]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/arm64/kernel/cpufeature.c
0b6715625cf6232ba15afb6eca44313c9ad33f41
[thirdparty/kernel/stable.git] / arch / arm64 / kernel / cpufeature.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Contains CPU feature definitions
4 *
5 * Copyright (C) 2015 ARM Ltd.
6 */
7
8 #define pr_fmt(fmt) "CPU features: " fmt
9
10 #include <linux/bsearch.h>
11 #include <linux/cpumask.h>
12 #include <linux/crash_dump.h>
13 #include <linux/sort.h>
14 #include <linux/stop_machine.h>
15 #include <linux/types.h>
16 #include <linux/mm.h>
17 #include <linux/cpu.h>
18 #include <asm/cpu.h>
19 #include <asm/cpufeature.h>
20 #include <asm/cpu_ops.h>
21 #include <asm/fpsimd.h>
22 #include <asm/mmu_context.h>
23 #include <asm/processor.h>
24 #include <asm/sysreg.h>
25 #include <asm/traps.h>
26 #include <asm/virt.h>
27
28 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
29 static unsigned long elf_hwcap __read_mostly;
30
31 #ifdef CONFIG_COMPAT
32 #define COMPAT_ELF_HWCAP_DEFAULT \
33 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
34 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
35 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
36 COMPAT_HWCAP_LPAE)
37 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
38 unsigned int compat_elf_hwcap2 __read_mostly;
39 #endif
40
41 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
42 EXPORT_SYMBOL(cpu_hwcaps);
43 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
44
45 /* Need also bit for ARM64_CB_PATCH */
46 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
47
48 bool arm64_use_ng_mappings = false;
49 EXPORT_SYMBOL(arm64_use_ng_mappings);
50
51 /*
52 * Flag to indicate if we have computed the system wide
53 * capabilities based on the boot time active CPUs. This
54 * will be used to determine if a new booting CPU should
55 * go through the verification process to make sure that it
56 * supports the system capabilities, without using a hotplug
57 * notifier. This is also used to decide if we could use
58 * the fast path for checking constant CPU caps.
59 */
60 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
61 EXPORT_SYMBOL(arm64_const_caps_ready);
62 static inline void finalize_system_capabilities(void)
63 {
64 static_branch_enable(&arm64_const_caps_ready);
65 }
66
67 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
68 {
69 /* file-wide pr_fmt adds "CPU features: " prefix */
70 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
71 return 0;
72 }
73
74 static struct notifier_block cpu_hwcaps_notifier = {
75 .notifier_call = dump_cpu_hwcaps
76 };
77
78 static int __init register_cpu_hwcaps_dumper(void)
79 {
80 atomic_notifier_chain_register(&panic_notifier_list,
81 &cpu_hwcaps_notifier);
82 return 0;
83 }
84 __initcall(register_cpu_hwcaps_dumper);
85
86 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
87 EXPORT_SYMBOL(cpu_hwcap_keys);
88
89 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
90 { \
91 .sign = SIGNED, \
92 .visible = VISIBLE, \
93 .strict = STRICT, \
94 .type = TYPE, \
95 .shift = SHIFT, \
96 .width = WIDTH, \
97 .safe_val = SAFE_VAL, \
98 }
99
100 /* Define a feature with unsigned values */
101 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
102 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
103
104 /* Define a feature with a signed value */
105 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
106 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
107
108 #define ARM64_FTR_END \
109 { \
110 .width = 0, \
111 }
112
113 /* meta feature for alternatives */
114 static bool __maybe_unused
115 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
116
117 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
118
119 /*
120 * NOTE: Any changes to the visibility of features should be kept in
121 * sync with the documentation of the CPU feature register ABI.
122 */
123 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
124 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
125 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
126 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
127 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
128 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
129 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
130 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
131 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
132 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
133 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
134 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
135 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
136 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
137 ARM64_FTR_END,
138 };
139
140 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
141 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
142 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
143 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
144 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
145 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
146 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
147 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
148 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
149 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
150 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
151 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
152 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
153 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
154 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
155 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0),
156 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
157 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0),
158 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
159 ARM64_FTR_END,
160 };
161
162 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
163 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
164 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
165 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
166 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
167 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
168 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
169 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
170 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
171 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
172 /* Linux doesn't care about the EL3 */
173 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
174 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
175 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
176 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
177 ARM64_FTR_END,
178 };
179
180 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
181 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
182 ARM64_FTR_END,
183 };
184
185 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
186 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
187 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
188 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
189 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
190 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
191 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
192 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
193 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
194 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
195 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
196 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
197 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
198 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
199 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
200 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
201 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
202 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
203 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
204 ARM64_FTR_END,
205 };
206
207 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
208 /*
209 * We already refuse to boot CPUs that don't support our configured
210 * page size, so we can only detect mismatches for a page size other
211 * than the one we're currently using. Unfortunately, SoCs like this
212 * exist in the wild so, even though we don't like it, we'll have to go
213 * along with it and treat them as non-strict.
214 */
215 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
216 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
217 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
218
219 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
220 /* Linux shouldn't care about secure memory */
221 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
222 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
223 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
224 /*
225 * Differing PARange is fine as long as all peripherals and memory are mapped
226 * within the minimum PARange of all CPUs
227 */
228 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
229 ARM64_FTR_END,
230 };
231
232 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
233 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
234 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
235 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
236 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
237 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
238 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
239 ARM64_FTR_END,
240 };
241
242 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
243 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
244 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
245 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
246 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
247 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
248 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
249 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
250 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
251 ARM64_FTR_END,
252 };
253
254 static const struct arm64_ftr_bits ftr_ctr[] = {
255 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
256 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
257 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
258 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
259 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
260 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
261 /*
262 * Linux can handle differing I-cache policies. Userspace JITs will
263 * make use of *minLine.
264 * If we have differing I-cache policies, report it as the weakest - VIPT.
265 */
266 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */
267 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
268 ARM64_FTR_END,
269 };
270
271 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
272 .name = "SYS_CTR_EL0",
273 .ftr_bits = ftr_ctr
274 };
275
276 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
277 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf), /* InnerShr */
278 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), /* FCSE */
279 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
280 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), /* TCM */
281 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* ShareLvl */
282 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf), /* OuterShr */
283 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* PMSA */
284 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* VMSA */
285 ARM64_FTR_END,
286 };
287
288 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
289 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
290 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
291 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
292 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
293 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
294 /*
295 * We can instantiate multiple PMU instances with different levels
296 * of support.
