]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/kernel/cpu/mtrr/main.c
44668915fa0786fd7e85a9b649e3f07cae0238a6
[thirdparty/kernel/stable.git] / arch / x86 / kernel / cpu / mtrr / main.c
1 /* Generic MTRR (Memory Type Range Register) driver.
2
3 Copyright (C) 1997-2000 Richard Gooch
4 Copyright (c) 2002 Patrick Mochel
5
6 This library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 This library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with this library; if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20 Richard Gooch may be reached by email at rgooch@atnf.csiro.au
21 The postal address is:
22 Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23
24 Source: "Pentium Pro Family Developer's Manual, Volume 3:
25 Operating System Writer's Guide" (Intel document number 242692),
26 section 11.11.7
27
28 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29 on 6-7 March 2002.
30 Source: Intel Architecture Software Developers Manual, Volume 3:
31 System Programming Guide; Section 9.11. (1997 edition - PPro).
32 */
33
34 #define DEBUG
35
36 #include <linux/types.h> /* FIXME: kvm_para.h needs this */
37
38 #include <linux/stop_machine.h>
39 #include <linux/kvm_para.h>
40 #include <linux/uaccess.h>
41 #include <linux/module.h>
42 #include <linux/mutex.h>
43 #include <linux/init.h>
44 #include <linux/sort.h>
45 #include <linux/cpu.h>
46 #include <linux/pci.h>
47 #include <linux/smp.h>
48 #include <linux/syscore_ops.h>
49
50 #include <asm/cpufeature.h>
51 #include <asm/e820.h>
52 #include <asm/mtrr.h>
53 #include <asm/msr.h>
54 #include <asm/pat.h>
55
56 #include "mtrr.h"
57
58 /* arch_phys_wc_add returns an MTRR register index plus this offset. */
59 #define MTRR_TO_PHYS_WC_OFFSET 1000
60
61 u32 num_var_ranges;
62
63 unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
64 static DEFINE_MUTEX(mtrr_mutex);
65
66 u64 size_or_mask, size_and_mask;
67 static bool mtrr_aps_delayed_init;
68
69 static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM];
70
71 const struct mtrr_ops *mtrr_if;
72
73 static void set_mtrr(unsigned int reg, unsigned long base,
74 unsigned long size, mtrr_type type);
75
76 void set_mtrr_ops(const struct mtrr_ops *ops)
77 {
78 if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
79 mtrr_ops[ops->vendor] = ops;
80 }
81
82 /* Returns non-zero if we have the write-combining memory type */
83 static int have_wrcomb(void)
84 {
85 struct pci_dev *dev;
86
87 dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
88 if (dev != NULL) {
89 /*
90 * ServerWorks LE chipsets < rev 6 have problems with
91 * write-combining. Don't allow it and leave room for other
92 * chipsets to be tagged
93 */
94 if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
95 dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
96 dev->revision <= 5) {
97 pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
98 pci_dev_put(dev);
99 return 0;
100 }
101 /*
102 * Intel 450NX errata # 23. Non ascending cacheline evictions to
103 * write combining memory may resulting in data corruption
104 */
105 if (dev->vendor == PCI_VENDOR_ID_INTEL &&
106 dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
107 pr_info("mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
108 pci_dev_put(dev);
109 return 0;
110 }
111 pci_dev_put(dev);
112 }
113 return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
114 }
115
116 /* This function returns the number of variable MTRRs */
117 static void __init set_num_var_ranges(void)
118 {
119 unsigned long config = 0, dummy;
120
121 if (use_intel())
122 rdmsr(MSR_MTRRcap, config, dummy);
123 else if (is_cpu(AMD))
124 config = 2;
125 else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
126 config = 8;
127
128 num_var_ranges = config & 0xff;
129 }
130
131 static void __init init_table(void)
132 {
133 int i, max;
134
135 max = num_var_ranges;
136 for (i = 0; i < max; i++)
137 mtrr_usage_table[i] = 1;
138 }
139
140 struct set_mtrr_data {
141 unsigned long smp_base;
142 unsigned long smp_size;
143 unsigned int smp_reg;
144 mtrr_type smp_type;
145 };
146
147 /**
148 * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
149 * by all the CPUs.
150 * @info: pointer to mtrr configuration data
151 *
152 * Returns nothing.
