static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6
AK
579{
580 set_compound_page_dtor(page, free_huge_page);
581 spin_lock(&hugetlb_lock);
a5516438
AK
582 h->nr_huge_pages++;
583 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
584 spin_unlock(&hugetlb_lock);
585 put_page(page); /* free it into the hugepage allocator */
586}
587
20a0307c
WF
588static void prep_compound_gigantic_page(struct page *page, unsigned long order)
589{
590 int i;
591 int nr_pages = 1 << order;
592 struct page *p = page + 1;
593
594 /* we rely on prep_new_huge_page to set the destructor */
595 set_compound_order(page, order);
596 __SetPageHead(page);
597 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
598 __SetPageTail(p);
599 p->first_page = page;
600 }
601}
602
603int PageHuge(struct page *page)
604{
605 compound_page_dtor *dtor;
606
607 if (!PageCompound(page))
608 return 0;
609
610 page = compound_head(page);
611 dtor = get_compound_page_dtor(page);
612
613 return dtor == free_huge_page;
614}
615
a5516438 616static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 617{
1da177e4 618 struct page *page;
f96efd58 619
aa888a74
AK
620 if (h->order >= MAX_ORDER)
621 return NULL;
622
6484eb3e 623 page = alloc_pages_exact_node(nid,
551883ae
NA
624 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
625 __GFP_REPEAT|__GFP_NOWARN,
a5516438 626 huge_page_order(h));
1da177e4 627 if (page) {
7f2e9525 628 if (arch_prepare_hugepage(page)) {
caff3a2c 629 __free_pages(page, huge_page_order(h));
7b8ee84d 630 return NULL;
7f2e9525 631 }
a5516438 632 prep_new_huge_page(h, page, nid);
1da177e4 633 }
63b4613c
NA
634
635 return page;
636}
637
9a76db09 638/*
6ae11b27
LS
639 * common helper functions for hstate_next_node_to_{alloc|free}.
640 * We may have allocated or freed a huge page based on a different
641 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
642 * be outside of *nodes_allowed. Ensure that we use an allowed
643 * node for alloc or free.
9a76db09 644 */
6ae11b27 645static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 646{
6ae11b27 647 nid = next_node(nid, *nodes_allowed);
9a76db09 648 if (nid == MAX_NUMNODES)
6ae11b27 649 nid = first_node(*nodes_allowed);
9a76db09
LS
650 VM_BUG_ON(nid >= MAX_NUMNODES);
651
652 return nid;
653}
654
6ae11b27
LS
655static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
656{
657 if (!node_isset(nid, *nodes_allowed))
658 nid = next_node_allowed(nid, nodes_allowed);
659 return nid;
660}
661
5ced66c9 662/*
6ae11b27
LS
663 * returns the previously saved node ["this node"] from which to
664 * allocate a persistent huge page for the pool and advance the
665 * next node from which to allocate, handling wrap at end of node
666 * mask.
5ced66c9 667 */
6ae11b27
LS
668static int hstate_next_node_to_alloc(struct hstate *h,
669 nodemask_t *nodes_allowed)
5ced66c9 670{
6ae11b27
LS
671 int nid;
672
673 VM_BUG_ON(!nodes_allowed);
674
675 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
676 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 677
9a76db09 678 return nid;
5ced66c9
AK
679}
680
6ae11b27 681static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
682{
683 struct page *page;
684 int start_nid;
685 int next_nid;
686 int ret = 0;
687
6ae11b27 688 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 689 next_nid = start_nid;
63b4613c
NA
690
691 do {
e8c5c824 692 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 693 if (page) {
63b4613c 694 ret = 1;
9a76db09
LS
695 break;
696 }
6ae11b27 697 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 698 } while (next_nid != start_nid);
63b4613c 699
3b116300
AL
700 if (ret)
701 count_vm_event(HTLB_BUDDY_PGALLOC);
702 else
703 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
704
63b4613c 705 return ret;
1da177e4
LT
706}
707
e8c5c824 708/*
6ae11b27
LS
709 * helper for free_pool_huge_page() - return the previously saved
710 * node ["this node"] from which to free a huge page. Advance the
711 * next node id whether or not we find a free huge page to free so
712 * that the next attempt to free addresses the next node.
e8c5c824 713 */
6ae11b27 714static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 715{
6ae11b27
LS
716 int nid;
717
718 VM_BUG_ON(!nodes_allowed);
719
720 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
721 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 722
9a76db09 723 return nid;
e8c5c824
LS
724}
725
726/*
727 * Free huge page from pool from next node to free.
728 * Attempt to keep persistent huge pages more or less
729 * balanced over allowed nodes.
730 * Called with hugetlb_lock locked.
731 */
6ae11b27
LS
732static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
733 bool acct_surplus)
e8c5c824
LS
734{
735 int start_nid;
736 int next_nid;
737 int ret = 0;
738
6ae11b27 739 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
740 next_nid = start_nid;
741
742 do {
685f3457
LS
743 /*
744 * If we're returning unused surplus pages, only examine
745 * nodes with surplus pages.
746 */
747 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
748 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
749 struct page *page =
750 list_entry(h->hugepage_freelists[next_nid].next,
751 struct page, lru);
752 list_del(&page->lru);
753 h->free_huge_pages--;
754 h->free_huge_pages_node[next_nid]--;
685f3457
LS
755 if (acct_surplus) {
756 h->surplus_huge_pages--;
757 h->surplus_huge_pages_node[next_nid]--;
758 }
e8c5c824
LS
759 update_and_free_page(h, page);
760 ret = 1;
9a76db09 761 break;
e8c5c824 762 }
6ae11b27 763 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 764 } while (next_nid != start_nid);
e8c5c824
LS
765
766 return ret;
767}
768
a5516438
AK
769static struct page *alloc_buddy_huge_page(struct hstate *h,
770 struct vm_area_struct *vma, unsigned long address)
7893d1d5
AL
771{
772 struct page *page;
d1c3fb1f 773 unsigned int nid;
7893d1d5 774
aa888a74
AK
775 if (h->order >= MAX_ORDER)
776 return NULL;
777
d1c3fb1f
NA
778 /*
779 * Assume we will successfully allocate the surplus page to
780 * prevent racing processes from causing the surplus to exceed
781 * overcommit
782 *
783 * This however introduces a different race, where a process B
784 * tries to grow the static hugepage pool while alloc_pages() is
785 * called by process A. B will only examine the per-node
786 * counters in determining if surplus huge pages can be
787 * converted to normal huge pages in adjust_pool_surplus(). A
788 * won't be able to increment the per-node counter, until the
789 * lock is dropped by B, but B doesn't drop hugetlb_lock until
790 * no more huge pages can be converted from surplus to normal
791 * state (and doesn't try to convert again). Thus, we have a
792 * case where a surplus huge page exists, the pool is grown, and
793 * the surplus huge page still exists after, even though it
794 * should just have been converted to a normal huge page. This
795 * does not leak memory, though, as the hugepage will be freed
796 * once it is out of use. It also does not allow the counters to
797 * go out of whack in adjust_pool_surplus() as we don't modify
798 * the node values until we've gotten the hugepage and only the
799 * per-node value is checked there.
800 */
801 spin_lock(&hugetlb_lock);
a5516438 802 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
803 spin_unlock(&hugetlb_lock);
804 return NULL;
805 } else {
a5516438
AK
806 h->nr_huge_pages++;
807 h->surplus_huge_pages++;
d1c3fb1f
NA
808 }
809 spin_unlock(&hugetlb_lock);
810
551883ae
NA
811 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
812 __GFP_REPEAT|__GFP_NOWARN,
a5516438 813 huge_page_order(h));
d1c3fb1f 814
caff3a2c
GS
815 if (page && arch_prepare_hugepage(page)) {
816 __free_pages(page, huge_page_order(h));
817 return NULL;
818 }
819
d1c3fb1f 820 spin_lock(&hugetlb_lock);
7893d1d5 821 if (page) {
2668db91
AL
822 /*
823 * This page is now managed by the hugetlb allocator and has
824 * no users -- drop the buddy allocator's reference.
825 */
826 put_page_testzero(page);
827 VM_BUG_ON(page_count(page));
d1c3fb1f 828 nid = page_to_nid(page);
7893d1d5 829 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
830 /*
831 * We incremented the global counters already
832 */
a5516438
AK
833 h->nr_huge_pages_node[nid]++;
834 h->surplus_huge_pages_node[nid]++;
3b116300 835 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 836 } else {
a5516438
AK
837 h->nr_huge_pages--;
838 h->surplus_huge_pages--;
3b116300 839 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 840 }
d1c3fb1f 841 spin_unlock(&hugetlb_lock);
7893d1d5
AL
842
843 return page;
844}
845
e4e574b7
AL
846/*
847 * Increase the hugetlb pool such that it can accomodate a reservation
848 * of size 'delta'.
849 */
a5516438 850static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
851{
852 struct list_head surplus_list;
853 struct page *page, *tmp;
854 int ret, i;
855 int needed, allocated;
856
a5516438 857 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 858 if (needed <= 0) {
a5516438 859 h->resv_huge_pages += delta;
e4e574b7 860 return 0;
ac09b3a1 861 }
e4e574b7
AL
862
863 allocated = 0;
864 INIT_LIST_HEAD(&surplus_list);
865
866 ret = -ENOMEM;
867retry:
868 spin_unlock(&hugetlb_lock);
869 for (i = 0; i < needed; i++) {
a5516438 870 page = alloc_buddy_huge_page(h, NULL, 0);
e4e574b7
AL
871 if (!page) {
872 /*
873 * We were not able to allocate enough pages to
874 * satisfy the entire reservation so we free what
875 * we've allocated so far.
