]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/vmscan.c
writeback: implement memcg writeback domain based throttling
[thirdparty/kernel/stable.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52
53#include <linux/swapops.h>
117aad1e 54#include <linux/balloon_compaction.h>
1da177e4 55
0f8053a5
NP
56#include "internal.h"
57
33906bc5
MG
58#define CREATE_TRACE_POINTS
59#include <trace/events/vmscan.h>
60
1da177e4 61struct scan_control {
22fba335
KM
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
1da177e4 65 /* This context's GFP mask */
6daa0e28 66 gfp_t gfp_mask;
1da177e4 67
ee814fe2 68 /* Allocation order */
5ad333eb 69 int order;
66e1707b 70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
ee814fe2
JW
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
241994ed
JW
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
96
ee814fe2
JW
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
104
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
1da177e4
LT
107};
108
1da177e4
LT
109#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110
111#ifdef ARCH_HAS_PREFETCH
112#define prefetch_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
116 \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetch(&prev->_field); \
119 } \
120 } while (0)
121#else
122#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123#endif
124
125#ifdef ARCH_HAS_PREFETCHW
126#define prefetchw_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
130 \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetchw(&prev->_field); \
133 } \
134 } while (0)
135#else
136#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137#endif
138
139/*
140 * From 0 .. 100. Higher means more swappy.
141 */
142int vm_swappiness = 60;
d0480be4
WSH
143/*
144 * The total number of pages which are beyond the high watermark within all
145 * zones.
146 */
147unsigned long vm_total_pages;
1da177e4
LT
148
149static LIST_HEAD(shrinker_list);
150static DECLARE_RWSEM(shrinker_rwsem);
151
c255a458 152#ifdef CONFIG_MEMCG
89b5fae5
JW
153static bool global_reclaim(struct scan_control *sc)
154{
f16015fb 155 return !sc->target_mem_cgroup;
89b5fae5 156}
91a45470 157#else
89b5fae5
JW
158static bool global_reclaim(struct scan_control *sc)
159{
160 return true;
161}
91a45470
KH
162#endif
163
a1c3bfb2 164static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57
LD
165{
166 int nr;
167
168 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
169 zone_page_state(zone, NR_INACTIVE_FILE);
170
171 if (get_nr_swap_pages() > 0)
172 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
173 zone_page_state(zone, NR_INACTIVE_ANON);
174
175 return nr;
176}
177
178bool zone_reclaimable(struct zone *zone)
179{
0d5d823a
MG
180 return zone_page_state(zone, NR_PAGES_SCANNED) <
181 zone_reclaimable_pages(zone) * 6;
6e543d57
LD
182}
183
4d7dcca2 184static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 185{
c3c787e8 186 if (!mem_cgroup_disabled())
4d7dcca2 187 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 188
074291fe 189 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
190}
191
1da177e4 192/*
1d3d4437 193 * Add a shrinker callback to be called from the vm.
1da177e4 194 */
1d3d4437 195int register_shrinker(struct shrinker *shrinker)
1da177e4 196{
1d3d4437
GC
197 size_t size = sizeof(*shrinker->nr_deferred);
198
199 /*
200 * If we only have one possible node in the system anyway, save
201 * ourselves the trouble and disable NUMA aware behavior. This way we
202 * will save memory and some small loop time later.
203 */
204 if (nr_node_ids == 1)
205 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
206
207 if (shrinker->flags & SHRINKER_NUMA_AWARE)
208 size *= nr_node_ids;
209
210 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
211 if (!shrinker->nr_deferred)
212 return -ENOMEM;
213
8e1f936b
RR
214 down_write(&shrinker_rwsem);
215 list_add_tail(&shrinker->list, &shrinker_list);
216 up_write(&shrinker_rwsem);
1d3d4437 217 return 0;
1da177e4 218}
8e1f936b 219EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
220
221/*
222 * Remove one
223 */
8e1f936b 224void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
225{
226 down_write(&shrinker_rwsem);
227 list_del(&shrinker->list);
228 up_write(&shrinker_rwsem);
ae393321 229 kfree(shrinker->nr_deferred);
1da177e4 230}
8e1f936b 231EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
232
233#define SHRINK_BATCH 128
1d3d4437 234
cb731d6c
VD
235static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
236 struct shrinker *shrinker,
237 unsigned long nr_scanned,
238 unsigned long nr_eligible)
1d3d4437
GC
239{
240 unsigned long freed = 0;
241 unsigned long long delta;
242 long total_scan;
d5bc5fd3 243 long freeable;
1d3d4437
GC
244 long nr;
245 long new_nr;
246 int nid = shrinkctl->nid;
247 long batch_size = shrinker->batch ? shrinker->batch
248 : SHRINK_BATCH;
249
d5bc5fd3
VD
250 freeable = shrinker->count_objects(shrinker, shrinkctl);
251 if (freeable == 0)
1d3d4437
GC
252 return 0;
253
254 /*
255 * copy the current shrinker scan count into a local variable
256 * and zero it so that other concurrent shrinker invocations
257 * don't also do this scanning work.
258 */
259 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
260
261 total_scan = nr;
6b4f7799 262 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 263 delta *= freeable;
6b4f7799 264 do_div(delta, nr_eligible + 1);
1d3d4437
GC
265 total_scan += delta;
266 if (total_scan < 0) {
8612c663 267 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 268 shrinker->scan_objects, total_scan);
d5bc5fd3 269 total_scan = freeable;
1d3d4437
GC
270 }
271
272 /*
273 * We need to avoid excessive windup on filesystem shrinkers
274 * due to large numbers of GFP_NOFS allocations causing the
275 * shrinkers to return -1 all the time. This results in a large
276 * nr being built up so when a shrink that can do some work
277 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 278 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
279 * memory.
280 *
281 * Hence only allow the shrinker to scan the entire cache when
282 * a large delta change is calculated directly.
283 */
d5bc5fd3
VD
284 if (delta < freeable / 4)
285 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
286
287 /*
288 * Avoid risking looping forever due to too large nr value:
289 * never try to free more than twice the estimate number of
290 * freeable entries.
291 */
d5bc5fd3
VD
292 if (total_scan > freeable * 2)
293 total_scan = freeable * 2;
1d3d4437
GC
294
295 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
296 nr_scanned, nr_eligible,
297 freeable, delta, total_scan);
1d3d4437 298
0b1fb40a
VD
299 /*
300 * Normally, we should not scan less than batch_size objects in one
301 * pass to avoid too frequent shrinker calls, but if the slab has less
302 * than batch_size objects in total and we are really tight on memory,
303 * we will try to reclaim all available objects, otherwise we can end
304 * up failing allocations although there are plenty of reclaimable
305 * objects spread over several slabs with usage less than the
306 * batch_size.
307 *
308 * We detect the "tight on memory" situations by looking at the total
309 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 310 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
311 * scanning at high prio and therefore should try to reclaim as much as
312 * possible.
313 */
314 while (total_scan >= batch_size ||
d5bc5fd3 315 total_scan >= freeable) {
a0b02131 316 unsigned long ret;
0b1fb40a 317 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 318
0b1fb40a 319 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
320 ret = shrinker->scan_objects(shrinker, shrinkctl);
321 if (ret == SHRINK_STOP)
322 break;
323 freed += ret;
1d3d4437 324
0b1fb40a
VD
325 count_vm_events(SLABS_SCANNED, nr_to_scan);
326 total_scan -= nr_to_scan;
1d3d4437
GC
327
328 cond_resched();
329 }
330
331 /*
332 * move the unused scan count back into the shrinker in a
333 * manner that handles concurrent updates. If we exhausted the
334 * scan, there is no need to do an update.
335 */
336 if (total_scan > 0)
337 new_nr = atomic_long_add_return(total_scan,
338 &shrinker->nr_deferred[nid]);
339 else
340 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
341
df9024a8 342 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 343 return freed;
1495f230
YH
344}
345
6b4f7799 346/**
cb731d6c 347 * shrink_slab - shrink slab caches
6b4f7799
JW
348 * @gfp_mask: allocation context
349 * @nid: node whose slab caches to target
cb731d6c 350 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
351 * @nr_scanned: pressure numerator
352 * @nr_eligible: pressure denominator
1da177e4 353 *
6b4f7799 354 * Call the shrink functions to age shrinkable caches.
1da177e4 355 *
6b4f7799
JW
356 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
357 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 358 *
cb731d6c
VD
359 * @memcg specifies the memory cgroup to target. If it is not NULL,
360 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
361 * objects from the memory cgroup specified. Otherwise all shrinkers
362 * are called, and memcg aware shrinkers are supposed to scan the
363 * global list then.
364 *
6b4f7799
JW
365 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
366 * the available objects should be scanned. Page reclaim for example
367 * passes the number of pages scanned and the number of pages on the
368 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
369 * when it encountered mapped pages. The ratio is further biased by
370 * the ->seeks setting of the shrink function, which indicates the
371 * cost to recreate an object relative to that of an LRU page.
b15e0905 372 *
6b4f7799 373 * Returns the number of reclaimed slab objects.
1da177e4 374 */
cb731d6c
VD
375static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
376 struct mem_cgroup *memcg,
377 unsigned long nr_scanned,
378 unsigned long nr_eligible)
1da177e4
LT
379{
380 struct shrinker *shrinker;
24f7c6b9 381 unsigned long freed = 0;
1da177e4 382
cb731d6c
VD
383 if (memcg && !memcg_kmem_is_active(memcg))
384 return 0;
385
6b4f7799
JW
386 if (nr_scanned == 0)
387 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 388
f06590bd 389 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
390 /*
391 * If we would return 0, our callers would understand that we
392 * have nothing else to shrink and give up trying. By returning
393 * 1 we keep it going and assume we'll be able to shrink next
394 * time.
395 */
396 freed = 1;
f06590bd
MK
397 goto out;
398 }
1da177e4
LT
399
400 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
401 struct shrink_control sc = {
402 .gfp_mask = gfp_mask,
403 .nid = nid,
cb731d6c 404 .memcg = memcg,
6b4f7799 405 };
ec97097b 406
cb731d6c
VD
407 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
408 continue;
409
6b4f7799
JW
410 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
411 sc.nid = 0;
1da177e4 412
cb731d6c 413 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 414 }
6b4f7799 415
1da177e4 416 up_read(&shrinker_rwsem);
f06590bd
MK
417out:
418 cond_resched();
24f7c6b9 419 return freed;
1da177e4
LT
420}
421
cb731d6c
VD
422void drop_slab_node(int nid)
423{
424 unsigned long freed;
425
426 do {
427 struct mem_cgroup *memcg = NULL;
428
429 freed = 0;
430 do {
431 freed += shrink_slab(GFP_KERNEL, nid, memcg,
432 1000, 1000);
433 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
434 } while (freed > 10);
435}
436
437void drop_slab(void)
438{
439 int nid;
440
441 for_each_online_node(nid)
442 drop_slab_node(nid);
443}
444
1da177e4
LT
445static inline int is_page_cache_freeable(struct page *page)
446{
ceddc3a5
JW
447 /*
448 * A freeable page cache page is referenced only by the caller
449 * that isolated the page, the page cache radix tree and
450 * optional buffer heads at page->private.
451 */
edcf4748 452 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
453}
454
703c2708 455static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 456{
930d9152 457 if (current->flags & PF_SWAPWRITE)
1da177e4 458 return 1;
703c2708 459 if (!inode_write_congested(inode))
1da177e4 460 return 1;
703c2708 461 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
462 return 1;
463 return 0;
464}
465
466/*
467 * We detected a synchronous write error writing a page out. Probably
468 * -ENOSPC. We need to propagate that into the address_space for a subsequent
469 * fsync(), msync() or close().
470 *
471 * The tricky part is that after writepage we cannot touch the mapping: nothing
472 * prevents it from being freed up. But we have a ref on the page and once
473 * that page is locked, the mapping is pinned.
474 *
475 * We're allowed to run sleeping lock_page() here because we know the caller has
476 * __GFP_FS.
477 */
478static void handle_write_error(struct address_space *mapping,
479 struct page *page, int error)
480{
7eaceacc 481 lock_page(page);
3e9f45bd
GC
482 if (page_mapping(page) == mapping)
483 mapping_set_error(mapping, error);
1da177e4
LT
484 unlock_page(page);
485}
486
04e62a29
CL
487/* possible outcome of pageout() */
488typedef enum {
489 /* failed to write page out, page is locked */
490 PAGE_KEEP,
491 /* move page to the active list, page is locked */
492 PAGE_ACTIVATE,
493 /* page has been sent to the disk successfully, page is unlocked */
494 PAGE_SUCCESS,
495 /* page is clean and locked */
496 PAGE_CLEAN,
497} pageout_t;
498
1da177e4 499/*
1742f19f
AM
500 * pageout is called by shrink_page_list() for each dirty page.
501 * Calls ->writepage().
1da177e4 502 */
c661b078 503static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 504 struct scan_control *sc)
1da177e4
LT
505{
506 /*
507 * If the page is dirty, only perform writeback if that write
508 * will be non-blocking. To prevent this allocation from being
509 * stalled by pagecache activity. But note that there may be
510 * stalls if we need to run get_block(). We could test
511 * PagePrivate for that.
512 *
8174202b 513 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
514 * this page's queue, we can perform writeback even if that
515 * will block.
516 *
517 * If the page is swapcache, write it back even if that would
518 * block, for some throttling. This happens by accident, because
519 * swap_backing_dev_info is bust: it doesn't reflect the
520 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
521 */
522 if (!is_page_cache_freeable(page))
523 return PAGE_KEEP;
524 if (!mapping) {
525 /*
526 * Some data journaling orphaned pages can have
527 * page->mapping == NULL while being dirty with clean buffers.
528 */
266cf658 529 if (page_has_private(page)) {
1da177e4
LT
530 if (try_to_free_buffers(page)) {
531 ClearPageDirty(page);
b1de0d13 532 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
533 return PAGE_CLEAN;
534 }
535 }
536 return PAGE_KEEP;
537 }
538 if (mapping->a_ops->writepage == NULL)
539 return PAGE_ACTIVATE;
703c2708 540 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
541 return PAGE_KEEP;
542
543 if (clear_page_dirty_for_io(page)) {
544 int res;
545 struct writeback_control wbc = {
546 .sync_mode = WB_SYNC_NONE,
547 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
548 .range_start = 0,
549 .range_end = LLONG_MAX,
1da177e4
LT
550 .for_reclaim = 1,
551 };
552
553 SetPageReclaim(page);
554 res = mapping->a_ops->writepage(page, &wbc);
555 if (res < 0)
556 handle_write_error(mapping, page, res);
994fc28c 557 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
558 ClearPageReclaim(page);
559 return PAGE_ACTIVATE;
560 }
c661b078 561
1da177e4
LT
562 if (!PageWriteback(page)) {
563 /* synchronous write or broken a_ops? */
564 ClearPageReclaim(page);
565 }
23b9da55 566 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 567 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
568 return PAGE_SUCCESS;
569 }
570
571 return PAGE_CLEAN;
572}
573
a649fd92 574/*
e286781d
NP
575 * Same as remove_mapping, but if the page is removed from the mapping, it
576 * gets returned with a refcount of 0.
a649fd92 577 */
a528910e
JW
578static int __remove_mapping(struct address_space *mapping, struct page *page,
579 bool reclaimed)
49d2e9cc 580{
c4843a75
GT
581 unsigned long flags;
582 struct mem_cgroup *memcg;
583
28e4d965
NP
584 BUG_ON(!PageLocked(page));
585 BUG_ON(mapping != page_mapping(page));
49d2e9cc 586
c4843a75
GT
587 memcg = mem_cgroup_begin_page_stat(page);
588 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 589 /*
0fd0e6b0
NP
590 * The non racy check for a busy page.
591 *
592 * Must be careful with the order of the tests. When someone has
593 * a ref to the page, it may be possible that they dirty it then
594 * drop the reference. So if PageDirty is tested before page_count
595 * here, then the following race may occur:
596 *
597 * get_user_pages(&page);
598 * [user mapping goes away]
599 * write_to(page);
600 * !PageDirty(page) [good]
601 * SetPageDirty(page);
602 * put_page(page);
603 * !page_count(page) [good, discard it]
604 *
605 * [oops, our write_to data is lost]
606 *
607 * Reversing the order of the tests ensures such a situation cannot
608 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
609 * load is not satisfied before that of page->_count.