297 */
298 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
299 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
300 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
301 ARM64_FTR_END,
302 };
303
304 static const struct arm64_ftr_bits ftr_mvfr2[] = {
305 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* FPMisc */
306 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* SIMDMisc */
307 ARM64_FTR_END,
308 };
309
310 static const struct arm64_ftr_bits ftr_dczid[] = {
311 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
312 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
313 ARM64_FTR_END,
314 };
315
316
317 static const struct arm64_ftr_bits ftr_id_isar5[] = {
318 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
319 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
320 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
321 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
322 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
323 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
324 ARM64_FTR_END,
325 };
326
327 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
328 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* ac2 */
329 ARM64_FTR_END,
330 };
331
332 static const struct arm64_ftr_bits ftr_id_isar6[] = {
333 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
334 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
335 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
336 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
337 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
338 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
339 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
340 ARM64_FTR_END,
341 };
342
343 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
344 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* State3 */
345 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), /* State2 */
346 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* State1 */
347 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* State0 */
348 ARM64_FTR_END,
349 };
350
351 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
352 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
353 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
354 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
355 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
356 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
357 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
358 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
359 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
360 ARM64_FTR_END,
361 };
362
363 static const struct arm64_ftr_bits ftr_zcr[] = {
364 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
365 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */
366 ARM64_FTR_END,
367 };
368
369 /*
370 * Common ftr bits for a 32bit register with all hidden, strict
371 * attributes, with 4bit feature fields and a default safe value of
372 * 0. Covers the following 32bit registers:
373 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
374 */
375 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
376 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
377 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
378 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
379 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
380 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
381 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
382 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
383 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
384 ARM64_FTR_END,
385 };
386
387 /* Table for a single 32bit feature value */
388 static const struct arm64_ftr_bits ftr_single32[] = {
389 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
390 ARM64_FTR_END,
391 };
392
393 static const struct arm64_ftr_bits ftr_raz[] = {
394 ARM64_FTR_END,
395 };
396
397 #define ARM64_FTR_REG(id, table) { \
398 .sys_id = id, \
399 .reg = &(struct arm64_ftr_reg){ \
400 .name = #id, \
401 .ftr_bits = &((table)[0]), \
402 }}
403
404 static const struct __ftr_reg_entry {
405 u32 sys_id;
406 struct arm64_ftr_reg *reg;
407 } arm64_ftr_regs[] = {
408
409 /* Op1 = 0, CRn = 0, CRm = 1 */
410 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
411 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
412 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
413 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
414 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
415 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
416 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
417
418 /* Op1 = 0, CRn = 0, CRm = 2 */
419 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
420 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
421 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
422 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
423 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
424 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
425 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
426 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
427
428 /* Op1 = 0, CRn = 0, CRm = 3 */
429 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
430 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
431 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
432
433 /* Op1 = 0, CRn = 0, CRm = 4 */
434 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
435 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
436 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
437
438 /* Op1 = 0, CRn = 0, CRm = 5 */
439 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
440 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
441
442 /* Op1 = 0, CRn = 0, CRm = 6 */
443 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
444 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
445
446 /* Op1 = 0, CRn = 0, CRm = 7 */
447 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
448 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
449 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
450
451 /* Op1 = 0, CRn = 1, CRm = 2 */
452 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
453
454 /* Op1 = 3, CRn = 0, CRm = 0 */
455 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
456 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
457
458 /* Op1 = 3, CRn = 14, CRm = 0 */
459 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
460 };
461
462 static int search_cmp_ftr_reg(const void *id, const void *regp)
463 {
464 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
465 }
466
467 /*
468 * get_arm64_ftr_reg - Lookup a feature register entry using its
469 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
470 * ascending order of sys_id , we use binary search to find a matching
471 * entry.
472 *
473 * returns - Upon success, matching ftr_reg entry for id.
474 * - NULL on failure. It is upto the caller to decide
475 * the impact of a failure.
476 */
477 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
478 {
479 const struct __ftr_reg_entry *ret;
480
481 ret = bsearch((const void *)(unsigned long)sys_id,
482 arm64_ftr_regs,
483 ARRAY_SIZE(arm64_ftr_regs),
484 sizeof(arm64_ftr_regs[0]),
485 search_cmp_ftr_reg);
486 if (ret)
487 return ret->reg;
488 return NULL;
489 }
490
491 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
492 s64 ftr_val)
493 {
494 u64 mask = arm64_ftr_mask(ftrp);
495
496 reg &= ~mask;
497 reg |= (ftr_val << ftrp->shift) & mask;
498 return reg;
499 }
500
501 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
502 s64 cur)
503 {
504 s64 ret = 0;
505
506 switch (ftrp->type) {
507 case FTR_EXACT:
508 ret = ftrp->safe_val;
509 break;
510 case FTR_LOWER_SAFE:
511 ret = new < cur ? new : cur;
512 break;
513 case FTR_HIGHER_OR_ZERO_SAFE:
514 if (!cur || !new)
515 break;
516 /* Fallthrough */
517 case FTR_HIGHER_SAFE:
518 ret = new > cur ? new : cur;
519 break;
520 default:
521 BUG();
522 }
523
524 return ret;
525 }
526
527 static void __init sort_ftr_regs(void)
528 {
529 int i;
530
531 /* Check that the array is sorted so that we can do the binary search */
532 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
533 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
534 }
535
536 /*
537 * Initialise the CPU feature register from Boot CPU values.
538 * Also initiliases the strict_mask for the register.
539 * Any bits that are not covered by an arm64_ftr_bits entry are considered
540 * RES0 for the system-wide value, and must strictly match.
541 */
542 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
543 {
544 u64 val = 0;
545 u64 strict_mask = ~0x0ULL;
546 u64 user_mask = 0;
547 u64 valid_mask = 0;
548
549 const struct arm64_ftr_bits *ftrp;
550 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
551
552 BUG_ON(!reg);
553
554 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
555 u64 ftr_mask = arm64_ftr_mask(ftrp);
556 s64 ftr_new = arm64_ftr_value(ftrp, new);
557
558 val = arm64_ftr_set_value(ftrp, val, ftr_new);
559
560 valid_mask |= ftr_mask;
561 if (!ftrp->strict)
562 strict_mask &= ~ftr_mask;
563 if (ftrp->visible)
564 user_mask |= ftr_mask;
565 else
566 reg->user_val = arm64_ftr_set_value(ftrp,
567 reg->user_val,
568 ftrp->safe_val);
569 }
570
571 val &= valid_mask;
572
573 reg->sys_val = val;
574 reg->strict_mask = strict_mask;
575 reg->user_mask = user_mask;
576 }
577
578 extern const struct arm64_cpu_capabilities arm64_errata[];
579 static const struct arm64_cpu_capabilities arm64_features[];
580
581 static void __init
582 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
583 {
584 for (; caps->matches; caps++) {
585 if (WARN(caps->capability >= ARM64_NCAPS,
586 "Invalid capability %d\n", caps->capability))
587 continue;
588 if (WARN(cpu_hwcaps_ptrs[caps->capability],
589 "Duplicate entry for capability %d\n",
590 caps->capability))
591 continue;
592 cpu_hwcaps_ptrs[caps->capability] = caps;
593 }
594 }
595
596 static void __init init_cpu_hwcaps_indirect_list(void)
597 {
598 init_cpu_hwcaps_indirect_list_from_array(arm64_features);
599 init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
600 }
601
602 static void __init setup_boot_cpu_capabilities(void);
603
604 void __init init_cpu_features(struct cpuinfo_arm64 *info)
605 {
606 /* Before we start using the tables, make sure it is sorted */
607 sort_ftr_regs();
608
609 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
610 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
611 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
612 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
613 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
614 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
615 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
616 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
617 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
618 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
619 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
620 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
621 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
622
623 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
624 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
625 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
626 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
627 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
628 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
629 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
630 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
631 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
632 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
633 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
634 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
635 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
636 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
637 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
638 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
639 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
640 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
641 }
642
643 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
644 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
645 sve_init_vq_map();
646 }
647
648 /*
649 * Initialize the indirect array of CPU hwcaps capabilities pointers
650 * before we handle the boot CPU below.
651 */
652 init_cpu_hwcaps_indirect_list();
653
654 /*
655 * Detect and enable early CPU capabilities based on the boot CPU,
656 * after we have initialised the CPU feature infrastructure.
657 */
658 setup_boot_cpu_capabilities();
659 }
660
661 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
662 {
663 const struct arm64_ftr_bits *ftrp;
664
665 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
666 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
667 s64 ftr_new = arm64_ftr_value(ftrp, new);
668
669 if (ftr_cur == ftr_new)
670 continue;
671 /* Find a safe value */
672 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
673 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
674 }
675
676 }
677
678 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
679 {
680 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
681
682 BUG_ON(!regp);
683 update_cpu_ftr_reg(regp, val);
684 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
685 return 0;
686 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
687 regp->name, boot, cpu, val);
688 return 1;
689 }
690
691 /*
692 * Update system wide CPU feature registers with the values from a
693 * non-boot CPU. Also performs SANITY checks to make sure that there
694 * aren't any insane variations from that of the boot CPU.