876 */
877 spin_lock(&hugetlb_lock);
878 needed = 0;
879 goto free;
880 }
881
882 list_add(&page->lru, &surplus_list);
883 }
884 allocated += needed;
885
886 /*
887 * After retaking hugetlb_lock, we need to recalculate 'needed'
888 * because either resv_huge_pages or free_huge_pages may have changed.
889 */
890 spin_lock(&hugetlb_lock);
a5516438
AK
891 needed = (h->resv_huge_pages + delta) -
892 (h->free_huge_pages + allocated);
e4e574b7
AL
893 if (needed > 0)
894 goto retry;
895
896 /*
897 * The surplus_list now contains _at_least_ the number of extra pages
898 * needed to accomodate the reservation. Add the appropriate number
899 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
900 * allocator. Commit the entire reservation here to prevent another
901 * process from stealing the pages as they are added to the pool but
902 * before they are reserved.
e4e574b7
AL
903 */
904 needed += allocated;
a5516438 905 h->resv_huge_pages += delta;
e4e574b7
AL
906 ret = 0;
907free:
19fc3f0a 908 /* Free the needed pages to the hugetlb pool */
e4e574b7 909 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
910 if ((--needed) < 0)
911 break;
e4e574b7 912 list_del(&page->lru);
a5516438 913 enqueue_huge_page(h, page);
19fc3f0a
AL
914 }
915
916 /* Free unnecessary surplus pages to the buddy allocator */
917 if (!list_empty(&surplus_list)) {
918 spin_unlock(&hugetlb_lock);
919 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
920 list_del(&page->lru);
af767cbd 921 /*
2668db91
AL
922 * The page has a reference count of zero already, so
923 * call free_huge_page directly instead of using
924 * put_page. This must be done with hugetlb_lock
af767cbd
AL
925 * unlocked which is safe because free_huge_page takes
926 * hugetlb_lock before deciding how to free the page.
927 */
2668db91 928 free_huge_page(page);
af767cbd 929 }
19fc3f0a 930 spin_lock(&hugetlb_lock);
e4e574b7
AL
931 }
932
933 return ret;
934}
935
936/*
937 * When releasing a hugetlb pool reservation, any surplus pages that were
938 * allocated to satisfy the reservation must be explicitly freed if they were
939 * never used.
685f3457 940 * Called with hugetlb_lock held.
e4e574b7 941 */
a5516438
AK
942static void return_unused_surplus_pages(struct hstate *h,
943 unsigned long unused_resv_pages)
e4e574b7 944{
e4e574b7
AL
945 unsigned long nr_pages;
946
ac09b3a1 947 /* Uncommit the reservation */
a5516438 948 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 949
aa888a74
AK
950 /* Cannot return gigantic pages currently */
951 if (h->order >= MAX_ORDER)
952 return;
953
a5516438 954 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 955
685f3457
LS
956 /*
957 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
958 * evenly across all nodes with memory. Iterate across these nodes
959 * until we can no longer free unreserved surplus pages. This occurs
960 * when the nodes with surplus pages have no free pages.
961 * free_pool_huge_page() will balance the the freed pages across the
962 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
963 */
964 while (nr_pages--) {
9b5e5d0f 965 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
685f3457 966 break;
e4e574b7
AL
967 }
968}
969
c37f9fb1
AW
970/*
971 * Determine if the huge page at addr within the vma has an associated
972 * reservation. Where it does not we will need to logically increase
973 * reservation and actually increase quota before an allocation can occur.
974 * Where any new reservation would be required the reservation change is
975 * prepared, but not committed. Once the page has been quota'd allocated
976 * an instantiated the change should be committed via vma_commit_reservation.
977 * No action is required on failure.
978 */
e2f17d94 979static long vma_needs_reservation(struct hstate *h,
a5516438 980 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
981{
982 struct address_space *mapping = vma->vm_file->f_mapping;
983 struct inode *inode = mapping->host;
984
f83a275d 985 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 986 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
987 return region_chg(&inode->i_mapping->private_list,
988 idx, idx + 1);
989
84afd99b
AW
990 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
991 return 1;
c37f9fb1 992
84afd99b 993 } else {
e2f17d94 994 long err;
a5516438 995 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
996 struct resv_map *reservations = vma_resv_map(vma);
997
998 err = region_chg(&reservations->regions, idx, idx + 1);
999 if (err < 0)
1000 return err;
1001 return 0;
1002 }
c37f9fb1 1003}
a5516438
AK
1004static void vma_commit_reservation(struct hstate *h,
1005 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1006{
1007 struct address_space *mapping = vma->vm_file->f_mapping;
1008 struct inode *inode = mapping->host;
1009
f83a275d 1010 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1011 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1012 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1013
1014 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1015 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1016 struct resv_map *reservations = vma_resv_map(vma);
1017
1018 /* Mark this page used in the map. */
1019 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1020 }
1021}
1022
a1e78772 1023static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1024 unsigned long addr, int avoid_reserve)
1da177e4 1025{
a5516438 1026 struct hstate *h = hstate_vma(vma);
348ea204 1027 struct page *page;
a1e78772
MG
1028 struct address_space *mapping = vma->vm_file->f_mapping;
1029 struct inode *inode = mapping->host;
e2f17d94 1030 long chg;
a1e78772
MG
1031
1032 /*
1033 * Processes that did not create the mapping will have no reserves and
1034 * will not have accounted against quota. Check that the quota can be
1035 * made before satisfying the allocation
c37f9fb1
AW
1036 * MAP_NORESERVE mappings may also need pages and quota allocated
1037 * if no reserve mapping overlaps.
a1e78772 1038 */
a5516438 1039 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1
AW
1040 if (chg < 0)
1041 return ERR_PTR(chg);
1042 if (chg)
a1e78772
MG
1043 if (hugetlb_get_quota(inode->i_mapping, chg))
1044 return ERR_PTR(-ENOSPC);
1da177e4
LT
1045
1046 spin_lock(&hugetlb_lock);
a5516438 1047 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 1048 spin_unlock(&hugetlb_lock);
b45b5bd6 1049
68842c9b 1050 if (!page) {
a5516438 1051 page = alloc_buddy_huge_page(h, vma, addr);
68842c9b 1052 if (!page) {
a1e78772 1053 hugetlb_put_quota(inode->i_mapping, chg);
4a6018f7 1054 return ERR_PTR(-VM_FAULT_SIGBUS);
68842c9b
KC
1055 }
1056 }
348ea204 1057
a1e78772
MG
1058 set_page_refcounted(page);
1059 set_page_private(page, (unsigned long) mapping);
90d8b7e6 1060
a5516438 1061 vma_commit_reservation(h, vma, addr);
c37f9fb1 1062
90d8b7e6 1063 return page;
b45b5bd6
DG
1064}
1065
91f47662 1066int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1067{
1068 struct huge_bootmem_page *m;
9b5e5d0f 1069 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
aa888a74
AK
1070
1071 while (nr_nodes) {
1072 void *addr;
1073
1074 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1075 NODE_DATA(hstate_next_node_to_alloc(h,
9b5e5d0f 1076 &node_states[N_HIGH_MEMORY])),
aa888a74
AK
1077 huge_page_size(h), huge_page_size(h), 0);
1078
1079 if (addr) {
1080 /*
1081 * Use the beginning of the huge page to store the
1082 * huge_bootmem_page struct (until gather_bootmem
1083 * puts them into the mem_map).