610 *
611 * Note that if SetPageDirty is always performed via set_page_dirty,
612 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 613 */
e286781d 614 if (!page_freeze_refs(page, 2))
49d2e9cc 615 goto cannot_free;
e286781d
NP
616 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
617 if (unlikely(PageDirty(page))) {
618 page_unfreeze_refs(page, 2);
49d2e9cc 619 goto cannot_free;
e286781d 620 }
49d2e9cc
CL
621
622 if (PageSwapCache(page)) {
623 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 624 mem_cgroup_swapout(page, swap);
49d2e9cc 625 __delete_from_swap_cache(page);
c4843a75
GT
626 spin_unlock_irqrestore(&mapping->tree_lock, flags);
627 mem_cgroup_end_page_stat(memcg);
0a31bc97 628 swapcache_free(swap);
e286781d 629 } else {
6072d13c 630 void (*freepage)(struct page *);
a528910e 631 void *shadow = NULL;
6072d13c
LT
632
633 freepage = mapping->a_ops->freepage;
a528910e
JW
634 /*
635 * Remember a shadow entry for reclaimed file cache in
636 * order to detect refaults, thus thrashing, later on.
637 *
638 * But don't store shadows in an address space that is
639 * already exiting. This is not just an optizimation,
640 * inode reclaim needs to empty out the radix tree or
641 * the nodes are lost. Don't plant shadows behind its
642 * back.
643 */
644 if (reclaimed && page_is_file_cache(page) &&
645 !mapping_exiting(mapping))
646 shadow = workingset_eviction(mapping, page);
c4843a75
GT
647 __delete_from_page_cache(page, shadow, memcg);
648 spin_unlock_irqrestore(&mapping->tree_lock, flags);
649 mem_cgroup_end_page_stat(memcg);
6072d13c
LT
650
651 if (freepage != NULL)
652 freepage(page);
49d2e9cc
CL
653 }
654
49d2e9cc
CL
655 return 1;
656
657cannot_free:
c4843a75
GT
658 spin_unlock_irqrestore(&mapping->tree_lock, flags);
659 mem_cgroup_end_page_stat(memcg);
49d2e9cc
CL
660 return 0;
661}
662
e286781d
NP
663/*
664 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
665 * someone else has a ref on the page, abort and return 0. If it was
666 * successfully detached, return 1. Assumes the caller has a single ref on
667 * this page.
668 */
669int remove_mapping(struct address_space *mapping, struct page *page)
670{
a528910e 671 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
672 /*
673 * Unfreezing the refcount with 1 rather than 2 effectively
674 * drops the pagecache ref for us without requiring another
675 * atomic operation.
676 */
677 page_unfreeze_refs(page, 1);
678 return 1;
679 }
680 return 0;
681}
682
894bc310
LS
683/**
684 * putback_lru_page - put previously isolated page onto appropriate LRU list
685 * @page: page to be put back to appropriate lru list
686 *
687 * Add previously isolated @page to appropriate LRU list.
688 * Page may still be unevictable for other reasons.
689 *
690 * lru_lock must not be held, interrupts must be enabled.
691 */
894bc310
LS
692void putback_lru_page(struct page *page)
693{
0ec3b74c 694 bool is_unevictable;
bbfd28ee 695 int was_unevictable = PageUnevictable(page);
894bc310 696
309381fe 697 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
698
699redo:
700 ClearPageUnevictable(page);
701
39b5f29a 702 if (page_evictable(page)) {
894bc310
LS
703 /*
704 * For evictable pages, we can use the cache.
705 * In event of a race, worst case is we end up with an
706 * unevictable page on [in]active list.
707 * We know how to handle that.
708 */
0ec3b74c 709 is_unevictable = false;
c53954a0 710 lru_cache_add(page);
894bc310
LS
711 } else {
712 /*
713 * Put unevictable pages directly on zone's unevictable
714 * list.
715 */
0ec3b74c 716 is_unevictable = true;
894bc310 717 add_page_to_unevictable_list(page);
6a7b9548 718 /*
21ee9f39
MK
719 * When racing with an mlock or AS_UNEVICTABLE clearing
720 * (page is unlocked) make sure that if the other thread
721 * does not observe our setting of PG_lru and fails
24513264 722 * isolation/check_move_unevictable_pages,
21ee9f39 723 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
724 * the page back to the evictable list.
725 *
21ee9f39 726 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
727 */
728 smp_mb();
894bc310 729 }
894bc310
LS
730
731 /*
732 * page's status can change while we move it among lru. If an evictable
733 * page is on unevictable list, it never be freed. To avoid that,
734 * check after we added it to the list, again.
735 */
0ec3b74c 736 if (is_unevictable && page_evictable(page)) {
894bc310
LS
737 if (!isolate_lru_page(page)) {
738 put_page(page);
739 goto redo;
740 }
741 /* This means someone else dropped this page from LRU
742 * So, it will be freed or putback to LRU again. There is
743 * nothing to do here.
744 */
745 }
746
0ec3b74c 747 if (was_unevictable && !is_unevictable)
bbfd28ee 748 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 749 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
750 count_vm_event(UNEVICTABLE_PGCULLED);
751
894bc310
LS
752 put_page(page); /* drop ref from isolate */
753}
754
dfc8d636
JW
755enum page_references {
756 PAGEREF_RECLAIM,
757 PAGEREF_RECLAIM_CLEAN,
64574746 758 PAGEREF_KEEP,
dfc8d636
JW
759 PAGEREF_ACTIVATE,
760};
761
762static enum page_references page_check_references(struct page *page,
763 struct scan_control *sc)
764{
64574746 765 int referenced_ptes, referenced_page;
dfc8d636 766 unsigned long vm_flags;
dfc8d636 767
c3ac9a8a
JW
768 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
769 &vm_flags);
64574746 770 referenced_page = TestClearPageReferenced(page);
dfc8d636 771
dfc8d636
JW
772 /*
773 * Mlock lost the isolation race with us. Let try_to_unmap()
774 * move the page to the unevictable list.
775 */
776 if (vm_flags & VM_LOCKED)
777 return PAGEREF_RECLAIM;
778
64574746 779 if (referenced_ptes) {
e4898273 780 if (PageSwapBacked(page))
64574746
JW
781 return PAGEREF_ACTIVATE;
782 /*
783 * All mapped pages start out with page table
784 * references from the instantiating fault, so we need
785 * to look twice if a mapped file page is used more
786 * than once.
787 *
788 * Mark it and spare it for another trip around the
789 * inactive list. Another page table reference will
790 * lead to its activation.
791 *
792 * Note: the mark is set for activated pages as well
793 * so that recently deactivated but used pages are
794 * quickly recovered.
795 */
796 SetPageReferenced(page);
797
34dbc67a 798 if (referenced_page || referenced_ptes > 1)
64574746
JW
799 return PAGEREF_ACTIVATE;
800
c909e993
KK
801 /*
802 * Activate file-backed executable pages after first usage.
803 */
804 if (vm_flags & VM_EXEC)
805 return PAGEREF_ACTIVATE;
806
64574746
JW
807 return PAGEREF_KEEP;
808 }
dfc8d636
JW
809
810 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 811 if (referenced_page && !PageSwapBacked(page))
64574746
JW
812 return PAGEREF_RECLAIM_CLEAN;
813
814 return PAGEREF_RECLAIM;
dfc8d636
JW
815}
816
e2be15f6
MG
817/* Check if a page is dirty or under writeback */
818static void page_check_dirty_writeback(struct page *page,
819 bool *dirty, bool *writeback)
820{
b4597226
MG
821 struct address_space *mapping;
822
e2be15f6
MG
823 /*
824 * Anonymous pages are not handled by flushers and must be written
825 * from reclaim context. Do not stall reclaim based on them
826 */
827 if (!page_is_file_cache(page)) {
828 *dirty = false;
829 *writeback = false;
830 return;
831 }
832
833 /* By default assume that the page flags are accurate */
834 *dirty = PageDirty(page);
835 *writeback = PageWriteback(page);
b4597226
MG
836
837 /* Verify dirty/writeback state if the filesystem supports it */
838 if (!page_has_private(page))
839 return;
840
841 mapping = page_mapping(page);
842 if (mapping && mapping->a_ops->is_dirty_writeback)
843 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
844}
845
1da177e4 846/*
1742f19f 847 * shrink_page_list() returns the number of reclaimed pages
1da177e4 848 */
1742f19f 849static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 850 struct zone *zone,
f84f6e2b 851 struct scan_control *sc,
02c6de8d 852 enum ttu_flags ttu_flags,
8e950282 853 unsigned long *ret_nr_dirty,
d43006d5 854 unsigned long *ret_nr_unqueued_dirty,
8e950282 855 unsigned long *ret_nr_congested,
02c6de8d 856 unsigned long *ret_nr_writeback,
b1a6f21e 857 unsigned long *ret_nr_immediate,
02c6de8d 858 bool force_reclaim)
1da177e4
LT
859{
860 LIST_HEAD(ret_pages);
abe4c3b5 861 LIST_HEAD(free_pages);
1da177e4 862 int pgactivate = 0;
d43006d5 863 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
864 unsigned long nr_dirty = 0;
865 unsigned long nr_congested = 0;
05ff5137 866 unsigned long nr_reclaimed = 0;
92df3a72 867 unsigned long nr_writeback = 0;
b1a6f21e 868 unsigned long nr_immediate = 0;
1da177e4
LT
869
870 cond_resched();
871
1da177e4
LT
872 while (!list_empty(page_list)) {
873 struct address_space *mapping;
874 struct page *page;
875 int may_enter_fs;
02c6de8d 876 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 877 bool dirty, writeback;
1da177e4
LT
878
879 cond_resched();
880
881 page = lru_to_page(page_list);
882 list_del(&page->lru);
883
529ae9aa 884 if (!trylock_page(page))
1da177e4
LT
885 goto keep;
886
309381fe
SL
887 VM_BUG_ON_PAGE(PageActive(page), page);
888 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
889
890 sc->nr_scanned++;
80e43426 891
39b5f29a 892 if (unlikely(!page_evictable(page)))
b291f000 893 goto cull_mlocked;
894bc310 894
a6dc60f8 895 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
896 goto keep_locked;
897
1da177e4
LT
898 /* Double the slab pressure for mapped and swapcache pages */
899 if (page_mapped(page) || PageSwapCache(page))
900 sc->nr_scanned++;
901
c661b078
AW
902 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
903 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
904
e2be15f6
MG
905 /*
906 * The number of dirty pages determines if a zone is marked
907 * reclaim_congested which affects wait_iff_congested. kswapd
908 * will stall and start writing pages if the tail of the LRU
909 * is all dirty unqueued pages.
910 */
911 page_check_dirty_writeback(page, &dirty, &writeback);
912 if (dirty || writeback)
913 nr_dirty++;
914
915 if (dirty && !writeback)
916 nr_unqueued_dirty++;
917
d04e8acd
MG
918 /*
919 * Treat this page as congested if the underlying BDI is or if
920 * pages are cycling through the LRU so quickly that the
921 * pages marked for immediate reclaim are making it to the
922 * end of the LRU a second time.
923 */
e2be15f6 924 mapping = page_mapping(page);
1da58ee2 925 if (((dirty || writeback) && mapping &&
703c2708 926 inode_write_congested(mapping->host)) ||
d04e8acd 927 (writeback && PageReclaim(page)))
e2be15f6
MG
928 nr_congested++;
929
283aba9f
MG
930 /*
931 * If a page at the tail of the LRU is under writeback, there
932 * are three cases to consider.
933 *
934 * 1) If reclaim is encountering an excessive number of pages
935 * under writeback and this page is both under writeback and
936 * PageReclaim then it indicates that pages are being queued
937 * for IO but are being recycled through the LRU before the
938 * IO can complete. Waiting on the page itself risks an
939 * indefinite stall if it is impossible to writeback the
940 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
941 * note that the LRU is being scanned too quickly and the
942 * caller can stall after page list has been processed.
283aba9f
MG
943 *
944 * 2) Global reclaim encounters a page, memcg encounters a
945 * page that is not marked for immediate reclaim or
946 * the caller does not have __GFP_IO. In this case mark
947 * the page for immediate reclaim and continue scanning.
948 *
949 * __GFP_IO is checked because a loop driver thread might
950 * enter reclaim, and deadlock if it waits on a page for
951 * which it is needed to do the write (loop masks off
952 * __GFP_IO|__GFP_FS for this reason); but more thought
953 * would probably show more reasons.
954 *
955 * Don't require __GFP_FS, since we're not going into the
956 * FS, just waiting on its writeback completion. Worryingly,
957 * ext4 gfs2 and xfs allocate pages with
958 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
959 * may_enter_fs here is liable to OOM on them.
960 *
961 * 3) memcg encounters a page that is not already marked
962 * PageReclaim. memcg does not have any dirty pages
963 * throttling so we could easily OOM just because too many
964 * pages are in writeback and there is nothing else to
965 * reclaim. Wait for the writeback to complete.
966 */
c661b078 967 if (PageWriteback(page)) {
283aba9f
MG
968 /* Case 1 above */
969 if (current_is_kswapd() &&
970 PageReclaim(page) &&
57054651 971 test_bit(ZONE_WRITEBACK, &zone->flags)) {
b1a6f21e
MG
972 nr_immediate++;
973 goto keep_locked;
283aba9f
MG
974
975 /* Case 2 above */
976 } else if (global_reclaim(sc) ||
c3b94f44
HD
977 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
978 /*
979 * This is slightly racy - end_page_writeback()
980 * might have just cleared PageReclaim, then
981 * setting PageReclaim here end up interpreted
982 * as PageReadahead - but that does not matter
983 * enough to care. What we do want is for this
984 * page to have PageReclaim set next time memcg
985 * reclaim reaches the tests above, so it will
986 * then wait_on_page_writeback() to avoid OOM;
987 * and it's also appropriate in global reclaim.
988 */
989 SetPageReclaim(page);
e62e384e 990 nr_writeback++;
283aba9f 991
c3b94f44 992 goto keep_locked;
283aba9f
MG
993
994 /* Case 3 above */
995 } else {
996 wait_on_page_writeback(page);
e62e384e 997 }
c661b078 998 }
1da177e4 999
02c6de8d
MK
1000 if (!force_reclaim)
1001 references = page_check_references(page, sc);
1002
dfc8d636
JW
1003 switch (references) {
1004 case PAGEREF_ACTIVATE:
1da177e4 1005 goto activate_locked;
64574746
JW
1006 case PAGEREF_KEEP:
1007 goto keep_locked;
dfc8d636
JW
1008 case PAGEREF_RECLAIM:
1009 case PAGEREF_RECLAIM_CLEAN:
1010 ; /* try to reclaim the page below */
1011 }
1da177e4 1012
1da177e4
LT
1013 /*
1014 * Anonymous process memory has backing store?
1015 * Try to allocate it some swap space here.
1016 */
b291f000 1017 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1018 if (!(sc->gfp_mask & __GFP_IO))
1019 goto keep_locked;
5bc7b8ac 1020 if (!add_to_swap(page, page_list))
1da177e4 1021 goto activate_locked;
63eb6b93 1022 may_enter_fs = 1;
1da177e4 1023
e2be15f6
MG
1024 /* Adding to swap updated mapping */
1025 mapping = page_mapping(page);
1026 }
1da177e4
LT
1027
1028 /*
1029 * The page is mapped into the page tables of one or more
1030 * processes. Try to unmap it here.
1031 */
1032 if (page_mapped(page) && mapping) {
02c6de8d 1033 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
1034 case SWAP_FAIL:
1035 goto activate_locked;
1036 case SWAP_AGAIN:
1037 goto keep_locked;
b291f000
NP
1038 case SWAP_MLOCK:
1039 goto cull_mlocked;
1da177e4
LT
1040 case SWAP_SUCCESS:
1041 ; /* try to free the page below */
1042 }
1043 }
1044
1045 if (PageDirty(page)) {
ee72886d
MG
1046 /*
1047 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1048 * avoid risk of stack overflow but only writeback
1049 * if many dirty pages have been encountered.
ee72886d 1050 */
f84f6e2b 1051 if (page_is_file_cache(page) &&
9e3b2f8c 1052 (!current_is_kswapd() ||
57054651 1053 !test_bit(ZONE_DIRTY, &zone->flags))) {
49ea7eb6
MG
1054 /*
1055 * Immediately reclaim when written back.