695 */
696 void update_cpu_features(int cpu,
697 struct cpuinfo_arm64 *info,
698 struct cpuinfo_arm64 *boot)
699 {
700 int taint = 0;
701
702 /*
703 * The kernel can handle differing I-cache policies, but otherwise
704 * caches should look identical. Userspace JITs will make use of
705 * *minLine.
706 */
707 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
708 info->reg_ctr, boot->reg_ctr);
709
710 /*
711 * Userspace may perform DC ZVA instructions. Mismatched block sizes
712 * could result in too much or too little memory being zeroed if a
713 * process is preempted and migrated between CPUs.
714 */
715 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
716 info->reg_dczid, boot->reg_dczid);
717
718 /* If different, timekeeping will be broken (especially with KVM) */
719 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
720 info->reg_cntfrq, boot->reg_cntfrq);
721
722 /*
723 * The kernel uses self-hosted debug features and expects CPUs to
724 * support identical debug features. We presently need CTX_CMPs, WRPs,
725 * and BRPs to be identical.
726 * ID_AA64DFR1 is currently RES0.
727 */
728 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
729 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
730 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
731 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
732 /*
733 * Even in big.LITTLE, processors should be identical instruction-set
734 * wise.
735 */
736 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
737 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
738 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
739 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
740
741 /*
742 * Differing PARange support is fine as long as all peripherals and
743 * memory are mapped within the minimum PARange of all CPUs.
744 * Linux should not care about secure memory.
745 */
746 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
747 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
748 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
749 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
750 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
751 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
752
753 /*
754 * EL3 is not our concern.
755 */
756 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
757 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
758 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
759 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
760
761 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
762 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
763
764 /*
765 * If we have AArch32, we care about 32-bit features for compat.
766 * If the system doesn't support AArch32, don't update them.
767 */
768 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
769 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
770
771 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
772 info->reg_id_dfr0, boot->reg_id_dfr0);
773 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
774 info->reg_id_isar0, boot->reg_id_isar0);
775 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
776 info->reg_id_isar1, boot->reg_id_isar1);
777 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
778 info->reg_id_isar2, boot->reg_id_isar2);
779 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
780 info->reg_id_isar3, boot->reg_id_isar3);
781 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
782 info->reg_id_isar4, boot->reg_id_isar4);
783 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
784 info->reg_id_isar5, boot->reg_id_isar5);
785 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
786 info->reg_id_isar6, boot->reg_id_isar6);
787
788 /*
789 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
790 * ACTLR formats could differ across CPUs and therefore would have to
791 * be trapped for virtualization anyway.
792 */
793 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
794 info->reg_id_mmfr0, boot->reg_id_mmfr0);
795 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
796 info->reg_id_mmfr1, boot->reg_id_mmfr1);
797 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
798 info->reg_id_mmfr2, boot->reg_id_mmfr2);
799 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
800 info->reg_id_mmfr3, boot->reg_id_mmfr3);
801 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
802 info->reg_id_pfr0, boot->reg_id_pfr0);
803 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
804 info->reg_id_pfr1, boot->reg_id_pfr1);
805 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
806 info->reg_mvfr0, boot->reg_mvfr0);
807 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
808 info->reg_mvfr1, boot->reg_mvfr1);
809 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
810 info->reg_mvfr2, boot->reg_mvfr2);
811 }
812
813 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
814 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
815 info->reg_zcr, boot->reg_zcr);
816
817 /* Probe vector lengths, unless we already gave up on SVE */
818 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
819 !system_capabilities_finalized())
820 sve_update_vq_map();
821 }
822
823 /*
824 * Mismatched CPU features are a recipe for disaster. Don't even
825 * pretend to support them.
826 */
827 if (taint) {
828 pr_warn_once("Unsupported CPU feature variation detected.\n");
829 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
830 }
831 }
832
833 u64 read_sanitised_ftr_reg(u32 id)
834 {
835 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
836
837 /* We shouldn't get a request for an unsupported register */
838 BUG_ON(!regp);
839 return regp->sys_val;
840 }
841
842 #define read_sysreg_case(r) \
843 case r: return read_sysreg_s(r)
844
845 /*
846 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
847 * Read the system register on the current CPU
848 */
849 static u64 __read_sysreg_by_encoding(u32 sys_id)
850 {
851 switch (sys_id) {
852 read_sysreg_case(SYS_ID_PFR0_EL1);
853 read_sysreg_case(SYS_ID_PFR1_EL1);
854 read_sysreg_case(SYS_ID_DFR0_EL1);
855 read_sysreg_case(SYS_ID_MMFR0_EL1);
856 read_sysreg_case(SYS_ID_MMFR1_EL1);
857 read_sysreg_case(SYS_ID_MMFR2_EL1);
858 read_sysreg_case(SYS_ID_MMFR3_EL1);
859 read_sysreg_case(SYS_ID_ISAR0_EL1);
860 read_sysreg_case(SYS_ID_ISAR1_EL1);
861 read_sysreg_case(SYS_ID_ISAR2_EL1);
862 read_sysreg_case(SYS_ID_ISAR3_EL1);
863 read_sysreg_case(SYS_ID_ISAR4_EL1);
864 read_sysreg_case(SYS_ID_ISAR5_EL1);
865 read_sysreg_case(SYS_ID_ISAR6_EL1);
866 read_sysreg_case(SYS_MVFR0_EL1);
867 read_sysreg_case(SYS_MVFR1_EL1);
868 read_sysreg_case(SYS_MVFR2_EL1);
869
870 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
871 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
872 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
873 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
874 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
875 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
876 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
877 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
878 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
879 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
880
881 read_sysreg_case(SYS_CNTFRQ_EL0);
882 read_sysreg_case(SYS_CTR_EL0);
883 read_sysreg_case(SYS_DCZID_EL0);
884
885 default:
886 BUG();
887 return 0;
888 }
889 }
890
891 #include <linux/irqchip/arm-gic-v3.h>
892
893 static bool
894 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
895 {
896 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
897
898 return val >= entry->min_field_value;
899 }
900
901 static bool
902 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
903 {
904 u64 val;
905
906 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
907 if (scope == SCOPE_SYSTEM)
908 val = read_sanitised_ftr_reg(entry->sys_reg);
909 else
910 val = __read_sysreg_by_encoding(entry->sys_reg);
911
912 return feature_matches(val, entry);
913 }
914
915 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
916 {
917 bool has_sre;
918
919 if (!has_cpuid_feature(entry, scope))
920 return false;
921
922 has_sre = gic_enable_sre();
923 if (!has_sre)
924 pr_warn_once("%s present but disabled by higher exception level\n",
925 entry->desc);
926
927 return has_sre;
928 }
929
930 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
931 {
932 u32 midr = read_cpuid_id();
933
934 /* Cavium ThunderX pass 1.x and 2.x */
935 return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
936 MIDR_CPU_VAR_REV(0, 0),
937 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
938 }
939
940 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
941 {
942 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
943
944 return cpuid_feature_extract_signed_field(pfr0,
945 ID_AA64PFR0_FP_SHIFT) < 0;
946 }
947
948 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
949 int scope)
950 {
951 u64 ctr;
952
953 if (scope == SCOPE_SYSTEM)
954 ctr = arm64_ftr_reg_ctrel0.sys_val;
955 else
956 ctr = read_cpuid_effective_cachetype();
957
958 return ctr & BIT(CTR_IDC_SHIFT);
959 }
960
961 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
962 {
963 /*
964 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
965 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
966 * to the CTR_EL0 on this CPU and emulate it with the real/safe
967 * value.
968 */
969 if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
970 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
971 }
972
973 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
974 int scope)
975 {
976 u64 ctr;
977
978 if (scope == SCOPE_SYSTEM)
979 ctr = arm64_ftr_reg_ctrel0.sys_val;
980 else
981 ctr = read_cpuid_cachetype();
982
983 return ctr & BIT(CTR_DIC_SHIFT);
984 }
985
986 static bool __maybe_unused
987 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
988 {
989 /*
990 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
991 * may share TLB entries with a CPU stuck in the crashed
992 * kernel.