1084 */
1085 m = addr;
91f47662 1086 goto found;
aa888a74 1087 }
aa888a74
AK
1088 nr_nodes--;
1089 }
1090 return 0;
1091
1092found:
1093 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1094 /* Put them into a private list first because mem_map is not up yet */
1095 list_add(&m->list, &huge_boot_pages);
1096 m->hstate = h;
1097 return 1;
1098}
1099
18229df5
AW
1100static void prep_compound_huge_page(struct page *page, int order)
1101{
1102 if (unlikely(order > (MAX_ORDER - 1)))
1103 prep_compound_gigantic_page(page, order);
1104 else
1105 prep_compound_page(page, order);
1106}
1107
aa888a74
AK
1108/* Put bootmem huge pages into the standard lists after mem_map is up */
1109static void __init gather_bootmem_prealloc(void)
1110{
1111 struct huge_bootmem_page *m;
1112
1113 list_for_each_entry(m, &huge_boot_pages, list) {
1114 struct page *page = virt_to_page(m);
1115 struct hstate *h = m->hstate;
1116 __ClearPageReserved(page);
1117 WARN_ON(page_count(page) != 1);
18229df5 1118 prep_compound_huge_page(page, h->order);
aa888a74
AK
1119 prep_new_huge_page(h, page, page_to_nid(page));
1120 }
1121}
1122
8faa8b07 1123static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1124{
1125 unsigned long i;
a5516438 1126
e5ff2159 1127 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1128 if (h->order >= MAX_ORDER) {
1129 if (!alloc_bootmem_huge_page(h))
1130 break;
9b5e5d0f
LS
1131 } else if (!alloc_fresh_huge_page(h,
1132 &node_states[N_HIGH_MEMORY]))
1da177e4 1133 break;
1da177e4 1134 }
8faa8b07 1135 h->max_huge_pages = i;
e5ff2159
AK
1136}
1137
1138static void __init hugetlb_init_hstates(void)
1139{
1140 struct hstate *h;
1141
1142 for_each_hstate(h) {
8faa8b07
AK
1143 /* oversize hugepages were init'ed in early boot */
1144 if (h->order < MAX_ORDER)
1145 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1146 }
1147}
1148
4abd32db
AK
1149static char * __init memfmt(char *buf, unsigned long n)
1150{
1151 if (n >= (1UL << 30))
1152 sprintf(buf, "%lu GB", n >> 30);
1153 else if (n >= (1UL << 20))
1154 sprintf(buf, "%lu MB", n >> 20);
1155 else
1156 sprintf(buf, "%lu KB", n >> 10);
1157 return buf;
1158}
1159
e5ff2159
AK
1160static void __init report_hugepages(void)
1161{
1162 struct hstate *h;
1163
1164 for_each_hstate(h) {
4abd32db
AK
1165 char buf[32];
1166 printk(KERN_INFO "HugeTLB registered %s page size, "
1167 "pre-allocated %ld pages\n",
1168 memfmt(buf, huge_page_size(h)),
1169 h->free_huge_pages);
e5ff2159
AK
1170 }
1171}
1172
1da177e4 1173#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1174static void try_to_free_low(struct hstate *h, unsigned long count,
1175 nodemask_t *nodes_allowed)
1da177e4 1176{
4415cc8d
CL
1177 int i;
1178
aa888a74
AK
1179 if (h->order >= MAX_ORDER)
1180 return;
1181
6ae11b27 1182 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1183 struct page *page, *next;
a5516438
AK
1184 struct list_head *freel = &h->hugepage_freelists[i];
1185 list_for_each_entry_safe(page, next, freel, lru) {
1186 if (count >= h->nr_huge_pages)
6b0c880d 1187 return;
1da177e4
LT
1188 if (PageHighMem(page))
1189 continue;
1190 list_del(&page->lru);
e5ff2159 1191 update_and_free_page(h, page);
a5516438
AK
1192 h->free_huge_pages--;
1193 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1194 }
1195 }
1196}
1197#else
6ae11b27
LS
1198static inline void try_to_free_low(struct hstate *h, unsigned long count,
1199 nodemask_t *nodes_allowed)
1da177e4
LT
1200{
1201}
1202#endif
1203
20a0307c
WF
1204/*
1205 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1206 * balanced by operating on them in a round-robin fashion.
1207 * Returns 1 if an adjustment was made.
1208 */
6ae11b27
LS
1209static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1210 int delta)
20a0307c 1211{
e8c5c824 1212 int start_nid, next_nid;
20a0307c
WF
1213 int ret = 0;
1214
1215 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1216
e8c5c824 1217 if (delta < 0)
6ae11b27 1218 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1219 else
6ae11b27 1220 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1221 next_nid = start_nid;
1222
1223 do {
1224 int nid = next_nid;
1225 if (delta < 0) {
e8c5c824
LS
1226 /*
1227 * To shrink on this node, there must be a surplus page
1228 */
9a76db09 1229 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1230 next_nid = hstate_next_node_to_alloc(h,
1231 nodes_allowed);
e8c5c824 1232 continue;
9a76db09 1233 }
e8c5c824
LS
1234 }
1235 if (delta > 0) {
e8c5c824
LS
1236 /*
1237 * Surplus cannot exceed the total number of pages
1238 */
1239 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1240 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1241 next_nid = hstate_next_node_to_free(h,
1242 nodes_allowed);
e8c5c824 1243 continue;
9a76db09 1244 }
e8c5c824 1245 }
20a0307c
WF
1246
1247 h->surplus_huge_pages += delta;
1248 h->surplus_huge_pages_node[nid] += delta;
1249 ret = 1;
1250 break;
e8c5c824 1251 } while (next_nid != start_nid);
20a0307c 1252
20a0307c
WF
1253 return ret;
1254}
1255
a5516438 1256#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1257static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1258 nodemask_t *nodes_allowed)
1da177e4 1259{
7893d1d5 1260 unsigned long min_count, ret;
1da177e4 1261
aa888a74
AK
1262 if (h->order >= MAX_ORDER)
1263 return h->max_huge_pages;
1264
7893d1d5
AL
1265 /*
1266 * Increase the pool size
1267 * First take pages out of surplus state. Then make up the
1268 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1269 *
1270 * We might race with alloc_buddy_huge_page() here and be unable
1271 * to convert a surplus huge page to a normal huge page. That is
1272 * not critical, though, it just means the overall size of the
1273 * pool might be one hugepage larger than it needs to be, but
1274 * within all the constraints specified by the sysctls.
7893d1d5 1275 */
1da177e4 1276 spin_lock(&hugetlb_lock);
a5516438 1277 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1278 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1279 break;
1280 }
1281
a5516438 1282 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1283 /*
1284 * If this allocation races such that we no longer need the
1285 * page, free_huge_page will handle it by freeing the page
1286 * and reducing the surplus.
1287 */
1288 spin_unlock(&hugetlb_lock);
6ae11b27 1289 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1290 spin_lock(&hugetlb_lock);
1291 if (!ret)
1292 goto out;
1293
536240f2
MG
1294 /* Bail for signals. Probably ctrl-c from user */
1295 if (signal_pending(current))
1296 goto out;
7893d1d5 1297 }
7893d1d5
AL
1298
1299 /*
1300 * Decrease the pool size
1301 * First return free pages to the buddy allocator (being careful
1302 * to keep enough around to satisfy reservations). Then place
1303 * pages into surplus state as needed so the pool will shrink
1304 * to the desired size as pages become free.
d1c3fb1f
NA
1305 *
1306 * By placing pages into the surplus state independent of the
1307 * overcommit value, we are allowing the surplus pool size to
1308 * exceed overcommit. There are few sane options here. Since
1309 * alloc_buddy_huge_page() is checking the global counter,
1310 * though, we'll note that we're not allowed to exceed surplus
1311 * and won't grow the pool anywhere else. Not until one of the
1312 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1313 */
a5516438 1314 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1315 min_count = max(count, min_count);
6ae11b27 1316 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1317 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1318 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1319 break;
1da177e4 1320 }
a5516438 1321 while (count < persistent_huge_pages(h)) {
6ae11b27 1322 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1323 break;
1324 }
1325out:
a5516438 1326 ret = persistent_huge_pages(h);
1da177e4 1327 spin_unlock(&hugetlb_lock);
7893d1d5 1328 return ret;
1da177e4
LT
1329}
1330
a3437870
NA
1331#define HSTATE_ATTR_RO(_name) \
1332 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1333
1334#define HSTATE_ATTR(_name) \
1335 static struct kobj_attribute _name##_attr = \
1336 __ATTR(_name, 0644, _name##_show, _name##_store)
1337
1338static struct kobject *hugepages_kobj;
1339static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1340
9a305230
LS
1341static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1342
1343static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1344{
1345 int i;
9a305230 1346
a3437870 1347 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1348 if (hstate_kobjs[i] == kobj) {
1349 if (nidp)
1350 *nidp = NUMA_NO_NODE;
a3437870 1351 return &hstates[i];
9a305230
LS
1352 }
1353
1354 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1355}
1356
06808b08 1357static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1358 struct kobj_attribute *attr, char *buf)
1359{
9a305230
LS
1360 struct hstate *h;
1361 unsigned long nr_huge_pages;
1362 int nid;
1363
1364 h = kobj_to_hstate(kobj, &nid);
1365 if (nid == NUMA_NO_NODE)
1366 nr_huge_pages = h->nr_huge_pages;
1367 else
1368 nr_huge_pages = h->nr_huge_pages_node[nid];
1369
1370 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1371}
06808b08
LS
1372static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1373 struct kobject *kobj, struct kobj_attribute *attr,
1374 const char *buf, size_t len)
a3437870
NA
1375{
1376 int err;
9a305230 1377 int nid;
06808b08 1378 unsigned long count;
9a305230 1379 struct hstate *h;
bad44b5b 1380 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1381
06808b08 1382 err = strict_strtoul(buf, 10, &count);
a3437870
NA
1383 if (err)
1384 return 0;
1385
9a305230
LS
1386 h = kobj_to_hstate(kobj, &nid);
1387 if (nid == NUMA_NO_NODE) {
1388 /*
1389 * global hstate attribute
1390 */
1391 if (!(obey_mempolicy &&
1392 init_nodemask_of_mempolicy(nodes_allowed))) {
1393 NODEMASK_FREE(nodes_allowed);
1394 nodes_allowed = &node_states[N_HIGH_MEMORY];
1395 }
1396 } else if (nodes_allowed) {
1397 /*
1398 * per node hstate attribute: adjust count to global,
1399 * but restrict alloc/free to the specified node.
1400 */
1401 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1402 init_nodemask_of_node(nodes_allowed, nid);
1403 } else
1404 nodes_allowed = &node_states[N_HIGH_MEMORY];
1405
06808b08 1406 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1407
9b5e5d0f 1408 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
06808b08
LS
1409 NODEMASK_FREE(nodes_allowed);
1410
1411 return len;
1412}
1413
1414static ssize_t nr_hugepages_show(struct kobject *kobj,
1415 struct kobj_attribute *attr, char *buf)
1416{
1417 return nr_hugepages_show_common(kobj, attr, buf);
1418}
1419
1420static ssize_t nr_hugepages_store(struct kobject *kobj,
1421 struct kobj_attribute *attr, const char *buf, size_t len)
1422{
1423 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1424}
1425HSTATE_ATTR(nr_hugepages);
1426
06808b08
LS
1427#ifdef CONFIG_NUMA
1428
1429/*
1430 * hstate attribute for optionally mempolicy-based constraint on persistent
1431 * huge page alloc/free.