1056 * Similar in principal to deactivate_page()
1057 * except we already have the page isolated
1058 * and know it's dirty
1059 */
1060 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1061 SetPageReclaim(page);
1062
ee72886d
MG
1063 goto keep_locked;
1064 }
1065
dfc8d636 1066 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1067 goto keep_locked;
4dd4b920 1068 if (!may_enter_fs)
1da177e4 1069 goto keep_locked;
52a8363e 1070 if (!sc->may_writepage)
1da177e4
LT
1071 goto keep_locked;
1072
1073 /* Page is dirty, try to write it out here */
7d3579e8 1074 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1075 case PAGE_KEEP:
1076 goto keep_locked;
1077 case PAGE_ACTIVATE:
1078 goto activate_locked;
1079 case PAGE_SUCCESS:
7d3579e8 1080 if (PageWriteback(page))
41ac1999 1081 goto keep;
7d3579e8 1082 if (PageDirty(page))
1da177e4 1083 goto keep;
7d3579e8 1084
1da177e4
LT
1085 /*
1086 * A synchronous write - probably a ramdisk. Go
1087 * ahead and try to reclaim the page.
1088 */
529ae9aa 1089 if (!trylock_page(page))
1da177e4
LT
1090 goto keep;
1091 if (PageDirty(page) || PageWriteback(page))
1092 goto keep_locked;
1093 mapping = page_mapping(page);
1094 case PAGE_CLEAN:
1095 ; /* try to free the page below */
1096 }
1097 }
1098
1099 /*
1100 * If the page has buffers, try to free the buffer mappings
1101 * associated with this page. If we succeed we try to free
1102 * the page as well.
1103 *
1104 * We do this even if the page is PageDirty().
1105 * try_to_release_page() does not perform I/O, but it is
1106 * possible for a page to have PageDirty set, but it is actually
1107 * clean (all its buffers are clean). This happens if the
1108 * buffers were written out directly, with submit_bh(). ext3
894bc310 1109 * will do this, as well as the blockdev mapping.
1da177e4
LT
1110 * try_to_release_page() will discover that cleanness and will
1111 * drop the buffers and mark the page clean - it can be freed.
1112 *
1113 * Rarely, pages can have buffers and no ->mapping. These are
1114 * the pages which were not successfully invalidated in
1115 * truncate_complete_page(). We try to drop those buffers here
1116 * and if that worked, and the page is no longer mapped into
1117 * process address space (page_count == 1) it can be freed.
1118 * Otherwise, leave the page on the LRU so it is swappable.
1119 */
266cf658 1120 if (page_has_private(page)) {
1da177e4
LT
1121 if (!try_to_release_page(page, sc->gfp_mask))
1122 goto activate_locked;
e286781d
NP
1123 if (!mapping && page_count(page) == 1) {
1124 unlock_page(page);
1125 if (put_page_testzero(page))
1126 goto free_it;
1127 else {
1128 /*
1129 * rare race with speculative reference.
1130 * the speculative reference will free
1131 * this page shortly, so we may
1132 * increment nr_reclaimed here (and
1133 * leave it off the LRU).
1134 */
1135 nr_reclaimed++;
1136 continue;
1137 }
1138 }
1da177e4
LT
1139 }
1140
a528910e 1141 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1142 goto keep_locked;
1da177e4 1143
a978d6f5
NP
1144 /*
1145 * At this point, we have no other references and there is
1146 * no way to pick any more up (removed from LRU, removed
1147 * from pagecache). Can use non-atomic bitops now (and
1148 * we obviously don't have to worry about waking up a process
1149 * waiting on the page lock, because there are no references.
1150 */
1151 __clear_page_locked(page);
e286781d 1152free_it:
05ff5137 1153 nr_reclaimed++;
abe4c3b5
MG
1154
1155 /*
1156 * Is there need to periodically free_page_list? It would
1157 * appear not as the counts should be low
1158 */
1159 list_add(&page->lru, &free_pages);
1da177e4
LT
1160 continue;
1161
b291f000 1162cull_mlocked:
63d6c5ad
HD
1163 if (PageSwapCache(page))
1164 try_to_free_swap(page);
b291f000
NP
1165 unlock_page(page);
1166 putback_lru_page(page);
1167 continue;
1168
1da177e4 1169activate_locked:
68a22394
RR
1170 /* Not a candidate for swapping, so reclaim swap space. */
1171 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1172 try_to_free_swap(page);
309381fe 1173 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1174 SetPageActive(page);
1175 pgactivate++;
1176keep_locked:
1177 unlock_page(page);
1178keep:
1179 list_add(&page->lru, &ret_pages);
309381fe 1180 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1181 }
abe4c3b5 1182
747db954 1183 mem_cgroup_uncharge_list(&free_pages);
b745bc85 1184 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1185
1da177e4 1186 list_splice(&ret_pages, page_list);
f8891e5e 1187 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1188
8e950282
MG
1189 *ret_nr_dirty += nr_dirty;
1190 *ret_nr_congested += nr_congested;
d43006d5 1191 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1192 *ret_nr_writeback += nr_writeback;
b1a6f21e 1193 *ret_nr_immediate += nr_immediate;
05ff5137 1194 return nr_reclaimed;
1da177e4
LT
1195}
1196
02c6de8d
MK
1197unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1198 struct list_head *page_list)
1199{
1200 struct scan_control sc = {
1201 .gfp_mask = GFP_KERNEL,
1202 .priority = DEF_PRIORITY,
1203 .may_unmap = 1,
1204 };
8e950282 1205 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1206 struct page *page, *next;
1207 LIST_HEAD(clean_pages);
1208
1209 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1210 if (page_is_file_cache(page) && !PageDirty(page) &&
1211 !isolated_balloon_page(page)) {
02c6de8d
MK
1212 ClearPageActive(page);
1213 list_move(&page->lru, &clean_pages);
1214 }
1215 }
1216
1217 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1218 TTU_UNMAP|TTU_IGNORE_ACCESS,
1219 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1220 list_splice(&clean_pages, page_list);
83da7510 1221 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1222 return ret;
1223}
1224
5ad333eb
AW
1225/*
1226 * Attempt to remove the specified page from its LRU. Only take this page
1227 * if it is of the appropriate PageActive status. Pages which are being
1228 * freed elsewhere are also ignored.
1229 *
1230 * page: page to consider
1231 * mode: one of the LRU isolation modes defined above
1232 *
1233 * returns 0 on success, -ve errno on failure.
1234 */
f3fd4a61 1235int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1236{
1237 int ret = -EINVAL;
1238
1239 /* Only take pages on the LRU. */
1240 if (!PageLRU(page))
1241 return ret;
1242
e46a2879
MK
1243 /* Compaction should not handle unevictable pages but CMA can do so */
1244 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1245 return ret;
1246
5ad333eb 1247 ret = -EBUSY;
08e552c6 1248
c8244935
MG
1249 /*
1250 * To minimise LRU disruption, the caller can indicate that it only
1251 * wants to isolate pages it will be able to operate on without
1252 * blocking - clean pages for the most part.
1253 *
1254 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1255 * is used by reclaim when it is cannot write to backing storage
1256 *
1257 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1258 * that it is possible to migrate without blocking
1259 */
1260 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1261 /* All the caller can do on PageWriteback is block */
1262 if (PageWriteback(page))
1263 return ret;
1264
1265 if (PageDirty(page)) {
1266 struct address_space *mapping;
1267
1268 /* ISOLATE_CLEAN means only clean pages */
1269 if (mode & ISOLATE_CLEAN)
1270 return ret;
1271
1272 /*
1273 * Only pages without mappings or that have a
1274 * ->migratepage callback are possible to migrate
1275 * without blocking
1276 */
1277 mapping = page_mapping(page);
1278 if (mapping && !mapping->a_ops->migratepage)
1279 return ret;
1280 }
1281 }
39deaf85 1282
f80c0673
MK
1283 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1284 return ret;
1285
5ad333eb
AW
1286 if (likely(get_page_unless_zero(page))) {
1287 /*
1288 * Be careful not to clear PageLRU until after we're
1289 * sure the page is not being freed elsewhere -- the
1290 * page release code relies on it.
1291 */
1292 ClearPageLRU(page);
1293 ret = 0;
1294 }
1295
1296 return ret;
1297}
1298
1da177e4
LT
1299/*
1300 * zone->lru_lock is heavily contended. Some of the functions that
1301 * shrink the lists perform better by taking out a batch of pages
1302 * and working on them outside the LRU lock.
1303 *
1304 * For pagecache intensive workloads, this function is the hottest
1305 * spot in the kernel (apart from copy_*_user functions).
1306 *
1307 * Appropriate locks must be held before calling this function.
1308 *
1309 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1310 * @lruvec: The LRU vector to pull pages from.
1da177e4 1311 * @dst: The temp list to put pages on to.
f626012d 1312 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1313 * @sc: The scan_control struct for this reclaim session
5ad333eb 1314 * @mode: One of the LRU isolation modes
3cb99451 1315 * @lru: LRU list id for isolating
1da177e4
LT
1316 *
1317 * returns how many pages were moved onto *@dst.
1318 */
69e05944 1319static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1320 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1321 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1322 isolate_mode_t mode, enum lru_list lru)
1da177e4 1323{
75b00af7 1324 struct list_head *src = &lruvec->lists[lru];
69e05944 1325 unsigned long nr_taken = 0;
c9b02d97 1326 unsigned long scan;
1da177e4 1327
c9b02d97 1328 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1329 struct page *page;
fa9add64 1330 int nr_pages;
5ad333eb 1331
1da177e4
LT
1332 page = lru_to_page(src);
1333 prefetchw_prev_lru_page(page, src, flags);
1334
309381fe 1335 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1336
f3fd4a61 1337 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1338 case 0:
fa9add64
HD
1339 nr_pages = hpage_nr_pages(page);
1340 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1341 list_move(&page->lru, dst);
fa9add64 1342 nr_taken += nr_pages;
5ad333eb
AW
1343 break;
1344
1345 case -EBUSY:
1346 /* else it is being freed elsewhere */
1347 list_move(&page->lru, src);
1348 continue;
46453a6e 1349
5ad333eb
AW
1350 default:
1351 BUG();
1352 }
1da177e4
LT
1353 }
1354
f626012d 1355 *nr_scanned = scan;
75b00af7
HD
1356 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1357 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1358 return nr_taken;
1359}
1360
62695a84
NP
1361/**
1362 * isolate_lru_page - tries to isolate a page from its LRU list
1363 * @page: page to isolate from its LRU list
1364 *
1365 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1366 * vmstat statistic corresponding to whatever LRU list the page was on.
1367 *
1368 * Returns 0 if the page was removed from an LRU list.
1369 * Returns -EBUSY if the page was not on an LRU list.
1370 *
1371 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1372 * the active list, it will have PageActive set. If it was found on
1373 * the unevictable list, it will have the PageUnevictable bit set. That flag
1374 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1375 *
1376 * The vmstat statistic corresponding to the list on which the page was
1377 * found will be decremented.
1378 *
1379 * Restrictions:
1380 * (1) Must be called with an elevated refcount on the page. This is a
1381 * fundamentnal difference from isolate_lru_pages (which is called
1382 * without a stable reference).
1383 * (2) the lru_lock must not be held.
1384 * (3) interrupts must be enabled.
1385 */
1386int isolate_lru_page(struct page *page)
1387{
1388 int ret = -EBUSY;
1389
309381fe 1390 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1391
62695a84
NP
1392 if (PageLRU(page)) {
1393 struct zone *zone = page_zone(page);
fa9add64 1394 struct lruvec *lruvec;
62695a84
NP
1395
1396 spin_lock_irq(&zone->lru_lock);
fa9add64 1397 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1398 if (PageLRU(page)) {
894bc310 1399 int lru = page_lru(page);
0c917313 1400 get_page(page);
62695a84 1401 ClearPageLRU(page);
fa9add64
HD
1402 del_page_from_lru_list(page, lruvec, lru);
1403 ret = 0;
62695a84
NP
1404 }
1405 spin_unlock_irq(&zone->lru_lock);
1406 }
1407 return ret;
1408}
1409
35cd7815 1410/*
d37dd5dc
FW
1411 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1412 * then get resheduled. When there are massive number of tasks doing page
1413 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1414 * the LRU list will go small and be scanned faster than necessary, leading to
1415 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1416 */
1417static int too_many_isolated(struct zone *zone, int file,
1418 struct scan_control *sc)
1419{
1420 unsigned long inactive, isolated;
1421
1422 if (current_is_kswapd())
1423 return 0;
1424
89b5fae5 1425 if (!global_reclaim(sc))
35cd7815
RR
1426 return 0;
1427
1428 if (file) {
1429 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1430 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1431 } else {
1432 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1433 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1434 }
1435
3cf23841
FW
1436 /*
1437 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1438 * won't get blocked by normal direct-reclaimers, forming a circular
1439 * deadlock.
1440 */
1441 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1442 inactive >>= 3;
1443
35cd7815
RR
1444 return isolated > inactive;
1445}
1446
66635629 1447static noinline_for_stack void
75b00af7 1448putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1449{
27ac81d8
KK
1450 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1451 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1452 LIST_HEAD(pages_to_free);
66635629 1453
66635629
MG
1454 /*
1455 * Put back any unfreeable pages.
1456 */
66635629 1457 while (!list_empty(page_list)) {
3f79768f 1458 struct page *page = lru_to_page(page_list);
66635629 1459 int lru;
3f79768f 1460
309381fe 1461 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1462 list_del(&page->lru);
39b5f29a 1463 if (unlikely(!page_evictable(page))) {
66635629
MG
1464 spin_unlock_irq(&zone->lru_lock);
1465 putback_lru_page(page);
1466 spin_lock_irq(&zone->lru_lock);
1467 continue;
1468 }
fa9add64
HD
1469
1470 lruvec = mem_cgroup_page_lruvec(page, zone);
1471
7a608572 1472 SetPageLRU(page);
66635629 1473 lru = page_lru(page);
fa9add64
HD
1474 add_page_to_lru_list(page, lruvec, lru);
1475
66635629
MG
1476 if (is_active_lru(lru)) {
1477 int file = is_file_lru(lru);
9992af10
RR
1478 int numpages = hpage_nr_pages(page);
1479 reclaim_stat->recent_rotated[file] += numpages;
66635629 1480 }
2bcf8879
HD
1481 if (put_page_testzero(page)) {
1482 __ClearPageLRU(page);
1483 __ClearPageActive(page);
fa9add64 1484 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1485
1486 if (unlikely(PageCompound(page))) {
1487 spin_unlock_irq(&zone->lru_lock);
747db954 1488 mem_cgroup_uncharge(page);
2bcf8879
HD
1489 (*get_compound_page_dtor(page))(page);
1490 spin_lock_irq(&zone->lru_lock);
1491 } else
1492 list_add(&page->lru, &pages_to_free);
66635629
MG
1493 }
1494 }
66635629 1495
3f79768f
HD
1496 /*
1497 * To save our caller's stack, now use input list for pages to free.
1498 */
1499 list_splice(&pages_to_free, page_list);
66635629
MG
1500}
1501
399ba0b9
N
1502/*
1503 * If a kernel thread (such as nfsd for loop-back mounts) services
1504 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1505 * In that case we should only throttle if the backing device it is
1506 * writing to is congested. In other cases it is safe to throttle.