993 */
994 if (is_kdump_kernel())
995 return false;
996
997 return has_cpuid_feature(entry, scope);
998 }
999
1000 /*
1001 * This check is triggered during the early boot before the cpufeature
1002 * is initialised. Checking the status on the local CPU allows the boot
1003 * CPU to detect the need for non-global mappings and thus avoiding a
1004 * pagetable re-write after all the CPUs are booted. This check will be
1005 * anyway run on individual CPUs, allowing us to get the consistent
1006 * state once the SMP CPUs are up and thus make the switch to non-global
1007 * mappings if required.
1008 */
1009 bool kaslr_requires_kpti(void)
1010 {
1011 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1012 return false;
1013
1014 /*
1015 * E0PD does a similar job to KPTI so can be used instead
1016 * where available.
1017 */
1018 if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1019 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1020 if (cpuid_feature_extract_unsigned_field(mmfr2,
1021 ID_AA64MMFR2_E0PD_SHIFT))
1022 return false;
1023 }
1024
1025 /*
1026 * Systems affected by Cavium erratum 24756 are incompatible
1027 * with KPTI.
1028 */
1029 if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1030 extern const struct midr_range cavium_erratum_27456_cpus[];
1031
1032 if (is_midr_in_range_list(read_cpuid_id(),
1033 cavium_erratum_27456_cpus))
1034 return false;
1035 }
1036
1037 return kaslr_offset() > 0;
1038 }
1039
1040 static bool __meltdown_safe = true;
1041 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1042
1043 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1044 int scope)
1045 {
1046 /* List of CPUs that are not vulnerable and don't need KPTI */
1047 static const struct midr_range kpti_safe_list[] = {
1048 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1049 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1050 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1051 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1052 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1053 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1054 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1055 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1056 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1057 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1058 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1059 { /* sentinel */ }
1060 };
1061 char const *str = "kpti command line option";
1062 bool meltdown_safe;
1063
1064 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1065
1066 /* Defer to CPU feature registers */
1067 if (has_cpuid_feature(entry, scope))
1068 meltdown_safe = true;
1069
1070 if (!meltdown_safe)
1071 __meltdown_safe = false;
1072
1073 /*
1074 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1075 * ThunderX leads to apparent I-cache corruption of kernel text, which
1076 * ends as well as you might imagine. Don't even try.
1077 */
1078 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1079 str = "ARM64_WORKAROUND_CAVIUM_27456";
1080 __kpti_forced = -1;
1081 }
1082
1083 /* Useful for KASLR robustness */
1084 if (kaslr_requires_kpti()) {
1085 if (!__kpti_forced) {
1086 str = "KASLR";
1087 __kpti_forced = 1;
1088 }
1089 }
1090
1091 if (cpu_mitigations_off() && !__kpti_forced) {
1092 str = "mitigations=off";
1093 __kpti_forced = -1;
1094 }
1095
1096 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1097 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1098 return false;
1099 }
1100
1101 /* Forced? */
1102 if (__kpti_forced) {
1103 pr_info_once("kernel page table isolation forced %s by %s\n",
1104 __kpti_forced > 0 ? "ON" : "OFF", str);
1105 return __kpti_forced > 0;
1106 }
1107
1108 return !meltdown_safe;
1109 }
1110
1111 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1112 static void
1113 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1114 {
1115 typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1116 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1117 kpti_remap_fn *remap_fn;
1118
1119 int cpu = smp_processor_id();
1120
1121 /*
1122 * We don't need to rewrite the page-tables if either we've done
1123 * it already or we have KASLR enabled and therefore have not
1124 * created any global mappings at all.
1125 */
1126 if (arm64_use_ng_mappings)
1127 return;
1128
1129 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1130
1131 cpu_install_idmap();
1132 remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1133 cpu_uninstall_idmap();
1134
1135 if (!cpu)
1136 arm64_use_ng_mappings = true;
1137
1138 return;
1139 }
1140 #else
1141 static void
1142 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1143 {
1144 }
1145 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1146
1147 static int __init parse_kpti(char *str)
1148 {
1149 bool enabled;
1150 int ret = strtobool(str, &enabled);
1151
1152 if (ret)
1153 return ret;
1154
1155 __kpti_forced = enabled ? 1 : -1;
1156 return 0;
1157 }
1158 early_param("kpti", parse_kpti);
1159
1160 #ifdef CONFIG_ARM64_HW_AFDBM
1161 static inline void __cpu_enable_hw_dbm(void)
1162 {
1163 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1164
1165 write_sysreg(tcr, tcr_el1);
1166 isb();
1167 }
1168
1169 static bool cpu_has_broken_dbm(void)
1170 {
1171 /* List of CPUs which have broken DBM support. */
1172 static const struct midr_range cpus[] = {
1173 #ifdef CONFIG_ARM64_ERRATUM_1024718
1174 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0), // A55 r0p0 -r1p0
1175 #endif
1176 {},
1177 };
1178
1179 return is_midr_in_range_list(read_cpuid_id(), cpus);
1180 }
1181
1182 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1183 {
1184 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1185 !cpu_has_broken_dbm();
1186 }
1187
1188 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1189 {
1190 if (cpu_can_use_dbm(cap))
1191 __cpu_enable_hw_dbm();
1192 }
1193
1194 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1195 int __unused)
1196 {
1197 static bool detected = false;
1198 /*
1199 * DBM is a non-conflicting feature. i.e, the kernel can safely
1200 * run a mix of CPUs with and without the feature. So, we
1201 * unconditionally enable the capability to allow any late CPU
1202 * to use the feature. We only enable the control bits on the
1203 * CPU, if it actually supports.
1204 *
1205 * We have to make sure we print the "feature" detection only
1206 * when at least one CPU actually uses it. So check if this CPU
1207 * can actually use it and print the message exactly once.
1208 *
1209 * This is safe as all CPUs (including secondary CPUs - due to the
1210 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1211 * goes through the "matches" check exactly once. Also if a CPU
1212 * matches the criteria, it is guaranteed that the CPU will turn
1213 * the DBM on, as the capability is unconditionally enabled.
1214 */
1215 if (!detected && cpu_can_use_dbm(cap)) {
1216 detected = true;
1217 pr_info("detected: Hardware dirty bit management\n");
1218 }
1219
1220 return true;
1221 }
1222
1223 #endif
1224
1225 #ifdef CONFIG_ARM64_VHE
1226 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1227 {
1228 return is_kernel_in_hyp_mode();
1229 }
1230
1231 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1232 {
1233 /*
1234 * Copy register values that aren't redirected by hardware.
1235 *
1236 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1237 * this value to tpidr_el2 before we patch the code. Once we've done
1238 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1239 * do anything here.
1240 */
1241 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1242 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1243 }
1244 #endif
1245
1246 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1247 {
1248 u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1249
1250 /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1251 WARN_ON(val & (7 << 27 | 7 << 21));
1252 }
1253
1254 #ifdef CONFIG_ARM64_SSBD
1255 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1256 {
1257 if (user_mode(regs))
1258 return 1;
1259
1260 if (instr & BIT(PSTATE_Imm_shift))
1261 regs->pstate |= PSR_SSBS_BIT;
1262 else
1263 regs->pstate &= ~PSR_SSBS_BIT;
1264
1265 arm64_skip_faulting_instruction(regs, 4);
1266 return 0;
1267 }
1268
1269 static struct undef_hook ssbs_emulation_hook = {
1270 .instr_mask = ~(1U << PSTATE_Imm_shift),
1271 .instr_val = 0xd500401f | PSTATE_SSBS,
1272 .fn = ssbs_emulation_handler,
1273 };
1274
1275 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1276 {
1277 static bool undef_hook_registered = false;
1278 static DEFINE_RAW_SPINLOCK(hook_lock);
1279
1280 raw_spin_lock(&hook_lock);
1281 if (!undef_hook_registered) {
1282 register_undef_hook(&ssbs_emulation_hook);
1283 undef_hook_registered = true;
1284 }
1285 raw_spin_unlock(&hook_lock);
1286
1287 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1288 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1289 arm64_set_ssbd_mitigation(false);
1290 } else {
1291 arm64_set_ssbd_mitigation(true);
1292 }
1293 }
1294 #endif /* CONFIG_ARM64_SSBD */
1295
1296 #ifdef CONFIG_ARM64_PAN
1297 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1298 {
1299 /*
1300 * We modify PSTATE. This won't work from irq context as the PSTATE
1301 * is discarded once we return from the exception.