1432 */
1433static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1434 struct kobj_attribute *attr, char *buf)
1435{
1436 return nr_hugepages_show_common(kobj, attr, buf);
1437}
1438
1439static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1440 struct kobj_attribute *attr, const char *buf, size_t len)
1441{
1442 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1443}
1444HSTATE_ATTR(nr_hugepages_mempolicy);
1445#endif
1446
1447
a3437870
NA
1448static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1449 struct kobj_attribute *attr, char *buf)
1450{
9a305230 1451 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1452 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1453}
1454static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1455 struct kobj_attribute *attr, const char *buf, size_t count)
1456{
1457 int err;
1458 unsigned long input;
9a305230 1459 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1460
1461 err = strict_strtoul(buf, 10, &input);
1462 if (err)
1463 return 0;
1464
1465 spin_lock(&hugetlb_lock);
1466 h->nr_overcommit_huge_pages = input;
1467 spin_unlock(&hugetlb_lock);
1468
1469 return count;
1470}
1471HSTATE_ATTR(nr_overcommit_hugepages);
1472
1473static ssize_t free_hugepages_show(struct kobject *kobj,
1474 struct kobj_attribute *attr, char *buf)
1475{
9a305230
LS
1476 struct hstate *h;
1477 unsigned long free_huge_pages;
1478 int nid;
1479
1480 h = kobj_to_hstate(kobj, &nid);
1481 if (nid == NUMA_NO_NODE)
1482 free_huge_pages = h->free_huge_pages;
1483 else
1484 free_huge_pages = h->free_huge_pages_node[nid];
1485
1486 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1487}
1488HSTATE_ATTR_RO(free_hugepages);
1489
1490static ssize_t resv_hugepages_show(struct kobject *kobj,
1491 struct kobj_attribute *attr, char *buf)
1492{
9a305230 1493 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1494 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1495}
1496HSTATE_ATTR_RO(resv_hugepages);
1497
1498static ssize_t surplus_hugepages_show(struct kobject *kobj,
1499 struct kobj_attribute *attr, char *buf)
1500{
9a305230
LS
1501 struct hstate *h;
1502 unsigned long surplus_huge_pages;
1503 int nid;
1504
1505 h = kobj_to_hstate(kobj, &nid);
1506 if (nid == NUMA_NO_NODE)
1507 surplus_huge_pages = h->surplus_huge_pages;
1508 else
1509 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1510
1511 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1512}
1513HSTATE_ATTR_RO(surplus_hugepages);
1514
1515static struct attribute *hstate_attrs[] = {
1516 &nr_hugepages_attr.attr,
1517 &nr_overcommit_hugepages_attr.attr,
1518 &free_hugepages_attr.attr,
1519 &resv_hugepages_attr.attr,
1520 &surplus_hugepages_attr.attr,
06808b08
LS
1521#ifdef CONFIG_NUMA
1522 &nr_hugepages_mempolicy_attr.attr,
1523#endif
a3437870
NA
1524 NULL,
1525};
1526
1527static struct attribute_group hstate_attr_group = {
1528 .attrs = hstate_attrs,
1529};
1530
094e9539
JM
1531static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1532 struct kobject **hstate_kobjs,
1533 struct attribute_group *hstate_attr_group)
a3437870
NA
1534{
1535 int retval;
9a305230 1536 int hi = h - hstates;
a3437870 1537
9a305230
LS
1538 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1539 if (!hstate_kobjs[hi])
a3437870
NA
1540 return -ENOMEM;
1541
9a305230 1542 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1543 if (retval)
9a305230 1544 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1545
1546 return retval;
1547}
1548
1549static void __init hugetlb_sysfs_init(void)
1550{
1551 struct hstate *h;
1552 int err;
1553
1554 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1555 if (!hugepages_kobj)
1556 return;
1557
1558 for_each_hstate(h) {
9a305230
LS
1559 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1560 hstate_kobjs, &hstate_attr_group);
a3437870
NA
1561 if (err)
1562 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1563 h->name);
1564 }
1565}
1566
9a305230
LS
1567#ifdef CONFIG_NUMA
1568
1569/*
1570 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1571 * with node sysdevs in node_devices[] using a parallel array. The array
1572 * index of a node sysdev or _hstate == node id.
1573 * This is here to avoid any static dependency of the node sysdev driver, in
1574 * the base kernel, on the hugetlb module.
1575 */
1576struct node_hstate {
1577 struct kobject *hugepages_kobj;
1578 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1579};
1580struct node_hstate node_hstates[MAX_NUMNODES];
1581
1582/*
1583 * A subset of global hstate attributes for node sysdevs
1584 */
1585static struct attribute *per_node_hstate_attrs[] = {
1586 &nr_hugepages_attr.attr,
1587 &free_hugepages_attr.attr,
1588 &surplus_hugepages_attr.attr,
1589 NULL,
1590};
1591
1592static struct attribute_group per_node_hstate_attr_group = {
1593 .attrs = per_node_hstate_attrs,
1594};
1595
1596/*
1597 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1598 * Returns node id via non-NULL nidp.
1599 */
1600static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1601{
1602 int nid;
1603
1604 for (nid = 0; nid < nr_node_ids; nid++) {
1605 struct node_hstate *nhs = &node_hstates[nid];
1606 int i;
1607 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1608 if (nhs->hstate_kobjs[i] == kobj) {
1609 if (nidp)
1610 *nidp = nid;
1611 return &hstates[i];
1612 }
1613 }
1614
1615 BUG();
1616 return NULL;
1617}
1618
1619/*
1620 * Unregister hstate attributes from a single node sysdev.
1621 * No-op if no hstate attributes attached.
1622 */
1623void hugetlb_unregister_node(struct node *node)
1624{
1625 struct hstate *h;
1626 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1627
1628 if (!nhs->hugepages_kobj)
9b5e5d0f 1629 return; /* no hstate attributes */
9a305230
LS
1630
1631 for_each_hstate(h)
1632 if (nhs->hstate_kobjs[h - hstates]) {
1633 kobject_put(nhs->hstate_kobjs[h - hstates]);
1634 nhs->hstate_kobjs[h - hstates] = NULL;
1635 }
1636
1637 kobject_put(nhs->hugepages_kobj);
1638 nhs->hugepages_kobj = NULL;
1639}
1640
1641/*
1642 * hugetlb module exit: unregister hstate attributes from node sysdevs
1643 * that have them.
1644 */
1645static void hugetlb_unregister_all_nodes(void)
1646{
1647 int nid;
1648
1649 /*
1650 * disable node sysdev registrations.
1651 */
1652 register_hugetlbfs_with_node(NULL, NULL);
1653
1654 /*
1655 * remove hstate attributes from any nodes that have them.
1656 */
1657 for (nid = 0; nid < nr_node_ids; nid++)
1658 hugetlb_unregister_node(&node_devices[nid]);
1659}
1660
1661/*
1662 * Register hstate attributes for a single node sysdev.
1663 * No-op if attributes already registered.
1664 */
1665void hugetlb_register_node(struct node *node)
1666{
1667 struct hstate *h;
1668 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1669 int err;
1670
1671 if (nhs->hugepages_kobj)
1672 return; /* already allocated */
1673
1674 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1675 &node->sysdev.kobj);
1676 if (!nhs->hugepages_kobj)
1677 return;
1678
1679 for_each_hstate(h) {
1680 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1681 nhs->hstate_kobjs,
1682 &per_node_hstate_attr_group);
1683 if (err) {
1684 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1685 " for node %d\n",
1686 h->name, node->sysdev.id);
1687 hugetlb_unregister_node(node);
1688 break;
1689 }
1690 }
1691}
1692
1693/*
9b5e5d0f
LS
1694 * hugetlb init time: register hstate attributes for all registered node
1695 * sysdevs of nodes that have memory. All on-line nodes should have
1696 * registered their associated sysdev by this time.
9a305230
LS
1697 */
1698static void hugetlb_register_all_nodes(void)
1699{
1700 int nid;
1701
9b5e5d0f 1702 for_each_node_state(nid, N_HIGH_MEMORY) {
9a305230
LS
1703 struct node *node = &node_devices[nid];
1704 if (node->sysdev.id == nid)
1705 hugetlb_register_node(node);
1706 }
1707
1708 /*
1709 * Let the node sysdev driver know we're here so it can
1710 * [un]register hstate attributes on node hotplug.