1507 */
1508static int current_may_throttle(void)
1509{
1510 return !(current->flags & PF_LESS_THROTTLE) ||
1511 current->backing_dev_info == NULL ||
1512 bdi_write_congested(current->backing_dev_info);
1513}
1514
1da177e4 1515/*
1742f19f
AM
1516 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1517 * of reclaimed pages
1da177e4 1518 */
66635629 1519static noinline_for_stack unsigned long
1a93be0e 1520shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1521 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1522{
1523 LIST_HEAD(page_list);
e247dbce 1524 unsigned long nr_scanned;
05ff5137 1525 unsigned long nr_reclaimed = 0;
e247dbce 1526 unsigned long nr_taken;
8e950282
MG
1527 unsigned long nr_dirty = 0;
1528 unsigned long nr_congested = 0;
e2be15f6 1529 unsigned long nr_unqueued_dirty = 0;
92df3a72 1530 unsigned long nr_writeback = 0;
b1a6f21e 1531 unsigned long nr_immediate = 0;
f3fd4a61 1532 isolate_mode_t isolate_mode = 0;
3cb99451 1533 int file = is_file_lru(lru);
1a93be0e
KK
1534 struct zone *zone = lruvec_zone(lruvec);
1535 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1536
35cd7815 1537 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1538 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1539
1540 /* We are about to die and free our memory. Return now. */
1541 if (fatal_signal_pending(current))
1542 return SWAP_CLUSTER_MAX;
1543 }
1544
1da177e4 1545 lru_add_drain();
f80c0673
MK
1546
1547 if (!sc->may_unmap)
61317289 1548 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1549 if (!sc->may_writepage)
61317289 1550 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1551
1da177e4 1552 spin_lock_irq(&zone->lru_lock);
b35ea17b 1553
5dc35979
KK
1554 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1555 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1556
1557 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1558 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1559
89b5fae5 1560 if (global_reclaim(sc)) {
0d5d823a 1561 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1562 if (current_is_kswapd())
75b00af7 1563 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1564 else
75b00af7 1565 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1566 }
d563c050 1567 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1568
d563c050 1569 if (nr_taken == 0)
66635629 1570 return 0;
5ad333eb 1571
02c6de8d 1572 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1573 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1574 &nr_writeback, &nr_immediate,
1575 false);
c661b078 1576
3f79768f
HD
1577 spin_lock_irq(&zone->lru_lock);
1578
95d918fc 1579 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1580
904249aa
YH
1581 if (global_reclaim(sc)) {
1582 if (current_is_kswapd())
1583 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1584 nr_reclaimed);
1585 else
1586 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1587 nr_reclaimed);
1588 }
a74609fa 1589
27ac81d8 1590 putback_inactive_pages(lruvec, &page_list);
3f79768f 1591
95d918fc 1592 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1593
1594 spin_unlock_irq(&zone->lru_lock);
1595
747db954 1596 mem_cgroup_uncharge_list(&page_list);
b745bc85 1597 free_hot_cold_page_list(&page_list, true);
e11da5b4 1598
92df3a72
MG
1599 /*
1600 * If reclaim is isolating dirty pages under writeback, it implies
1601 * that the long-lived page allocation rate is exceeding the page
1602 * laundering rate. Either the global limits are not being effective
1603 * at throttling processes due to the page distribution throughout
1604 * zones or there is heavy usage of a slow backing device. The
1605 * only option is to throttle from reclaim context which is not ideal
1606 * as there is no guarantee the dirtying process is throttled in the
1607 * same way balance_dirty_pages() manages.
1608 *
8e950282
MG
1609 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1610 * of pages under pages flagged for immediate reclaim and stall if any
1611 * are encountered in the nr_immediate check below.
92df3a72 1612 */
918fc718 1613 if (nr_writeback && nr_writeback == nr_taken)
57054651 1614 set_bit(ZONE_WRITEBACK, &zone->flags);
92df3a72 1615
d43006d5 1616 /*
b1a6f21e
MG
1617 * memcg will stall in page writeback so only consider forcibly
1618 * stalling for global reclaim
d43006d5 1619 */
b1a6f21e 1620 if (global_reclaim(sc)) {
8e950282
MG
1621 /*
1622 * Tag a zone as congested if all the dirty pages scanned were
1623 * backed by a congested BDI and wait_iff_congested will stall.
1624 */
1625 if (nr_dirty && nr_dirty == nr_congested)
57054651 1626 set_bit(ZONE_CONGESTED, &zone->flags);
8e950282 1627
b1a6f21e
MG
1628 /*
1629 * If dirty pages are scanned that are not queued for IO, it
1630 * implies that flushers are not keeping up. In this case, flag
57054651
JW
1631 * the zone ZONE_DIRTY and kswapd will start writing pages from
1632 * reclaim context.
b1a6f21e
MG
1633 */
1634 if (nr_unqueued_dirty == nr_taken)
57054651 1635 set_bit(ZONE_DIRTY, &zone->flags);
b1a6f21e
MG
1636
1637 /*
b738d764
LT
1638 * If kswapd scans pages marked marked for immediate
1639 * reclaim and under writeback (nr_immediate), it implies
1640 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1641 * they are written so also forcibly stall.
1642 */
b738d764 1643 if (nr_immediate && current_may_throttle())
b1a6f21e 1644 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1645 }
d43006d5 1646
8e950282
MG
1647 /*
1648 * Stall direct reclaim for IO completions if underlying BDIs or zone
1649 * is congested. Allow kswapd to continue until it starts encountering
1650 * unqueued dirty pages or cycling through the LRU too quickly.
1651 */
399ba0b9
N
1652 if (!sc->hibernation_mode && !current_is_kswapd() &&
1653 current_may_throttle())
8e950282
MG
1654 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1655
e11da5b4
MG
1656 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1657 zone_idx(zone),
1658 nr_scanned, nr_reclaimed,
9e3b2f8c 1659 sc->priority,
23b9da55 1660 trace_shrink_flags(file));
05ff5137 1661 return nr_reclaimed;
1da177e4
LT
1662}
1663
1664/*
1665 * This moves pages from the active list to the inactive list.
1666 *
1667 * We move them the other way if the page is referenced by one or more
1668 * processes, from rmap.
1669 *
1670 * If the pages are mostly unmapped, the processing is fast and it is
1671 * appropriate to hold zone->lru_lock across the whole operation. But if
1672 * the pages are mapped, the processing is slow (page_referenced()) so we
1673 * should drop zone->lru_lock around each page. It's impossible to balance
1674 * this, so instead we remove the pages from the LRU while processing them.
1675 * It is safe to rely on PG_active against the non-LRU pages in here because
1676 * nobody will play with that bit on a non-LRU page.
1677 *
1678 * The downside is that we have to touch page->_count against each page.
1679 * But we had to alter page->flags anyway.
1680 */
1cfb419b 1681
fa9add64 1682static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1683 struct list_head *list,
2bcf8879 1684 struct list_head *pages_to_free,
3eb4140f
WF
1685 enum lru_list lru)
1686{
fa9add64 1687 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1688 unsigned long pgmoved = 0;
3eb4140f 1689 struct page *page;
fa9add64 1690 int nr_pages;
3eb4140f 1691
3eb4140f
WF
1692 while (!list_empty(list)) {
1693 page = lru_to_page(list);
fa9add64 1694 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1695
309381fe 1696 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1697 SetPageLRU(page);
1698
fa9add64
HD
1699 nr_pages = hpage_nr_pages(page);
1700 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1701 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1702 pgmoved += nr_pages;
3eb4140f 1703
2bcf8879
HD
1704 if (put_page_testzero(page)) {
1705 __ClearPageLRU(page);
1706 __ClearPageActive(page);
fa9add64 1707 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1708
1709 if (unlikely(PageCompound(page))) {
1710 spin_unlock_irq(&zone->lru_lock);
747db954 1711 mem_cgroup_uncharge(page);
2bcf8879
HD
1712 (*get_compound_page_dtor(page))(page);
1713 spin_lock_irq(&zone->lru_lock);
1714 } else
1715 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1716 }
1717 }
1718 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1719 if (!is_active_lru(lru))
1720 __count_vm_events(PGDEACTIVATE, pgmoved);
1721}
1cfb419b 1722
f626012d 1723static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1724 struct lruvec *lruvec,
f16015fb 1725 struct scan_control *sc,
9e3b2f8c 1726 enum lru_list lru)
1da177e4 1727{
44c241f1 1728 unsigned long nr_taken;
f626012d 1729 unsigned long nr_scanned;
6fe6b7e3 1730 unsigned long vm_flags;
1da177e4 1731 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1732 LIST_HEAD(l_active);
b69408e8 1733 LIST_HEAD(l_inactive);
1da177e4 1734 struct page *page;
1a93be0e 1735 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1736 unsigned long nr_rotated = 0;
f3fd4a61 1737 isolate_mode_t isolate_mode = 0;
3cb99451 1738 int file = is_file_lru(lru);
1a93be0e 1739 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1740
1741 lru_add_drain();
f80c0673
MK
1742
1743 if (!sc->may_unmap)
61317289 1744 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1745 if (!sc->may_writepage)
61317289 1746 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1747
1da177e4 1748 spin_lock_irq(&zone->lru_lock);
925b7673 1749
5dc35979
KK
1750 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1751 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1752 if (global_reclaim(sc))
0d5d823a 1753 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
89b5fae5 1754
b7c46d15 1755 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1756
f626012d 1757 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1758 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1759 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1760 spin_unlock_irq(&zone->lru_lock);
1761
1da177e4
LT
1762 while (!list_empty(&l_hold)) {
1763 cond_resched();
1764 page = lru_to_page(&l_hold);
1765 list_del(&page->lru);
7e9cd484 1766
39b5f29a 1767 if (unlikely(!page_evictable(page))) {
894bc310
LS
1768 putback_lru_page(page);
1769 continue;
1770 }
1771
cc715d99
MG
1772 if (unlikely(buffer_heads_over_limit)) {
1773 if (page_has_private(page) && trylock_page(page)) {
1774 if (page_has_private(page))
1775 try_to_release_page(page, 0);
1776 unlock_page(page);
1777 }
1778 }
1779
c3ac9a8a
JW
1780 if (page_referenced(page, 0, sc->target_mem_cgroup,
1781 &vm_flags)) {
9992af10 1782 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1783 /*
1784 * Identify referenced, file-backed active pages and
1785 * give them one more trip around the active list. So
1786 * that executable code get better chances to stay in
1787 * memory under moderate memory pressure. Anon pages
1788 * are not likely to be evicted by use-once streaming
1789 * IO, plus JVM can create lots of anon VM_EXEC pages,
1790 * so we ignore them here.
1791 */
41e20983 1792 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1793 list_add(&page->lru, &l_active);
1794 continue;
1795 }
1796 }
7e9cd484 1797
5205e56e 1798 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1799 list_add(&page->lru, &l_inactive);
1800 }
1801
b555749a 1802 /*
8cab4754 1803 * Move pages back to the lru list.
b555749a 1804 */
2a1dc509 1805 spin_lock_irq(&zone->lru_lock);
556adecb 1806 /*
8cab4754
WF
1807 * Count referenced pages from currently used mappings as rotated,
1808 * even though only some of them are actually re-activated. This
1809 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1810 * get_scan_count.
7e9cd484 1811 */
b7c46d15 1812 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1813
fa9add64
HD
1814 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1815 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1816 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1817 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1818
747db954 1819 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1820 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1821}
1822
74e3f3c3 1823#ifdef CONFIG_SWAP
14797e23 1824static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1825{
1826 unsigned long active, inactive;
1827
1828 active = zone_page_state(zone, NR_ACTIVE_ANON);
1829 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1830
1831 if (inactive * zone->inactive_ratio < active)
1832 return 1;
1833
1834 return 0;
1835}
1836
14797e23
KM
1837/**
1838 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1839 * @lruvec: LRU vector to check
14797e23
KM
1840 *
1841 * Returns true if the zone does not have enough inactive anon pages,
1842 * meaning some active anon pages need to be deactivated.
1843 */
c56d5c7d 1844static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1845{
74e3f3c3
MK
1846 /*
1847 * If we don't have swap space, anonymous page deactivation
1848 * is pointless.
1849 */
1850 if (!total_swap_pages)
1851 return 0;
1852
c3c787e8 1853 if (!mem_cgroup_disabled())
c56d5c7d 1854 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1855
c56d5c7d 1856 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1857}
74e3f3c3 1858#else
c56d5c7d 1859static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1860{
1861 return 0;
1862}
1863#endif
14797e23 1864
56e49d21
RR
1865/**
1866 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1867 * @lruvec: LRU vector to check
56e49d21
RR
1868 *
1869 * When the system is doing streaming IO, memory pressure here
1870 * ensures that active file pages get deactivated, until more
1871 * than half of the file pages are on the inactive list.
1872 *
1873 * Once we get to that situation, protect the system's working
1874 * set from being evicted by disabling active file page aging.
1875 *
1876 * This uses a different ratio than the anonymous pages, because
1877 * the page cache uses a use-once replacement algorithm.
1878 */
c56d5c7d 1879static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1880{
e3790144
JW
1881 unsigned long inactive;
1882 unsigned long active;
1883
1884 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1885 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1886
e3790144 1887 return active > inactive;
56e49d21
RR
1888}
1889
75b00af7 1890static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1891{
75b00af7 1892 if (is_file_lru(lru))
c56d5c7d 1893 return inactive_file_is_low(lruvec);
b39415b2 1894 else
c56d5c7d 1895 return inactive_anon_is_low(lruvec);
b39415b2
RR
1896}
1897
4f98a2fe 1898static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1899 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1900{
b39415b2 1901 if (is_active_lru(lru)) {
75b00af7 1902 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1903 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1904 return 0;
1905 }
1906
1a93be0e 1907 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1908}
1909
9a265114
JW
1910enum scan_balance {
1911 SCAN_EQUAL,
1912 SCAN_FRACT,
1913 SCAN_ANON,
1914 SCAN_FILE,
1915};
1916
4f98a2fe
RR
1917/*
1918 * Determine how aggressively the anon and file LRU lists should be
1919 * scanned. The relative value of each set of LRU lists is determined
1920 * by looking at the fraction of the pages scanned we did rotate back
1921 * onto the active list instead of evict.
1922 *
be7bd59d
WL
1923 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1924 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1925 */
02695175 1926static void get_scan_count(struct lruvec *lruvec, int swappiness,
6b4f7799
JW
1927 struct scan_control *sc, unsigned long *nr,
1928 unsigned long *lru_pages)
4f98a2fe 1929{
9a265114
JW
1930 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1931 u64 fraction[2];
1932 u64 denominator = 0; /* gcc */
1933 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1934 unsigned long anon_prio, file_prio;
9a265114 1935 enum scan_balance scan_balance;
0bf1457f 1936 unsigned long anon, file;
9a265114 1937 bool force_scan = false;
4f98a2fe 1938 unsigned long ap, fp;
4111304d 1939 enum lru_list lru;
6f04f48d
SS
1940 bool some_scanned;
1941 int pass;
246e87a9 1942
f11c0ca5
JW
1943 /*
1944 * If the zone or memcg is small, nr[l] can be 0. This
1945 * results in no scanning on this priority and a potential
1946 * priority drop. Global direct reclaim can go to the next
1947 * zone and tends to have no problems. Global kswapd is for
1948 * zone balancing and it needs to scan a minimum amount. When
1949 * reclaiming for a memcg, a priority drop can cause high
1950 * latencies, so it's better to scan a minimum amount there as
1951 * well.
1952 */
90cbc250
VD
1953 if (current_is_kswapd()) {
1954 if (!zone_reclaimable(zone))
1955 force_scan = true;
1956 if (!mem_cgroup_lruvec_online(lruvec))
1957 force_scan = true;
1958 }
89b5fae5 1959 if (!global_reclaim(sc))
a4d3e9e7 1960 force_scan = true;
76a33fc3
SL
1961
1962 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1963 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1964 scan_balance = SCAN_FILE;
76a33fc3
SL
1965 goto out;
1966 }
4f98a2fe 1967
10316b31
JW
1968 /*
1969 * Global reclaim will swap to prevent OOM even with no
1970 * swappiness, but memcg users want to use this knob to
1971 * disable swapping for individual groups completely when
1972 * using the memory controller's swap limit feature would be
1973 * too expensive.
1974 */
02695175 1975 if (!global_reclaim(sc) && !swappiness) {
9a265114 1976 scan_balance = SCAN_FILE;
10316b31
JW
1977 goto out;
1978 }
1979
1980 /*
1981 * Do not apply any pressure balancing cleverness when the
1982 * system is close to OOM, scan both anon and file equally
1983 * (unless the swappiness setting disagrees with swapping).