153 */
154 static int mtrr_rendezvous_handler(void *info)
155 {
156 struct set_mtrr_data *data = info;
157
158 /*
159 * We use this same function to initialize the mtrrs during boot,
160 * resume, runtime cpu online and on an explicit request to set a
161 * specific MTRR.
162 *
163 * During boot or suspend, the state of the boot cpu's mtrrs has been
164 * saved, and we want to replicate that across all the cpus that come
165 * online (either at the end of boot or resume or during a runtime cpu
166 * online). If we're doing that, @reg is set to something special and on
167 * all the cpu's we do mtrr_if->set_all() (On the logical cpu that
168 * started the boot/resume sequence, this might be a duplicate
169 * set_all()).
170 */
171 if (data->smp_reg != ~0U) {
172 mtrr_if->set(data->smp_reg, data->smp_base,
173 data->smp_size, data->smp_type);
174 } else if (mtrr_aps_delayed_init || !cpu_online(smp_processor_id())) {
175 mtrr_if->set_all();
176 }
177 return 0;
178 }
179
180 static inline int types_compatible(mtrr_type type1, mtrr_type type2)
181 {
182 return type1 == MTRR_TYPE_UNCACHABLE ||
183 type2 == MTRR_TYPE_UNCACHABLE ||
184 (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
185 (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
186 }
187
188 /**
189 * set_mtrr - update mtrrs on all processors
190 * @reg: mtrr in question
191 * @base: mtrr base
192 * @size: mtrr size
193 * @type: mtrr type
194 *
195 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
196 *
197 * 1. Queue work to do the following on all processors:
198 * 2. Disable Interrupts
199 * 3. Wait for all procs to do so
200 * 4. Enter no-fill cache mode
201 * 5. Flush caches
202 * 6. Clear PGE bit
203 * 7. Flush all TLBs
204 * 8. Disable all range registers
205 * 9. Update the MTRRs
206 * 10. Enable all range registers
207 * 11. Flush all TLBs and caches again
208 * 12. Enter normal cache mode and reenable caching
209 * 13. Set PGE
210 * 14. Wait for buddies to catch up
211 * 15. Enable interrupts.
212 *
213 * What does that mean for us? Well, stop_machine() will ensure that
214 * the rendezvous handler is started on each CPU. And in lockstep they
215 * do the state transition of disabling interrupts, updating MTRR's
216 * (the CPU vendors may each do it differently, so we call mtrr_if->set()
217 * callback and let them take care of it.) and enabling interrupts.
218 *
219 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
220 * becomes nops.
221 */
222 static void
223 set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
224 {
225 struct set_mtrr_data data = { .smp_reg = reg,
226 .smp_base = base,
227 .smp_size = size,
228 .smp_type = type
229 };
230
231 stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
232 }
233
234 static void set_mtrr_from_inactive_cpu(unsigned int reg, unsigned long base,
235 unsigned long size, mtrr_type type)
236 {
237 struct set_mtrr_data data = { .smp_reg = reg,
238 .smp_base = base,
239 .smp_size = size,
240 .smp_type = type
241 };
242
243 stop_machine_from_inactive_cpu(mtrr_rendezvous_handler, &data,
244 cpu_callout_mask);
245 }
246
247 /**
248 * mtrr_add_page - Add a memory type region
249 * @base: Physical base address of region in pages (in units of 4 kB!)
250 * @size: Physical size of region in pages (4 kB)
251 * @type: Type of MTRR desired
252 * @increment: If this is true do usage counting on the region
253 *
254 * Memory type region registers control the caching on newer Intel and
255 * non Intel processors. This function allows drivers to request an
256 * MTRR is added. The details and hardware specifics of each processor's
257 * implementation are hidden from the caller, but nevertheless the
258 * caller should expect to need to provide a power of two size on an
259 * equivalent power of two boundary.
260 *
261 * If the region cannot be added either because all regions are in use
262 * or the CPU cannot support it a negative value is returned. On success
263 * the register number for this entry is returned, but should be treated
264 * as a cookie only.
265 *
266 * On a multiprocessor machine the changes are made to all processors.
267 * This is required on x86 by the Intel processors.
268 *
269 * The available types are
270 *
271 * %MTRR_TYPE_UNCACHABLE - No caching
272 *
273 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
274 *
275 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
276 *
277 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
278 *
279 * BUGS: Needs a quiet flag for the cases where drivers do not mind
280 * failures and do not wish system log messages to be sent.