1711 */
1712 register_hugetlbfs_with_node(hugetlb_register_node,
1713 hugetlb_unregister_node);
1714}
1715#else /* !CONFIG_NUMA */
1716
1717static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1718{
1719 BUG();
1720 if (nidp)
1721 *nidp = -1;
1722 return NULL;
1723}
1724
1725static void hugetlb_unregister_all_nodes(void) { }
1726
1727static void hugetlb_register_all_nodes(void) { }
1728
1729#endif
1730
a3437870
NA
1731static void __exit hugetlb_exit(void)
1732{
1733 struct hstate *h;
1734
9a305230
LS
1735 hugetlb_unregister_all_nodes();
1736
a3437870
NA
1737 for_each_hstate(h) {
1738 kobject_put(hstate_kobjs[h - hstates]);
1739 }
1740
1741 kobject_put(hugepages_kobj);
1742}
1743module_exit(hugetlb_exit);
1744
1745static int __init hugetlb_init(void)
1746{
0ef89d25
BH
1747 /* Some platform decide whether they support huge pages at boot
1748 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1749 * there is no such support
1750 */
1751 if (HPAGE_SHIFT == 0)
1752 return 0;
a3437870 1753
e11bfbfc
NP
1754 if (!size_to_hstate(default_hstate_size)) {
1755 default_hstate_size = HPAGE_SIZE;
1756 if (!size_to_hstate(default_hstate_size))
1757 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1758 }
e11bfbfc
NP
1759 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1760 if (default_hstate_max_huge_pages)
1761 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1762
1763 hugetlb_init_hstates();
1764
aa888a74
AK
1765 gather_bootmem_prealloc();
1766
a3437870
NA
1767 report_hugepages();
1768
1769 hugetlb_sysfs_init();
1770
9a305230
LS
1771 hugetlb_register_all_nodes();
1772
a3437870
NA
1773 return 0;
1774}
1775module_init(hugetlb_init);
1776
1777/* Should be called on processing a hugepagesz=... option */
1778void __init hugetlb_add_hstate(unsigned order)
1779{
1780 struct hstate *h;
8faa8b07
AK
1781 unsigned long i;
1782
a3437870
NA
1783 if (size_to_hstate(PAGE_SIZE << order)) {
1784 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1785 return;
1786 }
1787 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1788 BUG_ON(order == 0);
1789 h = &hstates[max_hstate++];
1790 h->order = order;
1791 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1792 h->nr_huge_pages = 0;
1793 h->free_huge_pages = 0;
1794 for (i = 0; i < MAX_NUMNODES; ++i)
1795 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
9b5e5d0f
LS
1796 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1797 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
a3437870
NA
1798 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1799 huge_page_size(h)/1024);
8faa8b07 1800
a3437870
NA
1801 parsed_hstate = h;
1802}
1803
e11bfbfc 1804static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1805{
1806 unsigned long *mhp;
8faa8b07 1807 static unsigned long *last_mhp;
a3437870
NA
1808
1809 /*
1810 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1811 * so this hugepages= parameter goes to the "default hstate".
1812 */
1813 if (!max_hstate)
1814 mhp = &default_hstate_max_huge_pages;
1815 else
1816 mhp = &parsed_hstate->max_huge_pages;
1817
8faa8b07
AK
1818 if (mhp == last_mhp) {
1819 printk(KERN_WARNING "hugepages= specified twice without "
1820 "interleaving hugepagesz=, ignoring\n");
1821 return 1;
1822 }
1823
a3437870
NA
1824 if (sscanf(s, "%lu", mhp) <= 0)
1825 *mhp = 0;
1826
8faa8b07
AK
1827 /*
1828 * Global state is always initialized later in hugetlb_init.
1829 * But we need to allocate >= MAX_ORDER hstates here early to still
1830 * use the bootmem allocator.
1831 */
1832 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1833 hugetlb_hstate_alloc_pages(parsed_hstate);
1834
1835 last_mhp = mhp;
1836
a3437870
NA
1837 return 1;
1838}
e11bfbfc
NP
1839__setup("hugepages=", hugetlb_nrpages_setup);
1840
1841static int __init hugetlb_default_setup(char *s)
1842{
1843 default_hstate_size = memparse(s, &s);
1844 return 1;
1845}
1846__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1847
8a213460
NA
1848static unsigned int cpuset_mems_nr(unsigned int *array)
1849{
1850 int node;
1851 unsigned int nr = 0;
1852
1853 for_each_node_mask(node, cpuset_current_mems_allowed)
1854 nr += array[node];
1855
1856 return nr;
1857}
1858
1859#ifdef CONFIG_SYSCTL
06808b08
LS
1860static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1861 struct ctl_table *table, int write,
1862 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1863{
e5ff2159
AK
1864 struct hstate *h = &default_hstate;
1865 unsigned long tmp;
1866
1867 if (!write)
1868 tmp = h->max_huge_pages;
1869
1870 table->data = &tmp;
1871 table->maxlen = sizeof(unsigned long);
8d65af78 1872 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159 1873
06808b08 1874 if (write) {
bad44b5b
DR
1875 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1876 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
1877 if (!(obey_mempolicy &&
1878 init_nodemask_of_mempolicy(nodes_allowed))) {
1879 NODEMASK_FREE(nodes_allowed);
1880 nodes_allowed = &node_states[N_HIGH_MEMORY];
1881 }
1882 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1883
1884 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1885 NODEMASK_FREE(nodes_allowed);
1886 }
e5ff2159 1887
1da177e4
LT
1888 return 0;
1889}
396faf03 1890
06808b08
LS
1891int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1892 void __user *buffer, size_t *length, loff_t *ppos)
1893{
1894
1895 return hugetlb_sysctl_handler_common(false, table, write,
1896 buffer, length, ppos);
1897}
1898
1899#ifdef CONFIG_NUMA
1900int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1901 void __user *buffer, size_t *length, loff_t *ppos)
1902{
1903 return hugetlb_sysctl_handler_common(true, table, write,
1904 buffer, length, ppos);
1905}
1906#endif /* CONFIG_NUMA */
1907
396faf03 1908int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 1909 void __user *buffer,
396faf03
MG
1910 size_t *length, loff_t *ppos)
1911{
8d65af78 1912 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
1913 if (hugepages_treat_as_movable)
1914 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1915 else
1916 htlb_alloc_mask = GFP_HIGHUSER;
1917 return 0;
1918}
1919
a3d0c6aa 1920int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 1921 void __user *buffer,
a3d0c6aa
NA
1922 size_t *length, loff_t *ppos)
1923{
a5516438 1924 struct hstate *h = &default_hstate;
e5ff2159
AK
1925 unsigned long tmp;
1926
1927 if (!write)
1928 tmp = h->nr_overcommit_huge_pages;
1929
1930 table->data = &tmp;
1931 table->maxlen = sizeof(unsigned long);
8d65af78 1932 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159
AK
1933
1934 if (write) {
1935 spin_lock(&hugetlb_lock);
1936 h->nr_overcommit_huge_pages = tmp;
1937 spin_unlock(&hugetlb_lock);
1938 }
1939
a3d0c6aa
NA
1940 return 0;
1941}
1942
1da177e4
LT
1943#endif /* CONFIG_SYSCTL */
1944
e1759c21 1945void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 1946{
a5516438 1947 struct hstate *h = &default_hstate;
e1759c21 1948 seq_printf(m,
4f98a2fe
RR
1949 "HugePages_Total: %5lu\n"
1950 "HugePages_Free: %5lu\n"
1951 "HugePages_Rsvd: %5lu\n"
1952 "HugePages_Surp: %5lu\n"
1953 "Hugepagesize: %8lu kB\n",
a5516438
AK
1954 h->nr_huge_pages,
1955 h->free_huge_pages,
1956 h->resv_huge_pages,
1957 h->surplus_huge_pages,
1958 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
1959}
1960
1961int hugetlb_report_node_meminfo(int nid, char *buf)
1962{
a5516438 1963 struct hstate *h = &default_hstate;
1da177e4
LT
1964 return sprintf(buf,
1965 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
1966 "Node %d HugePages_Free: %5u\n"
1967 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
1968 nid, h->nr_huge_pages_node[nid],
1969 nid, h->free_huge_pages_node[nid],
1970 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
1971}
1972
1da177e4
LT
1973/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1974unsigned long hugetlb_total_pages(void)
1975{
a5516438
AK
1976 struct hstate *h = &default_hstate;
1977 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 1978}
1da177e4 1979
a5516438 1980static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
1981{
1982 int ret = -ENOMEM;
1983
1984 spin_lock(&hugetlb_lock);
1985 /*
1986 * When cpuset is configured, it breaks the strict hugetlb page
1987 * reservation as the accounting is done on a global variable. Such
1988 * reservation is completely rubbish in the presence of cpuset because
1989 * the reservation is not checked against page availability for the
1990 * current cpuset. Application can still potentially OOM'ed by kernel
1991 * with lack of free htlb page in cpuset that the task is in.
1992 * Attempt to enforce strict accounting with cpuset is almost
1993 * impossible (or too ugly) because cpuset is too fluid that
1994 * task or memory node can be dynamically moved between cpusets.
1995 *
1996 * The change of semantics for shared hugetlb mapping with cpuset is
1997 * undesirable. However, in order to preserve some of the semantics,
1998 * we fall back to check against current free page availability as
1999 * a best attempt and hopefully to minimize the impact of changing
2000 * semantics that cpuset has.
2001 */
2002 if (delta > 0) {
a5516438 2003 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2004 goto out;
2005
a5516438
AK
2006 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2007 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2008 goto out;
2009 }
2010 }
2011
2012 ret = 0;
2013 if (delta < 0)
a5516438 2014 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2015
2016out:
2017 spin_unlock(&hugetlb_lock);
2018 return ret;
2019}
2020
84afd99b
AW
2021static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2022{
2023 struct resv_map *reservations = vma_resv_map(vma);
2024
2025 /*
2026 * This new VMA should share its siblings reservation map if present.
2027 * The VMA will only ever have a valid reservation map pointer where
2028 * it is being copied for another still existing VMA. As that VMA
2029 * has a reference to the reservation map it cannot dissappear until
2030 * after this open call completes. It is therefore safe to take a
2031 * new reference here without additional locking.