1984 */
02695175 1985 if (!sc->priority && swappiness) {
9a265114 1986 scan_balance = SCAN_EQUAL;
10316b31
JW
1987 goto out;
1988 }
1989
62376251
JW
1990 /*
1991 * Prevent the reclaimer from falling into the cache trap: as
1992 * cache pages start out inactive, every cache fault will tip
1993 * the scan balance towards the file LRU. And as the file LRU
1994 * shrinks, so does the window for rotation from references.
1995 * This means we have a runaway feedback loop where a tiny
1996 * thrashing file LRU becomes infinitely more attractive than
1997 * anon pages. Try to detect this based on file LRU size.
1998 */
1999 if (global_reclaim(sc)) {
2ab051e1
JM
2000 unsigned long zonefile;
2001 unsigned long zonefree;
2002
2003 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2004 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2005 zone_page_state(zone, NR_INACTIVE_FILE);
62376251 2006
2ab051e1 2007 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
62376251
JW
2008 scan_balance = SCAN_ANON;
2009 goto out;
2010 }
2011 }
2012
7c5bd705
JW
2013 /*
2014 * There is enough inactive page cache, do not reclaim
2015 * anything from the anonymous working set right now.
2016 */
2017 if (!inactive_file_is_low(lruvec)) {
9a265114 2018 scan_balance = SCAN_FILE;
7c5bd705
JW
2019 goto out;
2020 }
2021
9a265114
JW
2022 scan_balance = SCAN_FRACT;
2023
58c37f6e
KM
2024 /*
2025 * With swappiness at 100, anonymous and file have the same priority.
2026 * This scanning priority is essentially the inverse of IO cost.
2027 */
02695175 2028 anon_prio = swappiness;
75b00af7 2029 file_prio = 200 - anon_prio;
58c37f6e 2030
4f98a2fe
RR
2031 /*
2032 * OK, so we have swap space and a fair amount of page cache
2033 * pages. We use the recently rotated / recently scanned
2034 * ratios to determine how valuable each cache is.
2035 *
2036 * Because workloads change over time (and to avoid overflow)
2037 * we keep these statistics as a floating average, which ends
2038 * up weighing recent references more than old ones.
2039 *
2040 * anon in [0], file in [1]
2041 */
2ab051e1
JM
2042
2043 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2044 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2045 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2046 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2047
90126375 2048 spin_lock_irq(&zone->lru_lock);
6e901571 2049 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2050 reclaim_stat->recent_scanned[0] /= 2;
2051 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2052 }
2053
6e901571 2054 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2055 reclaim_stat->recent_scanned[1] /= 2;
2056 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2057 }
2058
4f98a2fe 2059 /*
00d8089c
RR
2060 * The amount of pressure on anon vs file pages is inversely
2061 * proportional to the fraction of recently scanned pages on
2062 * each list that were recently referenced and in active use.
4f98a2fe 2063 */
fe35004f 2064 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2065 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2066
fe35004f 2067 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2068 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2069 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2070
76a33fc3
SL
2071 fraction[0] = ap;
2072 fraction[1] = fp;
2073 denominator = ap + fp + 1;
2074out:
6f04f48d
SS
2075 some_scanned = false;
2076 /* Only use force_scan on second pass. */
2077 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2078 *lru_pages = 0;
6f04f48d
SS
2079 for_each_evictable_lru(lru) {
2080 int file = is_file_lru(lru);
2081 unsigned long size;
2082 unsigned long scan;
6e08a369 2083
6f04f48d
SS
2084 size = get_lru_size(lruvec, lru);
2085 scan = size >> sc->priority;
9a265114 2086
6f04f48d
SS
2087 if (!scan && pass && force_scan)
2088 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2089
6f04f48d
SS
2090 switch (scan_balance) {
2091 case SCAN_EQUAL:
2092 /* Scan lists relative to size */
2093 break;
2094 case SCAN_FRACT:
2095 /*
2096 * Scan types proportional to swappiness and
2097 * their relative recent reclaim efficiency.
2098 */
2099 scan = div64_u64(scan * fraction[file],
2100 denominator);
2101 break;
2102 case SCAN_FILE:
2103 case SCAN_ANON:
2104 /* Scan one type exclusively */
6b4f7799
JW
2105 if ((scan_balance == SCAN_FILE) != file) {
2106 size = 0;
6f04f48d 2107 scan = 0;
6b4f7799 2108 }
6f04f48d
SS
2109 break;
2110 default:
2111 /* Look ma, no brain */
2112 BUG();
2113 }
6b4f7799
JW
2114
2115 *lru_pages += size;
6f04f48d 2116 nr[lru] = scan;
6b4f7799 2117
9a265114 2118 /*
6f04f48d
SS
2119 * Skip the second pass and don't force_scan,
2120 * if we found something to scan.
9a265114 2121 */
6f04f48d 2122 some_scanned |= !!scan;
9a265114 2123 }
76a33fc3 2124 }
6e08a369 2125}
4f98a2fe 2126
9b4f98cd
JW
2127/*
2128 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2129 */
02695175 2130static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
6b4f7799 2131 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd
JW
2132{
2133 unsigned long nr[NR_LRU_LISTS];
e82e0561 2134 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2135 unsigned long nr_to_scan;
2136 enum lru_list lru;
2137 unsigned long nr_reclaimed = 0;
2138 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2139 struct blk_plug plug;
1a501907 2140 bool scan_adjusted;
9b4f98cd 2141
6b4f7799 2142 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
9b4f98cd 2143
e82e0561
MG
2144 /* Record the original scan target for proportional adjustments later */
2145 memcpy(targets, nr, sizeof(nr));
2146
1a501907
MG
2147 /*
2148 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2149 * event that can occur when there is little memory pressure e.g.
2150 * multiple streaming readers/writers. Hence, we do not abort scanning
2151 * when the requested number of pages are reclaimed when scanning at
2152 * DEF_PRIORITY on the assumption that the fact we are direct
2153 * reclaiming implies that kswapd is not keeping up and it is best to
2154 * do a batch of work at once. For memcg reclaim one check is made to
2155 * abort proportional reclaim if either the file or anon lru has already
2156 * dropped to zero at the first pass.
2157 */
2158 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2159 sc->priority == DEF_PRIORITY);
2160
9b4f98cd
JW
2161 blk_start_plug(&plug);
2162 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2163 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2164 unsigned long nr_anon, nr_file, percentage;
2165 unsigned long nr_scanned;
2166
9b4f98cd
JW
2167 for_each_evictable_lru(lru) {
2168 if (nr[lru]) {
2169 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2170 nr[lru] -= nr_to_scan;
2171
2172 nr_reclaimed += shrink_list(lru, nr_to_scan,
2173 lruvec, sc);
2174 }
2175 }
e82e0561
MG
2176
2177 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2178 continue;
2179
e82e0561
MG
2180 /*
2181 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2182 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2183 * proportionally what was requested by get_scan_count(). We
2184 * stop reclaiming one LRU and reduce the amount scanning
2185 * proportional to the original scan target.
2186 */
2187 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2188 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2189
1a501907
MG
2190 /*
2191 * It's just vindictive to attack the larger once the smaller
2192 * has gone to zero. And given the way we stop scanning the
2193 * smaller below, this makes sure that we only make one nudge
2194 * towards proportionality once we've got nr_to_reclaim.
2195 */
2196 if (!nr_file || !nr_anon)
2197 break;
2198
e82e0561
MG
2199 if (nr_file > nr_anon) {
2200 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2201 targets[LRU_ACTIVE_ANON] + 1;
2202 lru = LRU_BASE;
2203 percentage = nr_anon * 100 / scan_target;
2204 } else {
2205 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2206 targets[LRU_ACTIVE_FILE] + 1;
2207 lru = LRU_FILE;
2208 percentage = nr_file * 100 / scan_target;
2209 }
2210
2211 /* Stop scanning the smaller of the LRU */
2212 nr[lru] = 0;
2213 nr[lru + LRU_ACTIVE] = 0;
2214
2215 /*
2216 * Recalculate the other LRU scan count based on its original
2217 * scan target and the percentage scanning already complete
2218 */
2219 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2220 nr_scanned = targets[lru] - nr[lru];
2221 nr[lru] = targets[lru] * (100 - percentage) / 100;
2222 nr[lru] -= min(nr[lru], nr_scanned);
2223
2224 lru += LRU_ACTIVE;
2225 nr_scanned = targets[lru] - nr[lru];
2226 nr[lru] = targets[lru] * (100 - percentage) / 100;
2227 nr[lru] -= min(nr[lru], nr_scanned);
2228
2229 scan_adjusted = true;
9b4f98cd
JW
2230 }
2231 blk_finish_plug(&plug);
2232 sc->nr_reclaimed += nr_reclaimed;
2233
2234 /*
2235 * Even if we did not try to evict anon pages at all, we want to
2236 * rebalance the anon lru active/inactive ratio.
2237 */
2238 if (inactive_anon_is_low(lruvec))
2239 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2240 sc, LRU_ACTIVE_ANON);
2241
2242 throttle_vm_writeout(sc->gfp_mask);
2243}
2244
23b9da55 2245/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2246static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2247{
d84da3f9 2248 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2249 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2250 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2251 return true;
2252
2253 return false;
2254}
2255
3e7d3449 2256/*
23b9da55
MG
2257 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2258 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2259 * true if more pages should be reclaimed such that when the page allocator
2260 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2261 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2262 */
9b4f98cd 2263static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2264 unsigned long nr_reclaimed,
2265 unsigned long nr_scanned,
2266 struct scan_control *sc)
2267{
2268 unsigned long pages_for_compaction;
2269 unsigned long inactive_lru_pages;
2270
2271 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2272 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2273 return false;
2274
2876592f
MG
2275 /* Consider stopping depending on scan and reclaim activity */
2276 if (sc->gfp_mask & __GFP_REPEAT) {
2277 /*
2278 * For __GFP_REPEAT allocations, stop reclaiming if the
2279 * full LRU list has been scanned and we are still failing
2280 * to reclaim pages. This full LRU scan is potentially
2281 * expensive but a __GFP_REPEAT caller really wants to succeed
2282 */
2283 if (!nr_reclaimed && !nr_scanned)
2284 return false;
2285 } else {
2286 /*
2287 * For non-__GFP_REPEAT allocations which can presumably
2288 * fail without consequence, stop if we failed to reclaim
2289 * any pages from the last SWAP_CLUSTER_MAX number of
2290 * pages that were scanned. This will return to the
2291 * caller faster at the risk reclaim/compaction and
2292 * the resulting allocation attempt fails
2293 */
2294 if (!nr_reclaimed)
2295 return false;
2296 }
3e7d3449
MG
2297
2298 /*
2299 * If we have not reclaimed enough pages for compaction and the
2300 * inactive lists are large enough, continue reclaiming
2301 */
2302 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2303 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2304 if (get_nr_swap_pages() > 0)
9b4f98cd 2305 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2306 if (sc->nr_reclaimed < pages_for_compaction &&
2307 inactive_lru_pages > pages_for_compaction)
2308 return true;
2309
2310 /* If compaction would go ahead or the allocation would succeed, stop */
ebff3980 2311 switch (compaction_suitable(zone, sc->order, 0, 0)) {
3e7d3449
MG
2312 case COMPACT_PARTIAL:
2313 case COMPACT_CONTINUE:
2314 return false;
2315 default:
2316 return true;
2317 }
2318}
2319
6b4f7799
JW
2320static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2321 bool is_classzone)
1da177e4 2322{
cb731d6c 2323 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2324 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2325 bool reclaimable = false;
1da177e4 2326
9b4f98cd
JW
2327 do {
2328 struct mem_cgroup *root = sc->target_mem_cgroup;
2329 struct mem_cgroup_reclaim_cookie reclaim = {
2330 .zone = zone,
2331 .priority = sc->priority,
2332 };
6b4f7799 2333 unsigned long zone_lru_pages = 0;
694fbc0f 2334 struct mem_cgroup *memcg;
3e7d3449 2335
9b4f98cd
JW
2336 nr_reclaimed = sc->nr_reclaimed;
2337 nr_scanned = sc->nr_scanned;
1da177e4 2338
694fbc0f
AM
2339 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2340 do {
6b4f7799 2341 unsigned long lru_pages;
cb731d6c 2342 unsigned long scanned;
9b4f98cd 2343 struct lruvec *lruvec;
02695175 2344 int swappiness;
5660048c 2345
241994ed
JW
2346 if (mem_cgroup_low(root, memcg)) {
2347 if (!sc->may_thrash)
2348 continue;
2349 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2350 }
2351
9b4f98cd 2352 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2353 swappiness = mem_cgroup_swappiness(memcg);
cb731d6c 2354 scanned = sc->nr_scanned;
f9be23d6 2355
6b4f7799
JW
2356 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2357 zone_lru_pages += lru_pages;
f16015fb 2358
cb731d6c
VD
2359 if (memcg && is_classzone)
2360 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2361 memcg, sc->nr_scanned - scanned,
2362 lru_pages);
2363
9b4f98cd 2364 /*
a394cb8e
MH
2365 * Direct reclaim and kswapd have to scan all memory
2366 * cgroups to fulfill the overall scan target for the
9b4f98cd 2367 * zone.
a394cb8e
MH
2368 *
2369 * Limit reclaim, on the other hand, only cares about
2370 * nr_to_reclaim pages to be reclaimed and it will
2371 * retry with decreasing priority if one round over the
2372 * whole hierarchy is not sufficient.
9b4f98cd 2373 */
a394cb8e
MH
2374 if (!global_reclaim(sc) &&
2375 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2376 mem_cgroup_iter_break(root, memcg);
2377 break;
2378 }
241994ed 2379 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2380
6b4f7799
JW
2381 /*
2382 * Shrink the slab caches in the same proportion that
2383 * the eligible LRU pages were scanned.
2384 */
cb731d6c
VD
2385 if (global_reclaim(sc) && is_classzone)
2386 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2387 sc->nr_scanned - nr_scanned,
2388 zone_lru_pages);
2389
2390 if (reclaim_state) {
2391 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2392 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2393 }
2394
70ddf637
AV
2395 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2396 sc->nr_scanned - nr_scanned,
2397 sc->nr_reclaimed - nr_reclaimed);
2398
2344d7e4
JW
2399 if (sc->nr_reclaimed - nr_reclaimed)
2400 reclaimable = true;
2401
9b4f98cd
JW
2402 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2403 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2404
2405 return reclaimable;
f16015fb
JW
2406}
2407
53853e2d
VB
2408/*
2409 * Returns true if compaction should go ahead for a high-order request, or
2410 * the high-order allocation would succeed without compaction.
2411 */
0b06496a 2412static inline bool compaction_ready(struct zone *zone, int order)
fe4b1b24
MG
2413{
2414 unsigned long balance_gap, watermark;
2415 bool watermark_ok;
2416
fe4b1b24
MG
2417 /*
2418 * Compaction takes time to run and there are potentially other
2419 * callers using the pages just freed. Continue reclaiming until
2420 * there is a buffer of free pages available to give compaction
2421 * a reasonable chance of completing and allocating the page
2422 */
4be89a34
JZ
2423 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2424 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2425 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
fe4b1b24
MG
2426 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2427
2428 /*
2429 * If compaction is deferred, reclaim up to a point where
2430 * compaction will have a chance of success when re-enabled
2431 */
0b06496a 2432 if (compaction_deferred(zone, order))
fe4b1b24
MG
2433 return watermark_ok;
2434
53853e2d
VB
2435 /*
2436 * If compaction is not ready to start and allocation is not likely
2437 * to succeed without it, then keep reclaiming.
2438 */
ebff3980 2439 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
fe4b1b24
MG
2440 return false;
2441
2442 return watermark_ok;
2443}
2444
1da177e4
LT
2445/*
2446 * This is the direct reclaim path, for page-allocating processes. We only
2447 * try to reclaim pages from zones which will satisfy the caller's allocation
2448 * request.