281 */
282 int mtrr_add_page(unsigned long base, unsigned long size,
283 unsigned int type, bool increment)
284 {
285 unsigned long lbase, lsize;
286 int i, replace, error;
287 mtrr_type ltype;
288
289 if (!mtrr_if)
290 return -ENXIO;
291
292 error = mtrr_if->validate_add_page(base, size, type);
293 if (error)
294 return error;
295
296 if (type >= MTRR_NUM_TYPES) {
297 pr_warning("mtrr: type: %u invalid\n", type);
298 return -EINVAL;
299 }
300
301 /* If the type is WC, check that this processor supports it */
302 if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
303 pr_warning("mtrr: your processor doesn't support write-combining\n");
304 return -ENOSYS;
305 }
306
307 if (!size) {
308 pr_warning("mtrr: zero sized request\n");
309 return -EINVAL;
310 }
311
312 if ((base | (base + size - 1)) >>
313 (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) {
314 pr_warning("mtrr: base or size exceeds the MTRR width\n");
315 return -EINVAL;
316 }
317
318 error = -EINVAL;
319 replace = -1;
320
321 /* No CPU hotplug when we change MTRR entries */
322 get_online_cpus();
323
324 /* Search for existing MTRR */
325 mutex_lock(&mtrr_mutex);
326 for (i = 0; i < num_var_ranges; ++i) {
327 mtrr_if->get(i, &lbase, &lsize, &ltype);
328 if (!lsize || base > lbase + lsize - 1 ||
329 base + size - 1 < lbase)
330 continue;
331 /*
332 * At this point we know there is some kind of
333 * overlap/enclosure
334 */
335 if (base < lbase || base + size - 1 > lbase + lsize - 1) {
336 if (base <= lbase &&
337 base + size - 1 >= lbase + lsize - 1) {
338 /* New region encloses an existing region */
339 if (type == ltype) {
340 replace = replace == -1 ? i : -2;
341 continue;
342 } else if (types_compatible(type, ltype))
343 continue;
344 }
345 pr_warning("mtrr: 0x%lx000,0x%lx000 overlaps existing"
346 " 0x%lx000,0x%lx000\n", base, size, lbase,
347 lsize);
348 goto out;
349 }
350 /* New region is enclosed by an existing region */
351 if (ltype != type) {
352 if (types_compatible(type, ltype))
353 continue;
354 pr_warning("mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
355 base, size, mtrr_attrib_to_str(ltype),
356 mtrr_attrib_to_str(type));
357 goto out;
358 }
359 if (increment)
360 ++mtrr_usage_table[i];
361 error = i;
362 goto out;
363 }
364 /* Search for an empty MTRR */
365 i = mtrr_if->get_free_region(base, size, replace);
366 if (i >= 0) {
367 set_mtrr(i, base, size, type);
368 if (likely(replace < 0)) {
369 mtrr_usage_table[i] = 1;
370 } else {
371 mtrr_usage_table[i] = mtrr_usage_table[replace];
372 if (increment)
373 mtrr_usage_table[i]++;
374 if (unlikely(replace != i)) {
375 set_mtrr(replace, 0, 0, 0);
376 mtrr_usage_table[replace] = 0;
377 }
378 }
379 } else {
380 pr_info("mtrr: no more MTRRs available\n");
381 }
382 error = i;
383 out:
384 mutex_unlock(&mtrr_mutex);
385 put_online_cpus();
386 return error;
387 }
388
389 static int mtrr_check(unsigned long base, unsigned long size)
390 {
391 if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
392 pr_warning("mtrr: size and base must be multiples of 4 kiB\n");
393 pr_debug("mtrr: size: 0x%lx base: 0x%lx\n", size, base);
394 dump_stack();
395 return -1;
396 }
397 return 0;
398 }
399
400 /**
401 * mtrr_add - Add a memory type region
402 * @base: Physical base address of region
403 * @size: Physical size of region
404 * @type: Type of MTRR desired
405 * @increment: If this is true do usage counting on the region
406 *
407 * Memory type region registers control the caching on newer Intel and
408 * non Intel processors. This function allows drivers to request an
409 * MTRR is added. The details and hardware specifics of each processor's
410 * implementation are hidden from the caller, but nevertheless the
411 * caller should expect to need to provide a power of two size on an
412 * equivalent power of two boundary.