1302 */
1303 WARN_ON_ONCE(in_interrupt());
1304
1305 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1306 asm(SET_PSTATE_PAN(1));
1307 }
1308 #endif /* CONFIG_ARM64_PAN */
1309
1310 #ifdef CONFIG_ARM64_RAS_EXTN
1311 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1312 {
1313 /* Firmware may have left a deferred SError in this register. */
1314 write_sysreg_s(0, SYS_DISR_EL1);
1315 }
1316 #endif /* CONFIG_ARM64_RAS_EXTN */
1317
1318 #ifdef CONFIG_ARM64_PTR_AUTH
1319 static void cpu_enable_address_auth(struct arm64_cpu_capabilities const *cap)
1320 {
1321 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ENIA | SCTLR_ELx_ENIB |
1322 SCTLR_ELx_ENDA | SCTLR_ELx_ENDB);
1323 }
1324 #endif /* CONFIG_ARM64_PTR_AUTH */
1325
1326 #ifdef CONFIG_ARM64_E0PD
1327 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1328 {
1329 if (this_cpu_has_cap(ARM64_HAS_E0PD))
1330 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1331 }
1332 #endif /* CONFIG_ARM64_E0PD */
1333
1334 #ifdef CONFIG_ARM64_PSEUDO_NMI
1335 static bool enable_pseudo_nmi;
1336
1337 static int __init early_enable_pseudo_nmi(char *p)
1338 {
1339 return strtobool(p, &enable_pseudo_nmi);
1340 }
1341 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1342
1343 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1344 int scope)
1345 {
1346 return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1347 }
1348 #endif
1349
1350 static const struct arm64_cpu_capabilities arm64_features[] = {
1351 {
1352 .desc = "GIC system register CPU interface",
1353 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1354 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1355 .matches = has_useable_gicv3_cpuif,
1356 .sys_reg = SYS_ID_AA64PFR0_EL1,
1357 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1358 .sign = FTR_UNSIGNED,
1359 .min_field_value = 1,
1360 },
1361 #ifdef CONFIG_ARM64_PAN
1362 {
1363 .desc = "Privileged Access Never",
1364 .capability = ARM64_HAS_PAN,
1365 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1366 .matches = has_cpuid_feature,
1367 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1368 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1369 .sign = FTR_UNSIGNED,
1370 .min_field_value = 1,
1371 .cpu_enable = cpu_enable_pan,
1372 },
1373 #endif /* CONFIG_ARM64_PAN */
1374 #ifdef CONFIG_ARM64_LSE_ATOMICS
1375 {
1376 .desc = "LSE atomic instructions",
1377 .capability = ARM64_HAS_LSE_ATOMICS,
1378 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1379 .matches = has_cpuid_feature,
1380 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1381 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1382 .sign = FTR_UNSIGNED,
1383 .min_field_value = 2,
1384 },
1385 #endif /* CONFIG_ARM64_LSE_ATOMICS */
1386 {
1387 .desc = "Software prefetching using PRFM",
1388 .capability = ARM64_HAS_NO_HW_PREFETCH,
1389 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1390 .matches = has_no_hw_prefetch,
1391 },
1392 #ifdef CONFIG_ARM64_UAO
1393 {
1394 .desc = "User Access Override",
1395 .capability = ARM64_HAS_UAO,
1396 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1397 .matches = has_cpuid_feature,
1398 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1399 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1400 .min_field_value = 1,
1401 /*
1402 * We rely on stop_machine() calling uao_thread_switch() to set
1403 * UAO immediately after patching.
1404 */
1405 },
1406 #endif /* CONFIG_ARM64_UAO */
1407 #ifdef CONFIG_ARM64_PAN
1408 {
1409 .capability = ARM64_ALT_PAN_NOT_UAO,
1410 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1411 .matches = cpufeature_pan_not_uao,
1412 },
1413 #endif /* CONFIG_ARM64_PAN */
1414 #ifdef CONFIG_ARM64_VHE
1415 {
1416 .desc = "Virtualization Host Extensions",
1417 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1418 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1419 .matches = runs_at_el2,
1420 .cpu_enable = cpu_copy_el2regs,
1421 },
1422 #endif /* CONFIG_ARM64_VHE */
1423 {
1424 .desc = "32-bit EL0 Support",
1425 .capability = ARM64_HAS_32BIT_EL0,
1426 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1427 .matches = has_cpuid_feature,
1428 .sys_reg = SYS_ID_AA64PFR0_EL1,
1429 .sign = FTR_UNSIGNED,
1430 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1431 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1432 },
1433 {
1434 .desc = "Kernel page table isolation (KPTI)",
1435 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1436 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1437 /*
1438 * The ID feature fields below are used to indicate that
1439 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1440 * more details.
1441 */
1442 .sys_reg = SYS_ID_AA64PFR0_EL1,
1443 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1444 .min_field_value = 1,
1445 .matches = unmap_kernel_at_el0,
1446 .cpu_enable = kpti_install_ng_mappings,
1447 },
1448 {
1449 /* FP/SIMD is not implemented */
1450 .capability = ARM64_HAS_NO_FPSIMD,
1451 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1452 .min_field_value = 0,
1453 .matches = has_no_fpsimd,
1454 },
1455 #ifdef CONFIG_ARM64_PMEM
1456 {
1457 .desc = "Data cache clean to Point of Persistence",
1458 .capability = ARM64_HAS_DCPOP,
1459 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1460 .matches = has_cpuid_feature,
1461 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1462 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1463 .min_field_value = 1,
1464 },
1465 {
1466 .desc = "Data cache clean to Point of Deep Persistence",
1467 .capability = ARM64_HAS_DCPODP,
1468 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1469 .matches = has_cpuid_feature,
1470 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1471 .sign = FTR_UNSIGNED,
1472 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1473 .min_field_value = 2,
1474 },
1475 #endif
1476 #ifdef CONFIG_ARM64_SVE
1477 {
1478 .desc = "Scalable Vector Extension",
1479 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1480 .capability = ARM64_SVE,
1481 .sys_reg = SYS_ID_AA64PFR0_EL1,
1482 .sign = FTR_UNSIGNED,
1483 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1484 .min_field_value = ID_AA64PFR0_SVE,
1485 .matches = has_cpuid_feature,
1486 .cpu_enable = sve_kernel_enable,
1487 },
1488 #endif /* CONFIG_ARM64_SVE */
1489 #ifdef CONFIG_ARM64_RAS_EXTN
1490 {
1491 .desc = "RAS Extension Support",
1492 .capability = ARM64_HAS_RAS_EXTN,
1493 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1494 .matches = has_cpuid_feature,
1495 .sys_reg = SYS_ID_AA64PFR0_EL1,
1496 .sign = FTR_UNSIGNED,
1497 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1498 .min_field_value = ID_AA64PFR0_RAS_V1,
1499 .cpu_enable = cpu_clear_disr,
1500 },
1501 #endif /* CONFIG_ARM64_RAS_EXTN */
1502 {
1503 .desc = "Data cache clean to the PoU not required for I/D coherence",
1504 .capability = ARM64_HAS_CACHE_IDC,
1505 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1506 .matches = has_cache_idc,
1507 .cpu_enable = cpu_emulate_effective_ctr,
1508 },
1509 {
1510 .desc = "Instruction cache invalidation not required for I/D coherence",
1511 .capability = ARM64_HAS_CACHE_DIC,
1512 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1513 .matches = has_cache_dic,
1514 },
1515 {
1516 .desc = "Stage-2 Force Write-Back",
1517 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1518 .capability = ARM64_HAS_STAGE2_FWB,
1519 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1520 .sign = FTR_UNSIGNED,
1521 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1522 .min_field_value = 1,
1523 .matches = has_cpuid_feature,
1524 .cpu_enable = cpu_has_fwb,
1525 },
1526 #ifdef CONFIG_ARM64_HW_AFDBM
1527 {
1528 /*
1529 * Since we turn this on always, we don't want the user to
1530 * think that the feature is available when it may not be.