2449 *
41858966
MG
2450 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2451 * Because:
1da177e4
LT
2452 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2453 * allocation or
41858966
MG
2454 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2455 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2456 * zone defense algorithm.
1da177e4 2457 *
1da177e4
LT
2458 * If a zone is deemed to be full of pinned pages then just give it a light
2459 * scan then give up on it.
2344d7e4
JW
2460 *
2461 * Returns true if a zone was reclaimable.
1da177e4 2462 */
2344d7e4 2463static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2464{
dd1a239f 2465 struct zoneref *z;
54a6eb5c 2466 struct zone *zone;
0608f43d
AM
2467 unsigned long nr_soft_reclaimed;
2468 unsigned long nr_soft_scanned;
619d0d76 2469 gfp_t orig_mask;
9bbc04ee 2470 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2344d7e4 2471 bool reclaimable = false;
1cfb419b 2472
cc715d99
MG
2473 /*
2474 * If the number of buffer_heads in the machine exceeds the maximum
2475 * allowed level, force direct reclaim to scan the highmem zone as
2476 * highmem pages could be pinning lowmem pages storing buffer_heads
2477 */
619d0d76 2478 orig_mask = sc->gfp_mask;
cc715d99
MG
2479 if (buffer_heads_over_limit)
2480 sc->gfp_mask |= __GFP_HIGHMEM;
2481
d4debc66 2482 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6b4f7799
JW
2483 requested_highidx, sc->nodemask) {
2484 enum zone_type classzone_idx;
2485
f3fe6512 2486 if (!populated_zone(zone))
1da177e4 2487 continue;
6b4f7799
JW
2488
2489 classzone_idx = requested_highidx;
2490 while (!populated_zone(zone->zone_pgdat->node_zones +
2491 classzone_idx))
2492 classzone_idx--;
2493
1cfb419b
KH
2494 /*
2495 * Take care memory controller reclaiming has small influence
2496 * to global LRU.
2497 */
89b5fae5 2498 if (global_reclaim(sc)) {
344736f2
VD
2499 if (!cpuset_zone_allowed(zone,
2500 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2501 continue;
65ec02cb 2502
6e543d57
LD
2503 if (sc->priority != DEF_PRIORITY &&
2504 !zone_reclaimable(zone))
1cfb419b 2505 continue; /* Let kswapd poll it */
0b06496a
JW
2506
2507 /*
2508 * If we already have plenty of memory free for
2509 * compaction in this zone, don't free any more.
2510 * Even though compaction is invoked for any
2511 * non-zero order, only frequent costly order
2512 * reclamation is disruptive enough to become a
2513 * noticeable problem, like transparent huge
2514 * page allocations.
2515 */
2516 if (IS_ENABLED(CONFIG_COMPACTION) &&
2517 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2518 zonelist_zone_idx(z) <= requested_highidx &&
2519 compaction_ready(zone, sc->order)) {
2520 sc->compaction_ready = true;
2521 continue;
e0887c19 2522 }
0b06496a 2523
0608f43d
AM
2524 /*
2525 * This steals pages from memory cgroups over softlimit
2526 * and returns the number of reclaimed pages and
2527 * scanned pages. This works for global memory pressure
2528 * and balancing, not for a memcg's limit.
2529 */
2530 nr_soft_scanned = 0;
2531 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2532 sc->order, sc->gfp_mask,
2533 &nr_soft_scanned);
2534 sc->nr_reclaimed += nr_soft_reclaimed;
2535 sc->nr_scanned += nr_soft_scanned;
2344d7e4
JW
2536 if (nr_soft_reclaimed)
2537 reclaimable = true;
ac34a1a3 2538 /* need some check for avoid more shrink_zone() */
1cfb419b 2539 }
408d8544 2540
6b4f7799 2541 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2344d7e4
JW
2542 reclaimable = true;
2543
2544 if (global_reclaim(sc) &&
2545 !reclaimable && zone_reclaimable(zone))
2546 reclaimable = true;
1da177e4 2547 }
e0c23279 2548
619d0d76
WY
2549 /*
2550 * Restore to original mask to avoid the impact on the caller if we
2551 * promoted it to __GFP_HIGHMEM.
2552 */
2553 sc->gfp_mask = orig_mask;
d1908362 2554
2344d7e4 2555 return reclaimable;
1da177e4 2556}
4f98a2fe 2557
1da177e4
LT
2558/*
2559 * This is the main entry point to direct page reclaim.
2560 *
2561 * If a full scan of the inactive list fails to free enough memory then we
2562 * are "out of memory" and something needs to be killed.
2563 *
2564 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2565 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2566 * caller can't do much about. We kick the writeback threads and take explicit
2567 * naps in the hope that some of these pages can be written. But if the
2568 * allocating task holds filesystem locks which prevent writeout this might not
2569 * work, and the allocation attempt will fail.
a41f24ea
NA
2570 *
2571 * returns: 0, if no pages reclaimed
2572 * else, the number of pages reclaimed
1da177e4 2573 */
dac1d27b 2574static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2575 struct scan_control *sc)
1da177e4 2576{
241994ed 2577 int initial_priority = sc->priority;
69e05944 2578 unsigned long total_scanned = 0;
22fba335 2579 unsigned long writeback_threshold;
2344d7e4 2580 bool zones_reclaimable;
241994ed 2581retry:
873b4771
KK
2582 delayacct_freepages_start();
2583
89b5fae5 2584 if (global_reclaim(sc))
1cfb419b 2585 count_vm_event(ALLOCSTALL);
1da177e4 2586
9e3b2f8c 2587 do {
70ddf637
AV
2588 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2589 sc->priority);
66e1707b 2590 sc->nr_scanned = 0;
2344d7e4 2591 zones_reclaimable = shrink_zones(zonelist, sc);
c6a8a8c5 2592
66e1707b 2593 total_scanned += sc->nr_scanned;
bb21c7ce 2594 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2595 break;
2596
2597 if (sc->compaction_ready)
2598 break;
1da177e4 2599
0e50ce3b
MK
2600 /*
2601 * If we're getting trouble reclaiming, start doing
2602 * writepage even in laptop mode.
2603 */
2604 if (sc->priority < DEF_PRIORITY - 2)
2605 sc->may_writepage = 1;
2606
1da177e4
LT
2607 /*
2608 * Try to write back as many pages as we just scanned. This
2609 * tends to cause slow streaming writers to write data to the
2610 * disk smoothly, at the dirtying rate, which is nice. But
2611 * that's undesirable in laptop mode, where we *want* lumpy
2612 * writeout. So in laptop mode, write out the whole world.
2613 */
22fba335
KM
2614 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2615 if (total_scanned > writeback_threshold) {
0e175a18
CW
2616 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2617 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2618 sc->may_writepage = 1;
1da177e4 2619 }
0b06496a 2620 } while (--sc->priority >= 0);
bb21c7ce 2621
873b4771
KK
2622 delayacct_freepages_end();
2623
bb21c7ce
KM
2624 if (sc->nr_reclaimed)
2625 return sc->nr_reclaimed;
2626
0cee34fd 2627 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2628 if (sc->compaction_ready)
7335084d
MG
2629 return 1;
2630
241994ed
JW
2631 /* Untapped cgroup reserves? Don't OOM, retry. */
2632 if (!sc->may_thrash) {
2633 sc->priority = initial_priority;
2634 sc->may_thrash = 1;
2635 goto retry;
2636 }
2637
2344d7e4
JW
2638 /* Any of the zones still reclaimable? Don't OOM. */
2639 if (zones_reclaimable)
bb21c7ce
KM
2640 return 1;
2641
2642 return 0;
1da177e4
LT
2643}
2644
5515061d
MG
2645static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2646{
2647 struct zone *zone;
2648 unsigned long pfmemalloc_reserve = 0;
2649 unsigned long free_pages = 0;
2650 int i;
2651 bool wmark_ok;
2652
2653 for (i = 0; i <= ZONE_NORMAL; i++) {
2654 zone = &pgdat->node_zones[i];
675becce
MG
2655 if (!populated_zone(zone))
2656 continue;
2657
5515061d
MG
2658 pfmemalloc_reserve += min_wmark_pages(zone);
2659 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2660 }
2661
675becce
MG
2662 /* If there are no reserves (unexpected config) then do not throttle */
2663 if (!pfmemalloc_reserve)
2664 return true;
2665
5515061d
MG
2666 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2667
2668 /* kswapd must be awake if processes are being throttled */
2669 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2670 pgdat->classzone_idx = min(pgdat->classzone_idx,
2671 (enum zone_type)ZONE_NORMAL);
2672 wake_up_interruptible(&pgdat->kswapd_wait);
2673 }
2674
2675 return wmark_ok;
2676}
2677
2678/*
2679 * Throttle direct reclaimers if backing storage is backed by the network
2680 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2681 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2682 * when the low watermark is reached.
2683 *
2684 * Returns true if a fatal signal was delivered during throttling. If this
2685 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2686 */
50694c28 2687static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2688 nodemask_t *nodemask)
2689{
675becce 2690 struct zoneref *z;
5515061d 2691 struct zone *zone;
675becce 2692 pg_data_t *pgdat = NULL;
5515061d
MG
2693
2694 /*
2695 * Kernel threads should not be throttled as they may be indirectly
2696 * responsible for cleaning pages necessary for reclaim to make forward
2697 * progress. kjournald for example may enter direct reclaim while
2698 * committing a transaction where throttling it could forcing other
2699 * processes to block on log_wait_commit().
2700 */
2701 if (current->flags & PF_KTHREAD)
50694c28
MG
2702 goto out;
2703
2704 /*
2705 * If a fatal signal is pending, this process should not throttle.
2706 * It should return quickly so it can exit and free its memory
2707 */
2708 if (fatal_signal_pending(current))
2709 goto out;
5515061d 2710
675becce
MG
2711 /*
2712 * Check if the pfmemalloc reserves are ok by finding the first node
2713 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2714 * GFP_KERNEL will be required for allocating network buffers when
2715 * swapping over the network so ZONE_HIGHMEM is unusable.
2716 *
2717 * Throttling is based on the first usable node and throttled processes
2718 * wait on a queue until kswapd makes progress and wakes them. There
2719 * is an affinity then between processes waking up and where reclaim
2720 * progress has been made assuming the process wakes on the same node.
2721 * More importantly, processes running on remote nodes will not compete
2722 * for remote pfmemalloc reserves and processes on different nodes
2723 * should make reasonable progress.
2724 */
2725 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2726 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2727 if (zone_idx(zone) > ZONE_NORMAL)
2728 continue;
2729
2730 /* Throttle based on the first usable node */
2731 pgdat = zone->zone_pgdat;
2732 if (pfmemalloc_watermark_ok(pgdat))
2733 goto out;
2734 break;
2735 }
2736
2737 /* If no zone was usable by the allocation flags then do not throttle */
2738 if (!pgdat)
50694c28 2739 goto out;
5515061d 2740
68243e76
MG
2741 /* Account for the throttling */
2742 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2743
5515061d
MG
2744 /*
2745 * If the caller cannot enter the filesystem, it's possible that it
2746 * is due to the caller holding an FS lock or performing a journal
2747 * transaction in the case of a filesystem like ext[3|4]. In this case,
2748 * it is not safe to block on pfmemalloc_wait as kswapd could be
2749 * blocked waiting on the same lock. Instead, throttle for up to a
2750 * second before continuing.
2751 */
2752 if (!(gfp_mask & __GFP_FS)) {
2753 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2754 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2755
2756 goto check_pending;
5515061d
MG
2757 }
2758
2759 /* Throttle until kswapd wakes the process */
2760 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2761 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2762
2763check_pending:
2764 if (fatal_signal_pending(current))
2765 return true;
2766
2767out:
2768 return false;
5515061d
MG
2769}
2770
dac1d27b 2771unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2772 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2773{
33906bc5 2774 unsigned long nr_reclaimed;
66e1707b 2775 struct scan_control sc = {
ee814fe2 2776 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2777 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2778 .order = order,
2779 .nodemask = nodemask,
2780 .priority = DEF_PRIORITY,
66e1707b 2781 .may_writepage = !laptop_mode,
a6dc60f8 2782 .may_unmap = 1,
2e2e4259 2783 .may_swap = 1,
66e1707b
BS
2784 };
2785
5515061d 2786 /*
50694c28
MG
2787 * Do not enter reclaim if fatal signal was delivered while throttled.
2788 * 1 is returned so that the page allocator does not OOM kill at this
2789 * point.
5515061d 2790 */
50694c28 2791 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2792 return 1;
2793
33906bc5
MG
2794 trace_mm_vmscan_direct_reclaim_begin(order,
2795 sc.may_writepage,
2796 gfp_mask);
2797
3115cd91 2798 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2799
2800 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2801
2802 return nr_reclaimed;
66e1707b
BS
2803}
2804
c255a458 2805#ifdef CONFIG_MEMCG
66e1707b 2806
72835c86 2807unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2808 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2809 struct zone *zone,
2810 unsigned long *nr_scanned)
4e416953
BS
2811{
2812 struct scan_control sc = {
b8f5c566 2813 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2814 .target_mem_cgroup = memcg,
4e416953
BS
2815 .may_writepage = !laptop_mode,
2816 .may_unmap = 1,
2817 .may_swap = !noswap,
4e416953 2818 };
f9be23d6 2819 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2820 int swappiness = mem_cgroup_swappiness(memcg);
6b4f7799 2821 unsigned long lru_pages;
0ae5e89c 2822
4e416953
BS
2823 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2824 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2825
9e3b2f8c 2826 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2827 sc.may_writepage,
2828 sc.gfp_mask);
2829
4e416953
BS
2830 /*
2831 * NOTE: Although we can get the priority field, using it
2832 * here is not a good idea, since it limits the pages we can scan.
2833 * if we don't reclaim here, the shrink_zone from balance_pgdat
2834 * will pick up pages from other mem cgroup's as well. We hack
2835 * the priority and make it zero.
2836 */
6b4f7799 2837 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
bdce6d9e
KM
2838
2839 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2840
0ae5e89c 2841 *nr_scanned = sc.nr_scanned;
4e416953
BS
2842 return sc.nr_reclaimed;
2843}
2844
72835c86 2845unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2846 unsigned long nr_pages,
a7885eb8 2847 gfp_t gfp_mask,
b70a2a21 2848 bool may_swap)
66e1707b 2849{
4e416953 2850 struct zonelist *zonelist;
bdce6d9e 2851 unsigned long nr_reclaimed;
889976db 2852 int nid;
66e1707b 2853 struct scan_control sc = {
b70a2a21 2854 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2855 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2856 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2857 .target_mem_cgroup = memcg,
2858 .priority = DEF_PRIORITY,
2859 .may_writepage = !laptop_mode,
2860 .may_unmap = 1,
b70a2a21 2861 .may_swap = may_swap,
a09ed5e0 2862 };
66e1707b 2863
889976db
YH
2864 /*
2865 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2866 * take care of from where we get pages. So the node where we start the
2867 * scan does not need to be the current node.
2868 */
72835c86 2869 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2870
2871 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2872
2873 trace_mm_vmscan_memcg_reclaim_begin(0,
2874 sc.may_writepage,
2875 sc.gfp_mask);
2876
3115cd91 2877 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2878
2879 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2880
2881 return nr_reclaimed;
66e1707b
BS
2882}
2883#endif
2884
9e3b2f8c 2885static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2886{
b95a2f2d 2887 struct mem_cgroup *memcg;
f16015fb 2888
b95a2f2d
JW
2889 if (!total_swap_pages)
2890 return;
2891
2892 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2893 do {
c56d5c7d 2894 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2895
c56d5c7d 2896 if (inactive_anon_is_low(lruvec))
1a93be0e 2897 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2898 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2899
2900 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2901 } while (memcg);
f16015fb
JW
2902}
2903
60cefed4
JW
2904static bool zone_balanced(struct zone *zone, int order,
2905 unsigned long balance_gap, int classzone_idx)
2906{
2907 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2908 balance_gap, classzone_idx, 0))
2909 return false;
2910
ebff3980
VB
2911 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2912 order, 0, classzone_idx) == COMPACT_SKIPPED)
60cefed4
JW
2913 return false;
2914
2915 return true;
2916}
2917
1741c877 2918/*
4ae0a48b
ZC
2919 * pgdat_balanced() is used when checking if a node is balanced.