2032 */
2033 if (reservations)
2034 kref_get(&reservations->refs);
2035}
2036
a1e78772
MG
2037static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2038{
a5516438 2039 struct hstate *h = hstate_vma(vma);
84afd99b
AW
2040 struct resv_map *reservations = vma_resv_map(vma);
2041 unsigned long reserve;
2042 unsigned long start;
2043 unsigned long end;
2044
2045 if (reservations) {
a5516438
AK
2046 start = vma_hugecache_offset(h, vma, vma->vm_start);
2047 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2048
2049 reserve = (end - start) -
2050 region_count(&reservations->regions, start, end);
2051
2052 kref_put(&reservations->refs, resv_map_release);
2053
7251ff78 2054 if (reserve) {
a5516438 2055 hugetlb_acct_memory(h, -reserve);
7251ff78
AL
2056 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2057 }
84afd99b 2058 }
a1e78772
MG
2059}
2060
1da177e4
LT
2061/*
2062 * We cannot handle pagefaults against hugetlb pages at all. They cause
2063 * handle_mm_fault() to try to instantiate regular-sized pages in the
2064 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2065 * this far.
2066 */
d0217ac0 2067static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2068{
2069 BUG();
d0217ac0 2070 return 0;
1da177e4
LT
2071}
2072
f0f37e2f 2073const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2074 .fault = hugetlb_vm_op_fault,
84afd99b 2075 .open = hugetlb_vm_op_open,
a1e78772 2076 .close = hugetlb_vm_op_close,
1da177e4
LT
2077};
2078
1e8f889b
DG
2079static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2080 int writable)
63551ae0
DG
2081{
2082 pte_t entry;
2083
1e8f889b 2084 if (writable) {
63551ae0
DG
2085 entry =
2086 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2087 } else {
7f2e9525 2088 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
2089 }
2090 entry = pte_mkyoung(entry);
2091 entry = pte_mkhuge(entry);
2092
2093 return entry;
2094}
2095
1e8f889b
DG
2096static void set_huge_ptep_writable(struct vm_area_struct *vma,
2097 unsigned long address, pte_t *ptep)
2098{
2099 pte_t entry;
2100
7f2e9525
GS
2101 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2102 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
4b3073e1 2103 update_mmu_cache(vma, address, ptep);
8dab5241 2104 }
1e8f889b
DG
2105}
2106
2107
63551ae0
DG
2108int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2109 struct vm_area_struct *vma)
2110{
2111 pte_t *src_pte, *dst_pte, entry;
2112 struct page *ptepage;
1c59827d 2113 unsigned long addr;
1e8f889b 2114 int cow;
a5516438
AK
2115 struct hstate *h = hstate_vma(vma);
2116 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2117
2118 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2119
a5516438 2120 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2121 src_pte = huge_pte_offset(src, addr);
2122 if (!src_pte)
2123 continue;
a5516438 2124 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2125 if (!dst_pte)
2126 goto nomem;
c5c99429
LW
2127
2128 /* If the pagetables are shared don't copy or take references */
2129 if (dst_pte == src_pte)
2130 continue;
2131
c74df32c 2132 spin_lock(&dst->page_table_lock);
46478758 2133 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2134 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2135 if (cow)
7f2e9525
GS
2136 huge_ptep_set_wrprotect(src, addr, src_pte);
2137 entry = huge_ptep_get(src_pte);
1c59827d
HD
2138 ptepage = pte_page(entry);
2139 get_page(ptepage);
0fe6e20b 2140 page_dup_rmap(ptepage);
1c59827d
HD
2141 set_huge_pte_at(dst, addr, dst_pte, entry);
2142 }
2143 spin_unlock(&src->page_table_lock);
c74df32c 2144 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2145 }
2146 return 0;
2147
2148nomem:
2149 return -ENOMEM;
2150}
2151
502717f4 2152void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2153 unsigned long end, struct page *ref_page)
63551ae0
DG
2154{
2155 struct mm_struct *mm = vma->vm_mm;
2156 unsigned long address;
c7546f8f 2157 pte_t *ptep;
63551ae0
DG
2158 pte_t pte;
2159 struct page *page;
fe1668ae 2160 struct page *tmp;
a5516438
AK
2161 struct hstate *h = hstate_vma(vma);
2162 unsigned long sz = huge_page_size(h);
2163
c0a499c2
KC
2164 /*
2165 * A page gathering list, protected by per file i_mmap_lock. The
2166 * lock is used to avoid list corruption from multiple unmapping
2167 * of the same page since we are using page->lru.
2168 */
fe1668ae 2169 LIST_HEAD(page_list);
63551ae0
DG
2170
2171 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2172 BUG_ON(start & ~huge_page_mask(h));
2173 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2174
cddb8a5c 2175 mmu_notifier_invalidate_range_start(mm, start, end);
508034a3 2176 spin_lock(&mm->page_table_lock);
a5516438 2177 for (address = start; address < end; address += sz) {
c7546f8f 2178 ptep = huge_pte_offset(mm, address);
4c887265 2179 if (!ptep)
c7546f8f
DG
2180 continue;
2181
39dde65c
KC
2182 if (huge_pmd_unshare(mm, &address, ptep))
2183 continue;
2184
04f2cbe3
MG
2185 /*
2186 * If a reference page is supplied, it is because a specific
2187 * page is being unmapped, not a range. Ensure the page we
2188 * are about to unmap is the actual page of interest.
2189 */
2190 if (ref_page) {
2191 pte = huge_ptep_get(ptep);
2192 if (huge_pte_none(pte))
2193 continue;
2194 page = pte_page(pte);
2195 if (page != ref_page)
2196 continue;
2197
2198 /*
2199 * Mark the VMA as having unmapped its page so that
2200 * future faults in this VMA will fail rather than
2201 * looking like data was lost
2202 */
2203 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2204 }
2205
c7546f8f 2206 pte = huge_ptep_get_and_clear(mm, address, ptep);
7f2e9525 2207 if (huge_pte_none(pte))
63551ae0 2208 continue;
c7546f8f 2209
63551ae0 2210 page = pte_page(pte);
6649a386
KC
2211 if (pte_dirty(pte))
2212 set_page_dirty(page);
fe1668ae 2213 list_add(&page->lru, &page_list);
63551ae0 2214 }
1da177e4 2215 spin_unlock(&mm->page_table_lock);
508034a3 2216 flush_tlb_range(vma, start, end);
cddb8a5c 2217 mmu_notifier_invalidate_range_end(mm, start, end);
fe1668ae 2218 list_for_each_entry_safe(page, tmp, &page_list, lru) {
0fe6e20b 2219 page_remove_rmap(page);
fe1668ae
KC
2220 list_del(&page->lru);
2221 put_page(page);
2222 }
1da177e4 2223}
63551ae0 2224
502717f4 2225void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2226 unsigned long end, struct page *ref_page)
502717f4 2227{
a137e1cc
AK
2228 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2229 __unmap_hugepage_range(vma, start, end, ref_page);
2230 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
502717f4
KC
2231}
2232
04f2cbe3
MG
2233/*
2234 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2235 * mappping it owns the reserve page for. The intention is to unmap the page
2236 * from other VMAs and let the children be SIGKILLed if they are faulting the
2237 * same region.
2238 */
2a4b3ded
HH
2239static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2240 struct page *page, unsigned long address)
04f2cbe3 2241{
7526674d 2242 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2243 struct vm_area_struct *iter_vma;
2244 struct address_space *mapping;
2245 struct prio_tree_iter iter;
2246 pgoff_t pgoff;
2247
2248 /*
2249 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2250 * from page cache lookup which is in HPAGE_SIZE units.
2251 */
7526674d 2252 address = address & huge_page_mask(h);
04f2cbe3
MG
2253 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2254 + (vma->vm_pgoff >> PAGE_SHIFT);
2255 mapping = (struct address_space *)page_private(page);
2256
4eb2b1dc
MG
2257 /*
2258 * Take the mapping lock for the duration of the table walk. As
2259 * this mapping should be shared between all the VMAs,
2260 * __unmap_hugepage_range() is called as the lock is already held
2261 */
2262 spin_lock(&mapping->i_mmap_lock);
04f2cbe3
MG
2263 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2264 /* Do not unmap the current VMA */
2265 if (iter_vma == vma)
2266 continue;
2267
2268 /*
2269 * Unmap the page from other VMAs without their own reserves.
2270 * They get marked to be SIGKILLed if they fault in these
2271 * areas. This is because a future no-page fault on this VMA
2272 * could insert a zeroed page instead of the data existing
2273 * from the time of fork. This would look like data corruption
2274 */
2275 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4eb2b1dc 2276 __unmap_hugepage_range(iter_vma,
7526674d 2277 address, address + huge_page_size(h),
04f2cbe3
MG
2278 page);
2279 }
4eb2b1dc 2280 spin_unlock(&mapping->i_mmap_lock);
04f2cbe3
MG
2281
2282 return 1;
2283}
2284
0fe6e20b
NH
2285/*
2286 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2287 */
1e8f889b 2288static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2289 unsigned long address, pte_t *ptep, pte_t pte,
2290 struct page *pagecache_page)
1e8f889b 2291{
a5516438 2292 struct hstate *h = hstate_vma(vma);
1e8f889b 2293 struct page *old_page, *new_page;
79ac6ba4 2294 int avoidcopy;
04f2cbe3 2295 int outside_reserve = 0;
1e8f889b
DG
2296
2297 old_page = pte_page(pte);
2298
04f2cbe3 2299retry_avoidcopy:
1e8f889b
DG
2300 /* If no-one else is actually using this page, avoid the copy
2301 * and just make the page writable */
0fe6e20b 2302 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2303 if (avoidcopy) {
0fe6e20b
NH
2304 if (!trylock_page(old_page))
2305 if (PageAnon(old_page))
2306 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2307 set_huge_ptep_writable(vma, address, ptep);
83c54070 2308 return 0;
1e8f889b
DG
2309 }
2310
04f2cbe3
MG
2311 /*
2312 * If the process that created a MAP_PRIVATE mapping is about to
2313 * perform a COW due to a shared page count, attempt to satisfy
2314 * the allocation without using the existing reserves. The pagecache
2315 * page is used to determine if the reserve at this address was
2316 * consumed or not. If reserves were used, a partial faulted mapping
2317 * at the time of fork() could consume its reserves on COW instead
2318 * of the full address range.