1531 * So hide the description.
1532 *
1533 * .desc = "Hardware pagetable Dirty Bit Management",
1534 *
1535 */
1536 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1537 .capability = ARM64_HW_DBM,
1538 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1539 .sign = FTR_UNSIGNED,
1540 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1541 .min_field_value = 2,
1542 .matches = has_hw_dbm,
1543 .cpu_enable = cpu_enable_hw_dbm,
1544 },
1545 #endif
1546 {
1547 .desc = "CRC32 instructions",
1548 .capability = ARM64_HAS_CRC32,
1549 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1550 .matches = has_cpuid_feature,
1551 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1552 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1553 .min_field_value = 1,
1554 },
1555 #ifdef CONFIG_ARM64_SSBD
1556 {
1557 .desc = "Speculative Store Bypassing Safe (SSBS)",
1558 .capability = ARM64_SSBS,
1559 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1560 .matches = has_cpuid_feature,
1561 .sys_reg = SYS_ID_AA64PFR1_EL1,
1562 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1563 .sign = FTR_UNSIGNED,
1564 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1565 .cpu_enable = cpu_enable_ssbs,
1566 },
1567 #endif
1568 #ifdef CONFIG_ARM64_CNP
1569 {
1570 .desc = "Common not Private translations",
1571 .capability = ARM64_HAS_CNP,
1572 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1573 .matches = has_useable_cnp,
1574 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1575 .sign = FTR_UNSIGNED,
1576 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
1577 .min_field_value = 1,
1578 .cpu_enable = cpu_enable_cnp,
1579 },
1580 #endif
1581 {
1582 .desc = "Speculation barrier (SB)",
1583 .capability = ARM64_HAS_SB,
1584 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1585 .matches = has_cpuid_feature,
1586 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1587 .field_pos = ID_AA64ISAR1_SB_SHIFT,
1588 .sign = FTR_UNSIGNED,
1589 .min_field_value = 1,
1590 },
1591 #ifdef CONFIG_ARM64_PTR_AUTH
1592 {
1593 .desc = "Address authentication (architected algorithm)",
1594 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
1595 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1596 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1597 .sign = FTR_UNSIGNED,
1598 .field_pos = ID_AA64ISAR1_APA_SHIFT,
1599 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
1600 .matches = has_cpuid_feature,
1601 .cpu_enable = cpu_enable_address_auth,
1602 },
1603 {
1604 .desc = "Address authentication (IMP DEF algorithm)",
1605 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
1606 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1607 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1608 .sign = FTR_UNSIGNED,
1609 .field_pos = ID_AA64ISAR1_API_SHIFT,
1610 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
1611 .matches = has_cpuid_feature,
1612 .cpu_enable = cpu_enable_address_auth,
1613 },
1614 {
1615 .desc = "Generic authentication (architected algorithm)",
1616 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
1617 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1618 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1619 .sign = FTR_UNSIGNED,
1620 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
1621 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
1622 .matches = has_cpuid_feature,
1623 },
1624 {
1625 .desc = "Generic authentication (IMP DEF algorithm)",
1626 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
1627 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1628 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1629 .sign = FTR_UNSIGNED,
1630 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
1631 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
1632 .matches = has_cpuid_feature,
1633 },
1634 #endif /* CONFIG_ARM64_PTR_AUTH */
1635 #ifdef CONFIG_ARM64_PSEUDO_NMI
1636 {
1637 /*
1638 * Depends on having GICv3
1639 */
1640 .desc = "IRQ priority masking",
1641 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
1642 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1643 .matches = can_use_gic_priorities,
1644 .sys_reg = SYS_ID_AA64PFR0_EL1,
1645 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1646 .sign = FTR_UNSIGNED,
1647 .min_field_value = 1,
1648 },
1649 #endif
1650 #ifdef CONFIG_ARM64_E0PD
1651 {
1652 .desc = "E0PD",
1653 .capability = ARM64_HAS_E0PD,
1654 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1655 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1656 .sign = FTR_UNSIGNED,
1657 .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
1658 .matches = has_cpuid_feature,
1659 .min_field_value = 1,
1660 .cpu_enable = cpu_enable_e0pd,
1661 },
1662 #endif
1663 #ifdef CONFIG_ARCH_RANDOM
1664 {
1665 .desc = "Random Number Generator",
1666 .capability = ARM64_HAS_RNG,
1667 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1668 .matches = has_cpuid_feature,
1669 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1670 .field_pos = ID_AA64ISAR0_RNDR_SHIFT,
1671 .sign = FTR_UNSIGNED,
1672 .min_field_value = 1,
1673 },
1674 #endif
1675 {},
1676 };
1677
1678 #define HWCAP_CPUID_MATCH(reg, field, s, min_value) \
1679 .matches = has_cpuid_feature, \
1680 .sys_reg = reg, \
1681 .field_pos = field, \
1682 .sign = s, \
1683 .min_field_value = min_value,
1684
1685 #define __HWCAP_CAP(name, cap_type, cap) \
1686 .desc = name, \
1687 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
1688 .hwcap_type = cap_type, \
1689 .hwcap = cap, \
1690
1691 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
1692 { \
1693 __HWCAP_CAP(#cap, cap_type, cap) \
1694 HWCAP_CPUID_MATCH(reg, field, s, min_value) \
1695 }
1696
1697 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
1698 { \
1699 __HWCAP_CAP(#cap, cap_type, cap) \
1700 .matches = cpucap_multi_entry_cap_matches, \
1701 .match_list = list, \
1702 }
1703
1704 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
1705 { \
1706 __HWCAP_CAP(#cap, cap_type, cap) \
1707 .matches = match, \
1708 }
1709
1710 #ifdef CONFIG_ARM64_PTR_AUTH
1711 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
1712 {
1713 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
1714 FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
1715 },
1716 {
1717 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
1718 FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
1719 },
1720 {},
1721 };
1722
1723 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
1724 {
1725 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
1726 FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
1727 },
1728 {
1729 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
1730 FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
1731 },
1732 {},
1733 };
1734 #endif
1735
1736 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1737 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
1738 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
1739 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
1740 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
1741 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
1742 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
1743 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
1744 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
1745 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
1746 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
1747 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
1748 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
1749 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
1750 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
1751 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
1752 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
1753 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
1754 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
1755 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
1756 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
1757 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
1758 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
1759 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
1760 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
1761 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
1762 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
1763 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
1764 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
1765 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
1766 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
1767 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
1768 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
1769 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
1770 #ifdef CONFIG_ARM64_SVE
1771 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
1772 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
1773 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
1774 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
1775 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
1776 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
1777 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
1778 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
1779 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
1780 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
1781 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
1782 #endif
1783 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
1784 #ifdef CONFIG_ARM64_PTR_AUTH
1785 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
1786 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
1787 #endif
1788 {},
1789 };
1790
1791 #ifdef CONFIG_COMPAT
1792 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
1793 {
1794 /*
1795 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
1796 * in line with that of arm32 as in vfp_init(). We make sure that the
1797 * check is future proof, by making sure value is non-zero.