413 *
414 * If the region cannot be added either because all regions are in use
415 * or the CPU cannot support it a negative value is returned. On success
416 * the register number for this entry is returned, but should be treated
417 * as a cookie only.
418 *
419 * On a multiprocessor machine the changes are made to all processors.
420 * This is required on x86 by the Intel processors.
421 *
422 * The available types are
423 *
424 * %MTRR_TYPE_UNCACHABLE - No caching
425 *
426 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
427 *
428 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
429 *
430 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
431 *
432 * BUGS: Needs a quiet flag for the cases where drivers do not mind
433 * failures and do not wish system log messages to be sent.
434 */
435 int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
436 bool increment)
437 {
438 if (mtrr_check(base, size))
439 return -EINVAL;
440 return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
441 increment);
442 }
443 EXPORT_SYMBOL(mtrr_add);
444
445 /**
446 * mtrr_del_page - delete a memory type region
447 * @reg: Register returned by mtrr_add
448 * @base: Physical base address
449 * @size: Size of region
450 *
451 * If register is supplied then base and size are ignored. This is
452 * how drivers should call it.
453 *
454 * Releases an MTRR region. If the usage count drops to zero the
455 * register is freed and the region returns to default state.
456 * On success the register is returned, on failure a negative error
457 * code.
458 */
459 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
460 {
461 int i, max;
462 mtrr_type ltype;
463 unsigned long lbase, lsize;
464 int error = -EINVAL;
465
466 if (!mtrr_if)
467 return -ENXIO;
468
469 max = num_var_ranges;
470 /* No CPU hotplug when we change MTRR entries */
471 get_online_cpus();
472 mutex_lock(&mtrr_mutex);
473 if (reg < 0) {
474 /* Search for existing MTRR */
475 for (i = 0; i < max; ++i) {
476 mtrr_if->get(i, &lbase, &lsize, &ltype);
477 if (lbase == base && lsize == size) {
478 reg = i;
479 break;
480 }
481 }
482 if (reg < 0) {
483 pr_debug("mtrr: no MTRR for %lx000,%lx000 found\n",
484 base, size);
485 goto out;
486 }
487 }
488 if (reg >= max) {
489 pr_warning("mtrr: register: %d too big\n", reg);
490 goto out;
491 }
492 mtrr_if->get(reg, &lbase, &lsize, &ltype);
493 if (lsize < 1) {
494 pr_warning("mtrr: MTRR %d not used\n", reg);
495 goto out;
496 }
497 if (mtrr_usage_table[reg] < 1) {
498 pr_warning("mtrr: reg: %d has count=0\n", reg);
499 goto out;
500 }
501 if (--mtrr_usage_table[reg] < 1)
502 set_mtrr(reg, 0, 0, 0);
503 error = reg;
504 out:
505 mutex_unlock(&mtrr_mutex);
506 put_online_cpus();
507 return error;
508 }
509
510 /**
511 * mtrr_del - delete a memory type region
512 * @reg: Register returned by mtrr_add
513 * @base: Physical base address
514 * @size: Size of region
515 *
516 * If register is supplied then base and size are ignored. This is
517 * how drivers should call it.
518 *
519 * Releases an MTRR region. If the usage count drops to zero the
520 * register is freed and the region returns to default state.
521 * On success the register is returned, on failure a negative error
522 * code.
523 */
524 int mtrr_del(int reg, unsigned long base, unsigned long size)
525 {
526 if (mtrr_check(base, size))
527 return -EINVAL;
528 return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
529 }
530 EXPORT_SYMBOL(mtrr_del);
531
532 /**
533 * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable
534 * @base: Physical base address
535 * @size: Size of region
536 *
537 * If PAT is available, this does nothing. If PAT is unavailable, it
538 * attempts to add a WC MTRR covering size bytes starting at base and
539 * logs an error if this fails.
540 *
541 * Drivers must store the return value to pass to mtrr_del_wc_if_needed,
542 * but drivers should not try to interpret that return value.
543 */
544 int arch_phys_wc_add(unsigned long base, unsigned long size)
545 {
546 int ret;
547
548 if (pat_enabled)
549 return 0; /* Success! (We don't need to do anything.) */
550
551 ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true);
552 if (ret < 0) {
553 pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.",
554 (void *)base, (void *)(base + size - 1));
555 return ret;
556 }
557 return ret + MTRR_TO_PHYS_WC_OFFSET;
558 }
559 EXPORT_SYMBOL(arch_phys_wc_add);
560
561 /*
562 * arch_phys_wc_del - undoes arch_phys_wc_add
563 * @handle: Return value from arch_phys_wc_add
564 *
565 * This cleans up after mtrr_add_wc_if_needed.