2319 */
f83a275d 2320 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2321 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2322 old_page != pagecache_page)
2323 outside_reserve = 1;
2324
1e8f889b 2325 page_cache_get(old_page);
b76c8cfb
LW
2326
2327 /* Drop page_table_lock as buddy allocator may be called */
2328 spin_unlock(&mm->page_table_lock);
04f2cbe3 2329 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2330
2fc39cec 2331 if (IS_ERR(new_page)) {
1e8f889b 2332 page_cache_release(old_page);
04f2cbe3
MG
2333
2334 /*
2335 * If a process owning a MAP_PRIVATE mapping fails to COW,
2336 * it is due to references held by a child and an insufficient
2337 * huge page pool. To guarantee the original mappers
2338 * reliability, unmap the page from child processes. The child
2339 * may get SIGKILLed if it later faults.
2340 */
2341 if (outside_reserve) {
2342 BUG_ON(huge_pte_none(pte));
2343 if (unmap_ref_private(mm, vma, old_page, address)) {
2344 BUG_ON(page_count(old_page) != 1);
2345 BUG_ON(huge_pte_none(pte));
b76c8cfb 2346 spin_lock(&mm->page_table_lock);
04f2cbe3
MG
2347 goto retry_avoidcopy;
2348 }
2349 WARN_ON_ONCE(1);
2350 }
2351
b76c8cfb
LW
2352 /* Caller expects lock to be held */
2353 spin_lock(&mm->page_table_lock);
2fc39cec 2354 return -PTR_ERR(new_page);
1e8f889b
DG
2355 }
2356
0fe6e20b
NH
2357 /*
2358 * When the original hugepage is shared one, it does not have
2359 * anon_vma prepared.
2360 */
2361 if (unlikely(anon_vma_prepare(vma)))
2362 return VM_FAULT_OOM;
2363
9de455b2 2364 copy_huge_page(new_page, old_page, address, vma);
0ed361de 2365 __SetPageUptodate(new_page);
1e8f889b 2366
b76c8cfb
LW
2367 /*
2368 * Retake the page_table_lock to check for racing updates
2369 * before the page tables are altered
2370 */
2371 spin_lock(&mm->page_table_lock);
a5516438 2372 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2373 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2374 /* Break COW */
8fe627ec 2375 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2376 set_huge_pte_at(mm, address, ptep,
2377 make_huge_pte(vma, new_page, 1));
0fe6e20b
NH
2378 page_remove_rmap(old_page);
2379 hugepage_add_anon_rmap(new_page, vma, address);
1e8f889b
DG
2380 /* Make the old page be freed below */
2381 new_page = old_page;
2382 }
2383 page_cache_release(new_page);
2384 page_cache_release(old_page);
83c54070 2385 return 0;
1e8f889b
DG
2386}
2387
04f2cbe3 2388/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2389static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2390 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2391{
2392 struct address_space *mapping;
e7c4b0bf 2393 pgoff_t idx;
04f2cbe3
MG
2394
2395 mapping = vma->vm_file->f_mapping;
a5516438 2396 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2397
2398 return find_lock_page(mapping, idx);
2399}
2400
3ae77f43
HD
2401/*
2402 * Return whether there is a pagecache page to back given address within VMA.
2403 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2404 */
2405static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2406 struct vm_area_struct *vma, unsigned long address)
2407{
2408 struct address_space *mapping;
2409 pgoff_t idx;
2410 struct page *page;
2411
2412 mapping = vma->vm_file->f_mapping;
2413 idx = vma_hugecache_offset(h, vma, address);
2414
2415 page = find_get_page(mapping, idx);
2416 if (page)
2417 put_page(page);
2418 return page != NULL;
2419}
2420
a1ed3dda 2421static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2422 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2423{
a5516438 2424 struct hstate *h = hstate_vma(vma);
ac9b9c66 2425 int ret = VM_FAULT_SIGBUS;
e7c4b0bf 2426 pgoff_t idx;
4c887265 2427 unsigned long size;
4c887265
AL
2428 struct page *page;
2429 struct address_space *mapping;
1e8f889b 2430 pte_t new_pte;
4c887265 2431
04f2cbe3
MG
2432 /*
2433 * Currently, we are forced to kill the process in the event the
2434 * original mapper has unmapped pages from the child due to a failed
2435 * COW. Warn that such a situation has occured as it may not be obvious
2436 */
2437 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2438 printk(KERN_WARNING
2439 "PID %d killed due to inadequate hugepage pool\n",
2440 current->pid);
2441 return ret;
2442 }
2443
4c887265 2444 mapping = vma->vm_file->f_mapping;
a5516438 2445 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2446
2447 /*
2448 * Use page lock to guard against racing truncation
2449 * before we get page_table_lock.
2450 */
6bda666a
CL
2451retry:
2452 page = find_lock_page(mapping, idx);
2453 if (!page) {
a5516438 2454 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2455 if (idx >= size)
2456 goto out;
04f2cbe3 2457 page = alloc_huge_page(vma, address, 0);
2fc39cec
AL
2458 if (IS_ERR(page)) {
2459 ret = -PTR_ERR(page);
6bda666a
CL
2460 goto out;
2461 }
a5516438 2462 clear_huge_page(page, address, huge_page_size(h));
0ed361de 2463 __SetPageUptodate(page);
ac9b9c66 2464
f83a275d 2465 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2466 int err;
45c682a6 2467 struct inode *inode = mapping->host;
6bda666a
CL
2468
2469 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2470 if (err) {
2471 put_page(page);
6bda666a
CL
2472 if (err == -EEXIST)
2473 goto retry;
2474 goto out;
2475 }
45c682a6
KC
2476
2477 spin_lock(&inode->i_lock);
a5516438 2478 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2479 spin_unlock(&inode->i_lock);
0fe6e20b 2480 page_dup_rmap(page);
23be7468 2481 } else {
6bda666a 2482 lock_page(page);
0fe6e20b
NH
2483 if (unlikely(anon_vma_prepare(vma))) {
2484 ret = VM_FAULT_OOM;
2485 goto backout_unlocked;
2486 }
2487 hugepage_add_new_anon_rmap(page, vma, address);
23be7468 2488 }
0fe6e20b
NH
2489 } else {
2490 page_dup_rmap(page);
6bda666a 2491 }
1e8f889b 2492
57303d80
AW
2493 /*
2494 * If we are going to COW a private mapping later, we examine the
2495 * pending reservations for this page now. This will ensure that
2496 * any allocations necessary to record that reservation occur outside
2497 * the spinlock.
2498 */
788c7df4 2499 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2500 if (vma_needs_reservation(h, vma, address) < 0) {
2501 ret = VM_FAULT_OOM;
2502 goto backout_unlocked;
2503 }
57303d80 2504
ac9b9c66 2505 spin_lock(&mm->page_table_lock);
a5516438 2506 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2507 if (idx >= size)
2508 goto backout;
2509
83c54070 2510 ret = 0;
7f2e9525 2511 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2512 goto backout;
2513
1e8f889b
DG
2514 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2515 && (vma->vm_flags & VM_SHARED)));
2516 set_huge_pte_at(mm, address, ptep, new_pte);
2517
788c7df4 2518 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2519 /* Optimization, do the COW without a second fault */
04f2cbe3 2520 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2521 }
2522
ac9b9c66 2523 spin_unlock(&mm->page_table_lock);
4c887265
AL
2524 unlock_page(page);
2525out:
ac9b9c66 2526 return ret;
4c887265
AL
2527
2528backout:
2529 spin_unlock(&mm->page_table_lock);
2b26736c 2530backout_unlocked:
4c887265
AL
2531 unlock_page(page);
2532 put_page(page);
2533 goto out;
ac9b9c66
HD
2534}
2535
86e5216f 2536int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2537 unsigned long address, unsigned int flags)
86e5216f
AL
2538{
2539 pte_t *ptep;
2540 pte_t entry;
1e8f889b 2541 int ret;
0fe6e20b 2542 struct page *page = NULL;
57303d80 2543 struct page *pagecache_page = NULL;
3935baa9 2544 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2545 struct hstate *h = hstate_vma(vma);
86e5216f 2546
a5516438 2547 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2548 if (!ptep)
2549 return VM_FAULT_OOM;
2550
3935baa9
DG
2551 /*
2552 * Serialize hugepage allocation and instantiation, so that we don't
2553 * get spurious allocation failures if two CPUs race to instantiate
2554 * the same page in the page cache.
2555 */
2556 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2557 entry = huge_ptep_get(ptep);
2558 if (huge_pte_none(entry)) {
788c7df4 2559 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2560 goto out_mutex;
3935baa9 2561 }
86e5216f 2562
83c54070 2563 ret = 0;
1e8f889b 2564
57303d80
AW
2565 /*
2566 * If we are going to COW the mapping later, we examine the pending
2567 * reservations for this page now. This will ensure that any
2568 * allocations necessary to record that reservation occur outside the
2569 * spinlock. For private mappings, we also lookup the pagecache
2570 * page now as it is used to determine if a reservation has been
2571 * consumed.