1798 */
1799 u32 mvfr1;
1800
1801 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1802 if (scope == SCOPE_SYSTEM)
1803 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
1804 else
1805 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
1806
1807 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
1808 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
1809 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
1810 }
1811 #endif
1812
1813 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1814 #ifdef CONFIG_COMPAT
1815 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
1816 HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
1817 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
1818 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
1819 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
1820 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1821 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1822 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1823 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1824 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1825 #endif
1826 {},
1827 };
1828
1829 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1830 {
1831 switch (cap->hwcap_type) {
1832 case CAP_HWCAP:
1833 cpu_set_feature(cap->hwcap);
1834 break;
1835 #ifdef CONFIG_COMPAT
1836 case CAP_COMPAT_HWCAP:
1837 compat_elf_hwcap |= (u32)cap->hwcap;
1838 break;
1839 case CAP_COMPAT_HWCAP2:
1840 compat_elf_hwcap2 |= (u32)cap->hwcap;
1841 break;
1842 #endif
1843 default:
1844 WARN_ON(1);
1845 break;
1846 }
1847 }
1848
1849 /* Check if we have a particular HWCAP enabled */
1850 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1851 {
1852 bool rc;
1853
1854 switch (cap->hwcap_type) {
1855 case CAP_HWCAP:
1856 rc = cpu_have_feature(cap->hwcap);
1857 break;
1858 #ifdef CONFIG_COMPAT
1859 case CAP_COMPAT_HWCAP:
1860 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1861 break;
1862 case CAP_COMPAT_HWCAP2:
1863 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1864 break;
1865 #endif
1866 default:
1867 WARN_ON(1);
1868 rc = false;
1869 }
1870
1871 return rc;
1872 }
1873
1874 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1875 {
1876 /* We support emulation of accesses to CPU ID feature registers */
1877 cpu_set_named_feature(CPUID);
1878 for (; hwcaps->matches; hwcaps++)
1879 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1880 cap_set_elf_hwcap(hwcaps);
1881 }
1882
1883 static void update_cpu_capabilities(u16 scope_mask)
1884 {
1885 int i;
1886 const struct arm64_cpu_capabilities *caps;
1887
1888 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1889 for (i = 0; i < ARM64_NCAPS; i++) {
1890 caps = cpu_hwcaps_ptrs[i];
1891 if (!caps || !(caps->type & scope_mask) ||
1892 cpus_have_cap(caps->capability) ||
1893 !caps->matches(caps, cpucap_default_scope(caps)))
1894 continue;
1895
1896 if (caps->desc)
1897 pr_info("detected: %s\n", caps->desc);
1898 cpus_set_cap(caps->capability);
1899
1900 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
1901 set_bit(caps->capability, boot_capabilities);
1902 }
1903 }
1904
1905 /*
1906 * Enable all the available capabilities on this CPU. The capabilities
1907 * with BOOT_CPU scope are handled separately and hence skipped here.
1908 */
1909 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
1910 {
1911 int i;
1912 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
1913
1914 for_each_available_cap(i) {
1915 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
1916
1917 if (WARN_ON(!cap))
1918 continue;
1919
1920 if (!(cap->type & non_boot_scope))
1921 continue;
1922
1923 if (cap->cpu_enable)
1924 cap->cpu_enable(cap);
1925 }
1926 return 0;
1927 }
1928
1929 /*
1930 * Run through the enabled capabilities and enable() it on all active
1931 * CPUs
1932 */
1933 static void __init enable_cpu_capabilities(u16 scope_mask)
1934 {
1935 int i;
1936 const struct arm64_cpu_capabilities *caps;
1937 bool boot_scope;
1938
1939 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1940 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
1941
1942 for (i = 0; i < ARM64_NCAPS; i++) {
1943 unsigned int num;
1944
1945 caps = cpu_hwcaps_ptrs[i];
1946 if (!caps || !(caps->type & scope_mask))
1947 continue;
1948 num = caps->capability;
1949 if (!cpus_have_cap(num))
1950 continue;
1951
1952 /* Ensure cpus_have_const_cap(num) works */
1953 static_branch_enable(&cpu_hwcap_keys[num]);
1954
1955 if (boot_scope && caps->cpu_enable)
1956 /*
1957 * Capabilities with SCOPE_BOOT_CPU scope are finalised
1958 * before any secondary CPU boots. Thus, each secondary
1959 * will enable the capability as appropriate via
1960 * check_local_cpu_capabilities(). The only exception is
1961 * the boot CPU, for which the capability must be
1962 * enabled here. This approach avoids costly
1963 * stop_machine() calls for this case.
1964 */
1965 caps->cpu_enable(caps);
1966 }
1967
1968 /*
1969 * For all non-boot scope capabilities, use stop_machine()
1970 * as it schedules the work allowing us to modify PSTATE,
1971 * instead of on_each_cpu() which uses an IPI, giving us a
1972 * PSTATE that disappears when we return.
1973 */
1974 if (!boot_scope)
1975 stop_machine(cpu_enable_non_boot_scope_capabilities,
1976 NULL, cpu_online_mask);
1977 }
1978
1979 /*
1980 * Run through the list of capabilities to check for conflicts.
1981 * If the system has already detected a capability, take necessary
1982 * action on this CPU.
1983 *
1984 * Returns "false" on conflicts.
1985 */
1986 static bool verify_local_cpu_caps(u16 scope_mask)
1987 {
1988 int i;
1989 bool cpu_has_cap, system_has_cap;
1990 const struct arm64_cpu_capabilities *caps;
1991
1992 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1993
1994 for (i = 0; i < ARM64_NCAPS; i++) {
1995 caps = cpu_hwcaps_ptrs[i];
1996 if (!caps || !(caps->type & scope_mask))
1997 continue;
1998
1999 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2000 system_has_cap = cpus_have_cap(caps->capability);
2001
2002 if (system_has_cap) {
2003 /*
2004 * Check if the new CPU misses an advertised feature,
2005 * which is not safe to miss.
2006 */
2007 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2008 break;
2009 /*
2010 * We have to issue cpu_enable() irrespective of
2011 * whether the CPU has it or not, as it is enabeld
2012 * system wide. It is upto the call back to take
2013 * appropriate action on this CPU.
2014 */
2015 if (caps->cpu_enable)
2016 caps->cpu_enable(caps);
2017 } else {
2018 /*
2019 * Check if the CPU has this capability if it isn't
2020 * safe to have when the system doesn't.
2021 */
2022 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2023 break;
2024 }
2025 }
2026
2027 if (i < ARM64_NCAPS) {
2028 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2029 smp_processor_id(), caps->capability,
2030 caps->desc, system_has_cap, cpu_has_cap);
2031 return false;
2032 }
2033
2034 return true;
2035 }
2036
2037 /*
2038 * Check for CPU features that are used in early boot
2039 * based on the Boot CPU value.
2040 */
2041 static void check_early_cpu_features(void)
2042 {
2043 verify_cpu_asid_bits();
2044 /*
2045 * Early features are used by the kernel already. If there
2046 * is a conflict, we cannot proceed further.
2047 */
2048 if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
2049 cpu_panic_kernel();
2050 }
2051
2052 static void
2053 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2054 {
2055
2056 for (; caps->matches; caps++)
2057 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2058 pr_crit("CPU%d: missing HWCAP: %s\n",
2059 smp_processor_id(), caps->desc);
2060 cpu_die_early();
2061 }
2062 }
2063
2064 static void verify_sve_features(void)
2065 {
2066 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2067 u64 zcr = read_zcr_features();
2068
2069 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2070 unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2071
2072 if (len < safe_len || sve_verify_vq_map()) {
2073 pr_crit("CPU%d: SVE: vector length support mismatch\n",
2074 smp_processor_id());
2075 cpu_die_early();
2076 }
2077
2078 /* Add checks on other ZCR bits here if necessary */
2079 }
2080
2081
2082 /*
2083 * Run through the enabled system capabilities and enable() it on this CPU.