566 *
567 * The API guarantees that mtrr_del_wc_if_needed(error code) and
568 * mtrr_del_wc_if_needed(0) do nothing.
569 */
570 void arch_phys_wc_del(int handle)
571 {
572 if (handle >= 1) {
573 WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET);
574 mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0);
575 }
576 }
577 EXPORT_SYMBOL(arch_phys_wc_del);
578
579 /*
580 * phys_wc_to_mtrr_index - translates arch_phys_wc_add's return value
581 * @handle: Return value from arch_phys_wc_add
582 *
583 * This will turn the return value from arch_phys_wc_add into an mtrr
584 * index suitable for debugging.
585 *
586 * Note: There is no legitimate use for this function, except possibly
587 * in printk line. Alas there is an illegitimate use in some ancient
588 * drm ioctls.
589 */
590 int phys_wc_to_mtrr_index(int handle)
591 {
592 if (handle < MTRR_TO_PHYS_WC_OFFSET)
593 return -1;
594 else
595 return handle - MTRR_TO_PHYS_WC_OFFSET;
596 }
597 EXPORT_SYMBOL_GPL(phys_wc_to_mtrr_index);
598
599 /*
600 * HACK ALERT!
601 * These should be called implicitly, but we can't yet until all the initcall
602 * stuff is done...
603 */
604 static void __init init_ifs(void)
605 {
606 #ifndef CONFIG_X86_64
607 amd_init_mtrr();
608 cyrix_init_mtrr();
609 centaur_init_mtrr();
610 #endif
611 }
612
613 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
614 * MTRR driver doesn't require this
615 */
616 struct mtrr_value {
617 mtrr_type ltype;
618 unsigned long lbase;
619 unsigned long lsize;
620 };
621
622 static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
623
624 static int mtrr_save(void)
625 {
626 int i;
627
628 for (i = 0; i < num_var_ranges; i++) {
629 mtrr_if->get(i, &mtrr_value[i].lbase,
630 &mtrr_value[i].lsize,
631 &mtrr_value[i].ltype);
632 }
633 return 0;
634 }
635
636 static void mtrr_restore(void)
637 {
638 int i;
639
640 for (i = 0; i < num_var_ranges; i++) {
641 if (mtrr_value[i].lsize) {
642 set_mtrr(i, mtrr_value[i].lbase,
643 mtrr_value[i].lsize,
644 mtrr_value[i].ltype);
645 }
646 }
647 }
648
649
650
651 static struct syscore_ops mtrr_syscore_ops = {
652 .suspend = mtrr_save,
653 .resume = mtrr_restore,
654 };
655
656 int __initdata changed_by_mtrr_cleanup;
657
658 #define SIZE_OR_MASK_BITS(n) (~((1ULL << ((n) - PAGE_SHIFT)) - 1))
659 /**
660 * mtrr_bp_init - initialize mtrrs on the boot CPU
661 *
662 * This needs to be called early; before any of the other CPUs are
663 * initialized (i.e. before smp_init()).
664 *
665 */
666 void __init mtrr_bp_init(void)
667 {
668 u32 phys_addr;
669
670 init_ifs();
671
672 phys_addr = 32;
673
674 if (cpu_has_mtrr) {
675 mtrr_if = &generic_mtrr_ops;
676 size_or_mask = SIZE_OR_MASK_BITS(36);
677 size_and_mask = 0x00f00000;
678 phys_addr = 36;
679
680 /*
681 * This is an AMD specific MSR, but we assume(hope?) that
682 * Intel will implement it too when they extend the address
683 * bus of the Xeon.