2920 *
2921 * For order-0, all zones must be balanced!
2922 *
2923 * For high-order allocations only zones that meet watermarks and are in a
2924 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2925 * total of balanced pages must be at least 25% of the zones allowed by
2926 * classzone_idx for the node to be considered balanced. Forcing all zones to
2927 * be balanced for high orders can cause excessive reclaim when there are
2928 * imbalanced zones.
1741c877
MG
2929 * The choice of 25% is due to
2930 * o a 16M DMA zone that is balanced will not balance a zone on any
2931 * reasonable sized machine
2932 * o On all other machines, the top zone must be at least a reasonable
25985edc 2933 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2934 * would need to be at least 256M for it to be balance a whole node.
2935 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2936 * to balance a node on its own. These seemed like reasonable ratios.
2937 */
4ae0a48b 2938static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2939{
b40da049 2940 unsigned long managed_pages = 0;
4ae0a48b 2941 unsigned long balanced_pages = 0;
1741c877
MG
2942 int i;
2943
4ae0a48b
ZC
2944 /* Check the watermark levels */
2945 for (i = 0; i <= classzone_idx; i++) {
2946 struct zone *zone = pgdat->node_zones + i;
1741c877 2947
4ae0a48b
ZC
2948 if (!populated_zone(zone))
2949 continue;
2950
b40da049 2951 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2952
2953 /*
2954 * A special case here:
2955 *
2956 * balance_pgdat() skips over all_unreclaimable after
2957 * DEF_PRIORITY. Effectively, it considers them balanced so
2958 * they must be considered balanced here as well!
2959 */
6e543d57 2960 if (!zone_reclaimable(zone)) {
b40da049 2961 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2962 continue;
2963 }
2964
2965 if (zone_balanced(zone, order, 0, i))
b40da049 2966 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2967 else if (!order)
2968 return false;
2969 }
2970
2971 if (order)
b40da049 2972 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2973 else
2974 return true;
1741c877
MG
2975}
2976
5515061d
MG
2977/*
2978 * Prepare kswapd for sleeping. This verifies that there are no processes
2979 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2980 *
2981 * Returns true if kswapd is ready to sleep
2982 */
2983static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2984 int classzone_idx)
f50de2d3 2985{
f50de2d3
MG
2986 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2987 if (remaining)
5515061d
MG
2988 return false;
2989
2990 /*
9e5e3661
VB
2991 * The throttled processes are normally woken up in balance_pgdat() as
2992 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2993 * race between when kswapd checks the watermarks and a process gets
2994 * throttled. There is also a potential race if processes get
2995 * throttled, kswapd wakes, a large process exits thereby balancing the
2996 * zones, which causes kswapd to exit balance_pgdat() before reaching
2997 * the wake up checks. If kswapd is going to sleep, no process should
2998 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2999 * the wake up is premature, processes will wake kswapd and get
3000 * throttled again. The difference from wake ups in balance_pgdat() is
3001 * that here we are under prepare_to_wait().
5515061d 3002 */
9e5e3661
VB
3003 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3004 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3005
4ae0a48b 3006 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
3007}
3008
75485363
MG
3009/*
3010 * kswapd shrinks the zone by the number of pages required to reach
3011 * the high watermark.
b8e83b94
MG
3012 *
3013 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3014 * reclaim or if the lack of progress was due to pages under writeback.
3015 * This is used to determine if the scanning priority needs to be raised.
75485363 3016 */
b8e83b94 3017static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 3018 int classzone_idx,
75485363 3019 struct scan_control *sc,
2ab44f43 3020 unsigned long *nr_attempted)
75485363 3021{
7c954f6d
MG
3022 int testorder = sc->order;
3023 unsigned long balance_gap;
7c954f6d 3024 bool lowmem_pressure;
75485363
MG
3025
3026 /* Reclaim above the high watermark. */
3027 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
3028
3029 /*
3030 * Kswapd reclaims only single pages with compaction enabled. Trying
3031 * too hard to reclaim until contiguous free pages have become
3032 * available can hurt performance by evicting too much useful data
3033 * from memory. Do not reclaim more than needed for compaction.
3034 */
3035 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
ebff3980
VB
3036 compaction_suitable(zone, sc->order, 0, classzone_idx)
3037 != COMPACT_SKIPPED)
7c954f6d
MG
3038 testorder = 0;
3039
3040 /*
3041 * We put equal pressure on every zone, unless one zone has way too
3042 * many pages free already. The "too many pages" is defined as the
3043 * high wmark plus a "gap" where the gap is either the low
3044 * watermark or 1% of the zone, whichever is smaller.
3045 */
4be89a34
JZ
3046 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3047 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
3048
3049 /*
3050 * If there is no low memory pressure or the zone is balanced then no
3051 * reclaim is necessary
3052 */
3053 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3054 if (!lowmem_pressure && zone_balanced(zone, testorder,
3055 balance_gap, classzone_idx))
3056 return true;
3057
6b4f7799 3058 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
75485363 3059
2ab44f43
MG
3060 /* Account for the number of pages attempted to reclaim */
3061 *nr_attempted += sc->nr_to_reclaim;
3062
57054651 3063 clear_bit(ZONE_WRITEBACK, &zone->flags);
283aba9f 3064
7c954f6d
MG
3065 /*
3066 * If a zone reaches its high watermark, consider it to be no longer
3067 * congested. It's possible there are dirty pages backed by congested
3068 * BDIs but as pressure is relieved, speculatively avoid congestion
3069 * waits.
3070 */
6e543d57 3071 if (zone_reclaimable(zone) &&
7c954f6d 3072 zone_balanced(zone, testorder, 0, classzone_idx)) {
57054651
JW
3073 clear_bit(ZONE_CONGESTED, &zone->flags);
3074 clear_bit(ZONE_DIRTY, &zone->flags);
7c954f6d
MG
3075 }
3076
b8e83b94 3077 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3078}
3079
1da177e4
LT
3080/*
3081 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 3082 * they are all at high_wmark_pages(zone).
1da177e4 3083 *
0abdee2b 3084 * Returns the final order kswapd was reclaiming at
1da177e4
LT
3085 *
3086 * There is special handling here for zones which are full of pinned pages.
3087 * This can happen if the pages are all mlocked, or if they are all used by
3088 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3089 * What we do is to detect the case where all pages in the zone have been
3090 * scanned twice and there has been zero successful reclaim. Mark the zone as
3091 * dead and from now on, only perform a short scan. Basically we're polling
3092 * the zone for when the problem goes away.
3093 *
3094 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3095 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3096 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3097 * lower zones regardless of the number of free pages in the lower zones. This
3098 * interoperates with the page allocator fallback scheme to ensure that aging
3099 * of pages is balanced across the zones.
1da177e4 3100 */
99504748 3101static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3102 int *classzone_idx)
1da177e4 3103{
1da177e4 3104 int i;
99504748 3105 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3106 unsigned long nr_soft_reclaimed;
3107 unsigned long nr_soft_scanned;
179e9639
AM
3108 struct scan_control sc = {
3109 .gfp_mask = GFP_KERNEL,
ee814fe2 3110 .order = order,
b8e83b94 3111 .priority = DEF_PRIORITY,
ee814fe2 3112 .may_writepage = !laptop_mode,
a6dc60f8 3113 .may_unmap = 1,
2e2e4259 3114 .may_swap = 1,
179e9639 3115 };
f8891e5e 3116 count_vm_event(PAGEOUTRUN);
1da177e4 3117
9e3b2f8c 3118 do {
2ab44f43 3119 unsigned long nr_attempted = 0;
b8e83b94 3120 bool raise_priority = true;
2ab44f43 3121 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3122
3123 sc.nr_reclaimed = 0;
1da177e4 3124
d6277db4
RW
3125 /*
3126 * Scan in the highmem->dma direction for the highest
3127 * zone which needs scanning
3128 */
3129 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3130 struct zone *zone = pgdat->node_zones + i;
1da177e4 3131
d6277db4
RW
3132 if (!populated_zone(zone))
3133 continue;
1da177e4 3134
6e543d57
LD
3135 if (sc.priority != DEF_PRIORITY &&
3136 !zone_reclaimable(zone))
d6277db4 3137 continue;
1da177e4 3138
556adecb
RR
3139 /*
3140 * Do some background aging of the anon list, to give
3141 * pages a chance to be referenced before reclaiming.
3142 */
9e3b2f8c 3143 age_active_anon(zone, &sc);
556adecb 3144
cc715d99
MG
3145 /*
3146 * If the number of buffer_heads in the machine
3147 * exceeds the maximum allowed level and this node
3148 * has a highmem zone, force kswapd to reclaim from
3149 * it to relieve lowmem pressure.
3150 */
3151 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3152 end_zone = i;
3153 break;
3154 }
3155
60cefed4 3156 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3157 end_zone = i;
e1dbeda6 3158 break;
439423f6 3159 } else {
d43006d5
MG
3160 /*
3161 * If balanced, clear the dirty and congested
3162 * flags
3163 */
57054651
JW
3164 clear_bit(ZONE_CONGESTED, &zone->flags);
3165 clear_bit(ZONE_DIRTY, &zone->flags);
1da177e4 3166 }
1da177e4 3167 }
dafcb73e 3168
b8e83b94 3169 if (i < 0)
e1dbeda6
AM
3170 goto out;
3171
1da177e4
LT
3172 for (i = 0; i <= end_zone; i++) {
3173 struct zone *zone = pgdat->node_zones + i;
3174
2ab44f43
MG
3175 if (!populated_zone(zone))
3176 continue;
3177
2ab44f43
MG
3178 /*
3179 * If any zone is currently balanced then kswapd will
3180 * not call compaction as it is expected that the
3181 * necessary pages are already available.
3182 */
3183 if (pgdat_needs_compaction &&
3184 zone_watermark_ok(zone, order,
3185 low_wmark_pages(zone),
3186 *classzone_idx, 0))
3187 pgdat_needs_compaction = false;
1da177e4
LT
3188 }
3189
b7ea3c41
MG
3190 /*
3191 * If we're getting trouble reclaiming, start doing writepage
3192 * even in laptop mode.
3193 */
3194 if (sc.priority < DEF_PRIORITY - 2)
3195 sc.may_writepage = 1;
3196
1da177e4
LT
3197 /*
3198 * Now scan the zone in the dma->highmem direction, stopping
3199 * at the last zone which needs scanning.
3200 *
3201 * We do this because the page allocator works in the opposite
3202 * direction. This prevents the page allocator from allocating
3203 * pages behind kswapd's direction of progress, which would
3204 * cause too much scanning of the lower zones.
3205 */
3206 for (i = 0; i <= end_zone; i++) {
3207 struct zone *zone = pgdat->node_zones + i;
3208
f3fe6512 3209 if (!populated_zone(zone))
1da177e4
LT
3210 continue;
3211
6e543d57
LD
3212 if (sc.priority != DEF_PRIORITY &&
3213 !zone_reclaimable(zone))
1da177e4
LT
3214 continue;
3215
1da177e4 3216 sc.nr_scanned = 0;
4e416953 3217
0608f43d
AM
3218 nr_soft_scanned = 0;
3219 /*
3220 * Call soft limit reclaim before calling shrink_zone.
3221 */
3222 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3223 order, sc.gfp_mask,
3224 &nr_soft_scanned);
3225 sc.nr_reclaimed += nr_soft_reclaimed;
3226
32a4330d 3227 /*
7c954f6d
MG
3228 * There should be no need to raise the scanning
3229 * priority if enough pages are already being scanned
3230 * that that high watermark would be met at 100%
3231 * efficiency.
fe2c2a10 3232 */
6b4f7799
JW
3233 if (kswapd_shrink_zone(zone, end_zone,
3234 &sc, &nr_attempted))
7c954f6d 3235 raise_priority = false;
1da177e4 3236 }
5515061d
MG
3237
3238 /*
3239 * If the low watermark is met there is no need for processes
3240 * to be throttled on pfmemalloc_wait as they should not be
3241 * able to safely make forward progress. Wake them
3242 */
3243 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3244 pfmemalloc_watermark_ok(pgdat))
cfc51155 3245 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3246
1da177e4 3247 /*
b8e83b94
MG
3248 * Fragmentation may mean that the system cannot be rebalanced
3249 * for high-order allocations in all zones. If twice the
3250 * allocation size has been reclaimed and the zones are still
3251 * not balanced then recheck the watermarks at order-0 to
3252 * prevent kswapd reclaiming excessively. Assume that a
3253 * process requested a high-order can direct reclaim/compact.
1da177e4 3254 */
b8e83b94
MG
3255 if (order && sc.nr_reclaimed >= 2UL << order)
3256 order = sc.order = 0;
8357376d 3257
b8e83b94
MG
3258 /* Check if kswapd should be suspending */
3259 if (try_to_freeze() || kthread_should_stop())
3260 break;
8357376d 3261
2ab44f43
MG
3262 /*
3263 * Compact if necessary and kswapd is reclaiming at least the
3264 * high watermark number of pages as requsted
3265 */
3266 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3267 compact_pgdat(pgdat, order);
3268
73ce02e9 3269 /*
b8e83b94
MG
3270 * Raise priority if scanning rate is too low or there was no
3271 * progress in reclaiming pages
73ce02e9 3272 */
b8e83b94
MG
3273 if (raise_priority || !sc.nr_reclaimed)
3274 sc.priority--;
9aa41348 3275 } while (sc.priority >= 1 &&
b8e83b94 3276 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3277
b8e83b94 3278out:
0abdee2b 3279 /*
5515061d 3280 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3281 * makes a decision on the order we were last reclaiming at. However,
3282 * if another caller entered the allocator slow path while kswapd
3283 * was awake, order will remain at the higher level
3284 */
dc83edd9 3285 *classzone_idx = end_zone;
0abdee2b 3286 return order;
1da177e4
LT
3287}
3288
dc83edd9 3289static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3290{
3291 long remaining = 0;
3292 DEFINE_WAIT(wait);
3293
3294 if (freezing(current) || kthread_should_stop())
3295 return;
3296
3297 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3298
3299 /* Try to sleep for a short interval */
5515061d 3300 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3301 remaining = schedule_timeout(HZ/10);
3302 finish_wait(&pgdat->kswapd_wait, &wait);
3303 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3304 }
3305
3306 /*
3307 * After a short sleep, check if it was a premature sleep. If not, then
3308 * go fully to sleep until explicitly woken up.
3309 */
5515061d 3310 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3311 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3312
3313 /*
3314 * vmstat counters are not perfectly accurate and the estimated
3315 * value for counters such as NR_FREE_PAGES can deviate from the
3316 * true value by nr_online_cpus * threshold. To avoid the zone
3317 * watermarks being breached while under pressure, we reduce the
3318 * per-cpu vmstat threshold while kswapd is awake and restore
3319 * them before going back to sleep.
3320 */
3321 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3322
62997027
MG
3323 /*
3324 * Compaction records what page blocks it recently failed to
3325 * isolate pages from and skips them in the future scanning.
3326 * When kswapd is going to sleep, it is reasonable to assume
3327 * that pages and compaction may succeed so reset the cache.
3328 */
3329 reset_isolation_suitable(pgdat);
3330
1c7e7f6c
AK
3331 if (!kthread_should_stop())
3332 schedule();
3333
f0bc0a60
KM
3334 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3335 } else {
3336 if (remaining)
3337 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3338 else
3339 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3340 }
3341 finish_wait(&pgdat->kswapd_wait, &wait);
3342}
3343
1da177e4
LT
3344/*
3345 * The background pageout daemon, started as a kernel thread
4f98a2fe 3346 * from the init process.
1da177e4
LT
3347 *
3348 * This basically trickles out pages so that we have _some_
3349 * free memory available even if there is no other activity
3350 * that frees anything up. This is needed for things like routing
3351 * etc, where we otherwise might have all activity going on in
3352 * asynchronous contexts that cannot page things out.
3353 *
3354 * If there are applications that are active memory-allocators
3355 * (most normal use), this basically shouldn't matter.