2084 * The capabilities were decided based on the available CPUs at the boot time.
2085 * Any new CPU should match the system wide status of the capability. If the
2086 * new CPU doesn't have a capability which the system now has enabled, we
2087 * cannot do anything to fix it up and could cause unexpected failures. So
2088 * we park the CPU.
2089 */
2090 static void verify_local_cpu_capabilities(void)
2091 {
2092 /*
2093 * The capabilities with SCOPE_BOOT_CPU are checked from
2094 * check_early_cpu_features(), as they need to be verified
2095 * on all secondary CPUs.
2096 */
2097 if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
2098 cpu_die_early();
2099
2100 verify_local_elf_hwcaps(arm64_elf_hwcaps);
2101
2102 if (system_supports_32bit_el0())
2103 verify_local_elf_hwcaps(compat_elf_hwcaps);
2104
2105 if (system_supports_sve())
2106 verify_sve_features();
2107 }
2108
2109 void check_local_cpu_capabilities(void)
2110 {
2111 /*
2112 * All secondary CPUs should conform to the early CPU features
2113 * in use by the kernel based on boot CPU.
2114 */
2115 check_early_cpu_features();
2116
2117 /*
2118 * If we haven't finalised the system capabilities, this CPU gets
2119 * a chance to update the errata work arounds and local features.
2120 * Otherwise, this CPU should verify that it has all the system
2121 * advertised capabilities.
2122 */
2123 if (!system_capabilities_finalized())
2124 update_cpu_capabilities(SCOPE_LOCAL_CPU);
2125 else
2126 verify_local_cpu_capabilities();
2127 }
2128
2129 static void __init setup_boot_cpu_capabilities(void)
2130 {
2131 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2132 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2133 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2134 enable_cpu_capabilities(SCOPE_BOOT_CPU);
2135 }
2136
2137 bool this_cpu_has_cap(unsigned int n)
2138 {
2139 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2140 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2141
2142 if (cap)
2143 return cap->matches(cap, SCOPE_LOCAL_CPU);
2144 }
2145
2146 return false;
2147 }
2148
2149 void cpu_set_feature(unsigned int num)
2150 {
2151 WARN_ON(num >= MAX_CPU_FEATURES);
2152 elf_hwcap |= BIT(num);
2153 }
2154 EXPORT_SYMBOL_GPL(cpu_set_feature);
2155
2156 bool cpu_have_feature(unsigned int num)
2157 {
2158 WARN_ON(num >= MAX_CPU_FEATURES);
2159 return elf_hwcap & BIT(num);
2160 }
2161 EXPORT_SYMBOL_GPL(cpu_have_feature);
2162
2163 unsigned long cpu_get_elf_hwcap(void)
2164 {
2165 /*
2166 * We currently only populate the first 32 bits of AT_HWCAP. Please
2167 * note that for userspace compatibility we guarantee that bits 62
2168 * and 63 will always be returned as 0.
2169 */
2170 return lower_32_bits(elf_hwcap);
2171 }
2172
2173 unsigned long cpu_get_elf_hwcap2(void)
2174 {
2175 return upper_32_bits(elf_hwcap);
2176 }
2177
2178 static void __init setup_system_capabilities(void)
2179 {
2180 /*
2181 * We have finalised the system-wide safe feature
2182 * registers, finalise the capabilities that depend
2183 * on it. Also enable all the available capabilities,
2184 * that are not enabled already.
2185 */
2186 update_cpu_capabilities(SCOPE_SYSTEM);
2187 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2188 }
2189
2190 void __init setup_cpu_features(void)
2191 {
2192 u32 cwg;
2193
2194 setup_system_capabilities();
2195 setup_elf_hwcaps(arm64_elf_hwcaps);
2196
2197 if (system_supports_32bit_el0())
2198 setup_elf_hwcaps(compat_elf_hwcaps);
2199
2200 if (system_uses_ttbr0_pan())
2201 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2202
2203 sve_setup();
2204 minsigstksz_setup();
2205
2206 /* Advertise that we have computed the system capabilities */
2207 finalize_system_capabilities();
2208
2209 /*
2210 * Check for sane CTR_EL0.CWG value.
2211 */
2212 cwg = cache_type_cwg();
2213 if (!cwg)
2214 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2215 ARCH_DMA_MINALIGN);
2216 }
2217
2218 static bool __maybe_unused
2219 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
2220 {
2221 return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
2222 }
2223
2224 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2225 {
2226 cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2227 }
2228
2229 /*
2230 * We emulate only the following system register space.
2231 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2232 * See Table C5-6 System instruction encodings for System register accesses,
2233 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2234 */
2235 static inline bool __attribute_const__ is_emulated(u32 id)
2236 {
2237 return (sys_reg_Op0(id) == 0x3 &&
2238 sys_reg_CRn(id) == 0x0 &&
2239 sys_reg_Op1(id) == 0x0 &&
2240 (sys_reg_CRm(id) == 0 ||
2241 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2242 }
2243
2244 /*
2245 * With CRm == 0, reg should be one of :
2246 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2247 */
2248 static inline int emulate_id_reg(u32 id, u64 *valp)
2249 {
2250 switch (id) {
2251 case SYS_MIDR_EL1:
2252 *valp = read_cpuid_id();
2253 break;
2254 case SYS_MPIDR_EL1:
2255 *valp = SYS_MPIDR_SAFE_VAL;
2256 break;
2257 case SYS_REVIDR_EL1:
2258 /* IMPLEMENTATION DEFINED values are emulated with 0 */
2259 *valp = 0;
2260 break;
2261 default:
2262 return -EINVAL;
2263 }
2264
2265 return 0;
2266 }
2267
2268 static int emulate_sys_reg(u32 id, u64 *valp)
2269 {
2270 struct arm64_ftr_reg *regp;
2271
2272 if (!is_emulated(id))
2273 return -EINVAL;
2274
2275 if (sys_reg_CRm(id) == 0)
2276 return emulate_id_reg(id, valp);
2277
2278 regp = get_arm64_ftr_reg(id);
2279 if (regp)
2280 *valp = arm64_ftr_reg_user_value(regp);
2281 else
2282 /*
2283 * The untracked registers are either IMPLEMENTATION DEFINED
2284 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2285 */
2286 *valp = 0;
2287 return 0;
2288 }
2289
2290 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2291 {
2292 int rc;
2293 u64 val;
2294
2295 rc = emulate_sys_reg(sys_reg, &val);
2296 if (!rc) {
2297 pt_regs_write_reg(regs, rt, val);
2298 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2299 }
2300 return rc;
2301 }
2302
2303 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2304 {
2305 u32 sys_reg, rt;
2306
2307 /*
2308 * sys_reg values are defined as used in mrs/msr instruction.
2309 * shift the imm value to get the encoding.
2310 */
2311 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2312 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2313 return do_emulate_mrs(regs, sys_reg, rt);
2314 }
2315
2316 static struct undef_hook mrs_hook = {
2317 .instr_mask = 0xfff00000,
2318 .instr_val = 0xd5300000,
2319 .pstate_mask = PSR_AA32_MODE_MASK,
2320 .pstate_val = PSR_MODE_EL0t,
2321 .fn = emulate_mrs,
2322 };
2323
2324 static int __init enable_mrs_emulation(void)
2325 {
2326 register_undef_hook(&mrs_hook);
2327 return 0;
2328 }
2329
2330 core_initcall(enable_mrs_emulation);
2331
2332 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2333 char *buf)
2334 {
2335 if (__meltdown_safe)
2336 return sprintf(buf, "Not affected\n");
2337
2338 if (arm64_kernel_unmapped_at_el0())
2339 return sprintf(buf, "Mitigation: PTI\n");
2340
2341 return sprintf(buf, "Vulnerable\n");
2342 }