684 */
685 if (cpuid_eax(0x80000000) >= 0x80000008) {
686 phys_addr = cpuid_eax(0x80000008) & 0xff;
687 /* CPUID workaround for Intel 0F33/0F34 CPU */
688 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
689 boot_cpu_data.x86 == 0xF &&
690 boot_cpu_data.x86_model == 0x3 &&
691 (boot_cpu_data.x86_mask == 0x3 ||
692 boot_cpu_data.x86_mask == 0x4))
693 phys_addr = 36;
694
695 size_or_mask = SIZE_OR_MASK_BITS(phys_addr);
696 size_and_mask = ~size_or_mask & 0xfffff00000ULL;
697 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
698 boot_cpu_data.x86 == 6) {
699 /*
700 * VIA C* family have Intel style MTRRs,
701 * but don't support PAE
702 */
703 size_or_mask = SIZE_OR_MASK_BITS(32);
704 size_and_mask = 0;
705 phys_addr = 32;
706 }
707 } else {
708 switch (boot_cpu_data.x86_vendor) {
709 case X86_VENDOR_AMD:
710 if (cpu_has_k6_mtrr) {
711 /* Pre-Athlon (K6) AMD CPU MTRRs */
712 mtrr_if = mtrr_ops[X86_VENDOR_AMD];
713 size_or_mask = SIZE_OR_MASK_BITS(32);
714 size_and_mask = 0;
715 }
716 break;
717 case X86_VENDOR_CENTAUR:
718 if (cpu_has_centaur_mcr) {
719 mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
720 size_or_mask = SIZE_OR_MASK_BITS(32);
721 size_and_mask = 0;
722 }
723 break;
724 case X86_VENDOR_CYRIX:
725 if (cpu_has_cyrix_arr) {
726 mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
727 size_or_mask = SIZE_OR_MASK_BITS(32);
728 size_and_mask = 0;
729 }
730 break;
731 default:
732 break;
733 }
734 }
735
736 if (mtrr_if) {
737 set_num_var_ranges();
738 init_table();
739 if (use_intel()) {
740 get_mtrr_state();
741
742 if (mtrr_cleanup(phys_addr)) {
743 changed_by_mtrr_cleanup = 1;
744 mtrr_if->set_all();
745 }
746 }
747 }
748 }
749
750 void mtrr_ap_init(void)
751 {
752 if (!use_intel() || mtrr_aps_delayed_init)
753 return;
754 /*
755 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
756 * changed, but this routine will be called in cpu boot time,
757 * holding the lock breaks it.
758 *
759 * This routine is called in two cases:
760 *
761 * 1. very earily time of software resume, when there absolutely
762 * isn't mtrr entry changes;
763 *
764 * 2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
765 * lock to prevent mtrr entry changes
766 */
767 set_mtrr_from_inactive_cpu(~0U, 0, 0, 0);
768 }
769
770 /**
771 * Save current fixed-range MTRR state of the first cpu in cpu_online_mask.
772 */
773 void mtrr_save_state(void)
774 {
775 int first_cpu;
776
777 get_online_cpus();
778 first_cpu = cpumask_first(cpu_online_mask);
779 smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1);
780 put_online_cpus();
781 }
782
783 void set_mtrr_aps_delayed_init(void)
784 {
785 if (!use_intel())
786 return;
787
788 mtrr_aps_delayed_init = true;
789 }
790
791 /*
792 * Delayed MTRR initialization for all AP's
793 */
794 void mtrr_aps_init(void)
795 {
796 if (!use_intel())
797 return;
798
799 /*
800 * Check if someone has requested the delay of AP MTRR initialization,
801 * by doing set_mtrr_aps_delayed_init(), prior to this point. If not,
802 * then we are done.
803 */
804 if (!mtrr_aps_delayed_init)
805 return;
806
807 set_mtrr(~0U, 0, 0, 0);
808 mtrr_aps_delayed_init = false;
809 }
810
811 void mtrr_bp_restore(void)
812 {
813 if (!use_intel())
814 return;
815
816 mtrr_if->set_all();
817 }
818
819 static int __init mtrr_init_finialize(void)
820 {
821 if (!mtrr_if)
822 return 0;
823
824 if (use_intel()) {
825 if (!changed_by_mtrr_cleanup)
826 mtrr_state_warn();
827 return 0;
828 }
829
830 /*
831 * The CPU has no MTRR and seems to not support SMP. They have
832 * specific drivers, we use a tricky method to support
833 * suspend/resume for them.
834 *
835 * TBD: is there any system with such CPU which supports
836 * suspend/resume? If no, we should remove the code.
837 */
838 register_syscore_ops(&mtrr_syscore_ops);
839
840 return 0;
841 }
842 subsys_initcall(mtrr_init_finialize);