2572 */
788c7df4 2573 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2574 if (vma_needs_reservation(h, vma, address) < 0) {
2575 ret = VM_FAULT_OOM;
b4d1d99f 2576 goto out_mutex;
2b26736c 2577 }
57303d80 2578
f83a275d 2579 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2580 pagecache_page = hugetlbfs_pagecache_page(h,
2581 vma, address);
2582 }
2583
0fe6e20b
NH
2584 if (!pagecache_page) {
2585 page = pte_page(entry);
2586 lock_page(page);
2587 }
2588
1e8f889b
DG
2589 spin_lock(&mm->page_table_lock);
2590 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2591 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2592 goto out_page_table_lock;
2593
2594
788c7df4 2595 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2596 if (!pte_write(entry)) {
57303d80
AW
2597 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2598 pagecache_page);
b4d1d99f
DG
2599 goto out_page_table_lock;
2600 }
2601 entry = pte_mkdirty(entry);
2602 }
2603 entry = pte_mkyoung(entry);
788c7df4
HD
2604 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2605 flags & FAULT_FLAG_WRITE))
4b3073e1 2606 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2607
2608out_page_table_lock:
1e8f889b 2609 spin_unlock(&mm->page_table_lock);
57303d80
AW
2610
2611 if (pagecache_page) {
2612 unlock_page(pagecache_page);
2613 put_page(pagecache_page);
0fe6e20b
NH
2614 } else {
2615 unlock_page(page);
57303d80
AW
2616 }
2617
b4d1d99f 2618out_mutex:
3935baa9 2619 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2620
2621 return ret;
86e5216f
AL
2622}
2623
ceb86879
AK
2624/* Can be overriden by architectures */
2625__attribute__((weak)) struct page *
2626follow_huge_pud(struct mm_struct *mm, unsigned long address,
2627 pud_t *pud, int write)
2628{
2629 BUG();
2630 return NULL;
2631}
2632
63551ae0
DG
2633int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2634 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2635 unsigned long *position, int *length, int i,
2a15efc9 2636 unsigned int flags)
63551ae0 2637{
d5d4b0aa
KC
2638 unsigned long pfn_offset;
2639 unsigned long vaddr = *position;
63551ae0 2640 int remainder = *length;
a5516438 2641 struct hstate *h = hstate_vma(vma);
63551ae0 2642
1c59827d 2643 spin_lock(&mm->page_table_lock);
63551ae0 2644 while (vaddr < vma->vm_end && remainder) {
4c887265 2645 pte_t *pte;
2a15efc9 2646 int absent;
4c887265 2647 struct page *page;
63551ae0 2648
4c887265
AL
2649 /*
2650 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2651 * each hugepage. We have to make sure we get the
4c887265
AL
2652 * first, for the page indexing below to work.
2653 */
a5516438 2654 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2655 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2656
2657 /*
2658 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2659 * an error where there's an empty slot with no huge pagecache
2660 * to back it. This way, we avoid allocating a hugepage, and
2661 * the sparse dumpfile avoids allocating disk blocks, but its
2662 * huge holes still show up with zeroes where they need to be.
2a15efc9 2663 */
3ae77f43
HD
2664 if (absent && (flags & FOLL_DUMP) &&
2665 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2666 remainder = 0;
2667 break;
2668 }
63551ae0 2669
2a15efc9
HD
2670 if (absent ||
2671 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2672 int ret;
63551ae0 2673
4c887265 2674 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2675 ret = hugetlb_fault(mm, vma, vaddr,
2676 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2677 spin_lock(&mm->page_table_lock);
a89182c7 2678 if (!(ret & VM_FAULT_ERROR))
4c887265 2679 continue;
63551ae0 2680
4c887265 2681 remainder = 0;
4c887265
AL
2682 break;
2683 }
2684
a5516438 2685 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2686 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2687same_page:
d6692183 2688 if (pages) {
2a15efc9 2689 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2690 get_page(pages[i]);
d6692183 2691 }
63551ae0
DG
2692
2693 if (vmas)
2694 vmas[i] = vma;
2695
2696 vaddr += PAGE_SIZE;
d5d4b0aa 2697 ++pfn_offset;
63551ae0
DG
2698 --remainder;
2699 ++i;
d5d4b0aa 2700 if (vaddr < vma->vm_end && remainder &&
a5516438 2701 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
2702 /*
2703 * We use pfn_offset to avoid touching the pageframes
2704 * of this compound page.
2705 */
2706 goto same_page;
2707 }
63551ae0 2708 }
1c59827d 2709 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2710 *length = remainder;
2711 *position = vaddr;
2712
2a15efc9 2713 return i ? i : -EFAULT;
63551ae0 2714}
8f860591
ZY
2715
2716void hugetlb_change_protection(struct vm_area_struct *vma,
2717 unsigned long address, unsigned long end, pgprot_t newprot)
2718{
2719 struct mm_struct *mm = vma->vm_mm;
2720 unsigned long start = address;
2721 pte_t *ptep;
2722 pte_t pte;
a5516438 2723 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2724
2725 BUG_ON(address >= end);
2726 flush_cache_range(vma, address, end);
2727
39dde65c 2728 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591 2729 spin_lock(&mm->page_table_lock);
a5516438 2730 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2731 ptep = huge_pte_offset(mm, address);
2732 if (!ptep)
2733 continue;
39dde65c
KC
2734 if (huge_pmd_unshare(mm, &address, ptep))
2735 continue;
7f2e9525 2736 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2737 pte = huge_ptep_get_and_clear(mm, address, ptep);
2738 pte = pte_mkhuge(pte_modify(pte, newprot));
2739 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2740 }
2741 }
2742 spin_unlock(&mm->page_table_lock);
39dde65c 2743 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
2744
2745 flush_tlb_range(vma, start, end);
2746}
2747
a1e78772
MG
2748int hugetlb_reserve_pages(struct inode *inode,
2749 long from, long to,
5a6fe125
MG
2750 struct vm_area_struct *vma,
2751 int acctflag)
e4e574b7 2752{
17c9d12e 2753 long ret, chg;
a5516438 2754 struct hstate *h = hstate_inode(inode);
e4e574b7 2755
17c9d12e
MG
2756 /*
2757 * Only apply hugepage reservation if asked. At fault time, an
2758 * attempt will be made for VM_NORESERVE to allocate a page
2759 * and filesystem quota without using reserves
2760 */
2761 if (acctflag & VM_NORESERVE)
2762 return 0;
2763
a1e78772
MG
2764 /*
2765 * Shared mappings base their reservation on the number of pages that
2766 * are already allocated on behalf of the file. Private mappings need
2767 * to reserve the full area even if read-only as mprotect() may be
2768 * called to make the mapping read-write. Assume !vma is a shm mapping
2769 */
f83a275d 2770 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2771 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
2772 else {
2773 struct resv_map *resv_map = resv_map_alloc();
2774 if (!resv_map)
2775 return -ENOMEM;
2776
a1e78772 2777 chg = to - from;
84afd99b 2778
17c9d12e
MG
2779 set_vma_resv_map(vma, resv_map);
2780 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2781 }
2782
e4e574b7
AL
2783 if (chg < 0)
2784 return chg;
8a630112 2785
17c9d12e 2786 /* There must be enough filesystem quota for the mapping */
90d8b7e6
AL
2787 if (hugetlb_get_quota(inode->i_mapping, chg))
2788 return -ENOSPC;
5a6fe125
MG
2789
2790 /*
17c9d12e
MG
2791 * Check enough hugepages are available for the reservation.
2792 * Hand back the quota if there are not
5a6fe125 2793 */
a5516438 2794 ret = hugetlb_acct_memory(h, chg);
68842c9b
KC
2795 if (ret < 0) {
2796 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 2797 return ret;
68842c9b 2798 }
17c9d12e
MG
2799
2800 /*
2801 * Account for the reservations made. Shared mappings record regions
2802 * that have reservations as they are shared by multiple VMAs.
2803 * When the last VMA disappears, the region map says how much
2804 * the reservation was and the page cache tells how much of
2805 * the reservation was consumed. Private mappings are per-VMA and
2806 * only the consumed reservations are tracked. When the VMA
2807 * disappears, the original reservation is the VMA size and the
2808 * consumed reservations are stored in the map. Hence, nothing
2809 * else has to be done for private mappings here
2810 */
f83a275d 2811 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2812 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39
KC
2813 return 0;
2814}
2815
2816void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2817{
a5516438 2818 struct hstate *h = hstate_inode(inode);
a43a8c39 2819 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
2820
2821 spin_lock(&inode->i_lock);
e4c6f8be 2822 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
2823 spin_unlock(&inode->i_lock);
2824
90d8b7e6 2825 hugetlb_put_quota(inode->i_mapping, (chg - freed));
a5516438 2826 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 2827}
93f70f90
NH
2828
2829/*
2830 * This function is called from memory failure code.
2831 * Assume the caller holds page lock of the head page.
2832 */
2833void __isolate_hwpoisoned_huge_page(struct page *hpage)
2834{
2835 struct hstate *h = page_hstate(hpage);
2836 int nid = page_to_nid(hpage);
2837
2838 spin_lock(&hugetlb_lock);
2839 list_del(&hpage->lru);
2840 h->free_huge_pages--;
2841 h->free_huge_pages_node[nid]--;
2842 spin_unlock(&hugetlb_lock);
2843}