3356 */
3357static int kswapd(void *p)
3358{
215ddd66 3359 unsigned long order, new_order;
d2ebd0f6 3360 unsigned balanced_order;
215ddd66 3361 int classzone_idx, new_classzone_idx;
d2ebd0f6 3362 int balanced_classzone_idx;
1da177e4
LT
3363 pg_data_t *pgdat = (pg_data_t*)p;
3364 struct task_struct *tsk = current;
f0bc0a60 3365
1da177e4
LT
3366 struct reclaim_state reclaim_state = {
3367 .reclaimed_slab = 0,
3368 };
a70f7302 3369 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3370
cf40bd16
NP
3371 lockdep_set_current_reclaim_state(GFP_KERNEL);
3372
174596a0 3373 if (!cpumask_empty(cpumask))
c5f59f08 3374 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3375 current->reclaim_state = &reclaim_state;
3376
3377 /*
3378 * Tell the memory management that we're a "memory allocator",
3379 * and that if we need more memory we should get access to it
3380 * regardless (see "__alloc_pages()"). "kswapd" should
3381 * never get caught in the normal page freeing logic.
3382 *
3383 * (Kswapd normally doesn't need memory anyway, but sometimes
3384 * you need a small amount of memory in order to be able to
3385 * page out something else, and this flag essentially protects
3386 * us from recursively trying to free more memory as we're
3387 * trying to free the first piece of memory in the first place).
3388 */
930d9152 3389 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3390 set_freezable();
1da177e4 3391
215ddd66 3392 order = new_order = 0;
d2ebd0f6 3393 balanced_order = 0;
215ddd66 3394 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3395 balanced_classzone_idx = classzone_idx;
1da177e4 3396 for ( ; ; ) {
6f6313d4 3397 bool ret;
3e1d1d28 3398
215ddd66
MG
3399 /*
3400 * If the last balance_pgdat was unsuccessful it's unlikely a
3401 * new request of a similar or harder type will succeed soon
3402 * so consider going to sleep on the basis we reclaimed at
3403 */
d2ebd0f6
AS
3404 if (balanced_classzone_idx >= new_classzone_idx &&
3405 balanced_order == new_order) {
215ddd66
MG
3406 new_order = pgdat->kswapd_max_order;
3407 new_classzone_idx = pgdat->classzone_idx;
3408 pgdat->kswapd_max_order = 0;
3409 pgdat->classzone_idx = pgdat->nr_zones - 1;
3410 }
3411
99504748 3412 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3413 /*
3414 * Don't sleep if someone wants a larger 'order'
99504748 3415 * allocation or has tigher zone constraints
1da177e4
LT
3416 */
3417 order = new_order;
99504748 3418 classzone_idx = new_classzone_idx;
1da177e4 3419 } else {
d2ebd0f6
AS
3420 kswapd_try_to_sleep(pgdat, balanced_order,
3421 balanced_classzone_idx);
1da177e4 3422 order = pgdat->kswapd_max_order;
99504748 3423 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3424 new_order = order;
3425 new_classzone_idx = classzone_idx;
4d40502e 3426 pgdat->kswapd_max_order = 0;
215ddd66 3427 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3428 }
1da177e4 3429
8fe23e05
DR
3430 ret = try_to_freeze();
3431 if (kthread_should_stop())
3432 break;
3433
3434 /*
3435 * We can speed up thawing tasks if we don't call balance_pgdat
3436 * after returning from the refrigerator
3437 */
33906bc5
MG
3438 if (!ret) {
3439 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3440 balanced_classzone_idx = classzone_idx;
3441 balanced_order = balance_pgdat(pgdat, order,
3442 &balanced_classzone_idx);
33906bc5 3443 }
1da177e4 3444 }
b0a8cc58 3445
71abdc15 3446 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3447 current->reclaim_state = NULL;
71abdc15
JW
3448 lockdep_clear_current_reclaim_state();
3449
1da177e4
LT
3450 return 0;
3451}
3452
3453/*
3454 * A zone is low on free memory, so wake its kswapd task to service it.
3455 */
99504748 3456void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3457{
3458 pg_data_t *pgdat;
3459
f3fe6512 3460 if (!populated_zone(zone))
1da177e4
LT
3461 return;
3462
344736f2 3463 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3464 return;
88f5acf8 3465 pgdat = zone->zone_pgdat;
99504748 3466 if (pgdat->kswapd_max_order < order) {
1da177e4 3467 pgdat->kswapd_max_order = order;
99504748
MG
3468 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3469 }
8d0986e2 3470 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3471 return;
892f795d 3472 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3473 return;
3474
3475 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3476 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3477}
3478
c6f37f12 3479#ifdef CONFIG_HIBERNATION
1da177e4 3480/*
7b51755c 3481 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3482 * freed pages.
3483 *
3484 * Rather than trying to age LRUs the aim is to preserve the overall
3485 * LRU order by reclaiming preferentially
3486 * inactive > active > active referenced > active mapped
1da177e4 3487 */
7b51755c 3488unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3489{
d6277db4 3490 struct reclaim_state reclaim_state;
d6277db4 3491 struct scan_control sc = {
ee814fe2 3492 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3493 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3494 .priority = DEF_PRIORITY,
d6277db4 3495 .may_writepage = 1,
ee814fe2
JW
3496 .may_unmap = 1,
3497 .may_swap = 1,
7b51755c 3498 .hibernation_mode = 1,
1da177e4 3499 };
a09ed5e0 3500 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3501 struct task_struct *p = current;
3502 unsigned long nr_reclaimed;
1da177e4 3503
7b51755c
KM
3504 p->flags |= PF_MEMALLOC;
3505 lockdep_set_current_reclaim_state(sc.gfp_mask);
3506 reclaim_state.reclaimed_slab = 0;
3507 p->reclaim_state = &reclaim_state;
d6277db4 3508
3115cd91 3509 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3510
7b51755c
KM
3511 p->reclaim_state = NULL;
3512 lockdep_clear_current_reclaim_state();
3513 p->flags &= ~PF_MEMALLOC;
d6277db4 3514
7b51755c 3515 return nr_reclaimed;
1da177e4 3516}
c6f37f12 3517#endif /* CONFIG_HIBERNATION */
1da177e4 3518
1da177e4
LT
3519/* It's optimal to keep kswapds on the same CPUs as their memory, but
3520 not required for correctness. So if the last cpu in a node goes
3521 away, we get changed to run anywhere: as the first one comes back,
3522 restore their cpu bindings. */
fcb35a9b
GKH
3523static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3524 void *hcpu)
1da177e4 3525{
58c0a4a7 3526 int nid;
1da177e4 3527
8bb78442 3528 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3529 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3530 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3531 const struct cpumask *mask;
3532
3533 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3534
3e597945 3535 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3536 /* One of our CPUs online: restore mask */
c5f59f08 3537 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3538 }
3539 }
3540 return NOTIFY_OK;
3541}
1da177e4 3542
3218ae14
YG
3543/*
3544 * This kswapd start function will be called by init and node-hot-add.
3545 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3546 */
3547int kswapd_run(int nid)
3548{
3549 pg_data_t *pgdat = NODE_DATA(nid);
3550 int ret = 0;
3551
3552 if (pgdat->kswapd)
3553 return 0;
3554
3555 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3556 if (IS_ERR(pgdat->kswapd)) {
3557 /* failure at boot is fatal */
3558 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3559 pr_err("Failed to start kswapd on node %d\n", nid);
3560 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3561 pgdat->kswapd = NULL;
3218ae14
YG
3562 }
3563 return ret;
3564}
3565
8fe23e05 3566/*
d8adde17 3567 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3568 * hold mem_hotplug_begin/end().
8fe23e05
DR
3569 */
3570void kswapd_stop(int nid)
3571{
3572 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3573
d8adde17 3574 if (kswapd) {
8fe23e05 3575 kthread_stop(kswapd);
d8adde17
JL
3576 NODE_DATA(nid)->kswapd = NULL;
3577 }
8fe23e05
DR
3578}
3579
1da177e4
LT
3580static int __init kswapd_init(void)
3581{
3218ae14 3582 int nid;
69e05944 3583
1da177e4 3584 swap_setup();
48fb2e24 3585 for_each_node_state(nid, N_MEMORY)
3218ae14 3586 kswapd_run(nid);
1da177e4
LT
3587 hotcpu_notifier(cpu_callback, 0);
3588 return 0;
3589}
3590
3591module_init(kswapd_init)
9eeff239
CL
3592
3593#ifdef CONFIG_NUMA
3594/*
3595 * Zone reclaim mode
3596 *
3597 * If non-zero call zone_reclaim when the number of free pages falls below
3598 * the watermarks.
9eeff239
CL
3599 */
3600int zone_reclaim_mode __read_mostly;
3601
1b2ffb78 3602#define RECLAIM_OFF 0
7d03431c 3603#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3604#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3605#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3606
a92f7126
CL
3607/*
3608 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3609 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3610 * a zone.
3611 */
3612#define ZONE_RECLAIM_PRIORITY 4
3613
9614634f
CL
3614/*
3615 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3616 * occur.
3617 */
3618int sysctl_min_unmapped_ratio = 1;
3619
0ff38490
CL
3620/*
3621 * If the number of slab pages in a zone grows beyond this percentage then
3622 * slab reclaim needs to occur.
3623 */
3624int sysctl_min_slab_ratio = 5;
3625
90afa5de
MG
3626static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3627{
3628 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3629 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3630 zone_page_state(zone, NR_ACTIVE_FILE);
3631
3632 /*
3633 * It's possible for there to be more file mapped pages than
3634 * accounted for by the pages on the file LRU lists because
3635 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3636 */
3637 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3638}
3639
3640/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3641static long zone_pagecache_reclaimable(struct zone *zone)
3642{
3643 long nr_pagecache_reclaimable;
3644 long delta = 0;
3645
3646 /*
3647 * If RECLAIM_SWAP is set, then all file pages are considered
3648 * potentially reclaimable. Otherwise, we have to worry about
3649 * pages like swapcache and zone_unmapped_file_pages() provides
3650 * a better estimate
3651 */
3652 if (zone_reclaim_mode & RECLAIM_SWAP)
3653 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3654 else
3655 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3656
3657 /* If we can't clean pages, remove dirty pages from consideration */
3658 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3659 delta += zone_page_state(zone, NR_FILE_DIRTY);
3660
3661 /* Watch for any possible underflows due to delta */
3662 if (unlikely(delta > nr_pagecache_reclaimable))
3663 delta = nr_pagecache_reclaimable;
3664
3665 return nr_pagecache_reclaimable - delta;
3666}
3667
9eeff239
CL
3668/*
3669 * Try to free up some pages from this zone through reclaim.
3670 */
179e9639 3671static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3672{
7fb2d46d 3673 /* Minimum pages needed in order to stay on node */
69e05944 3674 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3675 struct task_struct *p = current;
3676 struct reclaim_state reclaim_state;
179e9639 3677 struct scan_control sc = {
62b726c1 3678 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3679 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3680 .order = order,
9e3b2f8c 3681 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2
JW
3682 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3683 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3684 .may_swap = 1,
179e9639 3685 };
9eeff239 3686
9eeff239 3687 cond_resched();
d4f7796e
CL
3688 /*
3689 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3690 * and we also need to be able to write out pages for RECLAIM_WRITE
3691 * and RECLAIM_SWAP.
3692 */
3693 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3694 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3695 reclaim_state.reclaimed_slab = 0;
3696 p->reclaim_state = &reclaim_state;
c84db23c 3697
90afa5de 3698 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3699 /*
3700 * Free memory by calling shrink zone with increasing
3701 * priorities until we have enough memory freed.
3702 */
0ff38490 3703 do {
6b4f7799 3704 shrink_zone(zone, &sc, true);
9e3b2f8c 3705 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3706 }
c84db23c 3707
9eeff239 3708 p->reclaim_state = NULL;
d4f7796e 3709 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3710 lockdep_clear_current_reclaim_state();
a79311c1 3711 return sc.nr_reclaimed >= nr_pages;
9eeff239 3712}
179e9639
AM
3713
3714int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3715{
179e9639 3716 int node_id;
d773ed6b 3717 int ret;
179e9639
AM
3718
3719 /*
0ff38490
CL
3720 * Zone reclaim reclaims unmapped file backed pages and
3721 * slab pages if we are over the defined limits.
34aa1330 3722 *
9614634f
CL
3723 * A small portion of unmapped file backed pages is needed for
3724 * file I/O otherwise pages read by file I/O will be immediately
3725 * thrown out if the zone is overallocated. So we do not reclaim
3726 * if less than a specified percentage of the zone is used by
3727 * unmapped file backed pages.
179e9639 3728 */
90afa5de
MG
3729 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3730 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3731 return ZONE_RECLAIM_FULL;
179e9639 3732
6e543d57 3733 if (!zone_reclaimable(zone))
fa5e084e 3734 return ZONE_RECLAIM_FULL;
d773ed6b 3735
179e9639 3736 /*
d773ed6b 3737 * Do not scan if the allocation should not be delayed.
179e9639 3738 */
d773ed6b 3739 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3740 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3741
3742 /*
3743 * Only run zone reclaim on the local zone or on zones that do not
3744 * have associated processors. This will favor the local processor
3745 * over remote processors and spread off node memory allocations
3746 * as wide as possible.
3747 */
89fa3024 3748 node_id = zone_to_nid(zone);
37c0708d 3749 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3750 return ZONE_RECLAIM_NOSCAN;
d773ed6b 3751
57054651 3752 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
fa5e084e
MG
3753 return ZONE_RECLAIM_NOSCAN;
3754
d773ed6b 3755 ret = __zone_reclaim(zone, gfp_mask, order);
57054651 3756 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
d773ed6b 3757
24cf7251
MG
3758 if (!ret)
3759 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3760
d773ed6b 3761 return ret;
179e9639 3762}
9eeff239 3763#endif
894bc310 3764
894bc310
LS
3765/*
3766 * page_evictable - test whether a page is evictable
3767 * @page: the page to test
894bc310
LS
3768 *
3769 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3770 * lists vs unevictable list.
894bc310
LS
3771 *
3772 * Reasons page might not be evictable:
ba9ddf49 3773 * (1) page's mapping marked unevictable
b291f000 3774 * (2) page is part of an mlocked VMA
ba9ddf49 3775 *
894bc310 3776 */
39b5f29a 3777int page_evictable(struct page *page)
894bc310 3778{
39b5f29a 3779 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3780}
89e004ea 3781
85046579 3782#ifdef CONFIG_SHMEM
89e004ea 3783/**
24513264
HD
3784 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3785 * @pages: array of pages to check
3786 * @nr_pages: number of pages to check
89e004ea 3787 *
24513264 3788 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3789 *
3790 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3791 */
24513264 3792void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3793{
925b7673 3794 struct lruvec *lruvec;
24513264
HD
3795 struct zone *zone = NULL;
3796 int pgscanned = 0;
3797 int pgrescued = 0;
3798 int i;
89e004ea 3799
24513264
HD
3800 for (i = 0; i < nr_pages; i++) {
3801 struct page *page = pages[i];
3802 struct zone *pagezone;
89e004ea 3803
24513264
HD
3804 pgscanned++;
3805 pagezone = page_zone(page);
3806 if (pagezone != zone) {
3807 if (zone)
3808 spin_unlock_irq(&zone->lru_lock);
3809 zone = pagezone;
3810 spin_lock_irq(&zone->lru_lock);
3811 }
fa9add64 3812 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3813
24513264
HD
3814 if (!PageLRU(page) || !PageUnevictable(page))
3815 continue;
89e004ea 3816
39b5f29a 3817 if (page_evictable(page)) {
24513264
HD
3818 enum lru_list lru = page_lru_base_type(page);
3819
309381fe 3820 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3821 ClearPageUnevictable(page);
fa9add64
HD
3822 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3823 add_page_to_lru_list(page, lruvec, lru);
24513264 3824 pgrescued++;
89e004ea 3825 }
24513264 3826 }
89e004ea 3827
24513264
HD
3828 if (zone) {
3829 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3830 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3831 spin_unlock_irq(&zone->lru_lock);
89e004ea 3832 }
89e004ea 3833}
85046579 3834#endif /* CONFIG_SHMEM */